1
|
Pan B, Hu D, Lu YW, Luo J, Xu XH, Guo H, Deng R, Liang Z, Wang Y, Ma Q, Mably JD, Tian J, Wang DZ. Trbp inhibits cardiac fibrosis through TGF-β pathway-mediated cross-talk between cardiomyocytes and fibroblasts. Clin Sci (Lond) 2025; 139:1-14. [PMID: 40067137 DOI: 10.1042/cs20242397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multifunctional RNA-binding protein that is essential during heart development, but its role in the adult heart and cardiac remodeling remains unknown. We generated inducible conditional knockout mice to delete Trbp from cardiomyocytes in young adults (Trbp-cKOs). While Trbp-cKO mice did not display a detectable phenotype, under stress conditions induced by transverse aortic constriction pressure overload, they rapidly developed severe heart failure; this was associated with maladaptive cardiac remodeling and increased interstitial fibrosis. RNA-sequencing revealed the induction of a fibrotic gene expression network and the TGF-β signaling pathway in Trbp-cKO hearts. In cultured neonatal rat ventricle cardiomyocytes (NRCMs), inhibition of Trbp resulted in an induction of the expression of both Tgfβ2 and Ltbp2; in contrast, Trbp overexpression repressed Tgfβ2 expression. Knockdown of Trbp in NRCMs that were co-cultured with neonatal rat cardiac fibroblasts (NRCFs) resulted in an increase in fibrotic gene expression. However, knockdown of Trbp in NRCMs combined with knockdown of Tgfβ2 in NRCFs using the same co-culture system failed to induce the same change in fibrotic gene expression. These data provide evidence for a critical role for Trbp in regulating cardiac fibrosis during cardiac remodeling mediated by cross-talk between cardiomyocytes and fibroblasts. The link to TGF-β signaling also highlights its importance and reveals a novel approach to intervention by targeting of Trbp.
Collapse
Affiliation(s)
- Bo Pan
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Di Hu
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Jing Luo
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Xiao Hui Xu
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Rui Deng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
- The Center for Regenerative Medicine and USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, U.S.A
- Department of Internal Medicine, USF Health, University of South Florida, Tampa, FL 33602, U.S.A
| | - Zhuomin Liang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Yi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - John D Mably
- The Center for Regenerative Medicine and USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, U.S.A
- Department of Internal Medicine, USF Health, University of South Florida, Tampa, FL 33602, U.S.A
| | - Jie Tian
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
- Department of Molecular Pharmacology & Physiology, USF Health, University of South Florida, Tampa, FL 33602, U.S.A
| |
Collapse
|
2
|
Emerson JI, Shi W, Paredes-Larios J, Walker WG, Hutton JE, Cristea IM, Marzluff WF, Conlon FL. X-Chromosome-Linked miRNAs Regulate Sex Differences in Cardiac Physiology. Circ Res 2025; 136:258-275. [PMID: 39772608 PMCID: PMC11781965 DOI: 10.1161/circresaha.124.325447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Males and females exhibit distinct anatomic and functional characteristics of the heart, predisposing them to specific disease states. METHODS We identified microRNAs (miRNAs/miR) with sex-differential expression in mouse hearts. RESULTS Four conserved miRNAs are present in a single locus on the X-chromosome and are expressed at higher levels in females than males. We show miRNA, miR-871, is responsible for decreased expression of the protein SRL (sarcalumenin) in females. SRL is involved in calcium signaling, and we show it contributes to differences in electrophysiology between males and females. miR-871 overexpression mimics the effects of the cardiac physiology of conditional cardiomyocyte-specific Srl-null mice. Inhibiting miR-871 with an antagomir in females shortened ventricular repolarization. The human orthologue of miR-871, miR-888, coevolved with the SRL 3' untranslated region and regulates human SRL. CONCLUSIONS These data highlight the importance of sex-differential miRNA mechanisms in mediating sex-specific functions and their potential relevance to human cardiac diseases.
Collapse
Affiliation(s)
- James I. Emerson
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jose Paredes-Larios
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William G. Walker
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Josiah E. Hutton
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - William F. Marzluff
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
de Oliveira AC, Bovolenta LA, Figueiredo L, Ribeiro ADO, Pereira BJA, de Almeida TRA, Campos VF, Patton JG, Pinhal D. MicroRNA Transcriptomes Reveal Prevalence of Rare and Species-Specific Arm Switching Events During Zebrafish Ontogenesis. Evol Bioinform Online 2024; 20:11769343241263230. [PMID: 39055772 PMCID: PMC11271096 DOI: 10.1177/11769343241263230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
In metazoans, microRNAs (miRNAs) are essential regulators of gene expression, affecting critical cellular processes from differentiation and proliferation, to homeostasis. During miRNA biogenesis, the miRNA strand that loads onto the RNA-induced Silencing Complex (RISC) can vary, leading to changes in gene targeting and modulation of biological pathways. To investigate the impact of these "arm switching" events on gene regulation, we analyzed a diverse range of tissues and developmental stages in zebrafish by comparing 5p and 3p arms accumulation dynamics between embryonic developmental stages, adult tissues, and sexes. We also compared variable arm usage patterns observed in zebrafish to other vertebrates including arm switching data from fish, birds, and mammals. Our comprehensive analysis revealed that variable arm usage events predominantly take place during embryonic development. It is also noteworthy that isomiR occurrence correlates to changes in arm selection evidencing an important role of microRNA distinct isoforms in reinforcing and modifying gene regulation by promoting dynamics switches on miRNA 5p and 3p arms accumulation. Our results shed new light on the emergence and coordination of gene expression regulation and pave the way for future investigations in this field.
Collapse
Affiliation(s)
- Arthur Casulli de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Luiz Augusto Bovolenta
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Lucas Figueiredo
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda De Oliveira Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Beatriz Jacinto Alves Pereira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Talita Roberto Aleixo de Almeida
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Vinicius Farias Campos
- Laboratory of Structural Genomics, Postgraduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
5
|
Li KX, Li JR, Zuo SJ, Li X, Chen XT, Xiao PY, Li HT, Sun L, Qian T, Zhang HM, Zhu D, Yu XY, Chen G, Jiang XY. Identification of miR-20b-5p as an inhibitory regulator in cardiac differentiation via TET2 and DNA hydroxymethylation. Clin Epigenetics 2024; 16:42. [PMID: 38491513 PMCID: PMC10943922 DOI: 10.1186/s13148-024-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is a prevalent congenital cardiac malformation, which lacks effective early biological diagnosis and intervention. MicroRNAs, as epigenetic regulators of cardiac development, provide potential biomarkers for the diagnosis and treatment of CHD. However, the mechanisms underlying miRNAs-mediated regulation of cardiac development and CHD malformation remain to be further elucidated. This study aimed to explore the function of microRNA-20b-5p (miR-20b-5p) in cardiac development and CHD pathogenesis. METHODS AND RESULTS miRNA expression profiling identified that miR-20b-5p was significantly downregulated during a 12-day cardiac differentiation of human embryonic stem cells (hESCs), whereas it was markedly upregulated in plasma samples of atrial septal defect (ASD) patients. Our results further revealed that miR-20b-5p suppressed hESCs-derived cardiac differentiation by targeting tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine, leading to a reduction in key cardiac transcription factors including GATA4, NKX2.5, TBX5, MYH6 and cTnT. Additionally, knockdown of TET2 significantly inhibited cardiac differentiation, which could be partially restored by miR-20b-5p inhibition. CONCLUSIONS Collectively, this study provides compelling evidence that miR-20b-5p functions as an inhibitory regulator in hESCs-derived cardiac differentiation by targeting TET2, highlighting its potential as a biomarker for ASD.
Collapse
Affiliation(s)
- Ke-Xin Li
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Ru Li
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Jia Zuo
- Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Xudong Li
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xian-Tong Chen
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Yi Xiao
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui-Tao Li
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China
| | - Ling Sun
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tao Qian
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Min Zhang
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dongxing Zhu
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xue-Yan Jiang
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
6
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
7
|
Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, Kamarudin MNA. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomed Pharmacother 2024; 172:116277. [PMID: 38377734 DOI: 10.1016/j.biopha.2024.116277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Notorious for its high mortality rate, the current standard treatment for high-grade gliomas remains a challenge. This is largely due to the complex heterogeneity of the tumour coupled with dysregulated molecular mechanisms leading to the development of drug resistance. In recent years, microRNAs (miRNAs) have been considered to provide important information about the pathogenesis and prognostication of gliomas. miRNAs have been shown to play a specific role in promoting oncogenesis and regulating resistance to anti-glioma therapeutic agents through diverse cellular mechanisms. These include regulation of apoptosis, alterations in drug efflux pathways, enhanced activation of oncogenic signalling pathways, Epithelial-Mesenchymal Transition-like process (EMT-like) and a few others. With this knowledge, upregulation or inhibition of selected miRNAs can be used to directly affect drug resistance in glioma cells. Moreover, the clinical use of miRNAs in glioma management is becoming increasingly valuable. This comprehensive review delves into the role of miRNAs in drug resistance in high-grade gliomas and underscores their clinical significance. Our analysis has identified a distinct cluster of oncogenic miRNAs (miR-9, miR-21, miR-26a, miR-125b, and miR-221/222) and tumour suppressive miRNAs (miR-29, miR-23, miR-34a-5p, miR 181b-5p, miR-16-5p, and miR-20a) that consistently emerge as key players in regulating drug resistance across various studies. These miRNAs have demonstrated significant clinical relevance in the context of resistance to anti-glioma therapies. Additionally, the clinical significance of miRNA analysis is emphasised, including their potential to serve as clinical biomarkers for diagnosing, staging, evaluating prognosis, and assessing treatment response in gliomas.
Collapse
Affiliation(s)
- Yugendran Jegathesan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Taiping Hospital, Jalan Taming Sari, Perak, Taiping 34000, Malaysia
| | - Pashaun Paveen Stephen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Coffs Harbour Health Campus, Coffs Harbour, NSW 2450, Australia
| | - Isra Saif Eldin Eisa Sati
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Prakrithi Narayanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, VIC, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
8
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
9
|
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguín P. Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart. BMC Genomics 2023; 24:709. [PMID: 37996818 PMCID: PMC10668469 DOI: 10.1186/s12864-023-09801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases in a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome-wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood. RESULTS Transcriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis demonstrated that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progressed. Moreover, we found that downregulated targets of upregulated miRNAs, including hsa-let-7b, miR-1-3p, miR-133a-3p, miR-143-3p, miR-499a-5p, and miR-30a-5p predominantly control cell cycle progression. In contrast, upregulated targets of downregulated miRNAs, including hsa-miR-1276, miR-183-5p, miR-1229-3p, miR-615-3p, miR-421, miR-200b-3p and miR-18a-3p, are linked to energy sensing and oxidative metabolism. Furthermore, integrating miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets and their associated metabolites mediate fatty acid oxidation and are enriched as the heart develops. CONCLUSIONS This study presents the first comprehensive analysis of the small RNAome of the maturing human fetal heart. Our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart. Our results provide novel insights into the molecular control of metabolic maturation of the human fetal heart.
Collapse
Affiliation(s)
- Adar Aharon-Yariv
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada.
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Heart & Stroke, Richard Lewar Centre of Excellence, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Saenz-Pipaon G, Dichek DA. Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases. Atherosclerosis 2023; 374:44-54. [PMID: 36577600 PMCID: PMC10277317 DOI: 10.1016/j.atherosclerosis.2022.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Discovered three decades ago, microRNAs (miRNAs) are now recognized as key players in the pathophysiology of multiple human diseases, including those affecting the cardiovascular system. As such, miRNAs have emerged as promising therapeutic targets for preventing the onset and/or progression of several cardiovascular diseases. Anti-miRNA antisense oligonucleotides or "antagomirs" precisely block the activity of specific miRNAs and are therefore a promising therapeutic strategy to repress pathological miRNAs. In this review, we describe advancements in antisense oligonucleotide chemistry that have significantly improved efficacy and safety. Moreover, we summarize recent approaches for the targeted delivery of antagomirs to cardiovascular tissues, highlighting major advantages as well as limitations of viral (i.e., adenovirus, adeno-associated virus, and lentivirus) and non-viral (i.e., liposomes, extracellular vesicles, and polymer nanoparticles) delivery systems. We discuss recent preclinical studies that use targeted antagomir delivery systems to treat three major cardiovascular diseases (atherosclerosis, myocardial infarction, and cardiac hypertrophy, including hypertrophy caused by hypertension), highlighting therapeutic results and discussing challenges that limit clinical applicability.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - David A Dichek
- Department of Medicine, University of Washington School of Medicine, Seattle, USA.
| |
Collapse
|
12
|
Matute-Blanco L, Fernández-Rodríguez D, Casanova-Sandoval J, Belmonte T, Benítez ID, Rivera K, Garcia-Guimaraes M, Cortés Villar C, Peral Disdier V, Millán Segovia R, Barriuso I, de Gonzalo-Calvo D, Barbé F, Worner F. Study protocol for the epigenetic characterization of angor pectoris according to the affected coronary compartment: Global and comprehensive assessment of the relationship between invasive coronary physiology and microRNAs. PLoS One 2023; 18:e0283097. [PMID: 37167303 PMCID: PMC10174526 DOI: 10.1371/journal.pone.0283097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/01/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs involved in post-transcriptional genetic regulation with a proposed role in intercellular communication. miRNAs are considered promising biomarkers in ischemic heart disease. Invasive physiological evaluation allows a precise assessment of each affected coronary compartment. Although some studies have associated the expression of circulating miRNAs with invasive physiological indexes, their global relationship with coronary compartments has not been assessed. Here, we will evaluate circulating miRNAs profiles according to the coronary pattern of the vascular compartment affectation. STUDY AND DESIGN This is an investigator-initiated, multicentre, descriptive study to be conducted at three centres in Spain (NCT05374694). The study will include one hundred consecutive patients older than 18 years with chest pain of presumed coronary cause undergoing invasive physiological evaluation, including fractional flow reserve (FFR) and index of microvascular resistance (IMR). Patients will be initially classified into four groups, according to FFR and IMR: macrovascular and microvascular affectation (FFR≤0.80 / IMR≥25), isolated macrovascular affectation (FFR≤0.80 / IMR<25), isolated microvascular affectation (FFR>0.80 / IMR ≥25) and normal coronary indexes (FFR>0.80 / IMR<25). Patients with isolated microvascular affectation or normal indexes will also undergo the acetylcholine test and may be reclassified as a fifth group in the presence of spasm. A panel of miRNAs previously associated with molecular mechanisms linked to chronic coronary syndrome will be analysed using RT-qPCR. CONCLUSIONS The results of this study will identify miRNA profiles associated with patterns of coronary affectation and will contribute to a better understanding of the mechanistic pathways of coronary pathology.
Collapse
Affiliation(s)
- Lucía Matute-Blanco
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Diego Fernández-Rodríguez
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Juan Casanova-Sandoval
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Thalía Belmonte
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Iván D. Benítez
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Kristian Rivera
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Marcos Garcia-Guimaraes
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Raúl Millán Segovia
- Department of Cardiology, University Hospital Son Espases, Palma de Mallorca, Spain
| | - Ignacio Barriuso
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| | - David de Gonzalo-Calvo
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Ferran Barbé
- Institut de Reçerca Biomèdica de Lleida (IRBLleida), Translational Research in Respiratory Medicine Group, Lleida, Spain
- Institute of Health Carlos III, CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Fernando Worner
- Department of Cardiology, Institut de Reçerca Biomèdica de Lleida (IRBLleida), University Hospital Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
13
|
Ingoglia NA. Arginylation in a Partially Purified Fraction of 150 k xg Supernatants of Axoplasm and Injured Vertebrate Nerves. Methods Mol Biol 2023; 2620:27-34. [PMID: 37010745 DOI: 10.1007/978-1-0716-2942-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Transfer RNA-mediated posttranslational protein modification by arginine has been demonstrated in vitro in axoplasm extruded from the giant axons of squid and in injured and regenerating vertebrate nerves. In nerve and axoplasm, the highest activity is found in a fraction of a 150,000 g supernatant containing high molecular weight protein/RNA complexes but lacking molecules of <5 kDa. Arginylation (and protein modification by other amino acids) is not found in more purified, reconstituted fractions. The data are interpreted as indicating that it is critical to recover the reaction components in high molecular weight protein/RNA complexes in order to maintain maximum physiological activity. The level of arginylation is greatest in injured and growing vertebrate nerves compared with intact nerves, suggesting a role for these reactions in nerve injury/repair and during axonal growth.
Collapse
Affiliation(s)
- Nicholas A Ingoglia
- New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| |
Collapse
|
14
|
Wang Z, Zhang J, Hu J, Yang G. Gene-activated titanium implants for gene delivery to enhance osseointegration. BIOMATERIALS ADVANCES 2022; 143:213176. [PMID: 36327825 DOI: 10.1016/j.bioadv.2022.213176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Osseointegration is the direct and intimate contact between mineralized tissue and titanium implant at the bone-implant interface. Early establishment and stable maintenance of osseointegration is the key to long-term implant success. However, in patients with compromised conditions such as osteoporosis and patients beginning early load-bearing activities such as walking, lower osseointegration around titanium implants is often observed, which might result in implant early failure. Gene-activated implants show an exciting prospect of combining gene delivery and biomedical implants to solve the problems of poor osseointegration formation, overcoming the shortcomings of protein therapy, including rapid degradation and overdose adverse effects. The conception of gene-activated titanium implants is based on "gene-activated matrix" (GAM), which means scaffolds using non-viral vectors for in situ gene delivery to achieve a long-term and efficient transfection of target cells. Current preclinical studies in animal models have shown that plasmid DNA (pDNA), microRNA (miRNA), and small interference RNA (siRNA) functionalized titanium implants can enhance osseointegration with safety and efficiency, leading to the expectation of applying this technique in dental and orthopedic clinical scenarios. This review aims to comprehensively summarize fabrication strategies, current applications, and futural outlooks of gene-activated implants, emphasizing nucleic acid targets, non-viral vectors, implant surface modification techniques, nucleic acid/vector complexes loading strategies.
Collapse
Affiliation(s)
- Zhikang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
15
|
Behera JK, Bhattacharya M, Mishra P, Mishra A, Dash AA, Kar NB, Behera B, Patra BC. Regulatory role of miRNAs in Wnt signaling pathway linked with cardiovascular diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100133. [PMID: 36568258 PMCID: PMC9780067 DOI: 10.1016/j.crphar.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are discovered in science about 23 years ago. These are short, a series of non-coding, single-stranded and evolutionary conserved RNA molecules found in eukaryotic cells. It involved post-transcriptional fine-tune protein expression and repressing the target of mRNA in different biological processes. These miRNAs binds with the 3'-UTR region of specific mRNAs to phosphorylate the mRNA degradation and inhibit the translation process in various tissues. Therefore, aberrant expression in miRNAs induces numerous cardiovascular diseases and developmental defects. Subsequently, the miRNAs and Wnt singling pathway are regulating a cellular process in cardiac development and regeneration, maintain the homeostasis and associated heart diseases. In Wnt signaling pathway majority of the signaling components are expressed and regulated by miRNAs, whereas the inhibition or dysfunction of the Wnt signaling pathway induces cardiovascular diseases. Moreover, inadequate studies about the important role of miRNAs in heart development and diseases through Wnt signaling pathway has been exist still now. For this reason in present review we summarize and update the involvement of miRNAs and the role of Wnt signaling in cardiovascular diseases. We have discussed the mechanism of miRNA functions which regulates the Wnt components in cellular signaling pathway. The fundamental understanding of Wnt signaling regulation and mechanisms of miRNAs is quite essential for study of heart development and related diseases. This approach definitely enlighten the future research to provide a new strategy for formulation of novel therapeutic approaches against cardiovascular diseases.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Akansha Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Adya Anindita Dash
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Niladri Bhusan Kar
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| |
Collapse
|
16
|
Dynamic alternative polyadenylation during iPSC differentiation into cardiomyocytes. Comput Struct Biotechnol J 2022; 20:5859-5869. [DOI: 10.1016/j.csbj.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
|
17
|
Yang J, Yang XS, Fan SW, Zhao XY, Li C, Zhao ZY, Pei HJ, Qiu L, Zhuang X, Yang CH. Prognostic value of microRNAs in heart failure: A meta-analysis. Medicine (Baltimore) 2021; 100:e27744. [PMID: 34797300 PMCID: PMC8601330 DOI: 10.1097/md.0000000000027744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Reported studies have shown that expression levels of microRNAs (miRNAs) are related to survival time of patients with heart failure (HF). A systematic review and meta-analysis were conducted to study circulating miRNAs expression and patient outcome. METHODS Meta-analysis estimating expression levels of circulating miRNAs in HF patients from January 2010 until June 30, 2018, through conducting online searches in Pub Med, Cochrane Database of Systematic, EMBASE and Web of Science and reviewed by 2 independent researchers. Using pooled hazard ratio with a 95% confidence interval to assess the correlation between miRNAs expression levels and overall survival. RESULTS Four relevant articles assessing 19 circulating miRNAs in 867 patients were included. In conclusion, the meta-analysis results suggest that HF patients with low expression of serum miR-1, miR-423-5p, miR-126, miR-21, miR-23, miR-30d, miR-18a-5p, miR-16-5p, miR-18b-5p, miR-27a-3p, miR-26b-5p, miR-30e-5p, miR-106a-5p, miR-233-3P, miR-301a-3p, miR-423-3P, and miR-128 have significantly worse overall survival (P < .05). Among them, miR-18a-5p, miR-18b-5p, miR-30d, miR-30e-5p, and miR-423-5p are strong biomarkers of prognosis in HF.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, China
| | - Xue-Song Yang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shao-Wei Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Yu Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng-Yao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Juan Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Qiu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhuang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, China
| | - Chuan-Hua Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, China
| |
Collapse
|
18
|
Zhou H, Tang W, Yang J, Peng J, Guo J, Fan C. MicroRNA-Related Strategies to Improve Cardiac Function in Heart Failure. Front Cardiovasc Med 2021; 8:773083. [PMID: 34869689 PMCID: PMC8639862 DOI: 10.3389/fcvm.2021.773083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| |
Collapse
|
19
|
Chen Y, Liu Y, Gao X. The Application of Single-Cell Technologies in Cardiovascular Research. Front Cell Dev Biol 2021; 9:751371. [PMID: 34708045 PMCID: PMC8542723 DOI: 10.3389/fcell.2021.751371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of deaths in the world. The intricacies of the cellular composition and tissue microenvironment in heart and vasculature complicate the dissection of molecular mechanisms of CVDs. Over the past decade, the rapid development of single-cell omics technologies generated vast quantities of information at various biological levels, which have shed light on the cellular and molecular dynamics in cardiovascular development, homeostasis and diseases. Here, we summarize the latest single-cell omics techniques, and show how they have facilitated our understanding of cardiovascular biology. We also briefly discuss the clinical value and future outlook of single-cell applications in the field.
Collapse
Affiliation(s)
- Yinan Chen
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Liu
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Balasubramanian R, Vuppalapati S, Avanthika C, Jhaveri S, Peddi NC, Ahmed S, Reddy A, Kaur J. Epidemiology, Genetics and Epigenetics of Congenital Heart Diseases in Twins. Cureus 2021; 13:e17253. [PMID: 34540478 PMCID: PMC8448266 DOI: 10.7759/cureus.17253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Congenital heart defects (CHDs) refer to abnormalities in the heart function that arise at the fetal stages. It is the most common birth defect that affects 0.8% of all liveborn infants. There is an increase in the incidence of congenital heart disease in monochorionic twin gestation. A six-fold increase in CHDs exists among monochorionic twins especially in association with twin-twin transfusion syndrome (TTTS) compared to dichorionic twin pregnancy. In this review article, we discussed the epidemiology, the role of genetics like protein-coding genes, epigenetics, placenta, hemodynamics and environmental factors in the etiology of CHD in twins. We conducted a literature search in PubMed indexed journals using the medical terms "twin pregnancy" and "congenital heart defect" to provide an overview of the uptrend in CHD in twin pregnancies, primarily due to assisted reproductive technologies (ARTs) and multiple other factors. Both the heart and placenta are vascular and share a common development window; therefore, CHD can develop secondary to placental pathologies. Among environmental factors, the strongest association of maternal smoking with CHD has been seen. We studied the causative factors to suggest improvement in echocardiographic skills in case of abnormal findings in twin gestations to decrease the CHD-associated morbidity and mortality, as early diagnosis allows doctors to precisely determine the risk of CHD. Systemic ultrasound scanning with five transverse views is very effective in diagnosing fetal CHD in twin pregnancy. In the case of genetics, prenatal counseling allows the expectant to understand the full ramifications of possible events after the pregnancy. The pathological basis of malformations specific to conjoined twinning and twin reversed arterial perfusion sequence is addressed. Also, there is evidence that folate supplementation may be protective against CHD but more research is needed to clarify the mechanisms. We concluded from the literature that monochorionic twins are at high risk of CHD. Chorionicity seems to play a more vital role than zygosity. Even the type of heart defect in monochorial twin pregnancies was unique from single, dizygotic, or dichorionic twin pregnancies. We also emphasize improving echocardiographic skills of technicians in referring ART dichorionic twin fetuses with suspicious findings to fetal cardiologists and performing postnatal scans in the case of TTTS. To understand the role of the placenta, making use of newer technologies and examining the placenta both during pregnancy and beyond delivery will play a vital role in understanding the etiology. Even identifying early signals impacting the heart and placental vasculature and correcting them using advanced technology could downtrend the incidence in coming years. Increased maternal age as well as multiple pregnancies increasing the risk of CHD has also been implicated. For more clarity on the role of genetics, the cost of DNA sequencing needs to decrease. This will enable whole-genome sequencing in the future thus helping to discover the gene responsible for CHD ultimately proving beneficial for future generations. For environmental factors, we have to rely on observational studies to assess the risk to the unborn child. There is difficulty in studying natural factors due to the unreliability of exposure to contaminants like pesticides and air pollution.
Collapse
Affiliation(s)
| | - Sravya Vuppalapati
- Pediatrics, People's Education Society Institute of Medical Sciences and Research, Kuppam, IND
| | | | - Sharan Jhaveri
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Nikhil Chowdary Peddi
- Pediatrics, People's Education Society Institute of Medical Sciences and Research, Kuppam, IND
| | - Sana Ahmed
- Internal Medicine, Smt. Kashibai Navale Medical College, Pune, IND
| | - Apeksha Reddy
- Pediatrics, People's Education Society Institute of Medical Sciences and Research, Kuppam, IND
| | | |
Collapse
|
21
|
El Kilany FH, Youness RA, Assal RA, Gad MZ. miR-744/eNOS/NO axis: A novel target to halt triple negative breast cancer progression. Breast Dis 2021; 40:161-169. [PMID: 33749631 DOI: 10.3233/bd-200454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nitric oxide (NO) may have a dual role in cancer. At low concentrations, endogenous NO promotes tumor growth and proliferation. However, at very high concentrations, it mediates cancer cell apoptosis and inhibits cancer growth. High levels of NO have been observed in blood of breast cancer (BC) patients, which increases tumor blood flow and promotes angiogenesis. To date, the regulation of NO-synthesizing enzyme, eNOS, by miRNAs has not been adequately investigated in BC. Therefore, the main aim of this study is to unravel the possible regulation of eNOS by miRNAs in BC and to examine their influence on NO production and BC progression. METHODS Expression profile of eNOS in Egyptian BC patients and MDA-MB-231 cell lines was investigated using qRT-PCR. In-silico analysis was performed to predict a putative upstream regulator of eNOS. miR-744-5p was selected and its expression was quantified in BC tissues using qRT-PCR. MDA-MB-231 cells were cultured and transfected with miR-744-5p using lipofection method. NO levels were determined using Griess Reagent. Cellular viability and colony-forming ability were assessed using MTT and colony-forming assays; respectively. RESULTS eNOS and miR-744-5p were significantly up-regulated in BC tissues compared to paired normal tissues. In-silico analysis revealed that miR-744-5p putatively binds to eNOS transcript with high binding scores. Transfection of MDA-MB-231 cells with miR-744-5p mimics resulted in a significant up-regulation of eNOS and consequently NO levels. In addition, miR-744-5p transfection led to an increase in cellular viability and colony-forming ability of the MDA-MB-231. CONCLUSION miR-744-5p acts as an upstream positive regulator of the NO synthesizing enzyme, eNOS which in turn elevates NO levels. Furthermore, miR-744-5p is a novel oncogenic miRNA in BC. Thus, targeting miR-744/eNOS/NO axis may act as a therapeutic tool in TNBC.
Collapse
Affiliation(s)
- Farah Hady El Kilany
- Department of Biochemistry, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Rana Ahmed Youness
- Pharmaceutical Biology Department, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Reem Amr Assal
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Mohamed Zakaria Gad
- Department of Biochemistry, German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
22
|
Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2021; 116:1113-1124. [PMID: 31782762 DOI: 10.1093/cvr/cvz302] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The aim of this systematic review was to assess dysregulated miRNA biomarkers in coronary artery disease (CAD). Dysregulated microRNA (miRNAs) have been shown to be linked to cardiovascular pathologies including CAD and may have utility as diagnostic and prognostic biomarkers. We compared miRNAs identified in acute coronary syndrome (ACS) compared with stable CAD and control populations. We conducted a systematic search of controlled vocabulary and free text terms related to ACS, stable CAD and miRNA in Biosis Previews (OvidSP), The Cochrane Library (Wiley), Embase (OvidSP), Global Health (OvidSP), Medline (PubMed and OvidSP), Web of Science (Clarivate Analytics), and ClinicalTrials.gov which yielded 7370 articles. Of these, 140 original articles were appropriate for data extraction. The most frequently reported miRNAs in any CAD (miR-1, miR-133a, miR-208a/b, and miR-499) are expressed abundantly in the heart and play crucial roles in cardiac physiology. In studies comparing ACS cases with stable CAD patients, miR-21, miR-208a/b, miR-133a/b, miR-30 family, miR-19, and miR-20 were most frequently reported to be dysregulated in ACS. While a number of miRNAs feature consistently across studies in their expression in both ACS and stable CAD, when compared with controls, certain miRNAs were reported as biomarkers specifically in ACS (miR-499, miR-1, miR-133a/b, and miR-208a/b) and stable CAD (miR-215, miR-487a, and miR-502). Thus, miR-21, miR-133, and miR-499 appear to have the most potential as biomarkers to differentiate the diagnosis of ACS from stable CAD, especially miR-499 which showed a correlation between the level of their concentration gradient and myocardial damage. Although these miRNAs are potential diagnostic biomarkers, these findings should be interpreted with caution as the majority of studies conducted predefined candidate-driven assessments of a limited number of miRNAs (PROSPERO registration: CRD42017079744).
Collapse
Affiliation(s)
- Amanpreet Kaur
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada
| | - Sharon T Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kenny Schlosser
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fui Lin Wong
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Malik Elharram
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Natalie Dayan
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Tara Landry
- Medical Library, Montreal General Hospital, McGill University Health Centre, Montreal, Canada
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
23
|
Zheng M, Wang M. A narrative review of the roles of the miR-15/107 family in heart disease: lessons and prospects for heart disease. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:66. [PMID: 33553359 PMCID: PMC7859774 DOI: 10.21037/atm-20-6073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart disease is one of the leading causes of morbidity and mortality globally. To reduce morbidity and mortality among patients with heart disease, it is important to identify drug targets and biomarkers for more effective diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) are characterized as a group of endogenous, small non-coding RNAs, which function by directly inhibiting target genes. The miR-15/107 family is a group of evolutionarily conserved miRNAs comprising 10 members that share an identical motif of AGCAGC, which determines overlapping target genes and cooperation in the biological process. Accumulating evidence has demonstrated the predominant dysregulation of the miR-15/107 family in cardiovascular disease, neurodegenerative disease, and cancer. In this review, we summarize the current understanding of the miR-15/107 family, focusing on its role in the regulation in the development of the heart and the progression of heart disease. We also discuss the potential of different members of the miR-15/107 family as biomarkers for diverse heart disease, as well as the current applications and challenges in the use of the miR-15/107 family in clinical trials for various disease. This paper hopes to explore the potential of the miR-15/107 family as therapeutic targets or biomarkers and to provide directions for future research.
Collapse
Affiliation(s)
- Manni Zheng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Liu Y, Liu Y, Hu J, He Z, Liu L, Ma Y, Wen D. Heterogeneous miRNA-mRNA Regulatory Networks of Visceral and Subcutaneous Adipose Tissue in the Relationship Between Obesity and Renal Clear Cell Carcinoma. Front Endocrinol (Lausanne) 2021; 12:713357. [PMID: 34621242 PMCID: PMC8490801 DOI: 10.3389/fendo.2021.713357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urologic cancer. Associations of both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with ccRCC have been reported, and underlying mechanisms of VAT perhaps distinguished from SAT, considering their different structures and functions. We performed this study to disclose different miRNA-mRNA networks of obesity-related ccRCC in VAT and SAT using datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA); and find out different RNAs correlated with the prognosis of ccRCC in VAT and SAT. METHODS We screened out different expressed (DE) mRNAs and miRNAs of obesity, in both VAT and SAT from GEO datasets, and constructed miRNA-mRNA networks of obesity-related ccRCC. To evaluate the sensitivity and specificity of RNAs in networks of obesity-related ccRCC in both VAT and SAT, Receiver Operating Characteristic (ROC) analyses were conducted using TCGA datasets. Spearman correlation analyses were then performed to find out RNA pairs with inverse correlations. We also performed Cox regression analyses to estimate the association of all DE RNAs of obesity with the overall survival. RESULTS 136 and 185 DE mRNAs of obesity in VAT and SAT were found out. Combined with selected DE miRNAs, miRNA-mRNA networks of obesity-related ccRCC were constructed. By performing ROC analyses, RNAs with same trend as shown in networks and statistically significant ORs were selected to be paired. Three pairs were finally remained in Spearman correlation analyses, including hsa-miR-182&ATP2B2, hsa-miR-532&CDH2 in VAT, and hsa-miR-425&TFAP2B in SAT. Multivariable Cox regression analyses showed that several RNAs with statistically significant adjusted HRs remained consistent trends as shown in DE analyses of obesity. Risk score analyses using selected RNAs showed that the overall survival time of patients in the low-risk group was significantly longer than that in the high-risk group regardless of risk score models. CONCLUSIONS We found out different miRNA-mRNA regulatory networks of obesity-related ccRCC for both VAT and SAT; and several DE RNAs of obesity-related ccRCC were found to remain consistent performance in terms of ccRCC prognosis. Our findings could provide valuable evidence on the targeted therapy of obesity-related ccRCC.
Collapse
Affiliation(s)
- Yuyan Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Zhenwei He
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
- *Correspondence: Deliang Wen,
| |
Collapse
|
25
|
Zhu Y, Do VD, Richards AM, Foo R. What we know about cardiomyocyte dedifferentiation. J Mol Cell Cardiol 2020; 152:80-91. [PMID: 33275936 DOI: 10.1016/j.yjmcc.2020.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes (CMs) lost during cardiac injury and heart failure (HF) cannot be replaced due to their limited proliferative capacity. Regenerating the failing heart by promoting CM cell-cycle re-entry is an ambitious solution, currently vigorously pursued. Some genes have been proven to promote endogenous CM proliferation, believed to be preceded by CM dedifferentiation, wherein terminally differentiated CMs are initially reversed back to the less mature state which precedes cell division. However, very little else is known about CM dedifferentiation which remains poorly defined. We lack robust molecular markers and proper understanding of the mechanisms driving dedifferentiation. Even the term dedifferentiation is debated because there is no objective evidence of pluripotency, and could rather reflect CM plasticity instead. Nonetheless, the significance of CM transition states on cardiac function, and whether they necessarily lead to CM proliferation, remains unclear. This review summarises the current state of knowledge of both natural and experimentally induced CM dedifferentiation in non-mammalian vertebrates (primarily the zebrafish) and mammals, as well as the phenotypes and molecular mechanisms involved. The significance and potential challenges of studying CM dedifferentiation are also discussed. In summary, CM dedifferentiation, essential for CM plasticity, may have an important role in heart regeneration, thereby contributing to the prevention and treatment of heart disease. More attention is needed in this field to overcome the technical limitations and knowledge gaps.
Collapse
Affiliation(s)
- Yike Zhu
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - Vinh Dang Do
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore.
| |
Collapse
|
26
|
Thongprayoon C, Vaitla P, Craici IM, Leeaphorn N, Hansrivijit P, Salim SA, Bathini T, Cabeza Rivera FH, Cheungpasitporn W. The Use of Donor-Derived Cell-Free DNA for Assessment of Allograft Rejection and Injury Status. J Clin Med 2020; 9:E1480. [PMID: 32423115 PMCID: PMC7290747 DOI: 10.3390/jcm9051480] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Patient monitoring after kidney transplantation (KT) for early detection of allograft rejection remains key in preventing allograft loss. Serum creatinine has poor predictive value to detect ongoing active rejection as its increase is not sensitive, nor specific for acute renal allograft rejection. Diagnosis of acute rejection requires allograft biopsy and histological assessment, which can be logistically challenging in some cases and carries inherent risk for complications related to procedure. Donor-derived cell-free DNA (dd-cfDNA), DNA of donor origin in the blood of KT recipient arising from cells undergoing injury and death, has been examined as a potential surrogate marker for allograft rejection. A rise in dd-cfDNA levels precedes changes in serum creatinine allows early detections and use as a screening tool for allograft rejection. In addition, when used in conjunction with donor-specific antibodies (DSA), it increases the pre-biopsy probability of antibody-mediated rejection (ABMR) aiding the decision-making process. Advancements in noninvasive biomarker assays such as dd-cfDNA may offer the opportunity to improve and expand the spectrum of available diagnostic tools to monitor and detect risk for rejection and positively impact outcomes for KT recipients. In this this article, we discussed the evolution of dd-cfDNA assays and recent evidence of assessment of allograft rejection and injury status of KT by the use of dd-cfDNA.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (I.M.C.)
| | - Pradeep Vaitla
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| | - Iasmina M. Craici
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (I.M.C.)
| | - Napat Leeaphorn
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke’s Health System, Kansas City, MO 64111, USA;
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA;
| | - Sohail Abdul Salim
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Franco H. Cabeza Rivera
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| |
Collapse
|
27
|
La Greca A, Scarafía MA, Hernández Cañás MC, Pérez N, Castañeda S, Colli C, Möbbs AM, Santín Velazque NL, Neiman G, Garate X, Aban C, Waisman A, Moro LN, Sevlever G, Luzzani C, Miriuka SG. PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells. PLoS One 2020; 15:e0232715. [PMID: 32369512 PMCID: PMC7199965 DOI: 10.1371/journal.pone.0232715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Nelba Pérez
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | - Ximena Garate
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | - Cyntia Aban
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | - Ariel Waisman
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
28
|
Nuzziello N, Ciaccia L, Liguori M. Precision Medicine in Neurodegenerative Diseases: Some Promising Tips Coming from the microRNAs' World. Cells 2019; 9:E75. [PMID: 31892254 PMCID: PMC7017296 DOI: 10.3390/cells9010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
: Novel insights in the development of a precision medicine approach for treating the neurodegenerative diseases (NDDs) are provided by emerging advances in the field of pharmacoepigenomics. In this context, microRNAs (miRNAs) have been extensively studied because of their implication in several disorders related to the central nervous system, as well as for their potential role as biomarkers of diagnosis, prognosis, and response to treatment. Recent studies in the field of neurodegeneration reported evidence that drug response and efficacy can be modulated by miRNA-mediated mechanisms. In fact, miRNAs seem to regulate the expression of pharmacology target genes, while approved (conventional and non-conventional) therapies can restore altered miRNAs observed in NDDs. The knowledge of miRNA pharmacoepigenomics may offers new clues to develop more effective treatments by providing novel insights into interindividual variability in drug disposition and response. Recently, the therapeutic potential of miRNAs is gaining increasing attention, and miRNA-based drugs (for cancer) have been under observation in clinical trials. However, the effective use of miRNAs as therapeutic target still needs to be investigated. Here, we report a brief review of representative studies in which miRNAs related to therapeutic effects have been investigated in NDDs, providing exciting potential prospects of miRNAs in pharmacoepigenomics and translational medicine.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Loredana Ciaccia
- Department of Biomedical Science and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| |
Collapse
|
29
|
Abu-Halima M, Weidinger J, Poryo M, Henn D, Keller A, Meese E, Abdul-Khaliq H. Micro-RNA signatures in monozygotic twins discordant for congenital heart defects. PLoS One 2019; 14:e0226164. [PMID: 31805172 PMCID: PMC6894838 DOI: 10.1371/journal.pone.0226164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small RNAs regulating gene expression post-transcriptionally. Recent studies demonstrated that miRNAs are involved in the development of congenital heart defects (CHD). In this study, we aimed at identifying the specific patterns of miRNAs in blood of monozygotic twin pairs discordant for CHD and to assess whether miRNAs might be involved in the development or reflect the consequences of CHD. Methods miRNA microarray analysis and Real-Time Quantitative PCR (RT-qPCR) were employed to determine the miRNA abundance level from 12 monozygotic twins discordant for CHD and their non-CHD co-twins (n = 12). Enrichment analyses of altered miRNAs were performed using bioinformatics tools. Results Compared with non-CHD co-twins, profiling analysis indicated 34 miRNAs with a significant difference in abundance level (p<0.05, fold change ≥ 1.3), of which 11 miRNAs were up-regulated and 23 miRNAs were down-regulated. Seven miRNAs were validated with RT-qPCR including miR-511-3p, miR-1306-5p, miR-421, miR-4707-3p, miR-4732-3p, miR-5189-3p, and miR-890, and the results were consistent with microarray analysis. Five miRNAs namely miR-511-3p, miR-1306-5p, miR-4732-3p, miR-5189-3p, and miR-890 were found to be significantly up-regulated in twins < 10 years old. Bioinformatics analysis showed that the 7 validated miRNAs were involved in phosphatidylinositol signaling, gap junction signaling, and adrenergic signaling in cardiomyocytes. Conclusions Our data show deregulated miRNA abundance levels in the peripheral blood of monozygotic twins discordant for CHD, and identify new candidates for further analysis, which may contribute to understanding the development of CHD in the future. Bioinformatics analysis indicated that the target genes of these miRNAs are likely involved in signaling and communication of cardiomyocytes.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Josephin Weidinger
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Poryo
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Dominic Henn
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
30
|
Hassan MG, Morise F, Osman NA, Salam LA, Yehia H, Hamdi M, El Husseiny NM, NasrAllah MM. Micro RNA-192 Is Negatively Associated With Cardiovascular Events Among Wait-Listed Potential Kidney Transplant Recipients on Hemodialysis Over a 5-year Follow-up Period. Transplant Proc 2019; 51:2237-2240. [PMID: 31399202 DOI: 10.1016/j.transproceed.2019.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Patients with chronic renal disease are susceptible to accelerated vascular calcification and cardiovascular morbidity and mortality. Micro RNAs (miRNAs) have been linked to the pathogenesis of cardiovascular diseases in the general population. AIM This study was carried out to evaluate the link between miRNA 192 and vascular calcification, pre-existing as well as newly occurring major adverse cardiovascular events, and mortality among hemodialysis patients who are also considered to be potential kidney transplant recipients. METHODS We screened 64 potential transplant recipients on hemodialysis at our university hospital. Pre-existing overt cardiovascular disease was recorded; new adverse cardiovascular events and all causes of death over an observational period of 5 years were prospectively followed. Vascular calcification was measured in the aorta using computerized tomography scans, and micro RNA 192 was measured. RESULTS The final study population included 55 patients followed for 63 months. Micro RNA 192 was significantly lower in patients who had preexisting cardiovascular disease (P = .015) as well and in all patients who had experienced any event by the end of the observational period (P = .012). A multiregression analysis model including micro RNA, age, dialysis vintage, intradialytic hypotension, vascular calcification, diabetes, systolic blood pressure, and smoking found the only independently correlating factor to cardiovascular events in this model to be micro RNA (β = -0.286, P = .05). CONCLUSIONS MiRNA 192 levels are significantly lower among patients experiencing cardiovascular events while on hemodialysis awaiting kidney transplantation.
Collapse
Affiliation(s)
- Mona G Hassan
- Department of Nephrology & Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Fadia Morise
- Department of Nephrology & Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha A Osman
- Department of Nephrology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Lobna Abdel Salam
- Genome Unit, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Hesham Yehia
- Department of Cardiology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hamdi
- Department of Critical Care, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha M El Husseiny
- Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - M M NasrAllah
- Department of Nephrology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
31
|
Yan F, Zheng Y, Jia W, Hou S, Xiao R. MAMDA: Inferring microRNA-Disease associations with manifold alignment. Comput Biol Med 2019; 110:156-163. [DOI: 10.1016/j.compbiomed.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023]
|
32
|
Kay M, Soltani BM, Aghdaei FH, Ansari H, Baharvand H. Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation. Stem Cell Res Ther 2019; 10:191. [PMID: 31248450 PMCID: PMC6595595 DOI: 10.1186/s13287-019-1249-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND WNT and TGFβ signaling pathways play critical regulatory roles in cardiomyocyte fate determination and differentiation. MiRNAs are also known to regulate different biological processes and signaling pathways. Here, we intended to find candidate miRNAs that are involved in cardiac differentiation through regulation of WNT and TGFβ signaling pathways. METHODS Bioinformatics analysis suggested hsa-miR-335-3p and hsa-miR-335-5p as regulators of cardiac differentiation. Then, RT-qPCR, dual luciferase, TOP/FOP flash, and western blot analyses were done to confirm the hypothesis. RESULTS Human embryonic stem cells (hESCs) were differentiated into beating cardiomyocytes, and these miRNAs showed significant expression during the differentiation process. Gain and loss of function of miR-335-3p and miR-335-5p resulted in BRACHYURY, GATA4, and NKX2-5 (cardiac differentiation markers) expression alteration during the course of hESC cardiac differentiation. The overexpression of miR-335-3p and miR-335-5p also led to upregulation of CNX43 and TNNT2 expression, respectively. Our results suggest that this might be mediated through enhancement of WNT and TGFβ signaling pathways. CONCLUSION Overall, we show that miR-335-3p/5p upregulates cardiac mesoderm (BRACHYURY) and cardiac progenitor cell (GATA4 and NKX2-5) markers, which are potentially mediated through activation of WNT and TGFβ signaling pathways. Our findings suggest miR-335-3p/5p to be considered as a regulator of the cardiac differentiation process.
Collapse
Affiliation(s)
- Maryam Kay
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Fahimeh Hosseini Aghdaei
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
- Royan Institute, P.O. Box: 16635-148, Banihashem Sq., Banihashem St., Ressalat Highway, Tehran, 1665659911 Iran
| |
Collapse
|
33
|
Hathaway QA, Durr AJ, Shepherd DL, Pinti MV, Brandebura AN, Nichols CE, Kunovac A, Goldsmith WT, Friend SA, Abukabda AB, Fink GK, Nurkiewicz TR, Hollander JM. miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology 2019; 13:644-663. [PMID: 30704319 PMCID: PMC6629495 DOI: 10.1080/17435390.2019.1570372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
Abstract
Nano-titanium dioxide (nano-TiO2), though one of the most utilized and produced engineered nanomaterials (ENMs), diminishes cardiovascular function through dysregulation of metabolism and mitochondrial bioenergetics following inhalation exposure. The molecular mechanisms governing this cardiac dysfunction remain largely unknown. The purpose of this study was to elucidate molecular mediators that connect nano-TiO2 exposure with impaired cardiac function. Specifically, we were interested in the role of microRNA (miRNA) expression in the resulting dysfunction. Not only are miRNA global regulators of gene expression, but also miRNA-based therapeutics provide a realistic treatment modality. Wild type and MiRNA-378a knockout mice were exposed to nano-TiO2 with an aerodynamic diameter of 182 ± 1.70 nm and a mass concentration of 11.09 mg/m3 for 4 h. Cardiac function, utilizing the Vevo 2100 Imaging System, electron transport chain complex activities, and mitochondrial respiration assessed cardiac and mitochondrial function. Immunoblotting and qPCR examined molecular targets of miRNA-378a. MiRNA-378a-3p expression was increased 48 h post inhalation exposure to nano-TiO2. Knockout of miRNA-378a preserved cardiac function following exposure as revealed by preserved E/A ratio and E/SR ratio. In knockout animals, complex I, III, and IV activities (∼2- to 6-fold) and fatty acid respiration (∼5-fold) were significantly increased. MiRNA-378a regulated proteins involved in mitochondrial fusion, transcription, and fatty acid metabolism. MiRNA-378a-3p acts as a negative regulator of mitochondrial metabolic and biogenesis pathways. MiRNA-378a knockout animals provide a protective effect against nano-TiO2 inhalation exposure by altering mitochondrial structure and function. This is the first study to manipulate a miRNA to attenuate the effects of ENM exposure.
Collapse
Affiliation(s)
- Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Danielle L. Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V. Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ashley N. Brandebura
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Cody E. Nichols
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology, Pharmacology & Neuroscience, Morgantown, WV, USA
| | - Sherri A. Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alaeddin B. Abukabda
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology, Pharmacology & Neuroscience, Morgantown, WV, USA
| | - Garrett K. Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology, Pharmacology & Neuroscience, Morgantown, WV, USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
34
|
Song J, Xie Q, Wang L, Lu Y, Liu P, Yang P, Chen R, Shao C, Qiao C, Wang Z, Yan J. The TIR/BB-loop mimetic AS-1 prevents Ang II-induced hypertensive cardiac hypertrophy via NF-κB dependent downregulation of miRNA-143. Sci Rep 2019; 9:6354. [PMID: 31015570 PMCID: PMC6478826 DOI: 10.1038/s41598-019-42936-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
Untreated pathological cardiac hypertrophy, which can be caused by sustained systemic hypertension, may lead to heart failure. In the present study, we investigated whether AS-1 had attenuating effects on hypertension-induced cardiac hypertrophy, and whether this process was mediated by the regulation of miRNA-143. To induce the hypertrophic response in vitro, cardiomyocytes were stimulated with Ang II for 24hs. AS-1 administration strongly attenuated Ang II-induced hypertrophic response of cardiomyocytes. Chronical infusion of Ang II via implanted osmotic mini-pump induced increased blood pressure and cardiac hypertrophy in vivo. AS-1 administration attenuated hypertension-induced cardiac hypertrophy by, at least in part, inhibin of MAPK signaling. We observed, for the first time, upregulated expression of miRNA-143 in Ang II-induced cardiomyocytes, and inhibition of miRNA-143 significantly reduced the Ang II-induced hypertrophic responses. Importantly, AS-1 administration diminished the Ang II-induced upregulation of miRNA-143. Overexpression of miRNA-143 abolished the attenuating effects of AS-1 on Ang II-induced hypertrophic response of cardiomyocytes. Additionally, AS-1 administration abrogates Ang II-induced nuclear translocation of p50 NF-κB subunit in hypertrophic cardiomyocytes. Application of NF-κB inhibitor significantly suppressed Ang II-induced upregulation of miRNA-143. Our data suggest a novel mechanism by which AS-1 attenuates Ang II-induced hypertrophic response through downregulation miRNA-143 expression in a NF-κB-dependent manner.
Collapse
Affiliation(s)
- Juan Song
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Qifei Xie
- Department of Cardiology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Lin Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Yi Lu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Peijing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Ping Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Chen Qiao
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, P.R. China.
| |
Collapse
|
35
|
Lozano-Velasco E, Garcia-Padilla C, Aránega AE, Franco D. Genetics of Atrial Fibrilation: In Search of Novel Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2019; 19:183-194. [PMID: 30727926 DOI: 10.2174/1871529x19666190206150349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic disease in humans, ranging from 2% in the general population and rising up to 10-12% in 80+ years. Genetic analyses of AF familiar cases have identified a series of point mutations in distinct ion channels, supporting a causative link. However, these genetic defects only explain a minority of AF patients. Genomewide association studies identified single nucleotide polymorphisms (SNPs), close to PITX2 on 4q25 chromosome, that are highly associated to AF. Subsequent GWAS studies have identified several new loci, involving additional transcription and growth factors. Furthermore, these risk 4q25 SNPs serve as surrogate biomarkers to identify AF recurrence in distinct surgical and pharmacological interventions. Experimental studies have demonstrated an intricate signalling pathway supporting a key role of the homeobox transcription factor PITX2 as a transcriptional regulator. Furthermore, cardiovascular risk factors such as hyperthyroidism, hypertension and redox homeostasis have been identified to modulate PITX2 driven gene regulatory networks. We provide herein a state-of-the-art review of the genetic bases of atrial fibrillation, our current understanding of the genetic regulatory networks involved in AF and its plausible usage for searching novel therapeutic targets.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
36
|
Saxena S, Gupta A, Shukla V, Rani V. Functional annotation of differentially expressed fetal cardiac microRNA targets: implication for microRNA-based cardiovascular therapeutics. 3 Biotech 2018; 8:494. [PMID: 30498667 DOI: 10.1007/s13205-018-1520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/17/2018] [Indexed: 01/23/2023] Open
Abstract
Gene expression pattern of a failing heart depicts remarkable similarity with developing fetal heart. Elucidating genetic as well as epigenetic mechanisms regulating the gene expression during cardiac development will improve our understanding of cardiovascular diseases. In the present study, we aimed to validate and characterize differentially expressed known microRNAs (miRNA) obtained from next generation sequencing data of two fetal cardiac developmental stages (days 4th and 14th) from chicken (G. gallus domesticus) using bioinformatic approaches. Potential mRNA targets of individual miRNA were identified and classified according to their biological, cellular, and molecular functions. Functional annotation of putative target genes was performed to predict their association with cardiovascular diseases. We identified a total of 19 differentially expressed miRNAs between 4th and 14th day sample from the data sets obtained by next generation sequencing. A total of nearly 1522 potential targets ranging from 15 to 270 for each miRNA were predicted out of which 1221 were unique, while 301 were overlapping. Gene ontology and KEGG analysis revealed that majority of these target genes regulate critical cellular and molecular processes including transcriptional regulation, protein transport, signal transduction, matrix remodeling, Ras signaling, MAPK signaling, and TGF-beta signaling pathways indicating the complex nature of microRNA-mediated gene regulation during cardiogenesis. We found a significant association between potential target genes and cardiovascular diseases validating a link between fetal cardiac miRNAs and regulation of cardiovascular disease-related genes. These important findings may lay a foundation for further understanding the regulatory mechanisms operative in gene re-programming in the failing heart.
Collapse
|
37
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
38
|
Castellan RFP, Meloni M. Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap. Front Cardiovasc Med 2018; 5:7. [PMID: 29459901 PMCID: PMC5807373 DOI: 10.3389/fcvm.2018.00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration) vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult. The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.
Collapse
Affiliation(s)
- Raphael F. P. Castellan
- British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Marco Meloni
- British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W, Li X, Lu Y, Kong X. MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload. Int J Mol Med 2018; 41:1909-1916. [PMID: 29393356 PMCID: PMC5810199 DOI: 10.3892/ijmm.2018.3428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA/miR) dysregulation has been reported to be fundamental in the development and progression of cardiac hypertrophy and fibrosis. In the present study, miR-327 levels in fibroblasts were increased in response to cardiac hypertrophy induced by transverse aortic constriction with prominent cardiac fibrosis, particularly when compared with the levels in unstressed cardiomyocytes. In neonatal rat cardiac fibroblasts, induced expression of miR-327 upregulated fibrosis-associated gene expression and activated angiotensin II-induced differentiation into myofibroblasts, as assessed via α-smooth muscle actin staining. By contrast, miR-327 knockdown mitigated angiotensin II-induced differentiation. Cardiac fibroblast proliferation was not affected under either condition. In a mouse model subjected to transverse aortic constriction, miR-327 knockdown through tail-vein injection reduced the development of cardiac fibrosis and ventricular dysfunction. miR-327 was demonstrated to target integrin β3 and diminish the activation of cardiac fibroblasts. Thus, the present study supports the use of miR-327 as a therapeutic target in the reduction of cardiac fibrosis.
Collapse
Affiliation(s)
- Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yejiao Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
40
|
Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clin Sci (Lond) 2017; 131:2885-2900. [PMID: 29101298 DOI: 10.1042/cs20171368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity.
Collapse
|
41
|
miR-142-3p Contributes to Early Cardiac Fate Decision of Embryonic Stem Cells. Stem Cells Int 2017; 2017:1769298. [PMID: 28656050 PMCID: PMC5474537 DOI: 10.1155/2017/1769298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/09/2017] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). With a miRNA array screen, we identified a number of miRNAs significantly changed during mESC differentiation into the mesodermal and cardiac progenitor cells, and miR-142-3p was one among the markedly downregulated miRNAs. Ectopic expression and inhibition of miR-142-3p did not alter the characteristics of undifferentiated ESCs, whereas ectopic expression of miR-142-3p impaired cardiomyocyte formation. In addition, ectopic expression of miR-142-3p inhibited the expression of a cardiac mesodermal marker gene Mesp1 and downstream cardiac transcription factors Nkx2.5, Tbx5, and Mef2c but not the expression of three germ layer-specific genes. We further demonstrated that miR-142-3p targeted the 3'-untranslated region of Mef2c. These results reveal miR-142-3p as an important regulator of early cardiomyocyte differentiation. Our findings provide new knowledge for further understanding of roles and mechanisms of miRNAs as critical regulators of cardiomyocyte differentiation.
Collapse
|
42
|
Long-term consequences of disrupting adenosine signaling during embryonic development. Mol Aspects Med 2017; 55:110-117. [PMID: 28202385 DOI: 10.1016/j.mam.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that disruption in the prenatal environment can have long-lasting effects on an individual's health in adulthood. Research on the fetal programming of adult diseases, including cardiovascular disease, focuses on epi-mutations, which alter the normal pattern of epigenetic factors such as DNA methylation, miRNA expression, or chromatin modification, rather than traditional genetic alteration. Thus, understanding how in utero chemical exposures alter epigenetics and lead to adult disease is of considerable public health concern. Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists including the methlyxanthines caffeine and theophylline are widely consumed during pregnancy. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined the long-term effects of in utero disruption of adenosine signaling on cardiac gene expression, morphology, and function in adult offspring. One substance that fetuses are frequently exposed to is caffeine, which is a non-selective adenosine receptor antagonist. Over the past several years, we examined the role of adenosine signaling during embryogenesis and cardiac development. We discovered that in utero alteration in adenosine action leads to adverse effects on embryonic and adult murine hearts. We find that cardiac A1ARs protect the embryo from in utero hypoxic stress, a condition that causes an increase in adenosine levels. After birth in mice, we observed that in utero caffeine exposure leads to abnormal cardiac function and morphology in adults, including an impaired response to β-adrenergic stimulation. Recently, we observed that in utero caffeine exposure induces transgenerational effects on cardiac morphology, function, and gene expression. Our findings indicate that the effects of altered adenosine signaling are dependent on signaling through the A1ARs and timing of disruption. In addition, the long-term effects of altered adenosine signaling appear to be mediated by alterations in DNA methylation, an epigenetic process critical for normal development.
Collapse
|
43
|
Franco D, Bonet F, Hernandez-Torres F, Lozano-Velasco E, Esteban FJ, Aranega AE. Analysis of microRNA Microarrays in Cardiogenesis. Methods Mol Biol 2016; 1375:207-21. [PMID: 25971912 DOI: 10.1007/7651_2015_247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
microRNAs are a subclass of noncoding RNAs which have been demonstrated to play pivotal roles in multiple cellular mechanisms. microRNAs are small RNA molecules of 22-24 nt in length capable of modulating protein translation and/or RNA stability by base-priming with complementary sequences of the mRNAs, normally at the 3'untranslated region. To date, over 2,000 microRNAs have been already identified in humans, and orthologous microRNAs have been also identified in distinct animals and plants ranging a wide vast of species. High-throughput analyses by microarrays have become a gold standard to analyze the changes on microRNA expression in normal and pathological cellular or tissue conditions. In this chapter, we provide insights into the usage of this uprising technology in the context of cardiac development and disease.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain.
| | - Fernando Bonet
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Francisco Hernandez-Torres
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Francisco J Esteban
- System Biology Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| |
Collapse
|
44
|
Yu L, Yu H, Li X, Jin C, Zhao Y, Xu S, Sheng X. P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes. Cell Biol Int 2016; 40:934-42. [PMID: 27306406 DOI: 10.1002/cbin.10637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/11/2016] [Indexed: 01/04/2023]
Abstract
The remodeling of cardiac gap junctions contributes to various arrhythmias in a diabetic heart. We previously reported that Epigallocatechin-3-gallate (EGCG) attenuated connexin43 (Cx43) protein downregulation induced by high glucose (HG) in neonatal rat cardiomyocytes, but Cx43 mRNA expression was not affected. It indicated the possible mechanisms of post-transcriptional regulation, which still remains unclear. As microRNAs (miRNAs) regulate gene expression widely at post-transcriptional level, we measured miR-1/206 in cardiomyocytes treated with HG and EGCG by quantitative RT-PCR and investigated their relationship with signal transduction pathways. The results showed that HG induced miR-1/206 elevation by PKC MAPK pathway. Moreover, we tested the negative regulation effect of miR-1/206 on Cx43 protein by miRNAs transfection. EGCG, however, nearly abolished the HG-induced miR-1 augmentation via P38 MAPK pathway. Therefore, our study suggested that PKC-activated miR-1/206 expression might contribute to Cx43 downregulation in HG-treated cardiomyocytes, and EGCG conferred protective effect by inhibiting miR-1 elevation via P38 MAPK pathway.
Collapse
Affiliation(s)
- Lu Yu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Hongmei Yu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Li
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Chongying Jin
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yanbo Zhao
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shengjie Xu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Xia Sheng
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
45
|
Smith SJ, Towers N, Saldanha JW, Shang CA, Mahmood SR, Taylor WR, Mohun TJ. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. Dev Biol 2016; 416:373-88. [PMID: 27217161 PMCID: PMC4990356 DOI: 10.1016/j.ydbio.2016.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022]
Abstract
Adprhl1, a member of the ADP-ribosylhydrolase protein family, is expressed exclusively in the developing heart of all vertebrates. In the amphibian Xenopus laevis, distribution of its mRNA is biased towards actively growing chamber myocardium. Morpholino oligonucleotide-mediated knockdown of all Adprhl1 variants inhibits striated myofibril assembly and prevents outgrowth of the ventricle. The resulting ventricles retain normal electrical conduction and express markers of chamber muscle differentiation but are functionally inert. Using a cardiac-specific Gal4 binary expression system, we show that the abundance of Adprhl1 protein in tadpole hearts is tightly controlled through a negative regulatory mechanism targeting the 5′-coding sequence of Xenopus adprhl1. Over-expression of full length (40 kDa) Adprhl1 variants modified to escape such repression, also disrupts cardiac myofibrillogenesis. Disarrayed myofibrils persist that show extensive branching, with sarcomere division occurring at the actin-Z-disc boundary. Ultimately, Adprhl1-positive cells contain thin actin threads, connected to numerous circular branch points. Recombinant Adprhl1 can localize to stripes adjacent to the Z-disc, suggesting a direct role for Adprhl1 in modifying Z-disc and actin dynamics as heart chambers grow. Modelling the structure of Adprhl1 suggests this cardiac-specific protein is a pseudoenzyme, lacking key residues necessary for ADP-ribosylhydrolase catalytic activity. Adprhl1 is expressed exclusively in the heart of all vertebrates. Morpholino knockdown of Adprhl1 prevents outgrowth of the ventricle. Elevated 40 kDa Adprhl1 produces disarrayed myofibrils that show extensive branching. The 5′-coding sequence of Xenopus adprhl1 influences the synthesis of Adprhl1 protein. Two Adprhl1 proteins, 40+23 kDa exist in Xenopus embryos and are conserved in mouse.
Collapse
Affiliation(s)
- Stuart J Smith
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Norma Towers
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - José W Saldanha
- Mathematical Biology Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Catherine A Shang
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - S Radma Mahmood
- Experimental Histopathology, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - William R Taylor
- Mathematical Biology Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Timothy J Mohun
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
46
|
Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS One 2016; 11:e0156065. [PMID: 27196440 PMCID: PMC4873136 DOI: 10.1371/journal.pone.0156065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology.
Collapse
|
47
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
48
|
Bhinge A, Namboori SC, Bithell A, Soldati C, Buckley NJ, Stanton LW. MiR-375 is Essential for Human Spinal Motor Neuron Development and May Be Involved in Motor Neuron Degeneration. Stem Cells 2016; 34:124-134. [DOI: 10.1002/stem.2233] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress proneuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
Collapse
Affiliation(s)
- Akshay Bhinge
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Seema C. Namboori
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Angela Bithell
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London, UK
| | - Chiara Soldati
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London, UK
| | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom
| | - Lawrence W. Stanton
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
49
|
MicroRNA expression profile of surgical removed mandibular bone tissues from patients with mandibular prognathism. J Surg Res 2015; 198:127-34. [DOI: 10.1016/j.jss.2015.04.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022]
|
50
|
Arginylation in a Partially Purified Fraction of 150k × g Supernatants of Axoplasm and Injured Vertebrate Nerves. Methods Mol Biol 2015; 1337:25-32. [PMID: 26285877 DOI: 10.1007/978-1-4939-2935-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Transfer RNA-mediated posttranslational protein modification by arginine has been demonstrated in vitro in axoplasm extruded from the giant axons of squid and in injured and regenerating vertebrate nerves. In nerve and axoplasm, the highest activity is found in a fraction of a 150,000 × g supernatant containing high molecular weight protein/RNA complexes but lacking molecules of <5 kDa. Arginylation (and protein modification by other amino acids) is not found in more purified, reconstituted fractions. The data are interpreted as indicating that it is critical to recover the reaction components in high molecular weight protein/RNA complexes in order to maintain maximum physiological activity. The level of arginylation is greatest in injured and growing vertebrate nerves compared with intact nerves, suggesting a role for these reactions in nerve injury/repair and during axonal growth.
Collapse
|