1
|
Lin S, Zhang Y, Yao J, Yang J, Qiu Y, Zhu Z, Hua H. DB-1314, a novel DLL3-targeting ADC with DNA topoisomerase I inhibitor, exhibits promising safety profile and therapeutic efficacy in preclinical small cell lung cancer models. J Transl Med 2024; 22:766. [PMID: 39143619 PMCID: PMC11323672 DOI: 10.1186/s12967-024-05568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Delta-like ligand 3 (DLL3) is highly expressed on the cell surface of small cell lung cancer (SCLC), one of the most lethal malignancies, but minimally or not in normal tissues, making it an attractive target for SCLC. However, none of the DLL3-targeting antibody-drug conjugates (ADCs) have been approved for SCLC therapy yet. We developed DB-1314, the new anti-DLL3 ADC composed of a novel humanized anti-DLL3 monoclonal antibody (DB131401) conjugated with eight molecules of P1021 (topoisomerase I inhibitor), and described its preclinical profiles. METHODS The binding epitope for DB131401 and Rovalpituzumab was tested by biolayer interferometry. The binding affinity and specificity of DB-1314 to DLL3 and other homologous proteins were respectively measured by surface plasmon resonance and enzyme-linked immunosorbent assay. Internalization, bystander effects, and antibody-dependent cell-mediated cytotoxicity (ADCC) were assessed by respective assay. DLL3 was quantified by antibodies bound per cell assay and immunohistochemistry. In vitro and in vivo growth inhibition studies were evaluated in SCLC cell lines, and cell line/patient-derived xenograft models. The safety profile was measured in cynomolgus monkeys. RESULTS DB-1314 induces potent, durable, and dose-dependent antitumor effects in cells in vitro and in cell/patient-derived xenograft models in vivo. The killing activity of DB-1314 mechanically arises from P1021-induced DNA damage, whereby P1021 is delivered and released within tumor cells through DLL3-specific binding and efficient internalization. Bystander effects and ADCC also contribute to the antitumor activity of DB-1314. DB-1314 displays favorable pharmacokinetic and toxicokinetic profiles in rats and cynomolgus monkeys; besides, DB-1314 is well-tolerated at a dose of up to 60 mg/kg in monkeys. CONCLUSIONS These results suggest that DB-1314 may be a candidate ADC targeting DLL3 for the treatment of DLL3-positive SCLC, supporting further evaluation in the clinical setting.
Collapse
Affiliation(s)
- Shengchao Lin
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China.
| | - Yu Zhang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Jun Yao
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Junjie Yang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Yang Qiu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Zhongyuan Zhu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Haiqing Hua
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China.
| |
Collapse
|
2
|
Osgood AO, Singha Roy SJ, Koo D, Gu R, Chatterjee A. A Genetically Encoded Photocaged Cysteine for Facile Site-Specific Introduction of Conjugation-Ready Thiol Residues in Antibodies. Bioconjug Chem 2024; 35:457-464. [PMID: 38548654 PMCID: PMC11789925 DOI: 10.1021/acs.bioconjchem.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a powerful class of anticancer therapeutics that enable the selective delivery of toxic payloads into target cells. There is increasing appreciation for the importance of synthesizing such ADCs in a defined manner where the payload is attached at specific permissive sites on the antibody with a defined drug to antibody ratio. Additionally, the ability to systematically alter the site of attachment is important to fine-tune the therapeutic properties of the ADC. Engineered cysteine residues have been used to achieve such site-specific programmable attachment of drug molecules onto antibodies. However, engineered cysteine residues on antibodies often get "disulfide-capped" during secretion and require reductive regeneration prior to conjugation. This reductive step also reduces structurally important disulfide bonds in the antibody itself, which must be regenerated through oxidation. This multistep, cumbersome process reduces the efficiency of conjugation and presents logistical challenges. Additionally, certain engineered cysteine sites are resistant to reductive regeneration, limiting their utility and the overall scope of this conjugation strategy. In this work, we utilize a genetically encoded photocaged cysteine residue that can be site-specifically installed into the antibody. This photocaged amino acid can be efficiently decaged using light, revealing a free cysteine residue available for conjugation without disrupting the antibody structure. We show that this ncAA can be incorporated at several positions within full-length recombinant trastuzumab and decaged efficiently. We further used this method to generate a functional ADC site-specifically modified with monomethyl auristatin F (MMAF).
Collapse
Affiliation(s)
- Arianna O. Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Soumya Jyoti Singha Roy
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - David Koo
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Renpeng Gu
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
3
|
Liubomirski Y, Tiram G, Scomparin A, Gnaim S, Das S, Gholap S, Ge L, Yeini E, Shelef O, Zauberman A, Berger N, Kalimi D, Toister-Achituv M, Schröter C, Dickgiesser S, Tonillo J, Shan M, Deutsch C, Sweeney-Lasch S, Shabat D, Satchi-Fainaro R. Potent antitumor activity of anti-HER2 antibody-topoisomerase I inhibitor conjugate based on self-immolative dendritic dimeric-linker. J Control Release 2024; 367:148-157. [PMID: 38228272 DOI: 10.1016/j.jconrel.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of anticancer therapeutics, with 14 ADCs already approved worldwide. We developed unique linker technologies for the bioconjugation of drug molecules with controlled-release applications. We synthesized cathepsin-cleavable ADCs using a dimeric prodrug system based on a self-immolative dendritic scaffold, resulting in a high drug-antibody ratio (DAR) with the potential to reach 16 payloads due to its dendritic structure, increased stability in the circulation and efficient release profile of a highly cytotoxic payload at the targeted site. Using our novel cleavable linker technologies, we conjugated the anti-human epidermal growth factor receptor 2 (anti-HER2) antibody, trastuzumab, with topoisomerase I inhibitors, exatecan or belotecan. The newly synthesized ADCs were tested in vitro on mammary carcinoma cells overexpressing human HER2, demonstrating a substantial inhibitory effect on the proliferation of HER2-positive cells. Importantly, a single dose of our trastuzumab-based ADCs administered in vivo to mice bearing HER2-positive tumors, showed a dose-dependent inhibition of tumor growth and survival benefit, with the most potent antitumor effects observed at 10 mg/kg, which resulted in complete tumor regression and survival of 100% of the mice. Overall, our novel dendritic technologies using the protease-cleavable Val-Cit linker present an opportunity for the development of highly selective and potent controlled-released therapeutic payloads. This strategy could potentially lead to the development of novel and effective ADC technologies for patients diagnosed with HER2-positive cancers. Moreover, our proposed ADC linker technology can be implemented in additional medical conditions such as other malignancies as well as autoimmune diseases that overexpress targets, other than HER2.
Collapse
Affiliation(s)
- Yulia Liubomirski
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Samer Gnaim
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sayantan Das
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sachin Gholap
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Ge
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omri Shelef
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Arie Zauberman
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Nir Berger
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Doron Kalimi
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Mira Toister-Achituv
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | | | | | | | - Min Shan
- Merck KGaA, Darmstadt, 64293, Germany
| | | | | | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
4
|
Zhang Z, Li L, Xu H, Lee CLK, Jia Z, Loh TP. Silicon-Containing Thiol-Specific Bioconjugating Reagent. J Am Chem Soc 2024; 146:1776-1782. [PMID: 38198597 DOI: 10.1021/jacs.3c12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A new bioconjugation reagent containing silicon has been developed for the selective reaction with thiols. The inclusion of silicon significantly improves chemoselectivity and suppresses retro processes, thereby exceeding the capabilities of traditional reagents. The method is versatile and compatible with a broad range of thiols and unsaturated carbonyl compounds and yields moderate to high results. These reactions can be conducted under biocompatible conditions, thereby making them suitable for protein bioconjugation. The resulting conjugates display good stability in the presence of various biomolecules, which suggests their potential application for the synthesis of antibody-drug conjugates. Furthermore, the presence of a silicon moiety within the conjugated products opens up new avenues for drug release and bridging inorganics with other disciplines. This new class of silicon-containing thiol-specific bioconjugation reagents has significant implications for researchers working in bioanalytical science and medicinal chemistry and leads to innovative opportunities for advancing the field of bioconjugation research and medicinal chemistry.
Collapse
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hailun Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chi-Lik Ken Lee
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, 1 Pesek Road, Singapore 627833, Singapore
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
5
|
Kirley TL, Norman AB. Novel partial reduction of the humanized anti-cocaine mAb h2E2 for selective cysteine labeling. Biochem Biophys Res Commun 2024; 692:149362. [PMID: 38071891 PMCID: PMC10872258 DOI: 10.1016/j.bbrc.2023.149362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Monoclonal antibodies are utilized for treating many diseases and disorders, as well as for basic research and development. Covalent labeling of mAbs is important for various antibody applications and creating antibody drug conjugates. Labeling at reactive lysine residues using lysine selective reagents is useful, but is non-selective and can interfere with antigen binding and interactions of the Fc antibody region. In this work, using an anti-cocaine mAb (h2E2), we utilized triphenylphosphine-3,3',3″-trisulfonic acid (TPPTS), and demonstrated for the first time reduction of disulfides in an antibody by TPPTS. More importantly, this reduction was very reproducible, limited, and selective, and permitted selective labeling of the antibody with a cysteine reactive fluorescent reagent, resulting in labeling of a few specific cysteines. Similar results were obtained using TCEP-agarose reduction. We demonstrated that both of these selective partial reduction methods gave rise to approximately two labels per mAb, mostly by selective reduction of the heavy chain to light chain disulfide bond, as demonstrated by non-reducing SDS-PAGE protein band analysis. Thus, convenient, reproducible, and selective mAb disulfide reduction was achieved under mild conditions. These labeled, partially reduced mAbs were characterized by differential scanning fluorimetry (DSF), detecting the incorporated fluorescein instead of an exogenously added dye, and for antigen (cocaine) binding by isothermal titration calorimetry (ITC). Both the structure and antigen binding of the mAb was maintained. This novel selective reduction and labeling is generally relevant to modification of antibodies and to future development of conjugated mAbs for experimental and therapeutic purposes.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
6
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
7
|
Hingorani DV. An overview of site-specific methods for achieving antibody drug conjugates with homogenous drug to antibody ratio. Expert Opin Biol Ther 2024; 24:31-36. [PMID: 38247196 DOI: 10.1080/14712598.2024.2305266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) have emerged as a potent tool in cancer treatment, where cytotoxic drugs are linked to antibodies targeting specific antigens. While conventional ADC synthesis methods have seen success as commercials therapeutics, there is a growing interest in next-generation ADCs, looking at homogeneity of the drug-to-antibody ratio. AREAS COVERED The article provides a high-level overview for achieving said homogeneity by site-directed conjugations via encompassing engineered amino acids, enzyme-mediated strategies, peptide sequences, affinity peptides, and beyond. As the field rapidly evolves with multiple ADCs in clinical trials and the advent of biosimilars, the article explores the benefits and challenges in both conventional and non-platform ADC technologies. EXPERT OPINION The choice of site selection approach must be based on multiple criteria as discussed in this report. Two ADCs made from conjugation to engineered cysteines have been approved by regulatory agencies which have contributed to the excitement in this space. For the others, though successful as proof-of-concept, the true test of merit will be determined as these technologies advance into the clinic. The promise of improving the therapeutics index and decreasing toxicities will continue to drive progress in this area.
Collapse
|
8
|
Jäger S, Könning D, Rasche N, Hart F, Sensbach J, Krug C, Raab-Westphal S, Richter K, Unverzagt C, Hecht S, Anderl J, Schröter C. Generation and Characterization of Iduronidase-Cleavable ADCs. Bioconjug Chem 2023; 34:2221-2233. [PMID: 38054705 DOI: 10.1021/acs.bioconjchem.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A crucial design feature for the therapeutic success of antibody-drug conjugates (ADCs) is the linker that connects the antibody with the drug. Linkers must be stable in circulation and efficiently release the drug inside the target cell, thereby having a fundamental impact on ADC pharmacokinetics and efficacy. The variety of enzymatically cleavable linkers applied in ADCs is limited, and some are believed to be associated with unwanted side effects due to the expression of cleavage-mediating enzymes in nonmalignant cells. Based on a bioinformatic screen of lysosomal enzymes, we identified α-l-iduronidase (IduA) as an interesting candidate for ADC linker cleavage because of its low expression in normal tissues and its overexpression in several tumor types. In the present study, we report a novel IduA-cleavable ADC linker using exatecan and duocarmycin as payloads. We showed the functionality of our linker system in cleavage assays using recombinant IduA or cell lysates and compared it to established ADC linkers. Subsequently, we coupled iduronide-exatecan via interchain cysteines or iduronide-duocarmycin via microbial transglutaminase (mTG) to an anti-CEACAM5 (aCEA5) antibody. The generated iduronide-exatecan ADC showed high serum stability and similar target-dependent tumor cell killing in the subnanomolar range but reduced toxicity on nonmalignant cells compared to an analogous cathepsin B-activatable valine-citrulline-exatecan ADC. Finally, in vivo antitumor activity could be demonstrated for an IduA-cleavable duocarmycin ADC. The presented results emphasize the potential of iduronide linkers for ADC development and represent a tool for further balancing out tumor selectivity and safety.
Collapse
Affiliation(s)
| | - Doreen Könning
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Nicolas Rasche
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Felix Hart
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Carina Krug
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Konstantin Richter
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Stefan Hecht
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jan Anderl
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | |
Collapse
|
9
|
Lyon RP, Jonas M, Frantz C, Trueblood ES, Yumul R, Westendorf L, Hale CJ, Stilwell JL, Yeddula N, Snead KM, Kumar V, Patilea-Vrana GI, Klussman K, Ryan MC. SGN-B6A: A New Vedotin Antibody-Drug Conjugate Directed to Integrin Beta-6 for Multiple Carcinoma Indications. Mol Cancer Ther 2023; 22:1444-1453. [PMID: 37619980 PMCID: PMC10690100 DOI: 10.1158/1535-7163.mct-22-0817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Integrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells. The antibody component of SGN-B6A is specific for integrin beta-6 and does not bind other alpha-v family members. In preclinical studies, this ADC has demonstrated activity in vivo in models derived from non-small cell lung, pancreatic, pharyngeal, and bladder carcinomas spanning a range of antigen expression levels. In nonclinical toxicology studies in cynomolgus monkeys, doses of up to 5 mg/kg weekly for four doses or 6 mg/kg every 3 weeks for two doses were tolerated. Hematologic toxicities typical of MMAE ADCs were dose limiting, and no significant target-mediated toxicity was observed. A phase I first-in-human study is in progress to evaluate the safety and antitumor activity of SGN-B6A in a variety of solid tumors known to express integrin beta-6 (NCT04389632).
Collapse
|
10
|
Cao W, Maza JC, Chernyak N, Flygare JA, Krska SW, Toste FD, Francis MB. Modification of Cysteine-Substituted Antibodies Using Enzymatic Oxidative Coupling Reactions. Bioconjug Chem 2023; 34:510-517. [PMID: 36787347 DOI: 10.1021/acs.bioconjchem.2c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.
Collapse
Affiliation(s)
- Wendy Cao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Natalia Chernyak
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Shane W Krska
- Department of Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Antibody–Ferrocene Conjugates as a Platform for Electro-Chemical Detection of Low-Density Lipoprotein. Molecules 2022; 27:molecules27175492. [PMID: 36080260 PMCID: PMC9458124 DOI: 10.3390/molecules27175492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Low-density lipoprotein (LDL) is a cardiac biomarker identified in the pathology of cardiovascular disease (CVD). Typically, the level of LDL is calculated using the Friedewald relationship based on measured values of total cholesterol, high-density lipoproteins (HDL), and triglycerides. Unfortunately, this approach leads to some errors in calculation. Therefore, direct methods that can be used for fast and accurate detection of LDL are needed. The purpose of this study was to develop an electrochemical platform for the detection of LDL based on an antibody–ferrocene conjugate. An anti-apolipoprotein B-100 antibody labeled with ferrocene was covalently immobilized on the layer of 4-aminothiophenol (4-ATP) on the surface of gold electrodes. Upon interaction between LDL and the antibody–ferrocene conjugate, a decrease in the ferrocene redox signal registered by square wave voltammetry was observed, which depends linearly on the concentration from 0.01 ng/mL to 1.0 ng/mL. The obtained limit of detection was equal to 0.53 ng/mL. Moreover, the satisfied selectivity toward human serum albumin (HSA), HDL, and malondialdehyde-modified low-density lipoprotein (MDA-LDL) was observed. In addition, the acceptable recovery rates of LDL in human serum samples indicate the possible application of immunosensors presented in clinical diagnostics.
Collapse
|
12
|
Han S, Lim KS, Blackburn BJ, Yun J, Putnam CW, Bull DA, Won YW. The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates. Pharmaceutics 2022; 14:pharmaceutics14081707. [PMID: 36015333 PMCID: PMC9413092 DOI: 10.3390/pharmaceutics14081707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022] Open
Abstract
DNA topoisomerases are essential enzymes that stabilize DNA supercoiling and resolve entanglements. Topoisomerase inhibitors have been widely used as anti-cancer drugs for the past 20 years. Due to their selectivity as topoisomerase I (TOP1) inhibitors that trap TOP1 cleavage complexes, camptothecin and its derivatives are promising anti-cancer drugs. To increase accumulation of TOP1 inhibitors in cancer cells through the targeting of tumors, TOP1 inhibitor antibody–drug conjugates (TOP1-ADC) have been developed and marketed. Some TOP1-ADCs have shown enhanced therapeutic efficacy compared to prototypical anti-cancer ADCs, such as T-DM1. Here, we review various types of camptothecin-based TOP1 inhibitors and recent developments in TOP1-ADCs. We then propose key points for the design and construction of TOP1-ADCs. Finally, we discuss promising combinatorial strategies, including newly developed approaches to maximizing the therapeutic potential of TOP1-ADCs.
Collapse
Affiliation(s)
- Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Kwang Suk Lim
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Brody J. Blackburn
- Department of Medical Pharmacology, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Charles W. Putnam
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - David A. Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
- Correspondence:
| |
Collapse
|
13
|
Angelastro A, Barkhanskiy A, Mattey AP, Pallister EG, Spiess R, Goundry W, Barran P, Flitsch SL. Galactose Oxidase Enables Modular Assembly of Conjugates from Native Antibodies with High Drug-to-Antibody Ratios. CHEMSUSCHEM 2022; 15:e202102592. [PMID: 34931761 PMCID: PMC9303943 DOI: 10.1002/cssc.202102592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Indexed: 05/31/2023]
Abstract
The potential of antibody conjugates with high drug loading in anticancer therapy has recently been highlighted by the approval of Trastuzumab deruxtecan and Sacituzumab govitecan. These biopharmaceutical approaches have spurred interest in bioconjugation strategies with high and defined degrees of drug-to-antibody ratio (DAR), in particular on native antibodies. Here, a glycoengineering methodology was developed to generate antibody drug conjugates with DAR of up to eight, by combining highly selective enzymatic galactosylation and oxidation with biorthogonal tandem Knoevenagel-Michael addition chemistry. This four-step approach offers a selective route to conjugates from native antibodies with high drug loading, and thus illustrates how biocatalysis can be used for the generation of biopharmaceuticals using mild reaction conditions.
Collapse
Affiliation(s)
- Antonio Angelastro
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Alexey Barkhanskiy
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Ashley P. Mattey
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Edward G. Pallister
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Reynard Spiess
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - William Goundry
- The Department of Pharmaceutical SciencesAstraZenecaSilk Road Business ParkMacclesfieldSK10 2NAUK
| | - Perdita Barran
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| | - Sabine L. Flitsch
- School of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DN
| |
Collapse
|
14
|
Stadlmayr G, Stracke F, Stadlbauer K, Rybka J, Dickgiesser S, Rasche N, Becker S, Toleikis L, Rüker F, Knopp GW. Efficient spontaneous site-selective cysteine-mediated toxin attachment within a structural loop of antibodies. Biochim Biophys Acta Gen Subj 2022; 1866:130155. [DOI: 10.1016/j.bbagen.2022.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
15
|
Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021; 12:13613-13647. [PMID: 34760149 PMCID: PMC8549674 DOI: 10.1039/d1sc02973h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody-drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid's intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.
Collapse
Affiliation(s)
- Min Sun Kang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Theresa Wai See Kong
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Joycelyn Yi Xin Khoo
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Teck-Peng Loh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
16
|
Cas9 conjugate complex delivering donor DNA for efficient gene editing by homology-directed repair. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Bogen JP, Grzeschik J, Jakobsen J, Bähre A, Hock B, Kolmar H. Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based Therapeutics. Front Oncol 2021; 11:672262. [PMID: 34123841 PMCID: PMC8191463 DOI: 10.3389/fonc.2021.672262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Bladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research. This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. Besides, newly emerging entities in the realm of bladder cancer like mRNA, gene therapy or cell-based therapeutics are discussed and evaluated. As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. Furthermore, the distribution and expression of the targeted antigens and the intended mechanisms of action are elucidated.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Joern Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Alexandra Bähre
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
18
|
Abstract
Introduction: Antibody-Drug Conjugates (ADCs) are becoming increasingly important weapons in the fight against cancer, as evidenced by the growing number of approved products. The complex nature of an ADC means that there is a vast array of choices to consider in the design of such drugs.Areas covered: We provide an overview of developments in each facet of ADC structure: the antibody, linker, and payload. Looking at the current clinical landscape, we discuss trends that have led to the evolution of ADC design.Expert opinion:Following a history of setbacks and high discontinuation rates, the understanding of the ADC field has grown. If developers can obtain a firm grasp of the structure-function relationship of their molecule, we expect the advances in ADC design to translate to improved clinical success. Moreover, the breadth of ADC applications will continue to expand to target new indications with novel targets and payloads.
Collapse
Affiliation(s)
| | | | - Lisa L McDermott
- Process and Analytical Development, MilliporeSigma, St. Louis, MO, USA
| |
Collapse
|
19
|
Cordova JC, Sun S, Bos J, Thirumalairajan S, Ghone S, Hirai M, Busse RA, der Hardt JSV, Schwartz I, Zhou J. Development of a Single-Step Antibody-Drug Conjugate Purification Process with Membrane Chromatography. J Clin Med 2021; 10:jcm10030552. [PMID: 33540865 PMCID: PMC7867349 DOI: 10.3390/jcm10030552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
Membrane chromatography is routinely used to remove host cell proteins, viral particles, and aggregates during antibody downstream processing. The application of membrane chromatography to the field of antibody-drug conjugates (ADCs) has been applied in a limited capacity and in only specialized scenarios. Here, we utilized the characteristics of the membrane adsorbers, Sartobind® S and Phenyl, for aggregate and payload clearance while polishing the ADC in a single chromatographic run. The Sartobind® S membrane was used in the removal of excess payload, while the Sartobind® Phenyl was used to polish the ADC by clearance of unwanted drug-to-antibody ratio (DAR) species and aggregates. The Sartobind® S membrane reproducibly achieved log-fold clearance of free payload with a 10 membrane-volume wash. Application of the Sartobind® Phenyl decreased aggregates and higher DAR species while increasing DAR homogeneity. The Sartobind® S and Phenyl membranes were placed in tandem to simplify the process in a single chromatographic run. With the optimized binding, washing, and elution conditions, the tandem membrane approach was performed in a shorter timescale with minimum solvent consumption and high yield. The application of the tandem membrane chromatography system presents a novel and efficient purification scheme that can be realized during ADC manufacturing.
Collapse
Affiliation(s)
- Juan Carlos Cordova
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Sheng Sun
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Jeffrey Bos
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Srinath Thirumalairajan
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
- Seagen, 21717 30th Drive S.E., Bothell, WA 98021, USA
| | - Sanjeevani Ghone
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Miyako Hirai
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany; (M.H.); (R.A.B.); (J.S.v.d.H.)
| | - Ricarda A. Busse
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany; (M.H.); (R.A.B.); (J.S.v.d.H.)
| | - Julia S. v. der Hardt
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany; (M.H.); (R.A.B.); (J.S.v.d.H.)
| | - Ian Schwartz
- Sartorius North America Inc., 565 Johnson Avenue, Bohemia, NY 11716, USA;
| | - Jieyu Zhou
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
- Correspondence: ; Tel.: +1-215-788-3603
| |
Collapse
|
20
|
Jones J, Pack L, Hunter JH, Valliere-Douglass JF. Native size-exclusion chromatography-mass spectrometry: suitability for antibody-drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. MAbs 2021; 12:1682895. [PMID: 31769727 PMCID: PMC6927766 DOI: 10.1080/19420862.2019.1682895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Native size-exclusion chromatography-mass spectrometry (nSEC-MS) is an analytical methodology that is appropriate for accurately quantitating the drug-to-antibody ratio (DAR) on a wide variety of interchain cysteine-linked antibody-drug conjugates (ADCs), irrespective of chemotype. In the current preclinical environment, novel ADCs conjugated with unique drug-linkers need to progress toward the clinic as quickly as possible. Platform analytical approaches can reduce time-to-clinic because key process development and optimization activities can be decoupled from the development of bespoke, molecule-specific analytical methods. In this work, we assessed the potential of nSEC-MS as a platformable, quantitative DAR method. The nSEC-MS method was evaluated according to performance characteristics and parameters described in the ICH guideline Validation of Analytical Procedures: Text and Methodology Q2(R1). In order to comprehensively assess the accuracy and bias of nSEC-MS DAR quantitation, ADCs were generated using three different drug-linker chemotypes with DARs ranging from 2 to 8. These molecules were tested by hydrophobic interaction chromatography (HIC) and nSEC-MS, and DARs obtained from both methods were compared to assess the degree to which nSEC-MS quantitation aligned with the HIC release assay. Our results indicated that there is no bias introduced by nSEC-MS quantitation of DAR and that SEC-MS data can be bridged to HIC data without the need for a correction factor or offset. nSEC-MS was also found to be suitable for unbiased DAR quantitation in the other ADC chemotypes that were evaluated. Based on the totality of our work, we conclude that, used as intended, nSEC-MS is well suited for quantitating DAR on a variety of interchain cysteine-linked ADCs in an accurate, unbiased manner.
Collapse
Affiliation(s)
- Jay Jones
- Analytical Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | - Laura Pack
- Quality, Seattle Genetics Inc., Bothell, WA, USA
| | - Joshua H Hunter
- Conjugation Process Development, Seattle Genetics Inc., Bothell, WA, USA
| | | |
Collapse
|
21
|
Lyski RD, Bou LB, Lau UY, Meyer DW, Cochran JH, Okeley NM, Emmerton KK, Zapata F, Simmons JK, Trueblood ES, Ortiz DJ, Zaval MC, Snead KM, Jin S, Farr LM, Ryan MC, Senter PD, Jeffrey SC. Development of Novel Antibody-Camptothecin Conjugates. Mol Cancer Ther 2020; 20:329-339. [PMID: 33273058 DOI: 10.1158/1535-7163.mct-20-0526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
We have developed a highly active and well-tolerated camptothecin (CPT) drug-linker designed for antibody-mediated drug delivery in which the lead molecule consists of a 7-aminomethyl-10,11-methylenedioxy CPT (CPT1) derivative payload attached to a novel hydrophilic protease-cleavable valine-lysine-glycine tripeptide linker. A defined polyethylene glycol stretcher was included to improve the properties of the drug-linker, facilitating high antibody-drug conjugate (ADC) drug loading, while reducing the propensity for aggregation. A CPT1 ADC with 8 drug-linkers/mAb displayed a pharmacokinetic profile coincident with parental unconjugated antibody and had high serum stability. The ADCs were broadly active against cancer cells in vitro and in mouse xenograft models, giving tumor regressions and complete responses at low (≤3 mg/kg, single administration) doses. Pronounced activities were obtained in both solid and hematologic tumor models and in models of bystander killing activity and multidrug resistance. Payload release studies demonstrated that two CPTs, CPT1 and the corresponding glycine analog (CPT2), were released from a cAC10 ADC by tumor cells. An ADC containing this drug-linker was well tolerated in rats at 60 mg/kg, given weekly four times. Thus, ADCs comprised of this valine-lysine-glycine linker with CPT drug payloads have promise in targeted drug delivery.
Collapse
Affiliation(s)
| | | | - Uland Y Lau
- Neoleukin Therapeutics, Inc., Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | - Steven Jin
- Seagen Inc., Bothell, Seattle, Washington
| | | | | | | | | |
Collapse
|
22
|
Jukes Z, Morais GR, Loadman PM, Pors K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov Today 2020; 26:577-584. [PMID: 33232841 DOI: 10.1016/j.drudis.2020.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
The duocarmycins belong to a class of agent that has fascinated scientists for over four decades. Their exquisite potency, unique mechanism of action, and efficacy in multidrug-resistant tumour models makes them attractive to medicinal chemists and drug hunters. However, despite great advances in fine-tuning biological activity through structure-activity relationship studies (SARS), no duocarmycin-based therapeutic has reached clinical approval. In this review, we provide an overview of the most promising strategies currently used and include both tumour-targeted prodrug approaches and antibody-directed technologies.
Collapse
Affiliation(s)
- Zoë Jukes
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
23
|
Synthesis of Pharmacologically Relevant New Derivatives of Maleimides via Ligand-Free Pd-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04450-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Ramos-Tomillero I, Pérez-Chacon G, Somovilla-Crespo B, Sánchez-Madrid F, Cuevas C, Zapata JM, Domínguez JM, Rodríguez H, Albericio F. From Ugi Multicomponent Reaction to Linkers for Bioconjugation. ACS OMEGA 2020; 5:7424-7431. [PMID: 32280884 PMCID: PMC7144135 DOI: 10.1021/acsomega.0c00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Bioconjugation is a key approach for the development of novel molecular entities with clinical applications. The biocompatibility and specificity of biomolecules such as peptides, proteins, and antibodies make these macromolecules ideal carriers for selective targeted therapies. In this context, there is a need to develop new molecular units that cover the requirements of the next generation of targeted pharmaceuticals. Here, we present the design and development of a versatile and stable linker based on a N-alkylated α,α-dialkyl dipeptide for bioconjugation, with a particular focus on antibody-drug conjugates (ADCs). Starting with the well-known Ugi multicomponent reaction, the convenient chemical modification of the prepared adducts allowed us the obtention of versatile bifunctional linkers for bioconjugation. A conjugation strategy was tested to demonstrate the efficiency of the linker. In addition, a novel cytotoxic anti-HER2 ADC was prepared using the Ugi-linker approach.
Collapse
Affiliation(s)
- Iván Ramos-Tomillero
- Institute
for Research in Biomedicine, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Gema Pérez-Chacon
- Instituto
de Investigaciones Biomédicas “Alberto Sols”,
CSIC-UAM, 28029 Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Servicio
de Inmunología, Instituto de Investigación
Sanitaria Hospital de la Princesa, 28006 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio
de Inmunología, Instituto de Investigación
Sanitaria Hospital de la Princesa, 28006 Madrid, Spain
| | - Carmen Cuevas
- Research
Department, PharmaMar S.A., Colmenar Viejo, 28770 Madrid, Spain
| | - Juan Manuel Zapata
- Instituto
de Investigaciones Biomédicas “Alberto Sols”,
CSIC-UAM, 28029 Madrid, Spain
| | | | - Hortensia Rodríguez
- Institute
for Research in Biomedicine, 08028 Barcelona, Spain
- School of
Chemical Sciences and Engineering, Yachay
Tech University, Yachay City of Knowledge, 100650 Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028 Barcelona, Spain
- School
of Chemistry, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
25
|
Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol 2020; 392:114932. [DOI: 10.1016/j.taap.2020.114932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
|
26
|
Meyer DW, Bou LB, Shum S, Jonas M, Anderson ME, Hamilton JZ, Hunter JH, Wo SW, Wong AO, Okeley NM, Lyon RP. An in Vitro Assay Using Cultured Kupffer Cells Can Predict the Impact of Drug Conjugation on in Vivo Antibody Pharmacokinetics. Mol Pharm 2020; 17:802-809. [DOI: 10.1021/acs.molpharmaceut.9b00991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David W Meyer
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Lauren B Bou
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Sara Shum
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Mechthild Jonas
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Martha E Anderson
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Joe Z Hamilton
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Joshua H Hunter
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Serena W Wo
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Abbie O Wong
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Nicole M Okeley
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Robert P Lyon
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| |
Collapse
|
27
|
Puthenveetil S. Utilizing Solid-Phase to Enable High-Throughput, Site-Specific Conjugation and Dual-Labeled Antibody and Fab Conjugates. Methods Mol Biol 2020; 2078:99-112. [PMID: 31643052 DOI: 10.1007/978-1-4939-9929-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For therapeutic and diagnostic applications, site-specific antibody conjugates have proven superior for both the ease of characterization as well as for optimal biophysical and therapeutic properties. Screening multiple antibodies on multiple sites with multiple linker-drugs can become very tedious and time-consuming. As solid-phase reactions are best suited to simplify multistep reactions, readily available protein A/L agarose beads can be utilized to generate site-specific, antibody -drug conjugates on engineered cysteines. Multiple site-specific labels on an antibody with either fluorophore or other-linker drugs is highly desired to evaluate antibody trafficking or payload-synergy for therapeutics. Utilizing solid-phase conjugation, a simple method to generate dual-labeled, site-specific antibody and Fab conjugates from antibody with engineered cysteine is also been described.
Collapse
Affiliation(s)
- Sujiet Puthenveetil
- AbbVie Bioresearch Center, R&D, Worcester, MA, USA.
- Pfizer, Inc., Groton, CT, USA.
| |
Collapse
|
28
|
Papageorgiou L, Papakonstantinou E, Salis C, Polychronidou E, Hagidimitriou M, Maroulis D, Eliopoulos E, Vlachakis D. Drugena: A Fully Automated Immunoinformatics Platform for the Design of Antibody-Drug Conjugates Against Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1194:203-215. [PMID: 32468536 DOI: 10.1007/978-3-030-32622-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibodies are proteins that are the first line of defense in the adaptive immune response of vertebrates. Thereby, they are involved in a multitude of biochemical mechanisms and clinical manifestations with significant medical interest, such as autoimmunity, the regulation of infection, and cancer. An emerging field in antibody science that is of huge medicinal interest is the development of novel antibody-interacting drugs. Such entities are the antibody-drug conjugates (ADCs), which are a new type of targeted therapy, which consist of an antibody linked to a payload drug. Overall, the underlying principle of ADCs is the discerning delivery of a drug to a target, hoping to increase the potency of the original drug. Drugena suite is a pioneering platform that employs state-of-the-art computational biology methods in the fight against neurodegenerative diseases using ADCs. Drugena encompasses an up-to-date structural database of specialized antibodies for neurological disorders and the NCI database with over 96 million entities for the in silico development of ADCs. The pipeline of the Drugena suite has been divided into several steps and modules that are closely related with a synergistic fashion under a user-friendly graphical user interface.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Constantinos Salis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | - Marianna Hagidimitriou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitris Maroulis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Eliopoulos
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece. .,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
29
|
Abstract
Interchain disulfide bonds of antibodies can be reduced by agents such as TCEP or DTT to form reactive cysteine residues. These endogenous cysteines are used for conjugation to biologically active drugs either directly or via linkers to prepare antibody drug conjugates (ADCs). The anti-notch 3 ADC described here is being evaluated in the early clinical development program as a potential treatment for a variety of cancers. The ADC is composed of an IgG1 mAb that is conjugated by endogenous cysteines to a cytotoxic microtubulin inhibitor via a maleimide-containing linker. The endogenous cysteine residues are produced by partial reduction of the mAb with TCEP reducing agent. The conjugation results in the formation of a mixture of 2, 4, 6, and 8 loaded ADC species. In addition to the desired product, several product-related impurities such as aggregates are generated during the conjugation reaction. The product- and process-related impurities are separated from the monomeric ADC by column chromatography and ultrafiltration-diafiltration techniques. The temperature of TCEP reduction step has an impact on the level of aggregates produced in the reaction. The temperature also impacts the isomeric composition of the 4 loaded ADC species.
Collapse
|
30
|
Bai C, Reid EE, Wilhelm A, Shizuka M, Maloney EK, Laleau R, Harvey L, Archer KE, Vitharana D, Adams S, Kovtun Y, Miller ML, Chari R, Keating TA, Yoder NC. Site-Specific Conjugation of the Indolinobenzodiazepine DGN549 to Antibodies Affords Antibody-Drug Conjugates with an Improved Therapeutic Index as Compared with Lysine Conjugation. Bioconjug Chem 2019; 31:93-103. [PMID: 31747250 DOI: 10.1021/acs.bioconjchem.9b00777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.e., the fold difference between efficacious and maximum tolerated doses). Here we present the results of a systematic preclinical comparison of ADCs embodying the DNA-alkylating linker-payload DGN549 generated with both heterogeneous lysine-directed and site-specific cysteine-directed conjugation chemistries. Importantly, the catabolites generated by each ADC are the same regardless of the conjugation format. In two different model systems evaluated, the site-specific ADC showed a therapeutic index benefit. However, the therapeutic index benefit is different in each case: both show evidence of improved tolerability, though with different magnitudes, and in one case significant efficacy improvement is also observed. These results support our contention that conjugation chemistry of ADCs is best evaluated in the context of a particular antibody, target, and linker-payload, and ideally across multiple disease models.
Collapse
Affiliation(s)
- Chen Bai
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Emily E Reid
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Alan Wilhelm
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Manami Shizuka
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Erin K Maloney
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Rassol Laleau
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Lauren Harvey
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Katie E Archer
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Dilrukshi Vitharana
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Sharlene Adams
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Yelena Kovtun
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Michael L Miller
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Ravi Chari
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Thomas A Keating
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Nicholas C Yoder
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| |
Collapse
|
31
|
Hingorani DV, Doan MK, Camargo MF, Aguilera J, Song SM, Pizzo D, Scanderbeg DJ, Cohen EEW, Lowy AM, Adams SR, Advani SJ. Precision Chemoradiotherapy for HER2 Tumors Using Antibody Conjugates of an Auristatin Derivative with Reduced Cell Permeability. Mol Cancer Ther 2019; 19:157-167. [PMID: 31597712 DOI: 10.1158/1535-7163.mct-18-1302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
Abstract
The most successful therapeutic strategies for locally advanced cancers continue to combine decades-old classical radiosensitizing chemotherapies with radiotherapy. Molecular targeted radiosensitizers offer the potential to improve the therapeutic ratio by increasing tumor-specific kill while minimizing drug delivery and toxicity to surrounding normal tissue. Auristatins are a potent class of anti-tubulins that sensitize cells to ionizing radiation damage and are chemically amenable to antibody conjugation. To achieve tumor-selective radiosensitization, we synthesized and tested anti-HER2 antibody-drug conjugates of two auristatin derivatives with ionizing radiation. Monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) were attached to the anti-HER2 antibodies trastuzumab and pertuzumab through a cleavable linker. While MMAE is cell permeable, MMAF has limited cell permeability as free drug resulting in diminished cytotoxicity and radiosensitization. However, when attached to trastuzumab or pertuzumab, MMAF was as efficacious as MMAE in blocking HER2-expressing tumor cells in G2-M. Moreover, MMAF anti-HER2 conjugates selectively killed and radiosensitized HER2-rich tumor cells. Importantly, when conjugated to targeting antibody, MMAF had the advantage of decreased bystander and off-target effects compared with MMAE. In murine xenograft models, MMAF anti-HER2 antibody conjugates had less drug accumulated in the normal tissue surrounding tumors compared with MMAE. Therapeutically, systemically injected MMAF anti-HER2 conjugates combined with focal ionizing radiation increased tumor control and improved survival of mice with HER2-rich tumor xenografts. In summary, our results demonstrate the potential of cell-impermeable radiosensitizing warheads to improve the therapeutic ratio of radiotherapy by leveraging antibody-drug conjugate technology.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Matthew K Doan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Maria F Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Joseph Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Seung M Song
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Daniel J Scanderbeg
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Ezra E W Cohen
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego, La Jolla, California
- University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Andrew M Lowy
- University of California San Diego, Moores Cancer Center, La Jolla, California
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
- University of California San Diego, Moores Cancer Center, La Jolla, California
| |
Collapse
|
32
|
Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, Chen L, Zhu Y, Guo C, Shi J, Yu D. Novel HER2-Targeting Antibody-Drug Conjugates of Trastuzumab Beyond T-DM1 in Breast Cancer: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)Trastuzumab Duocarmazine (SYD985). Eur J Med Chem 2019; 183:111682. [PMID: 31563805 DOI: 10.1016/j.ejmech.2019.111682] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Targeted drug delivery has improved cancer treatment significantly in recent years, although it is difficult to achieve. Different approaches have been developed to apply targeted drug delivery. Among which, antibody-drug conjugate (ADC) provides a potentially ideal solution to such a challenge. ADC is an innovative drug treatment model with three key components: payload, monoclonal antibody, and linker. The monoclonal antibody targets the antigen-expressing tumor cells and internalizes the payload linked by the linker to the target cells to reduce the side effects of the traditional chemotherapy drugs. The off-target effect has an excellent therapeutic prospect. Among them, ado-trastuzumab emtansine (T-DM1) is a successful example of targeting human epidermal growth factor receptor-2 (HER2). Its antibody (trastuzumab) is derived from Herceptin with annual sales of more than $6 billion. It has excellent targeting and specific anti-tumor activity against HER2. Its linker is not cleavable and releases the Lys-linker-payload to kill the cells. The two ADCs described here use the same antibody as T-DM1, but the cleavable linker and the more toxic payload allow them to have the not only targeting of T-DM1, but also the reduce T-DM1 resistance and improve efficacy in heterogeneous tumors. This paper describes the mechanism of action and the biochemical characteristics of different parts and preclinical and clinical progress of trastuzumab deruxtecan(DS-8201a) and (vic-)trastuzumab duocarmazine (SYD985).
Collapse
Affiliation(s)
- Zhuyu Xu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Guo
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Guo
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
33
|
Li K, Lin ZJ, Shi H, Ma Y. Characterization of Positional Isomers of Interchain Cysteine Linked Antibody−Drug Conjugates by High-Resolution Mass Spectrometry. Anal Chem 2019; 91:8558-8563. [DOI: 10.1021/acs.analchem.9b01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ke Li
- Department of Chemistry and Center for Biomedical Research, Missouri University of Science and Technonlogy, Rolla, Missouri 65409, United States
| | - Zhongping John Lin
- Department of Bioanalysis, Frontage Laboratories, Inc., Exton, Pennsylvania 19341, United States
| | - Honglan Shi
- Department of Chemistry and Center for Biomedical Research, Missouri University of Science and Technonlogy, Rolla, Missouri 65409, United States
| | - Yinfa Ma
- Department of Chemistry and Center for Biomedical Research, Missouri University of Science and Technonlogy, Rolla, Missouri 65409, United States
- Department of Chemistry, California State University, Sacramento, California 95819, United States
| |
Collapse
|
34
|
Mukherjee A, Waters AK, Babic I, Nurmemmedov E, Glassy MC, Kesari S, Yenugonda VM. Antibody drug conjugates: Progress, pitfalls, and promises. Hum Antibodies 2019; 27:53-62. [PMID: 30223393 DOI: 10.3233/hab-180348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antibody drug conjugates (ADCs) represent a promising and an efficient strategy for targeted cancer therapy. Comprised of a monoclonal antibody, a cytotoxic drug, and a linker, ADCs offer tumor selectively, reduced toxicity, and improved stability in systemic circulation. Recent approvals of two ADCs have led to a resurgence in ADC research, with more than 60 ADCs under various stages of clinical development. The therapeutic success of future ADCs is dependent on adherence to key requirements of their design and careful selection of the target antigen on cancer cells. Here we review the main components in the design of antibody drug conjugates, improvements made, and lessons learned over two decades of research, as well as the future of third generation ADCs.
Collapse
Affiliation(s)
- Anubhab Mukherjee
- Drug Discovery and Nanomedicine Research Program, CA-90404, USA.,Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA-90404, USA
| | - Ariana K Waters
- Drug Discovery and Nanomedicine Research Program, CA-90404, USA.,Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA-90404, USA
| | - Ivan Babic
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA-90404, USA
| | - Elmar Nurmemmedov
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA-90404, USA
| | - Mark C Glassy
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA.,Nascent Biotech, Inc., San Diego, CA, USA
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA-90404, USA
| | - Venkata Mahidhar Yenugonda
- Drug Discovery and Nanomedicine Research Program, CA-90404, USA.,Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA-90404, USA
| |
Collapse
|
35
|
Hellmann I, Waldmeier L, Bannwarth-Escher MC, Maslova K, Wolter FI, Grawunder U, Beerli RR. Novel Antibody Drug Conjugates Targeting Tumor-Associated Receptor Tyrosine Kinase ROR2 by Functional Screening of Fully Human Antibody Libraries Using Transpo-mAb Display on Progenitor B Cells. Front Immunol 2018; 9:2490. [PMID: 30450096 PMCID: PMC6224377 DOI: 10.3389/fimmu.2018.02490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been identified as a highly relevant tumor-associated antigen in a variety of cancer indications of high unmet medical need, including renal cell carcinoma and osteosarcoma, making it an attractive target for targeted cancer therapy. Here, we describe the de novo discovery of fully human ROR2-specific antibodies and potent antibody drug conjugates (ADCs) derived thereof by combining antibody discovery from immune libraries of human immunoglobulin transgenic animals using the Transpo-mAb mammalian cell-based IgG display platform with functional screening for internalizing antibodies using a secondary ADC assay. The discovery strategy entailed immunization of transgenic mice with the cancer antigen ROR2, harboring transgenic IgH and IgL chain gene loci with limited number of fully human V, D, and J gene segments. This was followed by recovering antibody repertoires from the immunized animals, expressing and screening them as full-length human IgG libraries by transposon-mediated display in progenitor B lymphocytes ("Transpo-mAb Display") for ROR2 binding. Individual cellular "Transpo-mAb" clones isolated by single cell sorting and capable of expressing membrane-bound as well as secreted human IgG were directly screened during antibody discovery, not only for high affinity binding to human ROR2, but also functionally as ADCs using a cytotoxicity assay with a secondary anti-human IgG-toxin-conjugate. Using this strategy, we identified and validated 12 fully human, monoclonal anti-human ROR2 antibodies with nanomolar affinities that are highly potent as ADCs and could be promising candidates for the therapy of human cancer. The screening for functional and internalizing antibodies during the early phase of antibody discovery demonstrates the utility of the mammalian cell-based Transpo-mAb Display platform to select for functional binders and as a powerful tool to improve the efficiency for the development of therapeutically relevant ADCs.
Collapse
|
36
|
Hippach MB, Schwartz I, Pei J, Huynh J, Kawai Y, Zhu MM. Fluctuations in dissolved oxygen concentration during a CHO cell culture process affects monoclonal antibody productivity and the sulfhydryl‐drug conjugation process. Biotechnol Prog 2018; 34:1427-1437. [DOI: 10.1002/btpr.2697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Michael B. Hippach
- Process Sciences and ManufacturingAgensys, Inc. 1800 Stewart Street, Santa Monica California 90404
| | - Ian Schwartz
- Process Sciences and ManufacturingAgensys, Inc. 1800 Stewart Street, Santa Monica California 90404
| | - Jian Pei
- Process Sciences and ManufacturingAgensys, Inc. 1800 Stewart Street, Santa Monica California 90404
| | - Jimmy Huynh
- Process Sciences and ManufacturingAgensys, Inc. 1800 Stewart Street, Santa Monica California 90404
| | - Yasuaki Kawai
- Process Science Lab I, Biotechnology Labs, Astellas Pharma, Inc. 5‐2‐3, Tokodai, Tsukuba‐shi, Ibaraki 300‐2698 Japan
| | - Marie M. Zhu
- Process Sciences and ManufacturingAgensys, Inc. 1800 Stewart Street, Santa Monica California 90404
| |
Collapse
|
37
|
Liu GW, Prossnitz AN, Eng DG, Cheng Y, Subrahmanyam N, Pippin JW, Lamm RJ, Ngambenjawong C, Ghandehari H, Shankland SJ, Pun SH. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials 2018; 178:317-325. [DOI: 10.1016/j.biomaterials.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/22/2022]
|
38
|
Lau UY, Benoit LT, Stevens NS, Emmerton KK, Zaval M, Cochran JH, Senter PD. Lactone Stabilization is Not a Necessary Feature for Antibody Conjugates of Camptothecins. Mol Pharm 2018; 15:4063-4072. [DOI: 10.1021/acs.molpharmaceut.8b00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uland Y. Lau
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Lauren T. Benoit
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nicole S. Stevens
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Kim K. Emmerton
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Margo Zaval
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Julia H. Cochran
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Peter D. Senter
- Seattle Genetics, Inc, 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
39
|
Edwards JM, Derrick JP, van der Walle CF, Golovanov AP. 19F NMR as a Tool for Monitoring Individual Differentially Labeled Proteins in Complex Mixtures. Mol Pharm 2018; 15:2785-2796. [PMID: 29863878 DOI: 10.1021/acs.molpharmaceut.8b00282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to monitor the behavior of individual proteins in complex mixtures has many potential uses, ranging from analysis of protein interactions in highly concentrated solutions, modeling biological fluids or the intracellular environment, to optimizing biopharmaceutical co-formulations. Differential labeling NMR approaches, which traditionally use 15N or 13C isotope incorporation during recombinant expression, are not always practical in cases when endogenous proteins are obtained from an organism, or where the expression system does not allow for efficient labeling, especially for larger proteins. This study proposes differential labeling of proteins by covalent attachment of 19F groups with distinct chemical shifts, giving each protein a unique spectral signature which can be monitored by 19F NMR without signal overlap, even in complex mixtures, and without any interfering signals from the buffer or other unlabeled components. Parameters, such as signal intensities, translational diffusion coefficients, and transverse relaxation rates, which report on the behavior of individual proteins in the mixture, can be recorded even for proteins as large as antibodies at a wide range of concentrations.
Collapse
Affiliation(s)
- John M Edwards
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering , University of Manchester , Manchester M1 7DN , U.K
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , Manchester M13 9PL , U.K
| | | | - Alexander P Golovanov
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering , University of Manchester , Manchester M1 7DN , U.K
| |
Collapse
|
40
|
Durbin KR, Phipps C, Liao X. Mechanistic Modeling of Antibody-Drug Conjugate Internalization at the Cellular Level Reveals Inefficient Processing Steps. Mol Cancer Ther 2018; 17:1341-1351. [PMID: 29592884 DOI: 10.1158/1535-7163.mct-17-0672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/30/2017] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) offer an avenue for specific drug delivery to target cells. Here, parameters with important roles in the cellular processing of ADCs were quantitatively measured for Ab033, an antibody against EGFR. In EGFR-overexpressing cancer cell lines, Ab033 internalized at rates of 0.047/min and 0.15/min for A431 and H441 cells, respectively. Once internalized, Ab033 either trafficked to the lysosome or was recycled; up to 45% of internalized Ab033 returned to the cell surface. Despite such recycling, intracellular accumulation of Ab033 continually increased over 24 hours. Ab033 was conjugated to form a dual toxin ADC containing both cleavable and non-cleavable linker-drug payloads for release rate comparisons. Intracellular concentrations of freed drug from cleavable linker were greater than from non-cleavable linker and exceeded 5 × 106 drug molecules per A431 cell after 24 hours. Compared with intracellular antibody accumulation, formation of released drug was delayed, likely due to the time needed for endo-lysosomal trafficking and subsequent linker/antibody proteolysis. Informed by the quantitative data, a cellular ADC model was constructed and used to summarize processing inefficiencies. Modeling simulations were conducted to determine parameter sensitivity on intracellular drug concentrations, with rates of EGFR internalization and recycling as well as ADC trafficking found to be the most sensitive toward final intracellular drug concentrations. Overall, this study shows Ab033 ADCs to be a viable strategy for delivery of cytotoxic drugs into tumor cells with subsequent modeling efforts able to highlight key processing steps to be improved for increased drug delivery. Mol Cancer Ther; 17(6); 1341-51. ©2018 AACR.
Collapse
Affiliation(s)
- Kenneth R Durbin
- Department of Drug Metabolism and Pharmacokinetics, AbbVie, Inc., North Chicago, Illinois.
| | - Colin Phipps
- Department of Drug Metabolism and Pharmacokinetics, AbbVie, Inc., North Chicago, Illinois
| | - Xiaoli Liao
- Process R&D Department, AbbVie, Inc., North Chicago, Illinois
| |
Collapse
|
41
|
Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ. Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition. Bioconjug Chem 2018; 29:686-701. [PMID: 29287474 PMCID: PMC6310217 DOI: 10.1021/acs.bioconjchem.7b00633] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others. This focused review highlights practical approaches to AAC reactions for the synthesis of peptide or protein bioconjugates and contrasts current challenges and limitations in light of recent advances in the field. The conical success of antibody drug conjugates has expanded the toolbox of linkers and payloads to facilitate practical applications of bioconjugation to create novel therapeutics and biologic probes. The AAC reaction in particular is poised to enable a large set of functionalized molecules as a combinatorial approach to high-throughput bioconjugate generation, screening, and honing of lead compounds.
Collapse
Affiliation(s)
- Chad J Pickens
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Stephanie N Johnson
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Martin A Leon
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States
- Department of Chemical and Petroleum Engineering , University of Kansas , , 4132 Learned Hall, 1530 W. 15th , Lawrence , Kansas 66045 , United States
| |
Collapse
|
42
|
Ohri R, Bhakta S, Fourie-O'Donohue A, Dela Cruz-Chuh J, Tsai SP, Cook R, Wei B, Ng C, Wong AW, Bos AB, Farahi F, Bhakta J, Pillow TH, Raab H, Vandlen R, Polakis P, Liu Y, Erickson H, Junutula JR, Kozak KR. High-Throughput Cysteine Scanning To Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers. Bioconjug Chem 2018; 29:473-485. [PMID: 29425028 DOI: 10.1021/acs.bioconjchem.7b00791] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.
Collapse
Affiliation(s)
- Rachana Ohri
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Sunil Bhakta
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | - Siao Ping Tsai
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Ryan Cook
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Athena W Wong
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Aaron B Bos
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Farzam Farahi
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jiten Bhakta
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Helga Raab
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Vandlen
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul Polakis
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Yichin Liu
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Erickson
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jagath R Junutula
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
43
|
Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther 2018; 181:126-142. [DOI: 10.1016/j.pharmthera.2017.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Bloom S, Liu C, Kölmel DK, Qiao JX, Zhang Y, Poss MA, Ewing WR, MacMillan DWC. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat Chem 2017; 10:205-211. [PMID: 29359756 DOI: 10.1038/nchem.2888] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.
Collapse
Affiliation(s)
- Steven Bloom
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| | - Chun Liu
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| | - Dominik K Kölmel
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| | - Jennifer X Qiao
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA.,Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, USA
| | - Yong Zhang
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA.,Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, USA
| | - Michael A Poss
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA.,Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, USA
| | - William R Ewing
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA.,Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
45
|
The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19. [PMID: 27916504 DOI: 10.1016/j.addr.2016.11.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field.
Collapse
|
46
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
47
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017; 56:12481-12485. [DOI: 10.1002/anie.201705578] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/24/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
48
|
Hu X, Bortell E, Kotch FW, Xu A, Arve B, Freese S. Development of Commercial-Ready Processes for Antibody Drug Conjugates. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xi Hu
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Eric Bortell
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Frank W. Kotch
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - April Xu
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Bo Arve
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Chesterfield, Missouri 63017, United States
| | - Stephen Freese
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| |
Collapse
|
49
|
Prashad AS, Nolting B, Patel V, Xu A, Arve B, Letendre L. From R&D to Clinical Supplies. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amar S. Prashad
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Birte Nolting
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Vimalkumar Patel
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - April Xu
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| | - Bo Arve
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Chesterfield, Missouri 63017, United States
| | - Leo Letendre
- Biotherapeutics Pharmaceutical Sciences, Worldwide R&D, Pfizer, Inc., Pearl River, New York 10965, United States
| |
Collapse
|
50
|
Anami Y, Xiong W, Gui X, Deng M, Zhang CC, Zhang N, An Z, Tsuchikama K. Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01027c] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient enzymatic method using branched linkers was developed for the construction of potent homogeneous antibody–drug conjugates.
Collapse
Affiliation(s)
- Yasuaki Anami
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center at Houston
- 1881 East Road
- Houston
| | - Wei Xiong
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center at Houston
- 1881 East Road
- Houston
| | - Xun Gui
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center at Houston
- 1881 East Road
- Houston
| | - Mi Deng
- Departments of Physiology and Developmental Biology
- The University of Texas Southwestern Medical Center
- 6001 Forest Park Road
- Dallas
- USA
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology
- The University of Texas Southwestern Medical Center
- 6001 Forest Park Road
- Dallas
- USA
| | - Ningyan Zhang
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center at Houston
- 1881 East Road
- Houston
| | - Zhiqiang An
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center at Houston
- 1881 East Road
- Houston
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center at Houston
- 1881 East Road
- Houston
| |
Collapse
|