1
|
Gilmour KM, Best C, Currie S. Using the reactive scope model to redefine the concept of social stress in fishes. J Exp Biol 2025; 228:jeb249395. [PMID: 40135434 DOI: 10.1242/jeb.249395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The term 'social stress' has traditionally referred to physiological stress responses induced by the behaviour of conspecifics, particularly aggression or agonistic behaviours. Here, we review the physiological consequences of social status in fishes using the reactive scope model (RSM) to explain the divergent physiological phenotypes of dominant and subordinate fish. The RSM plots levels of different physiological mediators (e.g. behaviour, glucocorticoid hormones) over time, using them to define functional ranges that differ in their consequences for the animal. We discuss differences in growth, reproduction and tolerance of environmental challenges, all of which are suppressed in subordinate individuals, and focus on the underlying mechanisms that give rise to these phenotypes. Repeated and/or continual activation of the hypothalamic-pituitary-interrenal (HPI) axis in subordinate fish can lead to prolonged elevation of cortisol, a key physiological mediator. In turn, this increases physiological 'wear and tear' in these individuals, lowering their reactive scope (i.e. the physiological range of a healthy animal) and increasing their susceptibility to homeostatic overload. That is, they experience social stress and, ultimately, their capacity to cope with environmental challenges is limited. By contrast, reactive scope is maintained in dominant individuals, and hence they are better able to tolerate environmental challenges. Redefining social stress in terms of the RSM allows us to overcome the ambiguities and limitations associated with the concept of stress.
Collapse
Affiliation(s)
- Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Carol Best
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Suzanne Currie
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada, V1V 1V7
| |
Collapse
|
2
|
Lin T, Meegaskumbura M. Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals (Basel) 2025; 15:624. [PMID: 40075907 PMCID: PMC11898199 DOI: 10.3390/ani15050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the context of global warming, heat tolerance is becoming a crucial physiological trait influencing fish species' distribution and survival. While our understanding of fish heat tolerance and stress has expanded from behavioral studies to transcriptomic analyses, knowledge at the transcriptomic level is still limited. Recently, the highly conserved microRNAs (miRNAs) have provided new insights into the molecular mechanisms of heat stress in fish. This review systematically examines current research across three main reference databases to elucidate the universal responses and mechanisms of fish miRNAs under heat stress. Our initial screening of 569 articles identified 13 target papers for comprehensive analysis. Among these, at least 214 differentially expressed miRNAs (DEMs) were found, with 15 DEMs appearing in at least two studies (12 were upregulated and 13 were downregulated). The 15 recurrent DEMs were analyzed using DIANA mirPath v.3 and the microT-CDS v5.0 database to identify potential target genes. The results suggest that multiple miRNAs target various genes, forming a complex network that regulates glucose and energy metabolism, maintains homeostasis, and modulates inflammation and immune responses. Significantly, miR-1, miR-122, let-7a, and miR-30b were consistently differentially expressed in multiple studies, indicating their potential relevance in heat stress responses. However, these miRNAs should not be considered definitive biomarkers without further validation. Future research should focus on experimentally confirming their regulatory roles through functional assays, conducting transcriptomic comparisons across different species, and performing target validation studies. These miRNAs, conserved across species, could be valuable for monitoring wild fish health, enhancing aquaculture breeding, and guiding conservation strategies. However, the specific regulatory mechanisms of these miRNAs need clarification to confirm their reliability as biomarkers for thermal stress.
Collapse
Affiliation(s)
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Prentice PM, Chivite Alcalde M, Císař P, Rey Planellas S. Early-life environmental enrichment promotes positive animal welfare for juvenile Atlantic salmon (Salmo salar) in aquaculture research. Sci Rep 2025; 15:5828. [PMID: 39966558 PMCID: PMC11836395 DOI: 10.1038/s41598-025-88780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Early life experiences have long-lasting effects on behaviour and physiology, influencing development of adaptive natural behaviours. Enriching farmed environments encourages expression of natural behaviours in captive fish, promoting positive animal welfare, important for conducting valid and reproducible research and informing better management practices. Using juvenile Atlantic Salmon (Salmo salar), we tested whether provision of environmental enrichment in early life improves welfare. Welfare indicators were measured comparing enriched to non-enriched tanks. Morphological (fin damage and body condition), physiological (plasma cortisol) and behavioural traits (activity, group cohesion, and neophobia) were recorded. Molecular expression of brain mRNA transcripts related to stress response, neuroplasticity and serotonergic system was analysed. Environmental enrichment did not affect morphological welfare indicators, activity, or cortisol. Enriched fish were more cohesive than non-enriched fish, less neophobic, with higher serotonergic turnover, suggesting enrichment mitigates against stress, promoting positive emotional states. Genes related to neuronal development and activity (bdnf and ndf1), cellular stress (hsp90 and hsp70), and serotonin synthesis (tph2) increased in enriched fish following stress, enhancing cognitive function. Our findings suggest early life environmental enrichment is advantageous for positive animal welfare by improving emotional states in captive environments, ensuring animals are free of negative experiences and able to access positive ones.
Collapse
Affiliation(s)
- Pamela M Prentice
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
- Animal Behaviour and Welfare, Animal and Veterinary Science Research Group, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
| | - Mauro Chivite Alcalde
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional E Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Petr Císař
- University of South Bohemia in České Budějovice, FFPW, CENAKVA, Zámek 136, 373 33, Nové Hrady, Czech Republic
| | - Sonia Rey Planellas
- Animal Behaviour and Welfare, Animal and Veterinary Science Research Group, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
4
|
Vieira RSF, Venâncio CAS, Félix LM. Behavioral, metabolic, and biochemical alterations caused by an acute stress event in a zebrafish larvae model. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:25. [PMID: 39673016 PMCID: PMC11645430 DOI: 10.1007/s10695-024-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
Animal welfare is a growing concern in aquaculture practices. Stress induced by handling or transportation can lead to negative impacts on the sector. Zebrafish has raised as an important aquaculture model, but still with few focus on its stress response in early life stages. Therefore, the objective of this study was to improve the evaluation of different markers of the stress response after a stress event in a zebrafish larvae model. Zebrafish larvae (96 hpf) were vortex-stimulated for 1 min at 200 rpm for acute stress induction. After 10 min, 1- and 4-h behavioral larvae outcomes and larvae were sampled to the following quantification: levels of cortisol, lactate, glucose and biochemical biomarkers (reactive oxygen species, superoxide dismutase, catalase, glutathione peroxidase, lipidic oxidation level and protein carbonylation, glutathione s-transferase, acetylcholinesterase, lactate dehydrogenase and ATPase), and the metabolic rate. The cortisol, glucose, and lactate levels had no alterations. At the behavioral level, an increase in the distance swam and in the speed was observed and the metabolic rate also increased according to the behavioral outcomes. The ATPase and GST activity showed a decrease in their activity, probably through osmoregulation changes related to the hypothetic adrenocorticotropic hormone downregulation. Overall, the acute vortex stimulation at low speed induced an early stress response independent of the HPI-cortisol pathway. In addition, this study shows zebrafish early life stages as a sensitive model to acute vortex stimulation, identifying altered parameters which can be used in future work to assess the effect on animal welfare in similar acute situations.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
5
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. 11-Deoxycorticosterone (DOC)'s Action on the Gill Osmoregulation of Juvenile Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2024; 13:107. [PMID: 38392325 PMCID: PMC10886319 DOI: 10.3390/biology13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
In aquaculture, stress can negatively affect fish growth. For years, the cortisol hormone has been thought to play both glucocorticoid and mineralocorticoid functions. Nevertheless, recent research has suggested that 11-deoxycorticosterone (DOC) released during stress could contribute to cortisol actions, though this process is still misunderstood. Here, we evaluated the DOC effects on physiological and early transcriptional responses by RNA-seq. Juvenile rainbow trout were treated with DOC and/or glucocorticoids (mifepristone) or mineralocorticoid (eplerenone) receptor antagonists. Subsequently, plasma was collected, and cDNA libraries were generated from the gills of vehicle (control), DOC, mifepristone, mifepristone with DOC, eplerenone, and eplerenone with DOC groups. Calcium and phosphate levels in plasma were changed. Results revealed 914 differentially expressed transcripts (DETs) induced by DOC compared with control, mainly associated with sodium ion transmembrane transport, gluconeogenesis, negative regulation of transmembrane transport, and activation of innate immune response. DOC versus eplerenone with DOC comparison displayed 444 DETs related to cell-cell junction organization, canonical glycolysis, positive regulation of immune response, and potassium ion transport. Conversely, no DETs were detected in DOC versus mifepristone with DOC comparison. These data suggest that DOC has a relevant role in gill stress response and ion transport, which is differentially regulated by mineralocorticoid receptors.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Luciano Ahumada-Langer
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan Antonio Valdés
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| |
Collapse
|
6
|
Best C, Mennigen JA, Gilmour KM. Exploring transcriptional and post-transcriptional epigenetic regulation of crf and 11βhsd2 in rainbow trout brain during chronic social stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111557. [PMID: 38043640 DOI: 10.1016/j.cbpa.2023.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Using dominance hierarchies in juvenile rainbow trout (Oncorhynchus mykiss) as a model of chronic social stress in fish, we explored whether epigenetic transcriptional and post-transcriptional mechanisms are involved in the gene expression of corticotropin-releasing factor (crf) and 11β-hydroxysteroid dehydrogenase (11βhsd2), key factors involved in the regulation of the endocrine stress axis response. In juvenile rainbow trout pairs, subordinate individuals display sustained elevation of circulating cortisol concentrations. Cortisol production is controlled by the hypothalamic-pituitary-interrenal (HPI) axis in fish and initiated by CRF release from the preoptic area (POA). Given that crf is modulated during chronic social stress, and that such stress has been implicated in the epigenetic regulation of crf in other taxa, we probed a role for epigenetic regulation of crf transcript abundance in chronically stressed rainbow trout. We also investigated the regulation of the cortisol-metabolising enzyme 11βhsd2 in the POA, which is upregulated in subordinates. The potential involvement of DNA methylation and microRNAs (miRNAs) in the regulation of crf transcript abundance was investigated during social stress in the POA of fish, as was the potential involvement of miRNAs in 11βhsd2 regulation. Although transcript abundances of crf were elevated in subordinate fish after 4 days, DNA methylation profiles within putative promoter sequences upstream of the crf gene were not significantly affected by chronic stress. An inverse relationship between crf and its predicted posttranscriptional regulator miR-103a-3p in the POA suggests that miRNAs may be involved in mediating the effects of chronic social stress on key components of the endocrine stress axis.
Collapse
Affiliation(s)
- Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
7
|
Faught E, Schaaf MJM. Molecular mechanisms of the stress-induced regulation of the inflammatory response in fish. Gen Comp Endocrinol 2024; 345:114387. [PMID: 37788784 DOI: 10.1016/j.ygcen.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/10/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Stressors in the environment of aquatic organisms can profoundly affect their immune system. The stress response in fish involves the activation of the hypothalamus-pituitary-interrenal (HPI) axis, leading to the release of several stress hormones, among them glucocorticoids, such as cortisol, which bind and activate corticosteroid receptors, namely the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). These receptors are highly expressed on immune cells, thereby allowing stress to have a potent effect that is classically considered to suppress immune function. In this review, we highlight the conserved structure and function of GR and MR among vertebrates and describe their role in modulating inflammation by regulating the expression of pro-inflammatory and anti-inflammatory genes. In particular, the involvement of MR during inflammation is reviewed, which in many studies has been shown to be immune-enhancing. In recent years, the use of zebrafish as a model organism has opened up new possibilities to study the effects of stress on inflammation, making it possible to investigate knockout lines for MR and/or GR, in combination with transgenic models with fluorescently labeled leukocyte subpopulations that enable the visualization and manipulation of these immune cells. The potential roles of other hormones of the HPI axis, such as corticotrophin-releasing hormone (Crh) and adrenocorticotropic hormone (Acth), in immune modulation are also discussed. Overall, this review highlights the need for further research to elucidate the specific roles of GR, MR and other stress hormones in regulating immune function in fish. Understanding these mechanisms will contribute to improving fish health and advancing our knowledge of stress signalling.
Collapse
Affiliation(s)
- Erin Faught
- Institute of Biology Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
8
|
da Santa Lopes T, Costas B, Ramos-Pinto L, Reynolds P, Imsland AKD, Fernandes JMO. Exploring the Effects of Acute Stress Exposure on Lumpfish Plasma and Liver Biomarkers. Animals (Basel) 2023; 13:3623. [PMID: 38066974 PMCID: PMC10705318 DOI: 10.3390/ani13233623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to expand knowledge on lumpfish stress physiology by investigating the effects of acute stress on primary (i.e., cortisol) and secondary (e.g., metabolites) stress responses, as well as oxidative stress biomarkers, from stress exposure to a recovery phase. The results showed that the lumpfish physiological response to 1 min air exposure is mild, in line with recent studies, and comparable to that described for white sturgeons. Cortisol seems to be the most reliable acute stress biomarker in lumpfish, with a significant increase in plasma 30 min after stress exposure, returning to resting levels 2 h after exposure. In contrast, glucose and lactate were not significantly altered by short-term air exposure. Effects on hepatic energy mobilisation were also detected following the acute stress. This study showed that acute 1 min air exposure seems tolerable, allowing a swift recovery. However, more studies on the impacts of air exposure and repeated acute stressors on lumpfish stress and immune responses are required to develop industry standards for lumpfish health and welfare monitoring.
Collapse
Affiliation(s)
- Tiago da Santa Lopes
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
| | - Lourenço Ramos-Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (L.R.-P.)
| | - Patrick Reynolds
- Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway; (T.d.S.L.); (P.R.)
| | - Albert K. D. Imsland
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
- Akvaplan-niva Iceland Office, 201 Kópavogur, Iceland
| | | |
Collapse
|
9
|
Opinion AGR, Vanhomwegen M, De Boeck G, Aerts J. Long-term stress induced cortisol downregulation, growth reduction and cardiac remodeling in Atlantic salmon. J Exp Biol 2023; 226:jeb246504. [PMID: 37921456 PMCID: PMC10690108 DOI: 10.1242/jeb.246504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Stress and elevated plasma cortisol in salmonids have been linked with pathological remodeling of the heart and deterioration of fitness and welfare. However, these associations were based on biomarkers that fail to provide a retrospective view of stress. This study is the first whereby the association of long-term stress, using scale cortisol as a chronic stress biomarker, with cardiac morphology and growth performance of wild Atlantic salmon (Salmo salar) is made. Growth, heart morphology, plasma and scale cortisol levels, and expression of genes involved in cortisol regulation of the hypothalamic-pituitary-interrenal axis of undisturbed fish (control) were compared with those of fish exposed daily to stress for 8 weeks. Though scale cortisol levels showed a time-dependent accumulation in both groups, plasma and scale cortisol levels of stress group fish were 29.1% and 25.0% lower than those of control fish, respectively. These results correlated with the overall upregulation of stress-axis genes involved in the systemic negative feedback of cortisol, and local feedback via 11β-hydroxysteroid dehydrogenases, glucocorticoid and mineralocorticoid receptors in the stress treatment at the hypothalamus and pituitary level. These lower cortisol levels were, however, counterintuitive in terms of the growth performance as stress group fish grew 33.7% slower than control fish, which probably influenced the 8.4% increase in relative ventricle mass in the stress group. Though compact myocardium area between the treatments was comparable, these parameters showed significant linear correlations with scale cortisol levels, indicating the involvement of chronic stress in cardiac remodeling. These findings underscore the importance of scale cortisol as biomarker when associating chronic stress with long-term processes including cardiac remodeling.
Collapse
Affiliation(s)
- April Grace R. Opinion
- University of Antwerp, Department of Biology, ECOSPHERE, 2020 Antwerp, Belgium
- Ghent University, Department of Biology, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
| | - Marine Vanhomwegen
- Ghent University, Department of Biology, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, ECOSPHERE, 2020 Antwerp, Belgium
| | - Johan Aerts
- Ghent University, Department of Biology, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
| |
Collapse
|
10
|
Hubená P, Horký P, Grabic R, Grabicová K, Douda K, Slavík O, Randák T. Aggression repeatability in stressed fish in response to an environmental concentration of sertraline and lunar cycle as evidenced by brain metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106707. [PMID: 37806025 DOI: 10.1016/j.aquatox.2023.106707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Sertraline is an environmental pollutant which received magnified scientific attention due to its global presence in waters. Adverse effects on feeding, reproduction and other traits were observed mostly in unstressed aquatic organisms. Chronic stress, however, induces significant physiological changes, and the effects of sertraline in stressed fish may differ from those observed in non-stressed individuals. The current laboratory study addresses this gap by repeatedly monitoring the individual aggression of chronically stressed juvenile chub (Squalius cephalus L.) using the non-reversing mirror test at an environmental sertraline concentration of 0.022 g/L every three to four days for a period of 39 days. Specifically, it was hypothesized that the level and repeatability of aggressiveness would be (i) correlated with the concentration of sertraline/norsertraline in the fish brain; (ii) linked to the individual brain metabolomic profile described by LC-HRMS analyses; (iii) related to the lunar cycle. Sertraline led to an increase in fish aggression and more repeatable/consistent behaviour compared to control fish. While the level of sertraline in the brain did not correlate with aggressiveness, aggressive responses increased with higher norsertraline concentration. The observed aggressive behaviour also varied depending on the individual metabolomic profile of the brain. The behavioural outcome and metabolic change in fish brain may indicate that sertraline has demonstrated neuroprotective effects by reducing cortisol release. It is possible that fish exposed to sertraline could suffer a blunted stress response under the chronic stressors in the wild. Aggressiveness of both treatments evolved in time, revealing a sinusoid-like pattern corresponding to a lunar cycle with a peak of the aggressiveness during the new moon. There is a need for future studies to focus on this relationship to reveal its details and general validity. Our results emphasize that long-term behavioural variability should generally be taken into account in laboratory behavioural studies.
Collapse
Affiliation(s)
- Pavla Hubená
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic; Uppsala University, Uppsala Biomedical Centre, Department of Medical Cell Biology, Husargatan 3, 751 23 Uppsala, Sweden.
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Ondřej Slavík
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| |
Collapse
|
11
|
Serradell A, Montero D, Terova G, Rimoldi S, Makol A, Acosta F, Bajek A, Haffray P, Allal F, Torrecillas S. Functional Additives in a Selected European Sea Bass ( Dicentrarchus labrax) Genotype: Effects on the Stress Response and Gill Antioxidant Response to Hydrogen Peroxide (H 2O 2) Treatment. Animals (Basel) 2023; 13:2265. [PMID: 37508043 PMCID: PMC10376812 DOI: 10.3390/ani13142265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Functional ingredients have profiled as suitable candidates for reinforcing the fish antioxidant response and stress tolerance. In addition, selective breeding strategies have also demonstrated a correlation between fish growth performance and susceptibility to stressful culture conditions as a key component in species domestication processes. The aim of the present study is to evaluate the ability of a selected high-growth genotype of 300 days post-hatch European sea bass (Dicentrarchus labrax) juveniles to use different functional additives as endogenous antioxidant capacity and stress resistance boosters when supplemented in low fish meal (FM) and fish oil (FO) diets. Three isoenergetic and isonitrogenous diets (10% FM/6% FO) were supplemented with 200 ppm of a blend of garlic and Labiatae plant oils (PHYTO0.02), 1000 ppm of a mixture of citrus flavonoids and Asteraceae and Labiatae plant essential oils (PHYTO0.1) or 5000 ppm of galactomannan-oligosaccharides (GMOS0.5). A reference diet was void of supplementation. The fish were fed the experimental diets for 72 days and subjected to a H2O2 exposure oxidative stress challenge. The fish stress response was evaluated through measuring the circulating plasma cortisol levels and the fish gill antioxidant response by the relative gene expression analysis of nfΚβ2, il-1b, hif-1a, nd5, cyb, cox, sod, cat, gpx, tnf-1α and caspase 9. After the oxidative stress challenge, the genotype origin determined the capacity of the recovery of basal cortisol levels after an acute stress response, presenting GS fish with a better pattern of recovery. All functional diets induced a significant upregulation of cat gill gene expression levels compared to fish fed the control diet, regardless of the fish genotype. Altogether, suggesting an increased capacity of the growth selected European sea bass genotype to cope with the potential negative side-effects associated to an H2O2 bath exposure.
Collapse
Affiliation(s)
- Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Alex Makol
- Global Solution Aquaculture Unit, Delacon Biotechnik Gmbh, 4209 Engerwitzdorf, Austria
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Aline Bajek
- Ecloserie Marine de Graveline Ichtus, Route des Enrochements, 59820 Gravelines, France
| | - Pierrick Haffray
- SYSAAF, French Association of Poultry and Aquaculture Breeders, Campus de Beaulieu, 35042 Rennes, France
| | - François Allal
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, 34250 Palavas-les-Flots, France
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| |
Collapse
|
12
|
Samaras A. A Systematic Review and Meta-Analysis of Basal and Post-Stress Circulating Cortisol Concentration in an Important Marine Aquaculture Fish Species, European Sea Bass, Dicentrarchus labrax. Animals (Basel) 2023; 13:ani13081340. [PMID: 37106903 PMCID: PMC10135258 DOI: 10.3390/ani13081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND European sea bass is a species characterized by high and dispersed cortisol levels. The aim of the present study was to analyze all published data on basal and post-acute stress cortisol levels in this species. METHODS For this systematic review and meta-analysis the Web of Science and Scopus databases were searched for papers reporting plasma or serum cortisol levels in E. sea bass, without language or date restrictions. Data were extracted directly for the reported results and were analyzed separately for basal and post-acute stress levels, as well their standardized mean differences (SMD) using random-effects meta-analyses. RESULTS Of 407 unique records identified, 69 were eligible. Basal cortisol levels had a pooled effect of 88.7 ng mL-1 (n = 57), while post-acute stress levels were 385.9 ng mL-1 (n = 34). The average SMD between basal and post-stress was calculated to be 3.02 (n = 22). All analyses had a high between-study heterogeneity. Results for basal and post-stress levels were affected by the assay type and anesthesia prior to blood sampling. CONCLUSIONS Cortisol levels in E. sea bass are higher than most studied fish species and display large heterogeneity. Application of stress led to elevated cortisol levels in all studies examined. In all cases, sources of between-studies heterogeneity were identified.
Collapse
|
13
|
Bessa WM, Cadengue LS, Luchiari AC. Fish and chips: Using machine learning to estimate the effects of basal cortisol on fish foraging behavior. Front Behav Neurosci 2023; 17:1028190. [PMID: 36844649 PMCID: PMC9944048 DOI: 10.3389/fnbeh.2023.1028190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Foraging is an essential behavior for animal survival and requires both learning and decision-making skills. However, despite its relevance and ubiquity, there is still no effective mathematical framework to adequately estimate foraging performance that also takes interindividual variability into account. In this work, foraging performance is evaluated in the context of multi-armed bandit (MAB) problems by means of a biological model and a machine learning algorithm. Siamese fighting fish (Betta splendens) were used as a biological model and their ability to forage was assessed in a four-arm cross-maze over 21 trials. It was observed that fish performance varies according to their basal cortisol levels, i.e., a reduced average reward is associated with low and high levels of basal cortisol, while the optimal level maximizes foraging performance. In addition, we suggest the adoption of the epsilon-greedy algorithm to deal with the exploration-exploitation tradeoff and simulate foraging decisions. The algorithm provided results closely related to the biological model and allowed the normalized basal cortisol levels to be correlated with a corresponding tuning parameter. The obtained results indicate that machine learning, by helping to shed light on the intrinsic relationships between physiological parameters and animal behavior, can be a powerful tool for studying animal cognition and behavioral sciences.
Collapse
Affiliation(s)
- Wallace M. Bessa
- Department of Mechanical and Materials Engineering, University of Turku, Turku, Finland,*Correspondence: Wallace M. Bessa ✉
| | - Lucas S. Cadengue
- Programa de Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana C. Luchiari
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
14
|
Pfalzgraff T, Skov PV. Combined antagonist treatment of glucocorticoid and mineralocorticoid receptor does not affect weight loss of fasting rainbow trout but inhibits a fasting-induced elevation of cortisol secretion. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111321. [PMID: 36169060 DOI: 10.1016/j.cbpa.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The gastrointestinal system of fish reacts rapidly to food deprivation. The relative masses of digestive organs and activities of digestive enzymes decrease within days of fasting. This is believed to be an energy-conserving strategy as the metabolic cost of maintaining digestive capacity is high. Cortisol is known for its role in energy mobilization following stress exposure, and prolonged elevated cortisol levels have been shown to reduce growth rates in fish. Fish experiencing chronic cortisol elevations show structural changes to their digestive tissues and overall reductions in relative digestive tissue masses. In fish fasting for prolonged periods, circulating cortisol levels have been reported to be downregulated, upregulated, or unchanged compared to feeding fish. This study aimed to investigate if RU486 and spironolactone, antagonists of the glucocorticoid receptor (GR), and mineralocorticoid receptor (MR), respectively, alone or in combination affect circulating cortisol levels during prolonged starvation. In addition, we tested the effects of blocking GR and MR, on the down-regulation of relative digestive tissue mass during starvation, and its effects on weight loss. Three treatment groups of rainbow trout were intraperitoneally implanted with either GR, MR, or GR and MR blockers. A fourth group was implanted with cortisol, while a fifth group served as a control. All treatment groups were sampled over a course of four weeks of food deprivation and compared against each other and fed control fish at day 0 of the trial. Starvation for 2 weeks and longer significantly increased circulating cortisol levels in all groups except for the group implanted with GR and MR antagonists. Loss of body mass occurred most rapidly during the first week of starvation. Spironolactone treatment resulted in significantly reduced loss of mass during the first week, however, over the following weeks, no differences in mass loss were observed in the groups implanted with blockers, while cortisol-treated fish showed the highest decrease in body mass over time. Relative digestive tissue mass decreased in all groups but apparently, the fasting-induced elevation in plasma cortisol levels did not affect the relative weight loss of digestive tissues as no differences were observed between control fish and GR + MR antagonist treated fish. Very high cortisol levels caused by cortisol treatment however caused a faster decrease in the relative mass of some digestive organs, particularly the stomach.
Collapse
Affiliation(s)
- Tilo Pfalzgraff
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark.
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| |
Collapse
|
15
|
García-Meilán I, Tort L, Khansari AR. Rainbow trout integrated response after recovery from short-term acute hypoxia. Front Physiol 2022; 13:1021927. [DOI: 10.3389/fphys.2022.1021927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Overcoming a stress situation, such as hypoxia episodes, which involve an allostatic load, will depend on the ability of fish to modulate physiological and biochemical systems to maintain homeostasis. The aim of the study was to determine the integrated stress response after acute hypoxia of the rainbow trout considering the different elements and areas of the stress response: systemic and mucosal, local and global, and from the systemic hypothalamic–pituitary–interrenal axis to skin mucosa. For this purpose, trout were subjected to acute hypoxia (dissolved O2 down to 2 mg/L) for 1 h and then recovered and sampled at 1, 6, and 24 h after reoxygenation. Physiological responses were significantly affected by hypoxic stress and their interaction with time after the challenge, being significant for plasma lactate and cortisol levels, in both plasma and skin mucus. At the central brain level, only trh expression was modulated 1 h after hypoxia which indicates that brain function is not heavily affected by this particular stress. Unlike the brain, the head kidney and skin were more affected by hypoxia and reoxygenation. In the head kidney, an upregulation in the expression of most of the genes studied (gr, il1β, il6, tgfβ1, lysozyme, caspase 3, enolase, hif-1, myoglobin, sod2, gpx, gst, and gsr) took place 6 h after recovery, whereas only hsp70 and il10 were upregulated after 1 h. On the contrary, in the skin, most of the analyzed genes showed a higher upregulation during 1 h after stress suggesting that, in the skin, a local response took place as soon as the stressor was detected, thus indicating the importance of the skin in the building of a stress response, whereas the interrenal tissue participated in a later time point to help prevent further alteration at the central level. The present results also show that, even though the stressor is a physical/environmental stressor, all components of the biological systems participate in the regulation of the response process and the recovery process, including neuroendocrine, metabolism, and immunity.
Collapse
|
16
|
Fernandez R, Colás-Ruiz NR, Martínez-Rodríguez G, Lara-Martín PA, Mancera JM, Trombini C, Blasco J, Hampel M. The antibacterials ciprofloxacin, trimethoprim and sulfadiazine modulate gene expression, biomarkers and metabolites associated with stress and growth in gilthead sea bream (Sparus aurata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106243. [PMID: 35872527 DOI: 10.1016/j.aquatox.2022.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 μg L-1 for CIP, 3.8 ± 2.7 μg L-1 for SULF and 25.7 ± 10.8 μg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65 Barranquilla, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University Institute for Marine Research (INMAR), International Excellence Campus of the Sea (CEI-MAR), University of Cádiz, 11510 Puerto Real, Spain
| | - Chiara Trombini
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| |
Collapse
|
17
|
Klak K, Maciuszek M, Marcinkowska M, Verburg-van Kemenade BML, Chadzinska M. The importance of CXC-receptors CXCR1-2 and CXCR4 for adaptive regulation of the stress axis in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 127:647-658. [PMID: 35803509 DOI: 10.1016/j.fsi.2022.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In an ever-changing environment, an adaptive stress response is the pivotal regulatory mechanism to maintain allostasis. Physiologic responses to stressors enable to overcome potential threat. Glucocorticoid effects can be considered compensatory and adaptive, however prolonged or excessive glucocorticoid secretion can be also maladaptive and detrimental. Therefore, it must be tightly regulated. Apart from the essential hormonal feedback regulation, evidence accrues that cytokines, e.g., proinflammatory interleukin 1β (IL-1β), also play an important regulatory role in the stress axis. Here we focused on the potential role of CXC chemokines (CXCL8 and CXCL12) and their receptors (CXCR1, 2 and 4) in the regulation of the stress response in common carp. We studied changes in gene expression of CXC chemokines and CXCRs in the stress axis organs (hypothalamus-pituitary gland-head kidney) upon 11 h of restraint stress and we established how CXCR blocking affects the activation of the stress axis and the synthesis/conversion of cortisol. During restraint stress, gene expression of the majority of the proinflammatory CXCL8 and homeostatic CXCL12 chemokines and their receptors was upregulated in the stress axis organs. Inhibition of CXCR1-2 and CXCR4 differentially affected the expression of genes encoding stress-related molecules: hormones, binding proteins, receptors as well as expression of genes encoding IL-1β and its receptor. Moreover, we observed that CXC chemokines, via interaction with their respective CXCRs, regulate gene expression of molecules involved in cortisol synthesis and conversion and consistently affect the level of cortisol released into the circulation during the stress response. We revealed that in fish, CXC chemokines and their receptors are important regulators of the stress response at multiple levels of the stress axis, with particularly pronounced effects on steroidogenesis and cortisol conversion in the head kidney.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Magdalena Marcinkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
18
|
Aragão C, Gonçalves AT, Costas B, Azeredo R, Xavier MJ, Engrola S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals (Basel) 2022; 12:1211. [PMID: 35565636 PMCID: PMC9103129 DOI: 10.3390/ani12091211] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aquaculture has been challenged to find alternative ingredients to develop innovative feed formulations that foster a sustainable future growth. Given the most recent trends in fish feed formulation on the use of alternative protein sources to decrease the dependency of fishmeal, it is fundamental to evaluate the implications of this new paradigm for fish health and welfare. This work intends to comprehensively review the impacts of alternative and novel dietary protein sources on fish gut microbiota and health, stress and immune responses, disease resistance, and antioxidant capacity. The research results indicate that alternative protein sources, such as terrestrial plant proteins, rendered animal by-products, insect meals, micro- and macroalgae, and single cell proteins (e.g., yeasts), may negatively impact gut microbiota and health, thus affecting immune and stress responses. Nevertheless, some of the novel protein sources, such as insects and algae meals, have functional properties and may exert an immunostimulatory activity. Further research on the effects of novel protein sources, beyond growth, is clearly needed. The information gathered here is of utmost importance, in order to develop innovative diets that guarantee the production of healthy fish with high quality standards and optimised welfare conditions, thus contributing to a sustainable growth of the aquaculture industry.
Collapse
Affiliation(s)
- Cláudia Aragão
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (M.J.X.); (S.E.)
| | - Ana Teresa Gonçalves
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, 8005-139 Faro, Portugal;
- SPAROS Lda, 8700-221 Olhão, Portugal
| | - Benjamín Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (R.A.)
- School of Medicine and Biomedical Sciences (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Azeredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal; (B.C.); (R.A.)
| | - Maria João Xavier
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (M.J.X.); (S.E.)
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (M.J.X.); (S.E.)
| |
Collapse
|
19
|
Sganga DE, Dahlke FT, Sørensen SR, Butts IAE, Tomkiewicz J, Mazurais D, Servili A, Bertolini F, Politis SN. CO2 induced seawater acidification impacts survival and development of European eel embryos. PLoS One 2022; 17:e0267228. [PMID: 35436318 PMCID: PMC9015118 DOI: 10.1371/journal.pone.0267228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.
Collapse
Affiliation(s)
- Daniela E. Sganga
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | | | - Sune R. Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- Billund Aquaculture, Billund, Denmark
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Mazurais
- CNRS, IRD, LEMAR, Ifremer, Université de Brest, Plouzané, France
| | - Arianna Servili
- CNRS, IRD, LEMAR, Ifremer, Université de Brest, Plouzané, France
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sebastian N. Politis
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Azeredo R, Machado M, Pereiro P, Barany A, Mancera JM, Costas B. Acute Inflammation Induces Neuroendocrine and Opioid Receptor Genes Responses in the Seabass Dicentrarchus labrax Brain. BIOLOGY 2022; 11:biology11030364. [PMID: 35336737 PMCID: PMC8945561 DOI: 10.3390/biology11030364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary It is generally accepted (in mammals and in teleost fish, too) that stressful conditions affect the performance of an immune response. What is still far from being known is at what extend does an immune process affects the neuroendocrine system. Vaccination for instance, is nowadays a common practice in aquaculture and little is known about its physiological implications other than immunization. Here is a first approach to the study of the European seabass’ brain gene expression patterns in response to a peripheral inflammatory process. Genes related to the stress response were focused, along with those related to the opioid system. Increased expression of certain genes suggests the activation of a stress response triggered by inflammatory signals. Additionally, contrasting expression patterns of the same gene (increased vs decreased) in the different brain regions (as well as the time needed for changes to happen) point at different functions. These results clearly show the reactivity of different brain responses to an immune response, highlighting the importance of further studies on downstream implications (behavior, feeding, welfare, reproduction). Abstract In fish, as observed in mammals, any stressful event affects the immune system to a larger or shorter extent. The neuroendocrine-immune axis is a bi-directional network of mobile compounds and their receptors that are shared between both systems (neuroendocrine and immune) and that regulate their respective responses. However, how and to what extent immunity modulates the neuroendocrine system is not yet fully elucidated. This study was carried out to understand better central gene expression response patterns in a high-valued farmed fish species to an acute peripheral inflammation, focusing on genes related to the hypothalamus-pituitary-interrenal axis and the opioid system. European seabass, Dicentrarchus labrax, were intra-peritoneally injected with either Freund’s Incomplete Adjuvant to induce a local inflammatory response or Hanks Balances Salt Solution to serve as the control. An undisturbed group was also included to take into account the effects due to handling procedures. To evaluate the outcomes of an acute immune response, fish were sampled at 4, 24, 48, and 72 h post-injection. The brain was sampled and dissected for isolation of different regions: telencephalon, optic tectum, hypothalamus, and pituitary gland. The expression of several genes related to the neuroendocrine response was measured by real-time PCR. Data were statistically analyzed by ANOVA and discriminant analyses to obtain these genes’ responsiveness for the different brain regions. Serotonergic receptors were upregulated in the telencephalon, whereas the optic tectum inhibited these transcription genes. The hypothalamus showed a somewhat delayed response in which serotonin and glucocorticoid receptors were concerned. Still, the hypothalamic corticotropin-releasing hormone played an important role in differentiating fish undergoing an inflammatory response from those not under such conditions. Opioid receptors gene expression increased in both the hypothalamus and the telencephalon, while in the optic tectum, most were downregulated. However, no changes in the pituitary gland were observed. The different brain regions under immune stimulation demonstrated clear, distinct responses regarding gene transcription rates as well as the time period needed for the effect to occur. Further, more integrative studies are required to associate functions to the evaluated genes more safely and better understand the triggering mechanisms.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Correspondence: (R.A.); (B.C.)
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
| | - Patricia Pereiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (R.A.); (B.C.)
| |
Collapse
|
21
|
Transcriptomic Analysis of Fish Hosts Responses to Nervous Necrosis Virus. Pathogens 2022; 11:pathogens11020201. [PMID: 35215144 PMCID: PMC8875540 DOI: 10.3390/pathogens11020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Nervous necrosis virus (NNV) has been responsible for mass mortalities in the aquaculture industry worldwide, with great economic and environmental impact. The present review aims to summarize the current knowledge of gene expression responses to nervous necrosis virus infection in different fish species based on transcriptomic analysis data. Four electronic databases, including PubMed, Web of Science, and SCOPUS were searched, and more than 500 publications on the subject were identified. Following the application of the appropriate testing, a total of 24 articles proved eligible for this review. NNV infection of different host species, in different developmental stages and tissues, presented in the eligible publications, are described in detail, revealing and highlighting genes and pathways that are most affected by the viral infection. Those transcriptome studies of NNV infected fish are oriented in elucidating the roles of genes/biomarkers for functions of special interest, depending on each study’s specific emphasis. This review presents a first attempt to provide an overview of universal host reaction mechanisms to viral infections, which will provide us with new perspectives to overcome NNV infection to build healthier and sustainable aquaculture systems.
Collapse
|
22
|
Culbert BM, Regish AM, Hall DJ, McCormick SD, Bernier NJ. Neuroendocrine Regulation of Plasma Cortisol Levels During Smoltification and Seawater Acclimation of Atlantic Salmon. Front Endocrinol (Lausanne) 2022; 13:859817. [PMID: 35528002 PMCID: PMC9069684 DOI: 10.3389/fendo.2022.859817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Diadromous fishes undergo dramatic changes in osmoregulatory capacity in preparation for migration between freshwater and seawater. One of the primary hormones involved in coordinating these changes is the glucocorticoid hormone, cortisol. In Atlantic salmon (Salmo salar), cortisol levels increase during the spring smoltification period prior to seawater migration; however, the neuroendocrine factors responsible for regulating the hypothalamic-pituitary-interrenal (HPI) axis and plasma cortisol levels during smoltification remain unclear. Therefore, we evaluated seasonal changes in circulating levels of cortisol and its primary secretagogue-adrenocorticotropic hormone (ACTH)-as well as transcript abundance of the major regulators of HPI axis activity in the preoptic area, hypothalamus, and pituitary between migratory smolts and pre-migratory parr. Smolts exhibited higher plasma cortisol levels compared to parr across all timepoints but circulating ACTH levels were only elevated in May. Transcript abundance of preoptic area corticotropin-releasing factor b1 and arginine vasotocin were ~2-fold higher in smolts compared to parr in February through May. Smolts also had ~7-fold greater hypothalamic transcript abundance of urotensin 1 (uts-1a) compared to parr in May through July. When transferred to seawater during peak smolting in May smolts rapidly upregulated hypothalamic uts-1a transcript levels within 24 h, while parr only transiently upregulated uts-1a 96 h post-transfer. In situ hybridization revealed that uts-1a is highly abundant in the lateral tuberal nucleus (NLT) of the hypothalamus, consistent with a role in regulating the HPI axis. Overall, our results highlight the complex, multifactorial regulation of cortisol and provide novel insight into the neuroendocrine mechanisms controlling osmoregulation in teleosts.
Collapse
Affiliation(s)
- Brett M. Culbert
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- *Correspondence: Brett M. Culbert,
| | - Amy M. Regish
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
| | - Daniel J. Hall
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
| | - Stephen D. McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
- Department of Biology, University of Massachusetts, Amherst, Amherst, MA, United States
| | | |
Collapse
|
23
|
He L, Shi X, Zeng X, Zhou F, Lan T, Chen M, Han K. Characterization of the glucocorticoid receptor of large yellow croaker (Larimichthys crocea) and its expression in response to salinity and immune stressors. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111124. [PMID: 34863943 DOI: 10.1016/j.cbpa.2021.111124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Glucocorticoids are steroidal hormones critical to stress responses in vertebrates. To gain further insight into the role of the glucocorticoid receptor (GR) in acute stress responses in teleost fish, the relevant cDNA of large yellow croaker (Larimichthys crocea; LcGR) was cloned using the rapid amplification of cDNA ends (RACE) technique. Multiple alignment of the amino acids (aa) of LcGR and the GR of other teleosts indicated LcGR contained four commonly conserved domains and lacked the 9-aa insert seen in GR1. Phylogenetic analysis of the amino acid sequence revealed that LcGR grouped most closely with the GR2 of other teleosts and can therefore be considered a GR2 subtype. In healthy L. crocea, Lcgr mRNA was found to be expressed at high levels in the gill, brain, and muscle tissue, expressed at intermediate levels in heart and stomach tissue, and expressed at low levels in the kidney, intestine, head kidney, liver, and spleen tissue. The response of L. crocea to acute low-salinity stress was tested, with a significant increase in plasma cortisol concentration after 3 h, peaking after 6 h, and gradually returning to base levels. Regarding changes of Lcgr expression in different body tissues under the stress, there was up-regulation of the Lcgr transcript in the brain, liver, and gill tissues, but not in muscle tissue. Responses to pathogen mimics were also tested. Injection with lipopolysaccharide resulted in Lcgr expression, with an increase-decrease-increase trend in the head kidney. In contrast, a down-regulation of Lcgr expression in the head kidney was observed throughout the experimental period upon injection of polyinosinic:polycytidylic acid, revealing different roles of Lcgr for different types of pathogens. The results offer novel insights about the effects of different stressors on GR gene expression in L. crocea, and can facilitate further investigations into stress responses in other mariculture fish species.
Collapse
Affiliation(s)
- Liangyin He
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China.
| | - Xiaoli Shi
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China
| | - Xianyuan Zeng
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China
| | - Fengfang Zhou
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Tianzheng Lan
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Maosen Chen
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Kunhuang Han
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China.
| |
Collapse
|
24
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
25
|
Barany A, Gilannejad N, Alameda-López M, Rodríguez-Velásquez L, Astola A, Martínez-Rodríguez G, Roo J, Muñoz JL, Mancera JM. Osmoregulatory Plasticity of Juvenile Greater Amberjack ( Seriola dumerili) to Environmental Salinity. Animals (Basel) 2021; 11:2607. [PMID: 34573573 PMCID: PMC8465821 DOI: 10.3390/ani11092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Osmotic costs in teleosts are highly variable, reaching up to 50% of energy expenditure in some. In several species, environmental salinities close to the isosmotic point (~15 psu) minimize energy demand for osmoregulation while enhancing growth. The present study aimed to characterize the physiological status related to osmoregulation in early juveniles of the greater amberjack, Seriola dumerili, acclimated to three salinities (15, 22, and 36 psu). Our results indicate that plasma metabolic substrates were enhanced at the lower salinities, whereas hepatic carbohydrate and energetic lipid substrates decreased. Moreover, osmoregulatory parameters, such as osmolality, muscle water content, gill and intestine Na+-K+-ATPase activities, suggested a great osmoregulatory capacity in this species. Remarkably, electrophysiological parameters, such as short-circuit current (Isc) and transepithelial electric resistance (TER), were enhanced significantly at the posterior intestine. Concomitantly, Isc and TER anterior-to-posterior intestine differences were intensified with increasing environmental salinity. Furthermore, the expression of several adeno-hypophyseal genes was assessed. Expression of prl showed an inverse linear relationship with increasing environmental salinity, while gh mRNA enhanced significantly in the 22 psu-acclimated groups. Overall, these results could explain the better growth observed in S. dumerili juveniles kept at salinities close to isosmotic rather than in seawater.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Neda Gilannejad
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, E11519 Cádiz, Spain; (N.G.); (G.M.-R.)
- NORCE Norwegian Research Centre AS, Uni Research Environment, Nygårdsgaten 112, E5008 Bergen, Norway
| | - María Alameda-López
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Liliana Rodríguez-Velásquez
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Antonio Astola
- Department of Biomedicine, Biotechnology, and Public Health, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz, Puerto Real, E11510 Cádiz, Spain;
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, E11519 Cádiz, Spain; (N.G.); (G.M.-R.)
| | - Javier Roo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, E35214 Gran Canaria, Spain;
| | - Jose Luis Muñoz
- Department of Production, IFAPA Centro “El Toruño”, Junta de Andalucía, El Puerto de Santa María, E11500 Cádiz, Spain;
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| |
Collapse
|
26
|
Kumbar J, Ganesh CB. Alpha-melanocyte stimulating hormone immunoreactivity in the brain of the cichlid fish Oreochromis mossambicus. Neuropeptides 2021; 87:102128. [PMID: 33639356 DOI: 10.1016/j.npep.2021.102128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
This study reports the distribution of a pro-opiomelanocortin-derived neuropeptide α-MSH in the brain of the cichlid fish Oreochromis mossambicus. α-MSH-ir fibres were found in the granule cell layer of the olfactory bulb, the medial olfactory tract, the pallium and the subpallium, whereas in the preoptic area of the telencephalon, few large α-MSH-ir perikarya along with extensively labeled fibres were observed close to the ventricular border. Dense network of α-MSH-ir fibres were seen in the hypothalamic areas such as the nucleus preopticus pars magnocellularis, the nucleus preopticus pars parvocellularis, the suprachiasmatic nucleus, the nucleus anterior tuberis, the paraventricular organ, the subdivisions of the nucleus recessus lateralis and the nucleus recessus posterioris. In the nucleus lateralis pars medialis, some α-MSH-ir perikarya and fibres were found along the ventricular margin. In the diencephalon, numerous α-MSH-ir fibres were detected in the nucleus posterior tuberis, the nucleus of the fasciculus longitudinalis medialis and the nucleus preglomerulosus medialis, whereas in the mesencephalon, α-MSH-ir fibres were located in the optic tectum, the torus semicircularis and the tegmentum. In the rhombencephalon, α-MSH-ir fibres were confined to the medial octavolateralis nucleus and the descending octaval nucleus. In the pituitary gland, densely packed α-MSH-ir cells were observed in the pars intermedia region. The widespread distribution of α-MSH-immunoreactivity throughout the brain and the pituitary gland suggests a role for α-MSH peptide in regulation of several neuroendocrine and sensorimotor functions as well as darkening of pigmentation in the tilapia.
Collapse
Affiliation(s)
- Jyoti Kumbar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
27
|
Barany A, Fuentes J, Martínez-Rodríguez G, Mancera JM. Aflatoxicosis Dysregulates the Physiological Responses to Crowding Densities in the Marine Teleost Gilthead Seabream ( Sparus aurata). Animals (Basel) 2021; 11:ani11030753. [PMID: 33803392 PMCID: PMC7999881 DOI: 10.3390/ani11030753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Several studies in fish have shown that aflatoxin B1 (AFB1) causes a disparity of species-dependent physiological disorders without compromising survival. We studied the effect of dietary administration of AFB1 (2 mg AFB1 kg-1 diet) in gilthead seabream (Sparus aurata) juveniles in combination with a challenge by stocking density (4 vs. 40 g L-1). The experimental period duration was ten days, and the diet with AFB1 was administered to the fish for 85 days prior to the stocking density challenge. Our results indicated an alteration in the carbohydrate and lipid metabolites mobilization in the AFB1 fed group, which was intensified at high stocking density (HSD). The CT group at HSD increased plasma cortisol levels, as expected, whereas the AFB1-HSD group did not. The star mRNA expression, an enzyme involved in cortisol synthesis in the head kidney, presented a ninefold increase in the AFB1 group at low stocking density (LSD) compared to the CT-LSD group. Adenohypophyseal gh mRNA expression increased in the AFB1-HSD but not in the CT-HSD group. Overall, these results confirmed that chronic AFB1 dietary exposure alters the adequate endocrinological physiological cascade response in S. aurata, compromising the expected stress response to an additional stressor, such as overcrowding.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI MAR), University of Cádiz, Puerto Real, 11519 Cádiz, Spain;
- Correspondence:
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal;
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, 11519 Cádiz, Spain;
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI MAR), University of Cádiz, Puerto Real, 11519 Cádiz, Spain;
| |
Collapse
|
28
|
Physiology: An Important Tool to Assess the Welfare of Aquatic Animals. BIOLOGY 2021; 10:biology10010061. [PMID: 33467525 PMCID: PMC7830356 DOI: 10.3390/biology10010061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Ensuring a good quality of life for animals is a matter of concern. Welfare assessment has been quite well developed for many terrestrial species, but it is less well characterized for aquatic animals. Classic methodologies, such as behavioral observation, seem unable to improve the wellbeing of aquatic animals when used alone, mainly due to the large number of species and the difficulty to obtain comparative results among taxa. For this reason, it is necessary to identify more methodologies that may be common to the main aquatic taxa of interest to humans: Fish, cephalopods, and crustaceans. Here we present a physiological framework for these taxa as a proxy to evaluate aquatic animal welfare. Physiology is a useful tool in this regard, since animals maintain their homeostasis in a range of values determined for each parameter. Changes occur depending on the type and degree of stress to which animals are subjected. Therefore, understanding the physiology of stress can offer information that helps improve the welfare of aquatic animals. Abstract The assessment of welfare in aquatic animals is currently under debate, especially concerning those kept by humans. The classic concept of animal welfare includes three elements: The emotional state of the organism (including the absence of negative experiences), the possibility of expressing normal behaviors, and the proper functioning of the organism. While methods for evaluating their emotions (such as fear, pain, and anguish) are currently being developed for aquatic species and understanding the natural behavior of all aquatic taxa that interact with humans is a task that requires more time, the evaluation of internal responses in the organisms can be carried out using analytical tools. This review aims to show the potential of the physiology of crustaceans, cephalopods, elasmobranchs, teleosts, and dipnoans to serve as indicators of their wellbeing. Since the classical methods of assessing welfare are laborious and time-consuming by evaluation of fear, pain, and anguish, the assessment may be complemented by physiological approaches. This involves the study of stress responses, including the release of hormones and their effects. Therefore, physiology may be of help in improving animal welfare.
Collapse
|
29
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
30
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
31
|
Hare AJ, Zimmer AM, LePabic R, Morgan AL, Gilmour KM. Early-life stress influences ion balance in developing zebrafish (Danio rerio). J Comp Physiol B 2020; 191:69-84. [PMID: 33064210 DOI: 10.1007/s00360-020-01319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
As a key endocrine axis involved in responding to stress, the hypothalamic-pituitary-interrenal axis plays dual roles in mobilizing energy and maintaining ionic/osmotic balance in fishes. Although these roles have been examined independently in detail in adult fishes, less attention has been paid to the effects of an endogenous stress response during early life, particularly with respect to its potential effects on ionic/osmotic balance. The present study tested the hypothesis that exposure of zebrafish to stress during early development would alter ion balance later in life. Zebrafish at three developmental stages (4, 7, or 15 days post-fertilization, dpf) were subjected to an air-exposure stressor twice a day for 2 days, causing elevation of whole-body cortisol levels. Individuals stressed early in life exhibited decreased survival and growth, altered cortisol responses to a subsequent air-exposure stressor, and increased whole-body Na+ and Ca2+ concentrations. Changes in whole-body Ca2+ concentrations were accompanied by increased ionocyte abundance at 7 dpf and increased rates of Ca2+ uptake from the environment. Differences in whole-body ion concentrations at 15 and 35 dpf were not accompanied by altered ion uptake rates. Across all ages examined, air-exposure stress experienced at 7 dpf was particularly effective at eliciting phenotypic changes, suggesting a critical window at this age for a stress response to influence development. These findings demonstrate that early-life stress in zebrafish triggers developmental plasticity, with age-dependent effects on both the cortisol stress axis and ion balance.
Collapse
Affiliation(s)
- A J Hare
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - A M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R LePabic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - A L Morgan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Whitehouse LM, Faught E, Vijayan MM, Manzon RG. Hypoxia affects the ontogeny of the hypothalamus-pituitary-interrenal axis functioning in the lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2020; 295:113524. [PMID: 32526331 DOI: 10.1016/j.ygcen.2020.113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
Early life stages are sensitive to environmental insults and changes during critical developmental periods; this can often result in altered adult behaviour and physiology. Examining the development of the hypothalamus-pituitary-interrenal (HPI) axis and its responsiveness, or lack thereof, during development are important for understanding the short- and long-term impacts of stressors on embryonic and larval fish. We examined the ontogeny of the HPI axis in embryonic (21, 38, 63, 83 and 103 days post-fertilisation (dpf)) and larval (1, 2, 3 and 4 weeks post-hatch (wph)) lake whitefish (Coregonus clupeaformis) by quantifying changes in mRNA levels of several genes associated with HPI axis functioning and whole animal cortisol levels throughout development and in response to a severe or mild hypoxic stress. Cortisol, and crh, crhbp1, pomc and star transcripts were detected from the earliest embryonic age studied. Cortisol levels in control embryos decreased between 21 and 63 dpf, suggesting the utilisation of maternal cortisol deposits. However, by 83 dpf (70% developed) endogenous de novo synthesis had generated a 4.5-fold increase in whole embryo cortisol. Importantly, we provide novel data showing that the HPI axis can be activated even earlier. Whole body cortisol increased in eyed lake whitefish embryos (38 dpf; ~32% developed) in response to hypoxia stress. Coincident with this hypoxia-induced increase in cortisol in 38 dpf embryos were corresponding increases in crh, crhbp1, pomc and star transcript levels. Beyond 38 dpf, the HPI axis in lake whitefish embryos was hyporesponsive to hypoxia stress at all embryonic ages examined (63, 83 and 103 dpf; 54, 72 and 85% developed, respectively). Post-hatch, larvae responded to hypoxia with an increase in cortisol levels and HPI axis genes at 1 wph, but this response was lost and larvae appeared hyporesponsive at subsequent ages (2, 3 and 4 wph). Collectively our work demonstrates that during fish embryogenesis and the larval stage there are windows where the HPI axis is responsive and windows where it is truly hyporesponsive; both could be beneficial in ensuring undisrupted development particularly in the face of increasing environmental changes.
Collapse
Affiliation(s)
- Lindy M Whitehouse
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Erin Faught
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
33
|
Romero A, Vega M, Santibáñez N, Spies J, Pérez T, Enríquez R, Kausel G, Oliver C, Oyarzún R, Tort L, Vargas-Chacoff L. Salmo salar glucocorticoid receptors analyses of alternative splicing variants under stress conditions. Gen Comp Endocrinol 2020; 293:113466. [PMID: 32194046 DOI: 10.1016/j.ygcen.2020.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022]
Abstract
Cortisol is the main corticosteroid in teleosts, exerting multiple functions by activating glucocorticoid receptors (GR). Most teleost species have two GR genes, gr-1 and gr-2. Some teleost also presents two splice variants for gr-1; gr-1a and gr-1b. In this study, we report for first time the presence of 2 homeologous genes for gr-1 and gr-2, located on chromosomes 4q-13q (gr-1) and 5p-9q (gr-2) of the Salmo salar genome. Furthermore, our results describe gr-1 splice variants derived from chromosome 4 and 13, sharing typical teleost GR elements such as the 9 amino acid insertion in the DNA binding domain (DBD) and variations in the length of the ligand binding domain (LBD). Three splice variants were predicted for the gr-2 homeologous gene in chromosome 5, with differences of a 5 amino acid insertion in the DBD. We also identified an uncommon truncated gr-2 gene in chromosome 9 in salmon, which lacked the DBD and LBD domains. Finally, by designing specific primers for each predicted splice variant, we validated and evaluated the expression of their transcripts in S. salar subjected to stress caused by stocking density. Differences were observed in the expression of all identified mRNAs, revealing that gr-1 and gr-2 splice variants were upregulated in head kidney and gills of post-stressed fish. In conclusion, our findings suggest that from specific salmonid genomic duplication (125 MYA), two gene copies of each GR receptor were generated in S. salar. The identified splice variants could contribute to the variability of GR receptor complex modulation expression during stressful events, leading to variations in physiological responses in fish.
Collapse
Affiliation(s)
- Alex Romero
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile.
| | - Matías Vega
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Natacha Santibáñez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Johana Spies
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Tatiana Pérez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile.
| | - Gudrun Kausel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral De Chile, Chile.
| | - Cristian Oliver
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
34
|
van den Bos R, Cromwijk S, Tschigg K, Althuizen J, Zethof J, Whelan R, Flik G, Schaaf M. Early Life Glucocorticoid Exposure Modulates Immune Function in Zebrafish ( Danio rerio) Larvae. Front Immunol 2020; 11:727. [PMID: 32411141 PMCID: PMC7201046 DOI: 10.3389/fimmu.2020.00727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
In this study we have assessed the effects of increased cortisol levels during early embryonic development on immune function in zebrafish (Danio rerio) larvae. Fertilized eggs were exposed to either a cortisol-containing, a dexamethasone-containing (to stimulate the glucocorticoid receptor selectively) or a control medium for 6 h post-fertilization (0–6 hpf). First, we measured baseline expression of a number of immune-related genes (socs3a, mpeg1.1, mpeg1.2, and irg1l) 5 days post-fertilization (dpf) in larvae of the AB and TL strain to assess the effectiveness of our exposure procedure and potential strain differences. Cortisol and dexamethasone strongly up-regulated baseline expression of these genes independent of strain. The next series of experiments were therefore carried out in larvae of the AB strain only. We measured neutrophil/macrophage recruitment following tail fin amputation (performed at 3 dpf) and phenotypical changes as well as survival following LPS-induced sepsis (150 μg/ml; 4–5 dpf). Dexamethasone, but not cortisol, exposure at 0–6 hpf enhanced neutrophil recruitment 4 h post tail fin amputation. Cortisol and dexamethasone exposure at 0–6 hpf led to a milder phenotype (e.g., less tail fin damage) and enhanced survival following LPS challenge compared to control exposure. Gene-expression analysis showed accompanying differences in transcript abundance of tlr4bb, cxcr4a, myd88, il1β, and il10. These data show that early-life exposure to cortisol, which may be considered to be a model or proxy of maternal stress, induces an adaptive response to immune challenges, which seems mediated via the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Suzanne Cromwijk
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Katharina Tschigg
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joep Althuizen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert Whelan
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marcel Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
35
|
Ullah I, Zuberi A, Rehman H, Ali Z, Thörnqvist PO, Winberg S. Effects of early rearing enrichments on modulation of brain monoamines and hypothalamic-pituitary-interrenal axis (HPI axis) of fish mahseer (Tor putitora). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:75-88. [PMID: 31515639 DOI: 10.1007/s10695-019-00697-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Enriching rearing environment is the strategy suggested for improving the post release survivorship of captive-reared animals. Here, an attempt has been made to evaluate the impact of early rearing enrichment on the hypothalamic-pituitary-interrenal axis (HPI axis), blood glucose, and brain dopaminergic and serotonergic systems of Tor putitora. Fifteen-day-old hatchlings of T. putitora were reared up to advanced fry stage in barren, semi-natural, and physically enriched environments and compared them with regard to pre-stress and post-stress levels of whole-body cortisol, blood glucose, brain serotonergic activity (5HIAA/5HT ratio), dopaminergic activity (DOPAC/DA and HVA/DA ratios) and norepinephrine (NE) levels. Significantly low basal whole-body cortisol, glucose and brain NE levels were observed in a physically enriched group of fish as compared to the other two groups. However, after acute stress, all rearing groups showed elevated levels of cortisol, blood glucose, brain 5HIAA/5HT, DOPAC/DA and HVA/DA ratios and NE levels but the magnitude of response was different among different rearing groups. The barren reared group showed a higher magnitude of response as compared to semi-natural and physically enriched groups. Similarly, the recovery rate of whole-body cortisol, blood glucose, and whole-brain monoamines were long-lasting in barren-reared mahseer. We illustrate that increased structural complexity (physical enrichment) during the early rearing significantly modulates various physiological and stress-coping mechanisms of mahseer.
Collapse
Affiliation(s)
- Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan.
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden.
| | - Amina Zuberi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Humaira Rehman
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zulfiqar Ali
- Department of Statistics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
36
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Liu XH, Khansari AR, Teles M, Martínez-Rodríguez G, Zhang YG, Mancera JM, Reyes-López FE, Tort L. Brain and Pituitary Response to Vaccination in Gilthead Seabream ( Sparus aurata L.). Front Physiol 2019; 10:717. [PMID: 31275156 PMCID: PMC6591443 DOI: 10.3389/fphys.2019.00717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a widely used therapeutical strategy in aquaculture, but whether vaccination elicits stress responses in the central neuroendocrine system and enhances the crosstalk between the immune and endocrine systems in the brain or pituitary after vaccination is unclear. To answer this question two experiments using two different vaccine exposure routes, i.e., bath or intraperitoneal (i.p.) injection, were carried out on gilthead seabream (Sparus aurata L.). In the first one, the stress responses of fish subjected to waterborne Vibrio anguillarum bacterin were compared with responses after air exposure or their combination. In the second experiment, fish were subjected to an intraperitoneal injection of Lactococcus garvieae bacterin and we assessed the central stress response and also whether or not a significant immune response was induced in brain and pituitary. In both experiments, blood, brain and pituitary tissues were collected at 1, 6, and 24 h post stress for plasma hormone determination and gene expression analysis, respectively. Results indicated that bath vaccination induced a decreased central stress response compared to air exposure which stimulated both brain and pituitary stress genes. In the second experiment, injection vaccination kept unchanged plasma stress hormones except cortisol that raised at 6 and 24 h. In agreement, non-significant or slight changes on the transcription of stress-related genes were recorded, including the hormone genes of the hypothalamic pituitary interrenal (HPI) axis and other stress markers such as hsp70, hsp90, and mt genes in either brain or pituitary. Significant changes were observed, however, in crhbp and gr. In this second experiment the immune genes il1β, cox2, and lys, showed a strong expression in both brain and pituitary after vaccination, notably il1β which showed more than 10 fold raise. Overall, vaccination procedures, although showing a cortisol response, did not induce other major stress response in brain or pituitary, regardless the administration route. Other than main changes, the alteration of crhbp and gr suggests that these genes could play a relevant role in the feedback regulation of HPI axis after vaccination. In addition, from the results obtained in this work, it is also demonstrated that the immune system maintains a high activity in both brain and pituitary after vaccine injection.
Collapse
Affiliation(s)
- X H Liu
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - A R Khansari
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Y G Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| | - F E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Magnoni LJ, Novais SC, Eding E, Leguen I, Lemos MFL, Ozório ROA, Geurden I, Prunet P, Schrama JW. Acute Stress and an Electrolyte- Imbalanced Diet, but Not Chronic Hypoxia, Increase Oxidative Stress and Hamper Innate Immune Status in a Rainbow Trout ( Oncorhynchus mykiss) Isogenic Line. Front Physiol 2019; 10:453. [PMID: 31068834 PMCID: PMC6491711 DOI: 10.3389/fphys.2019.00453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
In aquaculture, fish may be exposed to sub-optimal rearing conditions, which generate a stress response if full adaptation is not displayed. However, our current knowledge of several coexisting factors that may give rise to a stress response is limited, in particular when both chronic and acute stressors are involved. This study investigated changes in metabolic parameters, oxidative stress and innate immune markers in a rainbow trout (Oncorhynchus mykiss) isogenic line exposed to a combination of dietary (electrolyte-imbalanced diet, DEB 700 mEq Kg-1) and environmental (hypoxia, 4.5 mg O2 L-1) challenges and their respective controls (electrolyte-balanced diet, DEB 200 mEq Kg-1 and normoxia, 7.9 or mg O2 L-1) for 49 days. At the end of this period, fish were sampled or subjected to an acute stressor (2 min of handling/confinement) and then sampled. Feeding trout an electrolyte-imbalanced diet produced a reduction in blood pH, as well as increases in cortisol levels, hepato-somatic index (HSI) and total energy content in the liver. The ratio between the lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) activities decreased in the liver of trout fed the DEB 700 diet, but increased in the heart, suggesting a different modulation of metabolic capacity by the dietary challenge. Several markers of oxidative stress in the liver of trout, mainly related to the glutathione antioxidant system, were altered when fed the electrolyte-imbalanced diet. The dietary challenge was also associated with a decrease in the alternative complement pathway activity (ACH50) in plasma, suggesting an impaired innate immune status in that group. Trout subjected to the acute stressor displayed reduced blood pH values, higher plasma cortisol levels as well as increased levels of metabolic markers associated with oxidative stress in the liver. An interaction between diet and acute stressor was detected for oxidative stress markers in the liver of trout, showing that the chronic electrolyte-imbalance impairs the response of rainbow trout to handling/confinement. However, trout reared under chronic hypoxia only displayed changes in parameters related to energy use in both liver and heart. Taken together, these results suggest that trout displays an adaptative response to chronic hypoxia. Conversely, the dietary challenge profoundly affected fish homeostasis, resulting in an impaired physiological response leading to stress, which then placed constraints on a subsequent acute challenge.
Collapse
Affiliation(s)
- Leonardo J. Magnoni
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Sara C. Novais
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Ep Eding
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Isabelle Leguen
- Laboratoire de Physiologie et Génomique des Poissons, Institut National de la Recherche Agronomique, Rennes, France
| | - Marco F. L. Lemos
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Rodrigo O. A. Ozório
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Inge Geurden
- Nutrition Metabolisme Aquaculture (NuMeA)- Institut National de la Recherche Agronomique (INRA), Saint-Pée-sur-Nivelle, France
| | - Patrick Prunet
- Laboratoire de Physiologie et Génomique des Poissons, Institut National de la Recherche Agronomique, Rennes, France
| | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
39
|
Oyarzún R, Martínez D, Soto-Dávila M, Muñoz JLP, Dantagnan P, Vargas-Chacoff L. Effect of ration level on growth performance, body composition, intermediary metabolism and serum parameters in juvenile Patagonian blennie Eleginops maclovinus. Comp Biochem Physiol A Mol Integr Physiol 2019; 230:122-130. [PMID: 30703559 DOI: 10.1016/j.cbpa.2019.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Eleginops maclovinus is an endemic species of the southern cone with beneficial physiological characteristics for aquaculture. However, this species has a low growth rate under captive conditions, and the optimal feed ration together with the metabolic process is unknown. This study aimed to determine the optimum feed ration during 90 days based on growth performance, body composition, intermediary metabolism, and serum parameters. For this, fish were randomly assigned to rations of 0.5, 1, 2 and 4% of body weight. No fish mortality was registered, but all fish, developed fatty liver. The results of weight, length, growth performance (WGR, SGR), and body parameters (HSI, VSI and K) followed a similar pattern, with the lowest values observed in the 0.5% and no significant differences between rations of 1, 2 and 4%. The feed intake and feces increased with the feed ration. However, the percentage of food consumed by the fish decreased with the ration size and the feed conversion ratio was lowest in the 1% ration. Total serum proteins and calcium were lowest in the 0.5% ration and presented no differences in the rations 1, 2 and 4%, while triglyceride content was significantly different only between the rations of 0.5 and 4%. Blood cortisol levels were significantly higher in the rations of 0.5 and 1%, and decreased in rations of 2 and 4%. The lipids, fiber, and energy of the total body mass increased with the feed ration, while dry matter, proteins, and ash of the body decreased to higher feed ration. In liver, triglyceride and protein levels decreased with a larger feed ration, amino acids increased in the rations of 0.5 and 4%, while glucose levels increased in rations of 2 and 4%. Liver enzymes Glucose-6-phosphate dehydrogenase and Glutamate dehydrogenase increased their activity at a higher feed ration, while Glycogen Phosphorylase, Aspartate aminotransferase and 3-Hydroxyacyl-CoA dehydrogenase presented their highest enzymatic activity only in the 4% ration. Fructose-1,6-bisphosphate showed low enzymatic activity in rations of 2 and 4% and Glycerol-3-phosphate dehydrogenase was significantly different only between the ration of 0.5 and 1%. Finally, our results suggests that optimal feed rations for E. maclovinus corresponds to 1% since this ration size produces the highest growth and metabolism with a minimum loss of food and feces present in the environment. Additionally, we recommend to reduce the percentage of fat in the diet to avoid the development of fatty liver.
Collapse
Affiliation(s)
- R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - M Soto-Dávila
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Master of Science in Aquaculture, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - J L P Muñoz
- Centro I~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - P Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Temuco, Chile; Facultad de Recursos Naturales, Departamento de Ciencia Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile.
| |
Collapse
|
40
|
Jerez-Cepa I, Gorissen M, Mancera JM, Ruiz-Jarabo I. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:1-10. [PMID: 30690148 DOI: 10.1016/j.cbpa.2019.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
In aquaculture facilities fish welfare could be compromised due to stressors. Fish deal with stress, inter alia, through the activation of the hypothalamic-pituitary-interrenal endocrine axis and, as a result, corticosteroids are released into the blood. Recent studies have described that corticosteroids actions depend on the specific affinities to their receptors, and the subsequent differentiated responses. Cortisol is the main corticosteroid hormone in teleost fish, being its actions dependent on the intensity and time of exposure to stressors. Short-term effects of corticosteroids are well described, but long-term effects, including changes in the energy management directly affecting growth and survival, are less understood in fish. Here we show the effects of chronic oral administration of cortisol and the synthetic glucocorticoid dexamethasone (DXM) on the intermediary metabolism of the gilthead seabream (Sparus aurata). We described a higher energy expenditure associated to both corticosteroids resulting in lower growth rates of fish. Moreover, the effects of these compounds were tissue-dependant, with differences between both hormones. Thus, cortisol-fed animals accumulated triglycerides in the liver, while DXM treatment led to glycogen storage. Cortisol and DXM stimulated amino acids catabolism and gluconeogenic pathways in muscle and gills, but the effects were significantly enhanced in DXM-fed fish. The described effects highlighted differentiated mechanisms of action associated to both corticosteroids under chronic stress conditions. Further studies should aim at describing those pathways in detail, with special attention to the functionality of glucocorticoid receptor isoforms. The effects described here for S. aurata juveniles, may serve as a basis to assess long-term stress in future comparative studies with other aquaculture species.
Collapse
Affiliation(s)
- I Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Av. República Saharaui s/n, E-11510 Puerto Real, Cádiz, Spain.
| | - M Gorissen
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Av. República Saharaui s/n, E-11510 Puerto Real, Cádiz, Spain.
| | - I Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Av. República Saharaui s/n, E-11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
41
|
Herrera M, Mancera JM, Costas B. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses. Front Endocrinol (Lausanne) 2019; 10:447. [PMID: 31354625 PMCID: PMC6636386 DOI: 10.3389/fendo.2019.00447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
In the last years, studies on stress attenuation in fish have progressively grown. This is mainly due to the interest of institutions, producers, aquarists and consumers in improving the welfare of farmed fish. In addition to the development of new technologies to improve environmental conditions of cultured fish, the inclusion of beneficial additives in the daily meal in order to mitigate the stress response to typical stressors (netting, overcrowding, handling, etc.) has been an important research topic. Fish are a highly diverse paraphyletic group (over 27,000 species) though teleost infraclass include around 96% of fish species. Since those species are distributed world-wide, a high number of different habitats and vital requirements exist, including a wide range of environmental conditions determining specifically the stress response. Although the generalized endocrine response to stress (based on the release of catecholamines and corticosteroids) is detectable and therefore provides essential information, a high diversity of physiological effects have been described depending on species. Moreover, recent omics techniques have provided a powerful tool for detecting specific differences regarding the stress response. For instance, for transcriptomic approaches, the gene expression of neuropeptides and other proteins acting as hormonal precursors during stress has been assessed in some fish species. The use of different additives in fish diets to mitigate stress responses has been deeply studied. Besides the species factor, the additive type also plays a pivotal role in the differentiation of the stress response. In the literature, several types of feed supplements in different species have been assayed, deriving in a series of physiological responses which have not focused exclusively on the stress system. Immunological, nutritional and metabolic changes have been reported in these experiments, always associated to endocrine processes. The biochemical nature and physiological functionality of those feed additives strongly affect the stress response and, in fact, these can act as neurotransmitters or hormone precursors, energy substrates, cofactors and other essential elements, implying multi-systematic and multi-organic responses. In this review, the different physiological responses among fish species fed stress-attenuating diets based on biomolecules and minerals have been assessed, focusing on the endocrine regulation and its physiological effects.
Collapse
Affiliation(s)
- Marcelino Herrera
- IFAPA Centro Agua del Pino, Huelva, Spain
- *Correspondence: Marcelino Herrera
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI·MAR), Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Cádiz, Spain
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Reyes-López FE, Aerts J, Vallejos-Vidal E, Ampe B, Dierckens K, Tort L, Bossier P. Modulation of Innate Immune-Related Genes and Glucocorticoid Synthesis in Gnotobiotic Full-Sibling European Sea Bass ( Dicentrarchus labrax) Larvae Challenged With Vibrio anguillarum. Front Immunol 2018; 9:914. [PMID: 29867929 PMCID: PMC5953322 DOI: 10.3389/fimmu.2018.00914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/12/2018] [Indexed: 01/02/2023] Open
Abstract
Although several efforts have been made to describe the immunoendocrine interaction in fish, there are no studies to date focusing on the characterization of the immune response and glucocorticoid synthesis using the host-pathogen interaction on larval stage as an early developmental stage model of study. Therefore, the aim of this study was to evaluate the glucocorticoid synthesis and the modulation of stress- and innate immune-related genes in European sea bass (Dicentrarchus labrax) larvae challenged with Vibrio anguillarum. For this purpose, we challenged by bath full-sibling gnotobiotic sea bass larvae with 107 CFU mL-1 of V. anguillarum strain HI 610 on day 5 post-hatching (dph). The mortality was monitored up to the end of the experiment [120 hours post-challenge (hpc)]. While no variations were registered in non-challenged larvae maintained under gnotobiotic conditions (93.20% survival at 120 hpc), in the challenged group a constant and sustained mortality was observed from 36 hpc onward, dropping to 18.31% survival at 120 hpc. Glucocorticoid quantification and expression analysis of stress- and innate immunity-related genes were carried out in single larvae. The increase of cortisol, cortisone and 20β-dihydrocortisone was observed at 120 hpc, although did not influence upon the modulation of stress-related genes (glucocorticoid receptor 1 [gr1], gr2, and heat shock protein 70 [hsp70]). On the other hand, the expression of lysozyme, transferrin, and il-10 differentially increased at 120 hpc together with a marked upregulation of the pro-inflammatory cytokines (il-1β and il-8) and hepcidin, suggesting a late activation of defense mechanisms against V. anguillarum. Importantly, this response coincided with the lowest survival observed in challenged groups. Therefore, the increase in markers associated with glucocorticoid synthesis together with the upregulation of genes associated with the anti-inflammatory response suggests that in larvae infected with V. anguillarum a pro-inflammatory response at systemic level takes place, which then leads to the participation of other physiological mechanisms at systemic level to counteract the effect and the consequences of such response. However, this late systemic response could be related to the previous high mortality observed in sea bass larvae challenged with V. anguillarum.
Collapse
Affiliation(s)
- Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Pharmaceutical Sciences, Ghent University, Ostend, Belgium.,Stress Physiology Research Group, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart Ampe
- Biostatistics and Data Modeling, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Kristof Dierckens
- Laboratory of Aquaculture & Artemia Reference Center (ARC), Ghent University, Gent, Belgium
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center (ARC), Ghent University, Gent, Belgium
| |
Collapse
|
43
|
Skrzynska AK, Maiorano E, Bastaroli M, Naderi F, Míguez JM, Martínez-Rodríguez G, Mancera JM, Martos-Sitcha JA. Impact of Air Exposure on Vasotocinergic and Isotocinergic Systems in Gilthead Sea Bream ( Sparus aurata): New Insights on Fish Stress Response. Front Physiol 2018; 9:96. [PMID: 29487539 PMCID: PMC5816901 DOI: 10.3389/fphys.2018.00096] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus-pituitary-interrenal (HPI) and hypothalamus-sympathetic-chromaffin cell (HSC) axes are involved in the regulation of the stress response in teleost. In this regard, the activation of a complex network of endocrine players is needed, including corticotrophin-releasing hormone (Crh), Crh binding protein (Crhbp), proopiomelanocortin (Pomc), thyrotropin-releasing hormone (Trh), arginine vasotocin (Avt), and isotocin (It) to finally produce pleiotropic functions. We aimed to investigate, using the gilthead sea bream (Sparus aurata) as a biological model, the transcriptomic response of different endocrine factors (crh, crhbp, pomcs, trh), neuropeptides (avt and it), and their specific receptors (avtrv1a, avtrv2, and itr) in four important target tissues (hypothalamus, pituitary, kidney and liver), after an acute stress situation. We also investigated several stress hormones (catecholamines and cortisol). The stress condition was induced by air exposure for 3 min, and hormonal, metabolic and transcriptomic parameters were analyzed in a time course response (15 and 30 min, and 1, 2, 4, and 8 h post-stress) in a total of 64 fish (n = 8 fish per experimental group; p = 0.05; statistical power = 95%). Our results showed that plasma noradrenaline, adrenaline and cortisol values increased few minutes after stress exposure. At hypothalamic and hypophyseal levels, acute stress affected mRNA expression of all measured precursors and hormonal factors, as well as their receptors (avtrs and itr), showing the activation, at central level, of HPI, HSC, and Avt/It axes in the acute stress response. In addition, stress response also affected mRNA levels of avtrs and itr in the head kidney, as well as the steroidogenic acute regulatory protein (star) and tyrosine hydroxylase (th) expression, suggesting their participation in the HPI and HSC axes activation. Moreover, the pattern of changes in hepatic avtrs and itr gene expression also highlights an important role of vasotocinergic and isotocinergic pathways in liver metabolic organization after acute stress events. Our results demonstrate, both at transcriptional and circulating levels of several hormones, the existence of a complex activation of different endocrine pathways in S. aurata related to the stress pathways, where vasotocinergic and isotocinergic systems can also be considered key players of the acute stress response orchestration.
Collapse
Affiliation(s)
- Arleta K Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Elisabetta Maiorano
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Marco Bastaroli
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Fatemeh Naderi
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Pontevedra, Spain
| | - Jesús M Míguez
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Pontevedra, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain.,Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain.,Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
44
|
Cortés R, Teles M, Oliveira M, Fierro-Castro C, Tort L, Cerdá-Reverter JM. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:257-272. [PMID: 29071448 DOI: 10.1007/s10695-017-0431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.
Collapse
Affiliation(s)
- Raul Cortés
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain
- Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Fábrica1990, Santiago, Chile
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - José Miguel Cerdá-Reverter
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
45
|
Samaras A, Espírito Santo C, Papandroulakis N, Mitrizakis N, Pavlidis M, Höglund E, Pelgrim TNM, Zethof J, Spanings FAT, Vindas MA, Ebbesson LOE, Flik G, Gorissen M. Allostatic Load and Stress Physiology in European Seabass ( Dicentrarchus labrax L.) and Gilthead Seabream ( Sparus aurata L.). Front Endocrinol (Lausanne) 2018; 9:451. [PMID: 30158900 PMCID: PMC6104477 DOI: 10.3389/fendo.2018.00451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to compare effects of increasing chronic stress load on the stress response of European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) to identify neuroendocrine functions that regulate this response. Fish were left undisturbed (controls) or exposed to three levels of chronic stress for 3 weeks and then subjected to an acute stress test (ACT). Chronic stress impeded growth and decreased feed consumption in seabass, not in seabream. In seabass basal cortisol levels are high and increase with stress load; the response to a subsequent ACT decreases with increasing (earlier) load. Basal cortisol levels in seabream increase with the stress load, whereas the ACT induced a similar response in all groups. In seabass and seabream plasma α-MSH levels and brain stem serotonergic activity and turnover were similar and not affected by chronic stress. Species-specific molecular neuro-regional differences were seen. In-situ hybridization analysis of the early immediate gene cfos in the preoptic area showed ACT-activation in seabream; in seabass the expression level was not affected by ACT and seems constitutively high. In seabream, expression levels of telencephalic crf, crfbp, gr1, and mr were downregulated; the seabass hypothalamic preoptic area showed increased expression of crf and gr1, and decreased expression of mr, and this increased the gr1/mr ratio considerably. We substantiate species-specific physiological differences to stress coping between seabream and seabass at an endocrine and neuroendocrine molecular level. Seabass appear less resilient to stress, which we conclude from high basal activities of stress-related parameters and poor, or absent, responses to ACT. This comparative study reveals important aquaculture, husbandry, and welfare implications for the rearing of these species.
Collapse
Affiliation(s)
- Athanasios Samaras
- AquaLabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Carlos Espírito Santo
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Nikos Papandroulakis
- AquaLabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Nikolaos Mitrizakis
- AquaLabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | - Erik Höglund
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Section for Aquaculture, National Institute of Aquatic Resources, Technical University of Denmark, Hirtshals, Denmark
| | - Thamar N. M. Pelgrim
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - F. A. Tom Spanings
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | | | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
46
|
Conde-Sieira M, Chivite M, Míguez JM, Soengas JL. Stress Effects on the Mechanisms Regulating Appetite in Teleost Fish. Front Endocrinol (Lausanne) 2018; 9:631. [PMID: 30405535 PMCID: PMC6205965 DOI: 10.3389/fendo.2018.00631] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
The homeostatic regulation of food intake relies on a complex network involving peripheral and central signals that are integrated in the hypothalamus which in turn responds with the release of orexigenic or anorexigenic neuropeptides that eventually promote or inhibit appetite. Under stress conditions, the mechanisms that control food intake in fish are deregulated and the appetite signals in the brain do not operate as in control conditions resulting in changes in the expression of the appetite-related neuropeptides and usually a decreased food intake. The effect of stress on the mechanisms that regulate food intake in fish seems to be mediated in part by the corticotropin-releasing factor (CRF), an anorexigenic neuropeptide involved in the activation of the HPI axis during the physiological stress response. Furthermore, the melanocortin system is also involved in the connection between the HPI axis and the central control of appetite. The dopaminergic and serotonergic systems are activated during the stress response and they have also been related to the control of food intake. In addition, the central and peripheral mechanisms that mediate nutrient sensing capacity and hence implicated in the metabolic control of appetite are inhibited in fish under stress conditions. Finally, stress also affects peripheral endocrine signals such as leptin. In the present minireview, we summarize the knowledge achieved in recent years regarding the interaction of stress with the different mechanisms that regulate food intake in fish.
Collapse
|
47
|
Backström T, Winberg S. Serotonin Coordinates Responses to Social Stress-What We Can Learn from Fish. Front Neurosci 2017; 11:595. [PMID: 29163002 PMCID: PMC5669303 DOI: 10.3389/fnins.2017.00595] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.
Collapse
Affiliation(s)
- Tobias Backström
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage. PLoS One 2017; 12:e0175420. [PMID: 28419104 PMCID: PMC5395159 DOI: 10.1371/journal.pone.0175420] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
Zebrafish (Danio rerio) have become popular as model organism in research. Many strains are readily available, which not only differ morphologically, but also genetically, physiologically and behaviourally. Here, we focus on the AB and Tupfel long-fin (TL) strain for which we have previously shown that adults differ in baseline hypothalamus-pituitary-interrenal (HPI)-axis activity (AB higher than TL) affecting inhibitory avoidance behaviour (absent in AB). To assess whether strain differences are already present in early life stages, we compared baseline HPI-axis related gene expression as well as cortisol levels, (neuro)development related as well as (innate) immune system related gene expression, and light-dark as well as startle behaviour in larvae 5 days post fertilisation. The data show that AB and TL larvae differ in baseline HPI-axis activity (AB higher than TL), expression of (neuro)development and immune system related genes (AB higher than TL), habituation to acoustic/vibrational stimuli (AB habituate faster than TL) and light-dark induced changes in motor behaviour (AB stronger than TL). Our data show that already in larval stages differences exist between zebrafish of the AB and TL strain confirming and extending data of earlier studies. To what extent the mutation in connexin 41.8, leading to spots rather than stripes in TL, but also (possibly) affecting eye, heart and brain function, is involved in the expression of (some of) these differences needs to be studied. These results emphasise that differences between strains need to be taken into account to enhance reproducibility both within, and between, laboratories.
Collapse
|
49
|
van de Pol I, Flik G, Gorissen M. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Front Endocrinol (Lausanne) 2017; 8:36. [PMID: 28303116 PMCID: PMC5332387 DOI: 10.3389/fendo.2017.00036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.
Collapse
Affiliation(s)
- Iris van de Pol
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik,
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
50
|
Deck CA, Honeycutt JL, Cheung E, Reynolds HM, Borski RJ. Assessing the Functional Role of Leptin in Energy Homeostasis and the Stress Response in Vertebrates. Front Endocrinol (Lausanne) 2017; 8:63. [PMID: 28439255 PMCID: PMC5384446 DOI: 10.3389/fendo.2017.00063] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Leptin is a pleiotropic hormone that plays a critical role in regulating appetite, energy metabolism, growth, stress, and immune function across vertebrate groups. In mammals, it has been classically described as an adipostat, relaying information regarding energy status to the brain. While retaining poor sequence conservation with mammalian leptins, teleostean leptins elicit a number of similar regulatory properties, although current evidence suggests that it does not function as an adipostat in this group of vertebrates. Teleostean leptin also exhibits functionally divergent properties, however, possibly playing a role in glucoregulation similar to what is observed in lizards. Further, leptin has been recently implicated as a mediator of immune function and the endocrine stress response in teleosts. Here, we provide a review of leptin physiology in vertebrates, with a particular focus on its actions and regulatory properties in the context of stress and the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Courtney A. Deck
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jamie L. Honeycutt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Eugene Cheung
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hannah M. Reynolds
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- *Correspondence: Russell J. Borski,
| |
Collapse
|