1
|
Zhao B, Kang J, Du Q, Liu D. Serum Fibronectin Levels Increased Significantly Following the Administration of an Inactivated SARS-CoV-2 Vaccine: A Prospective Observational Study. Int J Gen Med 2025; 18:2009-2019. [PMID: 40226804 PMCID: PMC11992980 DOI: 10.2147/ijgm.s517920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Background There has been a lack of comprehensive studies on the long-term observation of laboratory values following the administration of SARS-CoV-2 vaccines. The objective of this study is to assess the long-term impact of inactivated SARS-CoV-2 vaccines on coagulation function and other health indicators. Methods We enrolled residents of Chengdu who consented to receive inactivated SARS-CoV-2 vaccines, categorizing them into two groups: healthy donors (n=40) and survivors of COVID-19 infection (n=34), based on their SARS-CoV-2 infection status prior to vaccination. Blood samples from the subjects were collected at specific intervals following vaccination. Results The levels of Fibronectin (FN) increased significantly in both healthy donors and survivors of COVID-19 infection after receiving two doses of the inactivated SARS-CoV-2 vaccine (both P < 0.001), and there was no statistically significant difference in the degree of FN increase between the two groups (153.05 ± 77.19 mg/L vs 172.32±90.42 mg/L, P=0.326). The rate of elevated FN levels was significantly higher six months after vaccination compared to the rate before vaccination, both in healthy donors (85.0% vs 5.0%, P<0.001) and in survivors of COVID-19 infection (94.1% vs 29.4%, P<0.001). Additionally, the levels of FN in healthy donors further increased six months after receiving a booster dose of the inactivated vaccine compared to pre-booster levels (569.90±119.44 mg/L vs 467.35±62.04 mg/L, P < 0.001). Conclusion The study indicates that serum FN levels increased significantly following the administration of the inactivated SARS-CoV-2 vaccine, and these elevated FN levels may persist for more than six months. However, it remains unclear whether this increase could result in any adverse effects.
Collapse
Affiliation(s)
- Bennan Zhao
- The First Ward of Internal Medicine, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Jun Kang
- The First Ward of Internal Medicine, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Qing Du
- The Second Ward of ICU, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Dafeng Liu
- The First Ward of Internal Medicine, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Barghash RF, Gemmati D, Awad AM, Elbakry MMM, Tisato V, Awad K, Singh AV. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Molecules 2024; 29:5564. [PMID: 39683724 PMCID: PMC11643501 DOI: 10.3390/molecules29235564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Collapse
Affiliation(s)
- Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Mustafa M. M. Elbakry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Veronica Tisato
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Kareem Awad
- Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Patarca R, Haseltine WA. Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2. Int J Mol Sci 2024; 25:8012. [PMID: 39125583 PMCID: PMC11311688 DOI: 10.3390/ijms25158012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
4
|
Yu C, Wu Q, Xin J, Yu Q, Ma Z, Xue M, Xu Q, Zheng C. Designing a smallpox B-cell and T-cell multi-epitope subunit vaccine using a comprehensive immunoinformatics approach. Microbiol Spectr 2024; 12:e0046524. [PMID: 38700327 PMCID: PMC11237557 DOI: 10.1128/spectrum.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.
Collapse
Affiliation(s)
- Changqing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiujuan Yu
- Department of Dermatology, The First People's Hospital of Mudanjiang, Mudanjiang, China
| | - Zhixin Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infection Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Liu S, Zhang L, Fu W, Liang Z, Yu Y, Li T, Tong J, Liu F, Nie J, Lu Q, Lu S, Huang W, Wang Y. Optimization and validation of a virus-like particle pseudotyped virus neutralization assay for SARS-CoV-2. MedComm (Beijing) 2024; 5:e615. [PMID: 38881676 PMCID: PMC11176738 DOI: 10.1002/mco2.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze-thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.
Collapse
Affiliation(s)
- Shuo Liu
- Changping Laboratory Beijing China
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ziteng Liang
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | | | - Tao Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Fan Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming Yunnan, China Kunming China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Youchun Wang
- Changping Laboratory Beijing China
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| |
Collapse
|
6
|
Jamal GA, Jahangirian E, Tarrahimofrad H. Expression, Purification, and Evaluation of Antibody Responses and Antibody-Immunogen Complex Simulation of a Designed Multi-Epitope Vaccine against SARS-COV-2. Protein Pept Lett 2024; 31:619-638. [PMID: 39162285 DOI: 10.2174/0109298665320319240809095727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The spread of the COVID-19 disease is the result of an infection caused by the SARS-CoV2 virus. Four crucial proteins, spike (S), membrane (M), nucleocapsid (N), and envelope (E) in coronaviruses have been considered to a large extent. OBJECTIVE This research aimed to express the recombinant protein of a multiepitope immunogen construct and evaluate the immunogenicity of the multiepitope vaccine that was previously designed as a candidate immunogenic against SARS-Cov-2. MATERIALS AND METHODS Plasmid pET26b was transferred to the expression host E. coli BL21 (DE3) and the recombinant protein was expressed with IPTG induction. The recombinant protein was purified by Ni-NTA column affinity chromatography, and western blotting was used to confirm it. Finally, mice were immunized with recombinant protein in three doses. Then, the interaction of the 3D structure of the vaccine with the human neutralizing antibodies3D structures (7BWJ and 7K8N) antibody was evaluated by docking and molecular dynamics simulation. RESULTS The optimized gene had a codon compatibility index of 0.96. The expression of the recombinant protein of the SARS-Cov-2 vaccine in an E. coli host led to the production of the recombinant protein with a weight of about 70 kDa with a concentration of 0.7 mg/ml. Immunization of mice with recombinant protein of SARS-Cov-2 vaccine-induced IgG serum antibody response. Statistical analysis showed that the antibody titer in comparison with the control sample has a significant difference, and the antibody titer was acceptable up to 1/256000 dilution. The simulation of vaccine binding with human antibodies by molecular dynamics showed that Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration, and H-bond as well as van der Waals energies and electrostatic of Molecular mechanics Poisson- Boltzmann surface area (MM/PBSA) analysis have stable interaction. CONCLUSION This recombinant protein can probably be used as an immunogen candidate for the development of vaccines against SARS-CoV2 in future research.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | | |
Collapse
|
7
|
Saravanan V, Chagaleti BK, Narayanan PL, Anandan VB, Manoharan H, Anjana GV, Peraman R, Namasivayam SKR, Kavisri M, Arockiaraj J, Muthu Kumaradoss K, Moovendhan M. Discovery and development of COVID-19 vaccine from laboratory to clinic. Chem Biol Drug Des 2024; 103:e14383. [PMID: 37953736 DOI: 10.1111/cbdd.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
The world has recently experienced one of the biggest and most severe public health disasters with severe acute respiratory syndrome coronavirus (SARS-CoV-2). SARS-CoV-2 is responsible for the coronavirus disease of 2019 (COVID-19) which is one of the most widespread and powerful infections affecting human lungs. Current figures show that the epidemic had reached 216 nations, where it had killed about 6,438,926 individuals and infected 590,405,710. WHO proclaimed the outbreak of the Ebola virus disease (EVD), in 2014 that killed hundreds of people in West Africa. The development of vaccines for SARS-CoV-2 becomes more difficult due to the viral mutation in its non-structural proteins (NSPs) especially NSP2 and NSP3, S protein, and RNA-dependent RNA polymerase (RdRp). Continuous monitoring of SARS-CoV-2, dynamics of the genomic sequence, and spike protein mutations are very important for the successful development of vaccines with good efficacy. Hence, the vaccine development for SARS-CoV-2 faces specific challenges starting from viral mutation. The requirement of long-term immunity development, safety, efficacy, stability, vaccine allocation, distribution, and finally, its cost is discussed in detail. Currently, 169 vaccines are in the clinical development stage, while 198 vaccines are in the preclinical development stage. The majority of these vaccines belong to the Ps-Protein subunit type which has 54, and the minor BacAg-SPV (Bacterial antigen-spore expression vector) type, at least 1 vaccination. The use of computational methods and models for vaccine development has revolutionized the traditional methods of vaccine development. Further, this updated review highlights the upcoming vaccine development strategies in response to the current pandemic and post-pandemic era, in the field of vaccine development.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Vijay Babu Anandan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Haritha Manoharan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - G V Anjana
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, India
| | - S Karthik Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - M Kavisri
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS Deemed University, Chennai, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Kathiravan Muthu Kumaradoss
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Meivelu Moovendhan
- Centre for Ocean Research, Col. Dr. Jeppiar Research Park, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
8
|
Mohapatra S, Kumar S, Kumar S, Singh AK, Nayak B. Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. Virusdisease 2023; 34:456-482. [PMID: 38046066 PMCID: PMC10686954 DOI: 10.1007/s13337-023-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
UNLABELLED The outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13337-023-00852-9.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Santosh Kumar
- RNA Biology Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Shashank Kumar
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Atul Kumar Singh
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
9
|
Bello-Perez M, Hurtado-Tamayo J, Mykytyn AZ, Lamers MM, Requena-Platek R, Schipper D, Muñoz-Santos D, Ripoll-Gómez J, Esteban A, Sánchez-Cordón PJ, Enjuanes L, Haagmans BL, Sola I. SARS-CoV-2 ORF8 accessory protein is a virulence factor. mBio 2023; 14:e0045123. [PMID: 37623322 PMCID: PMC10653805 DOI: 10.1128/mbio.00451-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/04/2023] [Indexed: 08/26/2023] Open
Abstract
IMPORTANCE The relevance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF8 in the pathogenesis of COVID-19 is unclear. Virus natural isolates with deletions in ORF8 were associated with wild milder disease, suggesting that ORF8 might contribute to SARS-CoV-2 virulence. This manuscript shows that ORF8 is involved in inflammation and in the activation of macrophages in two experimental systems: humanized K18-hACE2 transgenic mice and organoid-derived human airway cells. These results identify ORF8 protein as a potential target for COVID-19 therapies.
Collapse
Affiliation(s)
- M. Bello-Perez
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - J. Hurtado-Tamayo
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - A. Z. Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - M. M. Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - R. Requena-Platek
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - D. Schipper
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - D. Muñoz-Santos
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - J. Ripoll-Gómez
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - A. Esteban
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - P. J. Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology, Valdeolmos, Spain
| | - L. Enjuanes
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - B. L. Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - I. Sola
- Department of Molecular and Cell Biology, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Wang L, Guzman M, Muñoz-Santos D, Honrubia JM, Ripoll-Gomez J, Delgado R, Sola I, Enjuanes L, Zuñiga S. Cell type dependent stability and virulence of a recombinant SARS-CoV-2, and engineering of a propagation deficient RNA replicon to analyze virus RNA synthesis. Front Cell Infect Microbiol 2023; 13:1268227. [PMID: 37942479 PMCID: PMC10628495 DOI: 10.3389/fcimb.2023.1268227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Engineering of reverse genetics systems for newly emerged viruses allows viral genome manipulation, being an essential tool for the study of virus life cycle, virus-host interactions and pathogenesis, as well as for the development of effective antiviral strategies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent human coronavirus that has caused the coronavirus disease (COVID-19) pandemic. The engineering of a full-length infectious cDNA clone and a fluorescent replicon of SARS-CoV-2 Wuhan-Hu-1, using a bacterial artificial chromosome, is reported. Viral growth and genetic stability in eleven cell lines were analyzed, showing that both VeroE6 cells overexpressing transmembrane serin protease 2 (TMPRSS2) and human lung derived cells resulted in the optimization of a cell system to preserve SARS-CoV-2 genetic stability. The recombinant SARS-CoV-2 virus and a point mutant expressing the D614G spike protein variant were virulent in a mouse model. The RNA replicon was propagation-defective, allowing its use in BSL-2 conditions to analyze viral RNA synthesis. The SARS-CoV-2 reverse genetics systems developed constitute a useful tool for studying the molecular biology of the virus, the development of genetically defined vaccines and to establish systems for antiviral compounds screening.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - María Guzman
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Jose Manuel Honrubia
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gomez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
11
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
12
|
Coccolini C, Berselli E, Blanco-Llamero C, Fathi F, Oliveira MBPP, Krambeck K, Souto EB. Biomedical and Nutritional Applications of Lactoferrin. Int J Pept Res Ther 2023; 29:71. [DOI: 10.1007/s10989-023-10541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 01/05/2025]
Abstract
AbstractLactoferrin (Lf) is a glycoprotein belonging to the transferrin family, which can be found in mammalian milk. It was first isolated from bovine milk in the 1930s, and later in the 1960s, it was determined from human milk. This multifunctional protein has the specific ability to bind iron. It plays various biological roles, such as antibacterial, antiviral, antifungal, anti-tumour, anti-obesity, antioxidant, anti-inflammatory and immunomodulatory activities. There are several studies describing its use against in various cancer cell lines (e.g., liver, lung and breast) and the glycoprotein has even been reported to inhibit the development of experimental metastases in mice. Previous studies also suggest Lf-mediated neuroprotection against age-related neurodegenerative diseases and it is also expected to attenuate aging. More recently, Lf has been proposed as a potential approach in COVID-19 prophylaxis. In this review, we discuss the recent developments about the biological activities of this pleiotropic glycoprotein that will reason the exploitation of its biomedical and supplementary nutritional value.
Collapse
|
13
|
Martinez JC, Ruiz-Sanz J, Resina MJ, Montero F, Camara-Artigas A, Luque I. A calorimetric and structural analysis of cooperativity in the thermal unfolding of the PDZ tandem of human Syntenin-1. Int J Biol Macromol 2023; 242:124662. [PMID: 37119899 DOI: 10.1016/j.ijbiomac.2023.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Syntenin-1 is a multidomain protein containing a central tandem of two PDZ domains flanked by two unnamed domains. Previous structural and biophysical studies show that the two PDZ domains are functional both isolated and in tandem, occurring a gain in their respective binding affinities when joined through its natural short linker. To get insight into the molecular and energetic reasons of such a gain, here, the first thermodynamic characterization of the conformational equilibrium of Syntenin-1 is presented, with special focus on its PDZ domains. These studies include the thermal unfolding of the whole protein, the PDZ-tandem construct and the two isolated PDZ domains using circular dichroism, differential scanning fluorimetry and differential scanning calorimetry. The isolated PDZ domains show low stability (ΔG < 10 kJ·mol-1) and poor cooperativity compared to the PDZ-tandem, which shows higher stability (20-30 kJ·mol-1) and a fully cooperative behaviour, with energetics similar to that previously described for archetypical PDZ domains. The high-resolution structures suggest that this remarkable increase in cooperativity is associated to strong, water-mediated, interactions at the interface between the PDZ domains, associated to nine conserved hydration regions. The low Tm value (45 °C), the anomalously high unfolding enthalpy (>400 kJ·mol-1), and native heat capacity values (above 40 kJ·K-1·mol-1), indicate that these interfacial buried waters play a relevant role in Syntenin-1 folding energetics.
Collapse
Affiliation(s)
- Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - María J Resina
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Fernando Montero
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| |
Collapse
|
14
|
Santos-Mendoza T. The Envelope (E) Protein of SARS-CoV-2 as a Pharmacological Target. Viruses 2023; 15:v15041000. [PMID: 37112980 PMCID: PMC10143767 DOI: 10.3390/v15041000] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus is still a global health concern. Several spike (S) protein-based vaccines have been developed that efficiently protect the human population against severe forms of COVID-19. However, some SARS-CoV-2 variants of concern (VOCs) have emerged that evade the protective effect of vaccine-induced antibodies. Therefore, efficient and specific antiviral treatments to control COVID-19 are indispensable. To date, two drugs have been approved for mild COVID-19 treatment; nevertheless, more drugs, preferably broad-spectrum and ready-to-use therapeutic agents for new pandemics, are needed. Here, I discuss the PDZ-dependent protein-protein interactions of the viral E protein with host proteins as attractive alternatives for the development of antivirals against coronavirus.
Collapse
Affiliation(s)
- Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
15
|
Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA. Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro. Viruses 2023; 15:v15040972. [PMID: 37112952 PMCID: PMC10142420 DOI: 10.3390/v15040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses.
Collapse
Affiliation(s)
- Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Engineering potent live attenuated coronavirus vaccines by targeted inactivation of the immune evasive viral deubiquitinase. Nat Commun 2023; 14:1141. [PMID: 36854765 PMCID: PMC9973250 DOI: 10.1038/s41467-023-36754-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Coronaviruses express a papain-like protease (PLpro) that is required for replicase polyprotein maturation and also serves as a deubiquitinating enzyme (DUB). In this study, using a Middle East respiratory syndrome virus (MERS-CoV) PLpro modified virus in which the DUB is selectively inactivated, we show that the PLpro DUB is an important MERS-CoV interferon antagonist and virulence factor. Although the DUB-negative rMERS-CoVMA replicates robustly in the lungs of human dipeptidyl peptidase 4 knock-in (hDPP4 KI) mice, it does not cause clinical symptoms. Interestingly, a single intranasal vaccination with DUB-negative rMERS-CoVMA induces strong and sustained neutralizing antibody responses and sterilizing immunity after a lethal wt virus challenge. The survival of naïve animals also significantly increases when sera from animals vaccinated with the DUB-negative rMERS-CoVMA are passively transferred, prior to receiving a lethal virus dose. These data demonstrate that DUB-negative coronaviruses could be the basis of effective modified live attenuated vaccines.
Collapse
|
17
|
Validation of a SARS-CoV-2 Surrogate Virus Neutralization Test in Recovered and Vaccinated Healthcare Workers. Viruses 2023; 15:v15020426. [PMID: 36851641 PMCID: PMC9958856 DOI: 10.3390/v15020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccination against COVID-19 is the main public health approach to fight against the pandemic. The Spike (S) glycoprotein of SARS-CoV-2 is the principal target of the neutralizing humoral response. We evaluated the analytical and clinical performances of a surrogate virus neutralization test (sVNT) compared to conventional neutralization tests (cVNTs) and anti-S eCLIA assays in recovered and/or vaccinated healthcare workers. Our results indicate that sVNTs displayed high specificity and no cross-reactivity. Both eCLIA and sVNT immunoassays were good at identifying cVNT serum dilutions ≥1:16. The optimal thresholds when identifying cVNT titers ≥1:16, were 74.5 U/mL and 49.4 IU/mL for anti-S eCLIA and sVNT, respectively. Our data show that neutralizing antibody titers (Nab) differ from one individual to another and may diminish over time. Specific assays such as sVNTs could offer a reliable complementary tool to routine anti-S serological assays.
Collapse
|
18
|
Prabhakar PK, Khurana N, Vyas M, Sharma V, Batiha GES, Kaur H, Singh J, Kumar D, Sharma N, Kaushik A, Kumar R. Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020451. [PMID: 36839773 PMCID: PMC9960567 DOI: 10.3390/pharmaceutics15020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Coronavirus, a causative agent of the common cold to a much more complicated disease such as "severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)", is a member of the coronaviridae family and contains a positive-sense single-stranded RNA of 26-32 kilobase pairs. COVID-19 has shown very high mortality and morbidity and imparted a significantly impacted socioeconomic status. There are many variants of SARS-CoV-2 that have originated from the mutation of the genetic material of the original coronavirus. This has raised the demand for efficient treatment/therapy to manage newly emerged SARS-CoV-2 infections successfully. However, different types of vaccines have been developed and administered to patients but need more attention because COVID-19 is not under complete control. In this article, currently developed nanotechnology-based vaccines are explored, such as inactivated virus vaccines, mRNA-based vaccines, DNA-based vaccines, S-protein-based vaccines, virus-vectored vaccines, etc. One of the important aspects of vaccines is their administration inside the host body wherein nanotechnology can play a very crucial role. Currently, more than 26 nanotechnology-based COVID-19 vaccine candidates are in various phases of clinical trials. Nanotechnology is one of the growing fields in drug discovery and drug delivery that can also be used for the tackling of coronavirus. Nanotechnology can be used in various ways to design and develop tools and strategies for detection, diagnosis, and therapeutic and vaccine development to protect against COVID-19. The design of instruments for speedy, precise, and sensitive diagnosis, the fabrication of potent sanitizers, the delivery of extracellular antigenic components or mRNA-based vaccines into human tissues, and the administration of antiretroviral medicines into the organism are nanotechnology-based strategies for COVID-19 management. Herein, we discuss the application of nanotechnology in COVID-19 vaccine development and the challenges and opportunities in this approach.
Collapse
Affiliation(s)
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
- Correspondence: (N.K.); (R.K.)
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Harpreet Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Jashanpreet Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Uttarakhand 248007, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Sciences, Omaha, NE 68198, USA
- Correspondence: (N.K.); (R.K.)
| |
Collapse
|
19
|
Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre JD, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev 2022; 12:CD015477. [PMID: 36473651 PMCID: PMC9726273 DOI: 10.1002/14651858.cd015477] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally. OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes. We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs). MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available. This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.
Collapse
Affiliation(s)
- Carolina Graña
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Lina Ghosn
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Theodoros Evrenoglou
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Alexander Jarde
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | | | | | | | | | | | - Hillary Bonnet
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Rouba Assi
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Melanie Marti
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Declan Devane
- Evidence Synthesis Ireland, Cochrane Ireland and HRB-Trials Methodology Research Network, National University of Ireland, Galway, Ireland
| | - Patrick Mallon
- UCD Centre for Experimental Pathogen Host Research and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jean-Daniel Lelievre
- Department of Clinical Immunology and Infectious Diseases, Henri Mondor Hospital, Vaccine Research Institute, Université Paris Est Créteil, Paris, France
| | - Lisa M Askie
- Quality Assurance Norms and Standards Department, World Health Organization, Geneva, Switzerland
| | - Tamara Kredo
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | | | - Mauricia Davidson
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Carolina Riveros
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Joerg J Meerpohl
- Institute for Evidence in Medicine, Medical Center & Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Giacomo Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriel Rada
- Epistemonikos Foundation, Santiago, Chile
- UC Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asbjørn Hróbjartsson
- Centre for Evidence Based Medicine Odense (CEBMO) and Cochrane Denmark, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Philippe Ravaud
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Anna Chaimani
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Isabelle Boutron
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| |
Collapse
|
20
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
21
|
Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, Canton J, Sánchez-Cordón PJ, Fernandez-Delgado R, Enjuanes L, Sola I. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog 2022; 18:e1010834. [PMID: 36129908 PMCID: PMC9491562 DOI: 10.1371/journal.ppat.1010834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
No vaccines or specific antiviral drugs are authorized against Middle East respiratory syndrome coronavirus (MERS-CoV) despite its high mortality rate and prevalence in dromedary camels. Since 2012, MERS-CoV has been causing sporadic zoonotic infections in humans, which poses a risk of genetic evolution to become a pandemic virus. MERS-CoV genome encodes five accessory proteins, 3, 4a, 4b, 5 and 8b for which limited information is available in the context of infection. This work describes 4b as a virulence factor in vivo, since the deletion mutant of a mouse-adapted MERS-CoV-Δ4b (MERS-CoV-MA-Δ4b) was completely attenuated in a humanized DPP4 knock-in mouse model, resulting in no mortality. Attenuation in the absence of 4b was associated with a significant reduction in lung pathology and chemokine expression levels at 4 and 6 days post-infection, suggesting that 4b contributed to the induction of lung inflammatory pathology. The accumulation of 4b in the nucleus in vivo was not relevant to virulence, since deletion of its nuclear localization signal led to 100% mortality. Interestingly, the presence of 4b protein was found to regulate autophagy in the lungs of mice, leading to upregulation of BECN1, ATG3 and LC3A mRNA. Further analysis in MRC-5 cell line showed that, in the context of infection, MERS-CoV-MA 4b inhibited autophagy, as confirmed by the increase of p62 and the decrease of ULK1 protein levels, either by direct or indirect mechanisms. Together, these results correlated autophagy activation in the absence of 4b with downregulation of a pathogenic inflammatory response, thus contributing to attenuation of MERS-CoV-MA-Δ4b.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Javier Canton
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Raúl Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| |
Collapse
|
22
|
Satta S, Shahabipour F, Gao W, Lentz SR, Perlman S, Ashammakhi N, Hsiai T. Engineering viral genomics and nano-liposomes in microfluidic platforms for patient-specific analysis of SARS-CoV-2 variants. Theranostics 2022; 12:4779-4790. [PMID: 35832078 PMCID: PMC9254234 DOI: 10.7150/thno.72339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs. As the COVID-19 pandemic lingers, there remains an unmet need to screen emerging mutations, to predict viral transmissibility and pathogenicity, and to assess the strength of neutralizing antibodies following vaccination or reinfection. Conventional detection of SARS-CoV-2 variants relies on two-dimensional (2-D) cell culture methods, whereas simulating the micro-environment requires three-dimensional (3-D) systems. To this end, analyzing SARS-CoV-2-mediated pathogenicity via microfluidic platforms minimizes the experimental cost, duration, and optimization needed for animal studies, and obviates the ethical concerns associated with the use of primates. In this context, this review highlights the state-of-the-art strategy to engineer the nano-liposomes that can be conjugated with SARS-CoV-2 Spike mutations or genomic sequences in the microfluidic platforms; thereby, allowing for screening the rising SARS-CoV-2 variants and predicting COVID-19-associated coagulation. Furthermore, introducing viral genomics to the patient-specific blood accelerates the discovery of therapeutic targets in the face of evolving viral variants, including B1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), c.37 (Lambda), and B.1.1.529 (Omicron). Thus, engineering nano-liposomes to encapsulate SARS-CoV-2 viral genomic sequences enables rapid detection of SARS-CoV-2 variants in the long COVID-19 era.
Collapse
Affiliation(s)
- Sandro Satta
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | - Fahimeh Shahabipour
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Wei Gao
- Medical Engineering, California Institute of Technology, California, Pasadena, USA
| | - Steven R. Lentz
- Section of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Medicine, College of Medicine, University of Iowa, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, College of Medicine, University of Iowa, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering & Applied Science, University of California, CA, USA
- Institute for Quantitative Health Science & Engineering and Department of Biomedical Engineering, College of Engineering, Michigan State University, MI, USA
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
23
|
Harris JE. The repeated setbacks of HIV vaccine development laid the groundwork for SARS-CoV-2 vaccines. HEALTH POLICY AND TECHNOLOGY 2022; 11:100619. [PMID: 35340773 PMCID: PMC8935961 DOI: 10.1016/j.hlpt.2022.100619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The decades-long effort to produce a workable HIV vaccine has hardly been a waste of public and private resources. To the contrary, the scientific know-how acquired along the way has served as the critical foundation for the development of vaccines against the novel, pandemic SARS-CoV-2 virus. We retell the real-world story of HIV vaccine research - with all its false leads and missteps - in a way that sheds light on the current state of the art of antiviral vaccines. We find that HIV-related R&D had more than a general spillover effect. In fact, the repeated failures of phase 2 and 3 clinical trials of HIV vaccine candidates have served as a critical stimulus to the development of successful vaccine technologies today. We rebut the counterargument that HIV vaccine development has been no more than a blind alley, and that recently developed vaccines against COVID-19 are really descendants of successful vaccines against Ebola, MERS, and SARS. These successful vaccines likewise owe much to the vicissitudes of HIV vaccine development. We then discuss how the failures of HIV vaccine development have taught us how adapt SARS-CoV-2 vaccines to immune escape from emerging variants. Finally, we inquire whether recent advances in the development of vaccines against SARS-CoV-2 might in turn further the development of an HIV vaccine - what we describe as a reverse spillover effect.
Collapse
Affiliation(s)
- Jeffrey E Harris
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Eisner Health, Los Angeles, CA 90015, USA
| |
Collapse
|
24
|
Gupta E, Mishra RK, Kumar Niraj RR. Identification of Potential Vaccine Candidates Against SARS-CoV-2 to Fight COVID-19: Reverse Vaccinology Approach. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e32401. [PMID: 35506029 PMCID: PMC9048139 DOI: 10.2196/32401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023]
Abstract
Background The recent emergence of COVID-19 has caused an immense global public health crisis. The etiological agent of COVID-19 is the novel coronavirus SARS-CoV-2. More research in the field of developing effective vaccines against this emergent viral disease is indeed a need of the hour. Objective The aim of this study was to identify effective vaccine candidates that can offer a new milestone in the battle against COVID-19. Methods We used a reverse vaccinology approach to explore the SARS-CoV-2 genome among strains prominent in India. Epitopes were predicted and then molecular docking and simulation were used to verify the molecular interaction of the candidate antigenic peptide with corresponding amino acid residues of the host protein. Results A promising antigenic peptide, GVYFASTEK, from the surface glycoprotein of SARS-CoV-2 (protein accession number QIA98583.1) was predicted to interact with the human major histocompatibility complex (MHC) class I human leukocyte antigen (HLA)-A*11-01 allele, showing up to 90% conservancy and a high antigenicity value. After vigorous analysis, this peptide was predicted to be a suitable epitope capable of inducing a strong cell-mediated immune response against SARS-CoV-2. Conclusions These results could facilitate selecting SARS-CoV-2 epitopes for vaccine production pipelines in the immediate future. This novel research will certainly pave the way for a fast, reliable, and effective platform to provide a timely countermeasure against this dangerous virus responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ekta Gupta
- Dr. B. Lal Institute of Biotechnology Jaipur India
| | | | | |
Collapse
|
25
|
Dovgan AA, Drapkina Y, Dolgushina NV, Menzhinskaya IV, Krechetova LV, Sukhikh GT. Effects of COVID-19 vector vaccine on autoantibody profile in reproductive age women. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoimmune mechanisms have been implicated in the negative effects of vaccines on female reproductive health. This study evaluates the endogenous levels of self-reactive antibodies and ovarian reserve-associated hormones before and after immunization with the domestically developed Gam-COVID-Vac combined vector vaccine to check for possible reproductive sequelae. The prospective study enrolled 120 women aged 18–49, subject to vaccination with Gam-COVID-Vac. Ovarian reserve was assessed prior to vaccination and 90 days after the first component injection. Profiles of specific antibodies to self-antigens, including phospholipids, nuclear antigens, FSH, progesterone, and also thyroid, ovarian, trophoblast, and zona pellucida antigens, were assessed at the same time points by enzyme immunoassay. Overall, the vaccination had no effect on the levels of ovarian reserve-associated hormones and autoantibodies, apart from a transient increase in positivity for antiphosphatidylethanolamine IgM and anti-dsDNA IgG. Seroprevalence of elevated serum autoantibodies constituted 70.8% before and 75% after vaccination. According to the results, immunization with Gam-COVID-Vac does not affect ovarian reserve or autoimmune status, thus being safe for the female reproductive potential.
Collapse
Affiliation(s)
- AA Dovgan
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - YuS Drapkina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - NV Dolgushina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - IV Menzhinskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - LV Krechetova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - GT Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
26
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
27
|
Akram F, Haq IU, Aqeel A, Ahmed Z, Shah FI, Nawaz A, Zafar J, Sattar R. Insights into the evolutionary and prophylactic analysis of SARS-CoV-2: A review. J Virol Methods 2022; 300:114375. [PMID: 34838536 PMCID: PMC8610842 DOI: 10.1016/j.jviromet.2021.114375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023]
Abstract
In late 2019, following the emergence of a β-originated SARS-CoV-2, phylogenetic and evolutionary approaches have been demonstrated to strengthen the diagnostic and prophylactic stratagem of COVID-19 at an unprecedented level. Despite its clinical prominence, the SARS-CoV-2 gene set remains largely irrefutable by impeding the dissection of COVID-19 biology. However, many pieces of molecular and serological evidence have predicted that SARS-CoV-2 related viruses carry their roots from bats and pangolins of South East Asia. Analysis of viral genome predicts that point mutations at a rate of 10-4 nucleotides per base in the receptor-binding domain allow the emergence of new SARS-CoV-2 genomic variants at regular intervals. Research in the evolution of molecular pathways involved in emergence of pandemic is critical for the development of therapeutics and vaccines as well as the prevention of future zoonosis. By determining the phyletic lineages of the SARS-CoV-2 genomic variants and those of the conserved regions in the accessory and spike proteins of all the SARS-related coronaviruses, a universal vaccine against all human coronaviruses could be formulated which would revolutionize the field of medicine. This review highlighted the current development and future prospects of antiviral drugs, inhibitors, mesenchymal stem cells, passive immunization, targeted immune therapy and CRISPR-Cas-based prophylactic and therapeutic strategies against SARS-CoV-2. However, further investigations on Covid-19 pathogenesis is required for the successful fabrication of successful antivirals.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Javaria Zafar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Rukhma Sattar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
28
|
Asrani P, Tiwari K, Eapen MS, Hassan MI, Sohal SS. Containment strategies for COVID-19 in India: lessons from the second wave. Expert Rev Anti Infect Ther 2022; 20:829-835. [DOI: 10.1080/14787210.2022.2036605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Purva Asrani
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Keshav Tiwari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India-110012
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7248, Australia
| |
Collapse
|
29
|
Kaytaz M, Akkaya E, Gumus SN, Genc S, Issever H, Omer B. OUP accepted manuscript. Lab Med 2022; 53:590-595. [PMID: 35762784 PMCID: PMC9278197 DOI: 10.1093/labmed/lmac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To examine the immunoglobulin G-receptor-binding domain (IgG-RBD) response and changes in fibrinogen and D-dimer concentrations in individuals with a past coronavirus infection and followed by CoronaVac. Methods The study consisted of a total of 116 participants. Blood samples were drawn from subjects 21–25 days after they received first and second doses of CoronaVac as well as from individuals with a past infection. Fibrinogen, D-dimer, and IgG-RBD concentrations were measured. Results The IgG concentrations of the vaccinated subjects were significantly higher (P < .001), fibrinogen levels were lower (P < .001), and D-dimer levels increased following the second vaccination compared with the first vaccination (P = .083). No difference was obtained in IgG-RBD between vaccinated and previously infected individuals (P = .063). The differences in fibrinogen and D-dimer were statistically nonsignificant between both groups. Conclusion The CoronaVac vaccine appears to be safe and effective. It is essential for individuals to take personal protective measures, such as using masks and distancing.
Collapse
Affiliation(s)
- Murat Kaytaz
- Department of Biochemistry Istanbul Faculty of Medicine Istanbul University, Capa, Istanbul, Turkey
| | - Emre Akkaya
- Department of Biochemistry Istanbul Faculty of Medicine Istanbul University, Capa, Istanbul, Turkey
| | - Sefika Nur Gumus
- Department of Biochemistry Istanbul Faculty of Medicine Istanbul University, Capa, Istanbul, Turkey
| | - Sema Genc
- To whom correspondence should be addressed:
| | - Halim Issever
- Department of Medical Sciences and Public Health, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey
| | - Beyhan Omer
- Department of Biochemistry Istanbul Faculty of Medicine Istanbul University, Capa, Istanbul, Turkey
| |
Collapse
|
30
|
MA F, LF D, EI T, PA G. Herpes simplex virus interference with immunity: Focus on dendritic cells. Virulence 2021; 12:2583-2607. [PMID: 34895058 PMCID: PMC8677016 DOI: 10.1080/21505594.2021.1980990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte LF
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli EI
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Hassanin AA, Haidar Abbas Raza S, Ahmed Ujjan J, Aysh ALrashidi A, Sitohy BM, AL-surhanee AA, Saad AM, Mohamed Al -Hazani T, Osman Atallah O, Al Syaad KM, Ezzat Ahmed A, Swelum AA, El-Saadony MT, Sitohy MZ. Emergence, evolution, and vaccine production approaches of SARS-CoV-2 virus: Benefits of getting vaccinated and common questions. Saudi J Biol Sci 2021; 29:1981-1997. [PMID: 34924802 PMCID: PMC8667566 DOI: 10.1016/j.sjbs.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) pandemic in Wuhan city, China at the end of 2019 made it urgent to identify the origin of the causal pathogen and its molecular evolution, to appropriately design an effective vaccine. This study analyzes the evolutionary background of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS-2) in accordance with its close relative SARS-CoV (SARS-1), which was emerged in 2002. A comparative genomic and proteomic study was conducted on SARS-2, SARS-1, and Middle East respiratory syndrome coronavirus (MERS), which was emerged in 2012. In silico analysis inferred the genetic variability among the tested viruses. The SARS-1 genome harbored 11 genes encoding 12 proteins, while SARS-2 genome contained only 10 genes encoding for 10 proteins. MERS genome contained 11 genes encoding 11 proteins. The analysis also revealed a slight variation in the whole genome size of SARS-2 comparing to its siblings resulting from sequential insertions and deletions (indels) throughout the viral genome particularly ORF1AB, spike, ORF10 and ORF8. The effective indels were observed in the gene encoding the spike protein that is responsible for viral attachment to the angiotensin-converting enzyme 2 (ACE2) cell receptor and initiating infection. These indels are responsible for the newly emerging COVID-19 variants αCoV, βCoV, γCoV and δCoV. Nowadays, few effective COVID-19 vaccines developed based on spike (S) glycoprotein were approved and become available worldwide. Currently available vaccines can relatively prevent the spread of COVID-19 and suppress the disease. The traditional (killed or attenuated virus vaccine and antibody-based vaccine) and innovated vaccine production technologies (RNA- and DNA-based vaccines and viral vectors) are summarized in this review. We finally highlight the most common questions related to COVID-19 disease and the benefits of getting vaccinated.
Collapse
|
32
|
Satta S, Lai A, Cavallero S, Williamson C, Chen J, Blázquez‐Medela AM, Roustaei M, Dillon BJ, Ashammakhi N, Carlo DD, Li Z, Sun R, Hsiai TK. Rapid Detection and Inhibition of SARS-CoV-2-Spike Mutation-Mediated Microthrombosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103266. [PMID: 34687279 PMCID: PMC8646611 DOI: 10.1002/advs.202103266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Indexed: 05/26/2023]
Abstract
Activation of endothelial cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be the primary driver for the increasingly recognized thrombotic complications in coronavirus disease 2019 patients, potentially due to the SARS-CoV-2 Spike protein binding to the human angiotensin-converting enzyme 2 (hACE2). Vaccination therapies use the same Spike sequence or protein to boost host immune response as a protective mechanism against SARS-CoV-2 infection. As a result, cases of thrombotic events are reported following vaccination. Although vaccines are generally considered safe, due to genetic heterogeneity, age, or the presence of comorbidities in the population worldwide, the prediction of severe adverse outcome in patients remains a challenge. To elucidate Spike proteins underlying patient-specific-vascular thrombosis, the human microcirculation environment is recapitulated using a novel microfluidic platform coated with human endothelial cells and exposed to patient specific whole blood. Here, the blood coagulation effect is tested after exposure to Spike protein in nanoparticles and Spike variant D614G in viral vectors and the results are corroborated using live SARS-CoV-2. Of note, two potential strategies are also examined to reduce blood clot formation, by using nanoliposome-hACE2 and anti-Interleukin (IL) 6 antibodies.
Collapse
Affiliation(s)
- Sandro Satta
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Angela Lai
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Susana Cavallero
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
- Department of MedicineVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
| | - Cayden Williamson
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Justin Chen
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Ana M. Blázquez‐Medela
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Mehrdad Roustaei
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Barbara J. Dillon
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Nureddin Ashammakhi
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Dino Di Carlo
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Zhaoping Li
- Department of MedicineVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
- Division of Clinical NutritionDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Ren Sun
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tzung K. Hsiai
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
- Department of MedicineVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
33
|
K B M, Nayar SA, P V M. Vaccine and vaccination as a part of human life: In view of COVID-19. Biotechnol J 2021; 17:e2100188. [PMID: 34665927 PMCID: PMC8646257 DOI: 10.1002/biot.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
Background Vaccination created a great breakthrough toward the improvement to the global health. The development of vaccines and their use made a substantial decrease and control in infectious diseases. The abundance and emergence of new vaccines has facilitated targeting populations to alleviate and eliminate contagious pathogens from their innate reservoir. However, along with the infections like malaria and HIV, effective immunization remains obscure and imparts a great challenge to science. Purpose and scope The novel Corona virus SARS‐CoV‐2 is the reason for the 2019 COVID‐19 pandemic in the human global population, in the first half of 2019. The need for establishing a protected and compelling COVID‐19 immunization is a global prerequisite to end this pandemic. Summary and conclusion The different vaccine technologies like inactivation, attenuation, nucleic acid, viral vector, subunit, and viral particle based techniques are employed to develop a safe and highly efficient vaccine. The progress in vaccine development for SARS‐CoV2 is much faster in the history of science. Even though there exist of lot of limitations, continuous efforts has put forward so as to develop highly competent and effective vaccine for many human and animal linked diseases due to its unlimited prospective. This review article focuses on the historical outlook and the development of the vaccine as it is a crucial area of research where the life of the human is saved from various potential diseases.
Collapse
Affiliation(s)
- Megha K B
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, India
| | - Seema A Nayar
- Microbiology Department, Government Medical College, Trivandrum, India
| | - Mohanan P V
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, India
| |
Collapse
|
34
|
Lo Muzio L, Ambosino M, Lo Muzio E, Quadri MFA. SARS-CoV-2 Reinfection Is a New Challenge for the Effectiveness of Global Vaccination Campaign: A Systematic Review of Cases Reported in Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11001. [PMID: 34682746 PMCID: PMC8535385 DOI: 10.3390/ijerph182011001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Reinfection with SARS-CoV-2 seems to be a rare phenomenon. The objective of this study is to carry out a systematic search of literature on the SARS-CoV-2 reinfection in order to understand the success of the global vaccine campaigns. A systematic search was performed. Inclusion criteria included a positive RT-PCR test of more than 90 days after the initial test and the confirmed recovery or a positive RT-PCR test of more than 45 days after the initial test that is accompanied by compatible symptoms or epidemiological exposure, naturally after the confirmed recovery. Only 117 articles were included in the final review with 260 confirmed cases. The severity of the reinfection episode was more severe in 92/260 (35.3%) with death only in 14 cases. The observation that many reinfection cases were less severe than initial cases is interesting because it may suggest partial protection from disease. Another interesting line of data is the detection of different clades or lineages by genome sequencing between initial infection and reinfection in 52/260 cases (20%). The findings are useful and contribute towards the role of vaccination in response to the COVID-19 infections. Due to the reinfection cases with SARS-CoV-2, it is evident that the level of immunity is not 100% for all individuals. These data highlight how it is necessary to continue to observe all the prescriptions recently indicated in the literature in order to avoid new contagion for all people after healing from COVID-19 or becoming asymptomatic positive.
Collapse
Affiliation(s)
- Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
- Consorzio Interuniversitario Nazionale per la Bio-Oncologia (C.I.N.B.O.), 66100 Chieti, Italy
| | - Mariateresa Ambosino
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
| | - Eleonora Lo Muzio
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Mir Faeq Ali Quadri
- Department of Preventive Dental Sciences, Jazan University, Jazan 82511, Saudi Arabia;
| |
Collapse
|
35
|
Al-Jighefee HT, Najjar H, Ahmed MN, Qush A, Awwad S, Kamareddine L. COVID-19 Vaccine Platforms: Challenges and Safety Contemplations. Vaccines (Basel) 2021; 9:1196. [PMID: 34696306 PMCID: PMC8537163 DOI: 10.3390/vaccines9101196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and alleviate its impact on society, economy, and public health, the development of vaccines and antiviral agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which have obtained the United States Food and Drug Administration (FDA) approval for emergency use. Despite this successful development and licensure, concerns regarding the safety and efficacy of these vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations, and highlight the major safety concerns and potential risks associated with each vaccine type.
Collapse
Affiliation(s)
- Hadeel T. Al-Jighefee
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Muna Nizar Ahmed
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Abeer Qush
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Sara Awwad
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
36
|
Jahangirian E, Jamal GA, Nouroozi M, Mohammadpour A. A reverse vaccinology and immunoinformatics approach for designing a multiepitope vaccine against SARS-CoV-2. Immunogenetics 2021; 73:459-477. [PMID: 34542663 PMCID: PMC8450176 DOI: 10.1007/s00251-021-01228-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
Since 2019, the world was involved with SARS-CoV-2 and consequently, with the announcement by the World Health Organization that COVID-19 was a pandemic, scientific were an effort to obtain the best approach to combat this global dilemma. The best way to prevent the pandemic from spreading further is to use a vaccine against COVID-19. Here, we report the design of a recombinant multi-epitope vaccine against the four proteins spike or crown (S), membrane (M), nucleocapsid (N), and envelope (E) of SARS-CoV-2 using immunoinformatics tools. We evaluated the most antigenic epitopes that bind to HLA class 1 subtypes, along with HLA class 2, as well as B cell epitopes. Beta-defensin 3 and PADRE sequence were used as adjuvants in the structure of the vaccine. KK, GPGPG, and AAY linkers were used to fuse the selected epitopes. The nucleotide sequence was cloned into pET26b(+) vector using restriction enzymes XhoI and NdeI, and HisTag sequence was considered in the C-terminal of the construct. The results showed that the proposed candidate vaccine is a 70.87 kDa protein with high antigenicity and immunogenicity as well as non-allergenic and non-toxic. A total of 95% of the selected epitopes have conservancy with similar sequences. Molecular docking showed a strong binding between the vaccine structure and tool-like receptor (TLR) 7/8. The docking, molecular dynamics, and MM/PBSA analysis showed that the vaccine established a stable interaction with both structures of TLR7 and TLR8. Simulation of immune stimulation by this vaccine showed that it evokes immune responses related to humoral and cellular immunity.
Collapse
Affiliation(s)
- Ehsan Jahangirian
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait.
| | - MohammadReza Nouroozi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Alemeh Mohammadpour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
37
|
Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021; 10:1218. [PMID: 34578250 PMCID: PMC8470303 DOI: 10.3390/pathogens10091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | | | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
38
|
Spadaccini M, Canziani L, Aghemo A, Lleo A, Maselli R, Anderloni A, Carrara S, Fugazza A, Pellegatta G, Galtieri PA, Hassan C, Greenwald D, Pochapin M, Wallace M, Sharma P, Roesch T, Bhandari P, Emura F, Raju GS, Repici A. What gastroenterologists should know about SARS-CoV 2 vaccine: World Endoscopy Organization perspective. United European Gastroenterol J 2021; 9:787-796. [PMID: 34102015 PMCID: PMC8242672 DOI: 10.1002/ueg2.12103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The novel Coronavirus (SARS-CoV-2) has caused almost 2 million deaths worldwide. Both Food and Drug Administration and European Medicines Agency have recently approved the first COVID-19 vaccines, and a few more are going to be approved soon. METHODS Several different approaches have been used to stimulate the immune system in mounting a humoral response. As more traditional approaches are under investigation (inactivated virus vaccines, protein subunit vaccines, recombinant virus vaccines), more recent and innovative strategies have been tried (non-replicating viral vector vaccines, RNA based vaccines, DNA based vaccines). RESULTS Since vaccinations campaigns started in December 2020 in both the US and Europe, gastroenterologists will be one of the main sources of information regarding SARS-CoV 2 vaccination for patients in their practice, including vulnerable patients such as those with Inflammatory Bowel Disease (IBD), patients with chronic liver disease, and GI cancer patients. CONCLUSIONS Thus, we must ourselves be well educated and updated in order to provide unambiguous counseling to these categories of vulnerable patients. In this commentary, we aim to provide a comprehensive review of both approved COVID-19 vaccines and the ones still under development, and explore potential risks, benefits and prioritization of vaccination.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Lorenzo Canziani
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
- Department of Internal MedicineHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Alessio Aghemo
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
- Department of GastroenterologyDivision of Internal Medicine and HepatologyHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Ana Lleo
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
- Department of GastroenterologyDivision of Internal Medicine and HepatologyHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Roberta Maselli
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Andrea Anderloni
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Silvia Carrara
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Alessandro Fugazza
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Gaia Pellegatta
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Piera Alessia Galtieri
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Cesare Hassan
- Digestive Endoscopy UnitNuovo Regina MargheritaRomeItaly
| | - David Greenwald
- Division of GastroenterologyIcahn School of Medicine at Mount SinaiMount Sinai HospitalNew YorkNew YorkUSA
| | - Mark Pochapin
- Division of Gastroenterology and HepatologyNYU Langone HealthNew YorkNew YorkUSA
| | - Michael Wallace
- Division of Gastroenterology and HepatologyMayo ClinicJacksonvilleFloridaUSA
| | - Prateek Sharma
- Digestive Endoscopy UnitKansas City VA Medical CenterKansas CityMissouriUSA
| | - Thomas Roesch
- Division of Gastroenterology & HepatologyUniversity Medical Center Hamburg ‐ EppendorfHamburgGermany
| | - Pradeep Bhandari
- Division of Gastroenterology and HepatologyQueen Alexandra HospitalPortsmouthUK
| | - Fabian Emura
- Division of GastroenterologyUniversidad de La SabanaChíaColombia
| | - Gottumukkala S Raju
- Department of Gastroenterology, Hepatology, and NutritionThe University of TexasMD Anderson Cancer CenterHoustonTexasUSA
| | - Alessandro Repici
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| |
Collapse
|
39
|
Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021; 13:1457. [PMID: 34452323 PMCID: PMC8402835 DOI: 10.3390/v13081457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
40
|
Daemi HB, Kulyar MFEA, He X, Li C, Karimpour M, Sun X, Zou Z, Jin M. Progression and Trends in Virus from Influenza A to COVID-19: An Overview of Recent Studies. Viruses 2021; 13:1145. [PMID: 34203647 PMCID: PMC8232279 DOI: 10.3390/v13061145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.
Collapse
Affiliation(s)
- Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | | | - Xinlin He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Morteza Karimpour
- Department of Biology, Azad University of Rasht, Rasht 4147654919, Iran;
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
41
|
Kumar S, Sarma P, Kaur H, Prajapat M, Bhattacharyya A, Avti P, Sehkhar N, Kaur H, Bansal S, Mahendiratta S, Mahalmani VM, Singh H, Prakash A, Kuhad A, Medhi B. Clinically relevant cell culture models and their significance in isolation, pathogenesis, vaccine development, repurposing and screening of new drugs for SARS-CoV-2: a systematic review. Tissue Cell 2021; 70:101497. [PMID: 33550034 PMCID: PMC7836970 DOI: 10.1016/j.tice.2021.101497] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In-Vitro/Cellular evidence is the backbone and vital proof of concept during the development of novel therapeutics as well as drugs repurposing against COVID-19. Choosing an ideal in-vitro model is vital as the virus entry is through ACE2, CD147, and TMPRSS2 dependant and very specific. In this regard, this is the first systematic review addressing the importance of specific cell lines used as potential in-vitro models in the isolation, pathogenesis, and therapeutics for SARS-COV-2. METHODS We searched 17 literature databases with appropriate keywords, and identified 1173 non-duplicate studies. In the present study, 71 articles are included after a careful, thorough screening of the titles and their abstracts for possible inclusion using predefined inclusion/exclusion criteria (PRISMA Guidelines). RESULTS In the current study, we compiled cell culture-based studies for SARS-CoV-2 and found the best compatible In-Vitro models for SARS-CoV-2 (Vero, VeroE6, HEK293 as well as its variants, Huh-7, Calu-3 2B4, and Caco2). Among other essential cell lines used include LLC-MK2, MDCKII, BHK-21, HepG2, A549,T cell leukemia (MT-2), stems cells based cell line DYR0100for differentiation assays, and embryo-specific NIH3T3 cell line for vaccine production. CONCLUSION The Present study provides a detailed summary of all the drugs/compounds screened for drug repurposing and discovery purpose using the in-vitro models for SARS-CoV-2 along with isolation, pathogenesis and vaccine production. This study also suggests that after careful evaluation of all the cell line based studies, Kidney cells (VeroE6, HEK293 along with their clones), liver Huh-7cells, respiratory Calu-3 cells, and intestinal Caco-2 are the most widely used in-vitro models for SARS-CoV-2.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | - Hardeep Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | | | | | - Pramod Avti
- Department of Biophysics, PGIMER, Chandigarh, India.
| | | | | | - Seema Bansal
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences (UIPS). Panjab University, Chandigarh, India.
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
42
|
Evaluation of a Pseudovirus Neutralization Assay for SARS-CoV-2 and Correlation with Live Virus-Based Micro Neutralization Assay. Diagnostics (Basel) 2021; 11:diagnostics11060994. [PMID: 34070824 PMCID: PMC8226551 DOI: 10.3390/diagnostics11060994] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The unusual cases of pneumonia outbreak were reported from Wuhan city in late December 2019. Serological testing provides a powerful tool for the identification of prior infection and for epidemiological studies. Pseudotype virus neutralization assays are widely used for many viruses and applications in the fields of serology. The accuracy of pseudotype neutralizing assay allows for its use in low biosafety lab and provides a safe and effective alternative to the use of wild-type viruses. In this study, we evaluated the performance of this assay compared to the standard microneutralization assay as a reference. The lentiviral pseudotype particles were generated harboring the Spike gene of SARS-CoV-2. The generated pseudotype particles assay was used to evaluate the activity of neutralizing antibodies in 300 human serum samples from a COVID-19 sero-epidemiological study. Testing of these samples resulted in 55 positive samples and 245 negative samples by pseudotype viral particles assay while microneutralization assay resulted in 64 positive and 236 negative by MN assay. Compared to the MN, the pseudotyped viral particles assay showed a sensitivity of 85.94% and a specificity of 100%. Based on the data generated from this study, the pseudotype-based neutralization assay showed a reliable performance for the detection of neutralizing antibodies against SARS-CoV-2 and can be used safely and efficiently as a diagnostic tool in a biosafety level 2 laboratory.
Collapse
|
43
|
Nascimento Júnior JAC, Santos AM, Cavalcante RCM, Quintans-Júnior LJ, Walker CIB, Borges LP, Frank LA, Serafini MR. Mapping the technological landscape of SARS, MERS, and SARS-CoV-2 vaccines. Drug Dev Ind Pharm 2021; 47:673-684. [PMID: 33826439 PMCID: PMC8040490 DOI: 10.1080/03639045.2021.1908343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The last two decades have seen the emergence of several viral outbreaks. Some of them are the severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and severe acute respiratory syndrome 2 (SARS-CoV2) - the cause of the coronavirus disease 2019 (COVID-19). Ever, vaccines for emergency use have been authorized for the control and prevention of COVID-19. Currently, there is an urgent need to develop a vaccine for prophylaxis of COVID-19 and for other future epidemics. METHODS This review describes patented vaccines for SARS and MERS-CoV and vaccines developed and approved for emergency use against the new coronavirus (COVID-19). The European Patent Office and the World Intellectual Property Organization were the patent databases used using specific terms. In addition, another search was carried out in the Clinical Trials in search of ongoing clinical studies focused on the COVID-19 vaccine. RESULTS The patent search showed that most vaccines are based on viral vector platforms, nucleic acids, or protein subunits. The review also includes an overview of completed and ongoing clinical trials for SARS-CoV-2 in several countries. CONCLUSION The information provided here lists vaccines for other types of coronavirus that have been used in the development of vaccines for COVID-19.
Collapse
Affiliation(s)
- José Adão Carvalho Nascimento Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Lucindo José Quintans-Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiani Isabel Banderó Walker
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Escola de Saúde e Bem Estar UniRitter, Faculdade de Farmácia - Laureate International Universities, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
44
|
Feng G, Zhang L, Wang K, Chen B, Xia HHX. Research, Development and Application of COVID-19 Vaccines: Progress, Challenges, and Prospects. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Pal N, Mavi AK, Kumar S, Kumar U, Joshi MD, Saluja R. Current updates on adaptive immune response by B cell and T cell stimulation and therapeutic strategies for novel coronavirus disease 2019 (COVID-19) treatment. Heliyon 2021; 7:e06894. [PMID: 33937545 PMCID: PMC8076978 DOI: 10.1016/j.heliyon.2021.e06894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
The prevalence of COVID-19 continues to rise with more than 114,315,846 million confirmed cases and 2,539,427 deaths worldwide by 3 March 2021 and this number kept on increasing day by day. There is no clear therapeutic treatment or vaccine available for COVID-19 till date and by seeing such a high rise in the cases of COVID-19 on daily basis, it would have been necessary to implement precautions and hygienic measures to monitor and reduce human-to-human transmission of SARS-CoV-2 before there is any successful intervention/treatment available. Currently, several studies demonstrated the important improvements in both the innate and adaptive immune systems of COVID-19 patients. In particular, pre-existing research, on immune response to B cell and T cells are highlighting that pre-existing immunity exists in about 90% of the general population because of previous exposure to CoVs and having immunity against these CoVs. Although it is not clear from, the current studies on COVID-19 but it assumed that, it might have implication to COVID-19 severity and could play an important role in treatment or vaccine development against COVID-19. This review summarizes the information from occurrence of SARS-CoV-2 to its pathogenesis, transmission, adaptive immune response with respect to T cell and B cell stimulation and therapeutic interventions/treatment against COVID-19.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, GB Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, 110007, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, GB Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Umesh Kumar
- School of Biosciences, IMS Ghaziabad University Courses Campus, Uttar Pradesh, 201015, India
| | - Maya Datt Joshi
- Department of Biotechnology, Shobhit Institute of Engineering & Technology (Deemed to be University), Meerut, 250110, India
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| |
Collapse
|
46
|
Teodorescu M. An Overview of a Year with COVID-19: What We Know? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/9765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Genetically Engineered Live-Attenuated Middle East Respiratory Syndrome Coronavirus Viruses Confer Full Protection against Lethal Infection. mBio 2021; 12:mBio.00103-21. [PMID: 33653888 PMCID: PMC8092200 DOI: 10.1128/mbio.00103-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There are no approved vaccines against the life-threatening Middle East respiratory syndrome coronavirus (MERS-CoV). Attenuated vaccines have proven their potential to induce strong and long-lasting immune responses. We have previously described that severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a virulence factor. Based on this knowledge, a collection of mutants carrying partial deletions spanning the C-terminal domain of the E protein (rMERS-CoV-E*) has been generated using a reverse genetics system. One of these mutants, MERS-CoV-E*Δ2in, was attenuated and provided full protection in a challenge with virulent MERS-CoV after a single immunization dose. The MERS-CoV-E*Δ2in mutant was stable as it maintained its attenuation after 16 passages in cell cultures and has been selected as a promising vaccine candidate.IMPORTANCE The emergence of the new highly pathogenic human coronavirus SARS-CoV-2 that has already infected more than 80 million persons, killing nearly two million of them, clearly indicates the need to design efficient and safe vaccines protecting from these coronaviruses. Modern vaccines can be derived from virus-host interaction research directed to the identification of signaling pathways essential for virus replication and for virus-induced pathogenesis, in order to learn how to attenuate these viruses and design vaccines. Using a reverse genetics system developed in our laboratory, an infectious cDNA clone of MERS-CoV was engineered. Using this cDNA, we sequentially deleted several predicted and conserved motifs within the envelope (E) protein of MERS-CoV, previously associated with the presence of virulence factors. The in vitro and in vivo evaluation of these deletion mutants highlighted the relevance of predicted linear motifs in viral pathogenesis. Two of them, an Atg8 protein binding motif (Atg8-BM), and a forkhead-associated binding motif (FHA-BM), when deleted, rendered an attenuated virus that was evaluated as a vaccine candidate, leading to full protection against challenge with a lethal dose of MERS-CoV. This approach can be extended to the engineering of vaccines protecting against the new pandemic SARS-CoV-2.
Collapse
|
48
|
Lutz H, Popowski KD, Dinh PUC, Cheng K. Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000063. [PMID: 33681865 PMCID: PMC7917381 DOI: 10.1002/anbr.202000063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
New infectious diseases are making themselves known as the human population grows, expands into new regions, and becomes more dense, increasing contact with each other and animal populations. Ease of travel has also increased infectious disease transmission and has now culminated into a global pandemic. The emergence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has already infected over 83.7 million people and caused over 1.8 million deaths. While there have been vaccine candidates produced and supportive care implemented, the world is impatiently waiting for a commercially approved vaccine and treatment for the coronavirus disease of 2019 (COVID-19). The different vaccine types investigated for the prevention of COVID-19 all have great promise but face safety obstacles that must be first addressed. Some vaccine candidates of key interest are whole inactivated viruses, adeno-associated viruses, virus-like particles, and lipid nanoparticles. This review examines nanobiomedical techniques for combatting COVID-19 in terms of vaccines and therapeutics.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill/North Carolina State UniversityRaleigh/Chapel HillNC27607/27599USA
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
49
|
Umakanthan S, Chattu VK, Ranade AV, Das D, Basavarajegowda A, Bukelo M. A rapid review of recent advances in diagnosis, treatment and vaccination for COVID-19. AIMS Public Health 2021; 8:137-153. [PMID: 33575413 PMCID: PMC7870385 DOI: 10.3934/publichealth.2021011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 is caused by SARS-CoV-2, which originated in Wuhan, Hubei province, Central China, in December 2019 and since then has spread rapidly, resulting in a severe pandemic. The infected patient presents with varying non-specific symptoms requiring an accurate and rapid diagnostic tool to detect SARS-CoV-2. This is followed by effective patient isolation and early treatment initiation ranging from supportive therapy to specific drugs such as corticosteroids, antiviral agents, antibiotics, and the recently introduced convalescent plasma. The development of an efficient vaccine has been an on-going challenge by various nations and research companies. A literature search was conducted in early December 2020 in all the major databases such as Medline/PubMed, Web of Science, Scopus and Google Scholar search engines. The findings are discussed in three main thematic areas namely diagnostic approaches, therapeutic options, and potential vaccines in various phases of development. Therefore, an effective and economical vaccine remains the only retort to combat COVID-19 successfully to save millions of lives during this pandemic. However, there is a great scope for further research in discovering cost-effective and safer therapeutics, vaccines and strategies to ensure equitable access to COVID-19 prevention and treatment services.
Collapse
Affiliation(s)
- Srikanth Umakanthan
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Vijay Kumar Chattu
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G2C4, Canada
- Division of Occupational Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5C 2C5, Canada
| | - Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, PO Box 27272, USA
| | - Debasmita Das
- Department of Pathology and Laboratory Medicine, Nuvance Health Danbury Hospital Campus, Connecticut, Zip 06810, USA
| | - Abhishekh Basavarajegowda
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, PIN-605006, India
| | - Maryann Bukelo
- Department of Anatomical Pathology, Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Trinidad and Tobago, West Indies
| |
Collapse
|
50
|
Gu T, Zhao S, Jin G, Song M, Zhi Y, Zhao R, Ma F, Zheng Y, Wang K, Liu H, Xin M, Han W, Li X, Dong CD, Liu K, Dong Z. Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model. Front Immunol 2021; 11:621441. [PMID: 33584719 PMCID: PMC7876321 DOI: 10.3389/fimmu.2020.621441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Although COVID-19 has become a major challenge to global health, there are currently no efficacious agents for effective treatment. Cytokine storm syndrome (CSS) can lead to acute respiratory distress syndrome (ARDS), which contributes to most COVID-19 mortalities. Research points to interleukin 6 (IL-6) as a crucial signature of the cytokine storm, and the clinical use of the IL-6 inhibitor tocilizumab shows potential for treatment of COVID-19 patient. In this study, we challenged wild-type and adenovirus-5/human angiotensin-converting enzyme 2-expressing BALB/c mice with a combination of polyinosinic-polycytidylic acid and recombinant SARS-CoV-2 spike-extracellular domain protein. High levels of TNF-α and nearly 100 times increased IL-6 were detected at 6 h, but disappeared by 24 h in bronchoalveolar lavage fluid (BALF) following immunostimulant challenge. Lung injury observed by histopathologic changes and magnetic resonance imaging at 24 h indicated that increased TNF-α and IL-6 may initiate CSS in the lung, resulting in the continual production of inflammatory cytokines. We hypothesize that TNF-α and IL-6 may contribute to the occurrence of CSS in COVID-19. We also investigated multiple monoclonal antibodies (mAbs) and inhibitors for neutralizing the pro-inflammatory phenotype of COVID-19: mAbs against IL-1α, IL-6, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and inhibitors of p38 and JAK partially relieved CSS; mAbs against IL-6, TNF-α, and GM-CSF, and inhibitors of p38, extracellular signal-regulated kinase, and myeloperoxidase somewhat reduced neutrophilic alveolitis in the lung. This novel murine model opens a biologically safe, time-saving avenue for clarifying the mechanism of CSS/ARDS in COVID-19 and developing new therapeutic drugs.
Collapse
Affiliation(s)
- Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- The Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yafei Zhi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Fayang Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yaqiu Zheng
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mingxia Xin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wei Han
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|