1
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Pesticide-induced transgenerational alterations of genome-wide DNA methylation patterns in the pancreas of Xenopus tropicalis correlate with metabolic phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135455. [PMID: 39154485 DOI: 10.1016/j.jhazmat.2024.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of the anti-androgenic herbicide linuron in the pancreas of Xenopus tropicalis frogs, and their association with metabolic phenotypes. Reduced representation bisulfite sequencing (RRBS) was used to assess genome-wide DNA methylation patterns in the pancreas of adult male F2 generation ancestrally exposed to environmentally relevant linuron levels (44 ± 4.7 μg/L). We identified 1117 differentially methylated regions (DMRs) distributed across the X. tropicalis genome, revealing potential regulatory mechanisms underlying metabolic disturbances. DMRs were identified in genes crucial for pancreatic function, including calcium signalling (clstn2, cacna1d and cadps2), genes associated with type 2 diabetes (tcf7l2 and adcy5) and a biomarker for pancreatic ductal adenocarcinoma (plec). Correlation analysis revealed associations between DNA methylation levels in these genes and metabolic phenotypes, indicating epigenetic regulation of glucose metabolism. Moreover, differential methylation in genes related to histone modifications suggests alterations in the epigenetic machinery. These findings underscore the long-term consequences of environmental contamination on pancreatic function and raise concerns about the health risks associated with transgenerational effects of pesticides.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Falcão KVG, Azevedo RDSD, Lima LRAD, Bezerra RDS. A rapid protocol for inducing acute pancreatitis in zebrafish models. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109958. [PMID: 38857668 DOI: 10.1016/j.cbpc.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder that occurs in the exocrine pancreas associated with tissue injury and necrosis. Experimental models of AP typically involve rodents, such as rats or mice. However, rodents exhibit divergent pathophysiological responses after the establishment of AP between themselves and in comparison, with human. The experiments conducted for this manuscript aimed to standardize a new AP model in zebrafish and validate it. Here, we provide a protocol for inducing AP in zebrafish through intraperitoneal injections of synthetic caerulein. Details are provided for solution preparation, pre-injection procedures, injection technique, and monitoring animal survival. Subsequently, validation was performed through biochemical and histological analyses of pancreatic tissue. The administered dose of caerulein for AP induction was 10 μg/kg applied four times in the intraperitoneal region. The histological validation study demonstrated the presence of necrosis within the first 12 h post-injection, accompanied by an excess of zymogen granules in the extracellular milieu. These observations align with those reported in conventional rodent models. We have standardized and validated the AP model in zebrafish. This model can contribute to preclinical and clinical studies of new drugs for AP treatment. Therefore, this novel model expands the toolkit for exploring faster and more effective preventive and therapeutic strategies for AP.
Collapse
Affiliation(s)
| | | | - Luiza Rayanna Amorim de Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil
| | | |
Collapse
|
4
|
Jiang Y, Cao Y, Li Y, Bi L, Wang L, Chen Q, Lin Y, Jin H, Xu X, Peng R, Chen Z. SNP alleviates mitochondrial homeostasis dysregulation-mediated developmental toxicity in diabetic zebrafish larvae. Biomed Pharmacother 2024; 177:117117. [PMID: 38996709 DOI: 10.1016/j.biopha.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The incidence of diabetes is increasing annually, and the disease is uncurable due to its complex pathogenesis. Therefore, understanding diabetes pathogenesis and developing new treatments are crucial. This study showed that the NO donor SNP (8 µM) significantly alleviated high glucose-induced developmental toxicity in zebrafish larvae. High glucose levels caused hyperglycemia, leading to oxidative stress and mitochondrial damage from excessive ROS accumulation. This promoted mitochondrial-dependent apoptosis and lipid peroxidation (LPO)-induced ferroptosis, along with immune inflammatory reactions that decreased mitochondrial function and altered intracellular grid morphology, causing imbalanced kinetics and autophagy. After SNP treatment, zebrafish larvae showed improved developmental toxicity and glucose utilization, reduced ROS accumulation, and increased antioxidant activity. The NO-sGC-cGMP signaling pathway, inhibited by high glucose, was significantly activated by SNP, improving mitochondrial homeostasis, increasing mitochondrial count, and enhancing mitochondrial function. It's worth noting that apoptosis, ferroptosis and immune inflammation were effectively alleviated. In summary, SNP improved high glucose-induced developmental toxicity by activating the NO-sGC-cGMP signaling pathway to reduce toxic effects such as apoptosis, ferroptosis and inflammation resulting from mitochondrial homeostasis imbalance.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lv Wang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Xiaoming Xu
- Scientific Research Center, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China.
| |
Collapse
|
5
|
Juliana CA, Benjet J, De Leon DD. Characterization of the zebrafish as a model of ATP-sensitive potassium channel hyperinsulinism. BMJ Open Diabetes Res Care 2024; 12:e003735. [PMID: 38575153 PMCID: PMC11005463 DOI: 10.1136/bmjdrc-2023-003735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.
Collapse
Affiliation(s)
- Christine A Juliana
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joshua Benjet
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diva D De Leon
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Wang Y, Peng H, Yu H. Bixafen causes hepatotoxicity and pancreas toxicity in zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:837-844. [PMID: 37597064 DOI: 10.1007/s10646-023-02687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Bixafen (BIX), a widely used succinate dehydrogenase inhibitor (SDHI) in agricultural disease control, has garnered significant attention due to its known hazardous effects on aquatic organisms. In this study, we exposed zebrafish embryos to 0.1, 0.2, and 0.3 μM BIX, to explore the impact of BIX on liver and pancreas. The results showed that BIX caused deformities and dysfunction in zebrafish embryos, including spinal curvature, pericardial edema, heart rate decrease, and hatching delay. Moreover, BIX significantly affected the development of the liver and pancreas in zebrafish and downregulated zebrafish fabp10a gene expression. Overall, this study presents strong evidence for BIX's potential toxicity to zebrafish liver and pancreas. The results may provide new insights into the evaluation of BIX'S impact on aquatic organisms.
Collapse
Affiliation(s)
- Yini Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, China
| | - Huihan Peng
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, China
| | - Hailing Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, China.
| |
Collapse
|
7
|
Tucker TR, Knitter CA, Khoury DM, Eshghi S, Tran S, Sharrock AV, Wiles TJ, Ackerley DF, Mumm JS, Parsons MJ. An inducible model of chronic hyperglycemia. Dis Model Mech 2023; 16:dmm050215. [PMID: 37401381 PMCID: PMC10417516 DOI: 10.1242/dmm.050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute β-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain β-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.
Collapse
Affiliation(s)
- Tori R. Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Courtney A. Knitter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Deena M. Khoury
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sheida Eshghi
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sophia Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Travis J. Wiles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Chu L, Terasaki M, Mattsson CL, Teinturier R, Charbord J, Dirice E, Liu KC, Miskelly MG, Zhou Q, Wierup N, Kulkarni RN, Andersson O. In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system. Cell Chem Biol 2022; 29:1368-1380.e5. [PMID: 35998625 PMCID: PMC9557248 DOI: 10.1016/j.chembiol.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/27/2022] [Accepted: 07/27/2022] [Indexed: 02/02/2023]
Abstract
Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.
Collapse
Affiliation(s)
- Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michishige Terasaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte L Mattsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Teinturier
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael G Miskelly
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
10
|
Chen Q, Wang WJ, Jia YX, Yuan H, Wu PF, Ge WL, Meng LD, Huang XM, Shen P, Yang TY, Miao Y, Zhang JJ, Jiang KR. Effect of the transcription factor YY1 on the development of pancreatic endocrine and exocrine tumors: a narrative review. Cell Biosci 2021; 11:86. [PMID: 33985581 PMCID: PMC8120816 DOI: 10.1186/s13578-021-00602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic tumors are classified into endocrine and exocrine types, and the clinical manifestations in patients are nonspecific. Most patients, especially those with pancreatic ductal adenocarcinoma (PDAC), have lost the opportunity to receive for the best treatment at the time of diagnosis. Although chemotherapy and radiotherapy have shown good therapeutic results in other tumors, their therapeutic effects on pancreatic tumors are minimal. A multifunctional transcription factor, Yin-Yang 1 (YY1) regulates the transcription of a variety of important genes and plays a significant role in diverse tumors. Studies have shown that targeting YY1 can improve the survival time of patients with tumors. In this review, we focused on the mechanism by which YY1 affects the occurrence and development of pancreatic tumors. We found that a YY1 mutation is specific for insulinomas and has a role in driving the degree of malignancy. In addition, changes in the circadian network are a key causative factor of PDAC. YY1 promotes pancreatic clock progression and induces malignant changes, but YY1 seems to act as a tumor suppressor in PDAC and affects many biological behaviors, such as proliferation, migration, apoptosis and metastasis. Our review summarizes the progress in understanding the role of YY1 in pancreatic endocrine and exocrine tumors and provides a reasonable assessment of the potential for therapeutic targeting of YY1 in pancreatic tumors.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wu-Jun Wang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | | | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng-Fei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Tao-Yue Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Freudenblum J, Meyer D, Kimmel RA. Inducible Mosaic Cell Labeling Provides Insights Into Pancreatic Islet Morphogenesis. Front Cell Dev Biol 2020; 8:586651. [PMID: 33102488 PMCID: PMC7546031 DOI: 10.3389/fcell.2020.586651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Pancreatic islets, discrete microorgans embedded within the exocrine pancreas, contain beta cells which are critical for glucose homeostasis. Loss or dysfunction of beta cells leads to diabetes, a disease with expanding global prevalence, and for which regenerative therapies are actively being pursued. Recent efforts have focused on producing mature beta cells in vitro, but it is increasingly recognized that achieving a faithful three-dimensional islet structure is crucial for generating fully functional beta cells. Our current understanding of islet morphogenesis is far from complete, due to the deep internal location of the pancreas in mammalian models, which hampers direct visualization. Zebrafish is a model system well suited for studies of pancreas morphogenesis due to its transparency and the accessible location of the larval pancreas. In order to further clarify the cellular mechanisms of islet formation, we have developed new tools for in vivo visualization of single-cell dynamics. Our results show that clustering islet cells make contact and interconnect through dynamic actin-rich processes, move together while remaining in close proximity to the duct, and maintain high protrusive motility after forming clusters. Quantitative analyses of cell morphology and motility in 3-dimensions lays the groundwork to define therapeutically applicable factors responsible for orchestrating the morphogenic behaviors of coalescing endocrine cells.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Jiang J, Chen L, Wu S, Lv L, Liu X, Wang Q, Zhao X. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114844. [PMID: 32480235 DOI: 10.1016/j.envpol.2020.114844] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In current study, larvae and adult zebrafish were exposed to difenoconazole to assess its effect on hepatotoxicity, lipid metabolism and gut microbiota. Results demonstrated that difenoconazole could induce hepatotoxicity in zebrafish larvae and adult, 0.400, 1.00, 2.00 mg/L difenoconazole caused yolk retention, yolk sac edema or liver degeneration after embryos exposure for 120 h, hepatocyte vacuolization and neoplasm necrosis were observed in adult liver after 0.400 mg/L difenoconazole exposure for 21 d. RNA sequencing showed that the 41 and 567 differentially expressed genes in zebrafish larvae and liver induced by 0.400 mg/L difenoconazole, were concentrated in pathways related to protein digestion and absorption, pancreatic secretion, steroid biosynthesis, and different metabolic pathways including galactose or sugar metabolism. Difenoconazole exposure caused lipid accumulation in larval yolk sac, and the elevated triglyceride (TG), malondialdehyde (MDA) and reactive oxygen species (ROS) levels in larvae and liver, which further confirmed the lipid metabolism disorders induced by difenoconazole. The results further showed that difenoconazole increased the abundance of gut microbiota such as Firmicutes, Aeromonas, Enterobacteriaceae and Bacteroides, further suggested that gut microbiota might participate in lipid metabolism and hepatotoxicity during zebrafish development. These findings advanced the field of the difenoconazole-induced developmental toxicity in larvae and adult zebrafish, and the imbalance of gut microbiota provided the plausible mode of action for the liver damage and disordered lipid metabolism in zebrafish.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
13
|
de Boer P, Pirozzi NM, Wolters AHG, Kuipers J, Kusmartseva I, Atkinson MA, Campbell-Thompson M, Giepmans BNG. Large-scale electron microscopy database for human type 1 diabetes. Nat Commun 2020; 11:2475. [PMID: 32424134 PMCID: PMC7235089 DOI: 10.1038/s41467-020-16287-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
Autoimmune β-cell destruction leads to type 1 diabetes, but the pathophysiological mechanisms remain unclear. To help address this void, we created an open-access online repository, unprecedented in its size, composed of large-scale electron microscopy images ('nanotomy') of human pancreas tissue obtained from the Network for Pancreatic Organ donors with Diabetes (nPOD; www.nanotomy.org). Nanotomy allows analyses of complete donor islets with up to macromolecular resolution. Anomalies we found in type 1 diabetes included (i) an increase of 'intermediate cells' containing granules resembling those of exocrine zymogen and endocrine hormone secreting cells; and (ii) elevated presence of innate immune cells. These are our first results of mining the database and support recent findings that suggest that type 1 diabetes includes abnormalities in the exocrine pancreas that may induce endocrine cellular stress as a trigger for autoimmunity.
Collapse
Affiliation(s)
- Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicole M Pirozzi
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Zhang T, Trauger SA, Vidoudez C, Doane KP, Pluimer BR, Peterson RT. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish. Sci Rep 2019; 9:19939. [PMID: 31882772 PMCID: PMC6934720 DOI: 10.1038/s41598-019-56466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Extensive characterisations of the zebrafish genome and proteome have established a foundation for the use of the zebrafish as a model organism; however, characterisation of the zebrafish lipidome has not been as comprehensive. In an effort to expand current knowledge of the zebrafish sphingolipidome, a Parallel Reaction Monitoring (PRM)-based liquid chromatography-mass spectrometry (LC-MS) method was developed to comprehensively quantify zebrafish ceramides. Comparison between zebrafish and a human cell line demonstrated remarkable overlap in ceramide composition, but also revealed a surprising lack of most sphingadiene-containing ceramides in the zebrafish. PRM analysis of zebrafish embryogenesis identified developmental stage-specific ceramide changes based on long chain base (LCB) length. A CRISPR-Cas9-generated zebrafish model of Farber disease exhibited reduced size, early mortality, and severe ceramide accumulation where the amplitude of ceramide change depended on both acyl chain and LCB lengths. Our method adds an additional level of detail to current understanding of the zebrafish lipidome, and could aid in the elucidation of structure-function associations in the context of lipid-related diseases.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Kim P Doane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Brock R Pluimer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
15
|
Emfinger CH, Lőrincz R, Wang Y, York NW, Singareddy SS, Ikle JM, Tryon RC, McClenaghan C, Shyr ZA, Huang Y, Reissaus CA, Meyer D, Piston DW, Hyrc K, Remedi MS, Nichols CG. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol Rep 2019; 7:e14101. [PMID: 31161721 PMCID: PMC6546968 DOI: 10.14814/phy2.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Islet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in β-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven β-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.
Collapse
Affiliation(s)
- Christopher H. Emfinger
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Réka Lőrincz
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Yixi Wang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Nathaniel W. York
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Soma S. Singareddy
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Jennifer M. Ikle
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Robert C. Tryon
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Conor McClenaghan
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Zeenat A. Shyr
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Yan Huang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Christopher A. Reissaus
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
| | - Dirk Meyer
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - David W. Piston
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Krzysztof Hyrc
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Maria S. Remedi
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Colin G. Nichols
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| |
Collapse
|
16
|
Salem V, Silva LD, Suba K, Georgiadou E, Neda Mousavy Gharavy S, Akhtar N, Martin-Alonso A, Gaboriau DCA, Rothery SM, Stylianides T, Carrat G, Pullen TJ, Singh SP, Hodson DJ, Leclerc I, Shapiro AMJ, Marchetti P, Briant LJB, Distaso W, Ninov N, Rutter GA. Leader β-cells coordinate Ca 2+ dynamics across pancreatic islets in vivo. Nat Metab 2019; 1:615-629. [PMID: 32694805 PMCID: PMC7617060 DOI: 10.1038/s42255-019-0075-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader β-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected 'hub' cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory β-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.
Collapse
Affiliation(s)
- Victoria Salem
- Department of Medicine, Imperial College London, London, UK.
| | - Luis Delgadillo Silva
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Kinga Suba
- Department of Medicine, Imperial College London, London, UK
| | | | | | - Nadeem Akhtar
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, Imperial College London, London, UK
| | - Stephen M Rothery
- Facility for Imaging by Light Microscopy, Imperial College London, London, UK
| | | | - Gaelle Carrat
- Department of Medicine, Imperial College London, London, UK
| | - Timothy J Pullen
- Department of Diabetes, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Sumeet Pal Singh
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | | | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | - Nikolay Ninov
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden, German Center for Diabetes Research, Dresden, Germany.
| | - Guy A Rutter
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Benchoula K, Khatib A, Jaffar A, Ahmed QU, Sulaiman WMAW, Wahab RA, El-Seedi HR. The promise of zebrafish as a model of metabolic syndrome. Exp Anim 2019; 68:407-416. [PMID: 31118344 PMCID: PMC6842808 DOI: 10.1538/expanim.18-0168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a cluster including hyperglycaemia, obesity, hypertension, and
hypertriglyceridaemia as a result of biochemical and physiological alterations and can
increase the risk of cardiovascular disease and diabetes. Fundamental research on this
disease requires validated animal models. One potential animal model that is rapidly
gaining in popularity is zebrafish (Danio rerio). The use of zebrafish as
an animal model conveys several advantages, including high human genetic homology,
transparent embryos and larvae that allow easier visualization. This review discusses how
zebrafish models contribute to the development of metabolic syndrome studies. Different
diseases in the cluster of metabolic syndrome, such as hyperglycaemia, obesity, diabetes,
and hypertriglyceridaemia, have been successfully studied using zebrafish; and the model
is promising for hypertension and cardiovascular metabolic-related diseases due to its
genetic similarity to mammals. Genetic mutation, chemical induction, and dietary
alteration are among the tools used to improve zebrafish models. This field is expanding,
and thus, more effective and efficient techniques are currently developed to fulfil the
increasing demand for thorough investigations.
Collapse
Affiliation(s)
- Khaled Benchoula
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia.,Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia, Sultan Ahamad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ashika Jaffar
- School of Biosciences & Technology, VIT University, Vellore 632014, India
| | - Qamar Udin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ridhwan Abd Wahab
- Kulliyah of Allied Health Science, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.,Alrayan Medical colleges, Medina 42541, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Abstract
The pancreas plays important roles in the regulation of blood glucose, and is a well-studied organ in mammals because its dysfunction causes serious disorders, such as diabetes mellitus. However, mammals have the limited capacity for tissue regeneration in their organs, including pancreas. Fish may be an attractive model for regeneration studies, as fish exhibit a greater capacity for regeneration than do mammals. To elucidate the regenerative capacity of pancreatic β cells in medaka, we generated transgenic lines, in which β cells can be specifically ablated using the nitroreductase (NTR)/metronidazole (Mtz) system. We examined β-cell regeneration at embryonic-larval stages after specific ablation of β cells, and found that medaka rapidly regenerate β cells. Furthermore, we found that teleost-specific secondary islet have a unique feature in that their size increases in response to β-cell ablation in principal islets.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,2 CREST, Japan Science and Technology Agency
| |
Collapse
|
19
|
Krishnan J, Rohner N. Sweet fish: Fish models for the study of hyperglycemia and diabetes. J Diabetes 2019; 11:193-203. [PMID: 30264455 DOI: 10.1111/1753-0407.12860] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 09/09/2018] [Indexed: 01/15/2023] Open
Abstract
Fish are good for your health in more ways than you may expect. For one, eating fish is a common dietary recommendation for a healthy diet. However, fish have much more to provide than omega-3 fatty acids to your circulatory system. Some fish species now serve as important and innovative model systems for diabetes research, providing novel and unique advantages compared with classical research models. Not surprisingly, the largest share of diabetes research in fish occurs in the laboratory workhorse among fish, the zebrafish (Danio rerio). Established as a genetic model system to study development, these small cyprinid fish have eventually conquered almost every scientific discipline and, over the past decade, have emerged as an important model system for metabolic diseases, including diabetes mellitus. In this review we highlight the practicability of using zebrafish to study diabetes and hyperglycemia, and summarize some of the recent research and breakthroughs made using this model. Equally exciting is the appearance of another emerging discipline, one that is taking advantage of evolution by studying cases of naturally occurring insulin resistance in fish species. We briefly discuss two such models in this review, namely the rainbow trout (Oncorhynchus mykiss) and the cavefish (Astyanax mexicanus).
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
20
|
Zhao F, Wang H, Wei P, Jiang G, Wang W, Zhang X, Ru S. Impairment of bisphenol F on the glucose metabolism of zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:386-392. [PMID: 30218961 DOI: 10.1016/j.ecoenv.2018.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol F (BPF) is a substitute of bisphenol A in the production of epoxy resin and polycarbonate. Its extensive use in consumer products leads to a wide human exposure at high levels. Although the adverse effects of BPF on animal health are of increasing public concern, its risks on systematic glucose metabolism and blood glucose concentrations still remain largely unknown. Using zebrafish larvae as the model animal, we investigated the disturbance of BPF exposure on glucose metabolism and the underlying mechanisms. Zebrafish larvae at 96 h post fertilization were exposed to 0.1, 1, 10, and 100 μg/L of BPF for 48 h. Compared with the control group, glucose levels of larvae increased significantly in the 10 and 100 μg/L exposure groups, which are associated with enhancement of gluconeogenesis and suppression of glycolysis induced by high doses of BPF. Additionally, both mRNA expressions and protein levels of insulin increased significantly in the 10 and 100 μg/L exposure groups, while transcription levels of genes encoding insulin receptor substrates decreased significantly in these groups, indicating a possibly decreased insulin sensitivity due to impairment of insulin signaling transduction downstream of insulin receptor. Further, compared with BPF alone, co-exposure of larvae to BPF and rosiglitazone, an insulin sensitizer, significantly attenuates increases in both glucose levels and mRNA expressions of a key gluconeogenesis enzyme. Our data therefore indicate impairing insulin signaling transduction may be the main mechanism through which BPF disrupts glucose metabolism and induces hyperglycemia. Results of the present study inform the health risk assessment of BPF and also suggest the use of zebrafish larvae in large-scale screening of chemicals with possible glucose metabolism disturbing effect.
Collapse
Affiliation(s)
- Fei Zhao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China
| | - Hongfang Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China
| | - Penghao Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China
| | - Guobin Jiang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China
| | - Wei Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
| |
Collapse
|
21
|
Zhong Y, Huang W, Du J, Wang Z, He J, Luo L. Improved Tol2-mediated enhancer trap identifies weakly expressed genes during liver and β cell development and regeneration in zebrafish. J Biol Chem 2018; 294:932-940. [PMID: 30504219 DOI: 10.1074/jbc.ra118.005568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/26/2018] [Indexed: 01/13/2023] Open
Abstract
The liver and pancreas are two major digestive organs, and among the different cell types in them, hepatocytes and the insulin-producing β cells have roles in both health and diseases. Accordingly, clinicians and researchers are very interested in the mechanisms underlying the development and regeneration of liver and pancreatic β cells. Gene and enhancer traps such as the Tol2 transposon-based system are useful for identifying genes potentially involved in developmental processes in the zebrafish model. Here, we developed a strategy that combines a Tol2-mediated enhancer trap and the Cre/loxP system by using loxP-flanked reporters driven by β cell- or hepatocyte-specific promoters and the upstream activating sequence (UAS)-driving Cre. Two double-transgenic reporter lines, Tg(ins:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus), were established to label pancreatic β cells and hepatocytes, respectively. These two double-transgenic lines were each crossed with the Tol2-enhancer trap founder lines to screen for and identify genes expressed in the β cell and hepatocytes during development. This trap system coupled with application of nitroreductase (NTR)/metronidazole (Mtz)-mediated cell ablation could identify genes expressed during regeneration. Of note, pilot enhancer traps captured transiently and weakly expressed genes such as rab3da and ensab with higher efficiencies than traditional enhancer trap systems. In conclusion, through permanent genetic labeling by Cre/loxP, this improved Tol2-mediated enhancer trap system provides a promising method to identify transiently or weakly expressed, but potentially important, genes during development and regeneration.
Collapse
Affiliation(s)
- Yadong Zhong
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Wei Huang
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Jiang Du
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Zekun Wang
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Jianbo He
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingfei Luo
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and .,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| |
Collapse
|
22
|
Matsuda H, Mullapudi ST, Yang YHC, Masaki H, Hesselson D, Stainier DYR. Whole-Organism Chemical Screening Identifies Modulators of Pancreatic β-Cell Function. Diabetes 2018; 67:2268-2279. [PMID: 30115653 DOI: 10.2337/db17-1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/07/2018] [Indexed: 11/13/2022]
Abstract
β-Cell loss and dysfunction play a critical role in the progression of type 1 and type 2 diabetes. Identifying new molecules and/or molecular pathways that improve β-cell function and/or increase β-cell mass should significantly contribute to the development of new therapies for diabetes. Using the zebrafish model, we screened 4,640 small molecules to identify modulators of β-cell function. This in vivo strategy identified 84 stimulators of insulin expression, which simultaneously reduced glucose levels. The insulin promoter activation kinetics for 32 of these stimulators were consistent with a direct mode of action. A subset of insulin stimulators, including the antidiabetic drug pioglitazone, induced the coordinated upregulation of gluconeogenic pck1 expression, suggesting functional response to increased insulin action in peripheral tissues. Notably, Kv1.3 inhibitors increased β-cell mass in larval zebrafish and stimulated β-cell function in adult zebrafish and in the streptozotocin-induced hyperglycemic mouse model. In addition, our data indicate that cytoplasmic Kv1.3 regulates β-cell function. Thus, using whole-organism screening, we have identified new small-molecule modulators of β-cell function and glucose metabolism.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hideki Masaki
- Division of Stem Cell Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
23
|
Freudenblum J, Iglesias JA, Hermann M, Walsen T, Wilfinger A, Meyer D, Kimmel RA. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development 2018; 145:dev158477. [PMID: 29386244 PMCID: PMC5818004 DOI: 10.1242/dev.158477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
Abstract
The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - José A Iglesias
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck Austria
| | - Armin Wilfinger
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
24
|
Lorincz R, Emfinger CH, Walcher A, Giolai M, Krautgasser C, Remedi MS, Nichols CG, Meyer D. In vivo monitoring of intracellular Ca 2+ dynamics in the pancreatic β-cells of zebrafish embryos. Islets 2018; 10:221-238. [PMID: 30521410 PMCID: PMC6300091 DOI: 10.1080/19382014.2018.1540234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assessing the response of pancreatic islet cells to glucose stimulation is important for understanding β-cell function. Zebrafish are a promising model for studies of metabolism in general, including stimulus-secretion coupling in the pancreas. We used transgenic zebrafish embryos expressing a genetically-encoded Ca2+ sensor in pancreatic β-cells to monitor a key step in glucose induced insulin secretion; the elevations of intracellular [Ca2+]i. In vivo and ex vivo analyses of [Ca2+]i demonstrate that β-cell responsiveness to glucose is well established in late embryogenesis and that embryonic β-cells also respond to free fatty acid and amino acid challenges. In vivo imaging of whole embryos further shows that indirect glucose administration, for example by yolk injection, results in a slow and asynchronous induction of β-cell [Ca2+]i responses, while intravenous glucose injections cause immediate and islet-wide synchronized [Ca2+]i fluctuations. Finally, we demonstrate that embryos with disrupted mutation of the CaV1.2 channel gene cacna1c are hyperglycemic and that this phenotype is associated with glucose-independent [Ca2+]i fluctuation in β-cells. The data reveal a novel central role of cacna1c in β-cell specific stimulus-secretion coupling in zebrafish and demonstrate that the novel approach we propose - to monitor the [Ca2+]i dynamics in embryonic β-cells in vivo - will help to expand the understanding of β-cell physiological functions in healthy and diseased states.
Collapse
Affiliation(s)
- Reka Lorincz
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Christopher H. Emfinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Walcher
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Michael Giolai
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Claudia Krautgasser
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
- CONTACT Dirk Meyer Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, Innsbruck 6020, Austria
| |
Collapse
|
25
|
Zhao F, Jiang G, Wei P, Wang H, Ru S. Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:794-802. [PMID: 28946120 DOI: 10.1016/j.ecoenv.2017.09.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS) is a substitute of the plastic additive bisphenol A (BPA). Its concentrations detected in surface waters and urine samples are on the same order of magnitude as BPA. Human exposure to BPA has been implicated in the development of diabetes mellitus; however, whether BPS can disrupt glucose homeostasis and increase blood glucose concentration remains unclear. We extensively investigated the effects of environmentally relevant concentrations of BPS on glucose metabolism in male zebrafish (Danio rerio) and the underlying mechanisms of these effects. Male zebrafish were exposed to 1, 10, or 100μg/L of BPS for 28 d. Fasting blood glucose (FBG) levels, glycogen levels in the liver and muscle, and mRNA levels of key glucose metabolic enzymes and the activities of the encoded proteins in tissues were evaluated to assess the effect of BPS on glucose metabolism. Plasma insulin levels and expression of preproinsulin and glucagon genes in the visceral tissue were also evaluated. Compared with the control group, exposure to 1 and 10μg/L of BPS significantly increased FBG levels but decreased insulin levels. Gluconeogenesis and glycogenolysis in the liver were promoted, and glycogen synthesis in the liver and muscle and glycolysis in the muscle were inhibited. Exposure to 100μg/L of BPS did not significantly alter plasma insulin and blood glucose levels, but nonetheless pronouncedly interfered with gluconeogenesis, glycogenolysis, glycolysis, and glycogen synthesis. Our data indicates that BPS at environmentally relevant concentrations impairs glucose homeostasis of male zebrafish possibly by hampering the physiological effect of insulin; higher BPS doses also pronouncedly interfered with glucose metabolism.
Collapse
Affiliation(s)
- Fei Zhao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Guobin Jiang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Penghao Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Hongfang Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003 Shandong Province, PR China.
| |
Collapse
|
26
|
Tarifeño-Saldivia E, Lavergne A, Bernard A, Padamata K, Bergemann D, Voz ML, Manfroid I, Peers B. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol 2017; 15:21. [PMID: 28327131 PMCID: PMC5360028 DOI: 10.1186/s12915-017-0362-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types. RESULTS In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines. Comparison of these transcriptomes identified many novel markers, including transcription factors and signaling pathway components, specific for each cell type. By performing interspecies comparisons, we identified hundreds of genes with conserved enriched expression in endocrine and exocrine cells among human, mouse, and zebrafish. This list includes many genes known as crucial for pancreatic cell formation or function, but also pinpoints many factors whose pancreatic function is still unknown. A large set of endocrine-enriched genes can already be detected at early developmental stages as revealed by the transcriptomic profiling of embryonic endocrine cells, indicating a potential role in cell differentiation. The actual involvement of conserved endocrine genes in pancreatic cell differentiation was demonstrated in zebrafish for myt1b, whose invalidation leads to a reduction of alpha cells, and for cdx4, selectively expressed in endocrine delta cells and crucial for their specification. Intriguingly, comparison of the endocrine alpha and beta cell subtypes from human, mouse, and zebrafish reveals a much lower conservation of the transcriptomic signatures for these two endocrine cell subtypes compared to the signatures of pan-endocrine and exocrine cells. These data suggest that the identity of the alpha and beta cells relies on a few key factors, corroborating numerous examples of inter-conversion between these two endocrine cell subtypes. CONCLUSION This study highlights both evolutionary conserved and species-specific features that will help to unveil universal and fundamental regulatory pathways as well as pathways specific to human and laboratory animal models such as mouse and zebrafish.
Collapse
Affiliation(s)
- Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Alice Bernard
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Keerthana Padamata
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - David Bergemann
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Marianne L Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium.
| |
Collapse
|
27
|
Negishi J, Omori Y, Shindo M, Takanashi H, Musha S, Nagayama S, Hirayama J, Nishina H, Nakakura T, Mogi C, Sato K, Okajima F, Mochimaru Y, Tomura H. Manganese and cobalt activate zebrafish ovarian cancer G-protein-coupled receptor 1 but not GPR4. J Recept Signal Transduct Res 2017; 37:401-408. [PMID: 28270026 DOI: 10.1080/10799893.2017.1298130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian ovarian G-protein-coupled receptor 1 (OGR1) is activated by some metals in addition to extracellular protons and coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebrafish OGR1, zebrafish GPR4, and human GPR4 (zOGR1, zGPR4, and hGPR4, respectively) could sense the metals and activate the intracellular signaling pathways. On one hand, we found that only manganese and cobalt of the tested metals stimulated SRE-promoter activities in zOGR1-overexpressed HEK293T cells. On the other hand, none of the metals tested stimulated the promoter activities in zGPR4- and hGPR4-overexpressed cells. The OGR1 mutant (H4F), which is lost to activation by extracellular protons, did not stimulate metal-induced SRE-promoter activities. These results suggest that zOGR1, but not GPR4, is also a metal-sensing G-protein-coupled receptor in addition to a proton-sensing G-protein-coupled receptor, although not all metals that activate hOGR1 activated zOGR1.
Collapse
Affiliation(s)
- Jun Negishi
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Yuka Omori
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Mami Shindo
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Hayate Takanashi
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Shiori Musha
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Suminori Nagayama
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Jun Hirayama
- b Department of Developmental and Regenerative Biology , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Hiroshi Nishina
- b Department of Developmental and Regenerative Biology , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Takashi Nakakura
- c Department of Anatomy, Graduate School of Medicine , Teikyo University , Tokyo , Japan
| | - Chihiro Mogi
- d Laboratory of Signal Transduction, Department of Molecular Medicine , Institute for Molecular and Cellular Regulation, Gunma University , Maebashi , Japan
| | - Koichi Sato
- d Laboratory of Signal Transduction, Department of Molecular Medicine , Institute for Molecular and Cellular Regulation, Gunma University , Maebashi , Japan
| | - Fumikazu Okajima
- e Laboratory of Pathophysiology, Department of Pharmacy, Faculty of Pharmaceutical Sciences , Aomori University , Aomori , Japan
| | - Yuta Mochimaru
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Hideaki Tomura
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan.,f Institute of Endocrinology, Meiji University , Kawasaki , Japan
| |
Collapse
|
28
|
Maddison LA, Chen W. Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish. Front Endocrinol (Lausanne) 2017; 8:9. [PMID: 28184214 PMCID: PMC5266698 DOI: 10.3389/fendo.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Glucose homeostasis is an important element of energy balance and is conserved in organisms from fruit fly to mammals. Central to the control of circulating glucose levels in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an ability to adapt, in function and number as a response to physiological and pathophysiological conditions of increased hormone demand. The molecular mechanisms underlying these adaptive responses that maintain glucose homeostasis are incompletely defined. The zebrafish is an attractive model due to the low cost, high fecundity, and amenability to genetic and compound screens, and mechanisms governing the development of the pancreatic endocrine cells are conserved between zebrafish and mammals. Post development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further explore the utility of the zebrafish as a model for diabetes, a relevant topic considering the increase in diabetes in the human population.
Collapse
Affiliation(s)
- Lisette A. Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
29
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
30
|
Abstract
One of the appeals of the zebrafish model is the relative ease of studying disease progression from embryonic or larval stages through to adulthood. Because of this, the zebrafish has become an important model for postembryonic pancreatic disease, particularly diabetes and pancreatic cancer. Here we present methods for using the adult zebrafish to analyze pancreas function and structure, with an emphasis on the endocrine pancreas and the beta cells. The methods include fasting, weighing adults, and anesthetizing adults, and intraperitoneal injection of glucose based on body weight. We also present dissection methods for removing the pancreas intact for histological studies and for sterile dissection of the principal islet followed by dissociation for cell culture-based studies of beta-cell function.
Collapse
Affiliation(s)
| | - K F Franse
- Appalachian State University, Boone, NC, United States
| | - M D Kinkel
- Appalachian State University, Boone, NC, United States
| |
Collapse
|