1
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Buchholz KR, Reichelt M, Johnson MC, Robinson SJ, Smith PA, Rutherford ST, Quinn JG. Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A. Nat Commun 2024; 15:4733. [PMID: 38830951 PMCID: PMC11148078 DOI: 10.1038/s41467-024-49200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Polymyxins are gram-negative antibiotics that target lipid A, the conserved membrane anchor of lipopolysaccharide in the outer membrane. Despite their clinical importance, the molecular mechanisms underpinning polymyxin activity remain unresolved. Here, we use surface plasmon resonance to kinetically interrogate interactions between polymyxins and lipid A and derive a phenomenological model. Our analyses suggest a lipid A-catalyzed, three-state mechanism for polymyxins: transient binding, membrane insertion, and super-stoichiometric cluster accumulation with a long residence time. Accumulation also occurs for brevicidine, another lipid A-targeting antibacterial molecule. Lipid A modifications that impart polymyxin resistance and a non-bactericidal polymyxin derivative exhibit binding that does not evolve into long-lived species. We propose that transient binding to lipid A permeabilizes the outer membrane and cluster accumulation enables the bactericidal activity of polymyxins. These findings could establish a blueprint for discovery of lipid A-targeting antibiotics and provide a generalizable approach to study interactions with the gram-negative outer membrane.
Collapse
Affiliation(s)
- Kerry R Buchholz
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA.
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew C Johnson
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Peter A Smith
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA
- Revagenix, Inc., San Mateo, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA.
| | - John G Quinn
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Barbernitz MX, Devine LR, Cole RN, Raben DM. The role of N-terminal phosphorylation of DGK-θ. J Lipid Res 2024; 65:100506. [PMID: 38272356 PMCID: PMC10914586 DOI: 10.1016/j.jlr.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Diacylglycerol kinases (DGKs) are lipid kinases that mediate the phosphorylation of diacylglycerol (DAG) leading to the production of phosphatidic acid (PtdOH). To examine the role of phosphorylation on DGK-θ, we first identified the phosphorylated sites on endogenous DGK-θ from mouse brain and found four sites: S15, S17, which we refer to phosphomotif-1 sites, and S22 and S26 which we refer to as phosphomotif-2 sites. This study focused on the role of these phosphorylated sites on enzyme activity, membrane binding, thermal stability, and cellular half-life of DGK-θ. After generating a construct devoid of all non-catalytic phosphorylation sites (4A), we also generated other constructs to mimic phosphorylation of these residues by mutating them to glutamate (E). Our data demonstrate that an increase in membrane affinity requires the phosphorylation of all four endogenous sites as the phosphomimetic 4E but not other phosphomimietics. Furthermore, 4E also shows an increase in basal activity as well as an increase in the Syt1-induced activity compared to 4A. It is noteworthy that these phosphorylations had no effect on the thermal stability or cellular half-life of this enzyme. Interestingly, when only one phosphorylation domain (phosphomotif-1 or phosphomotif-2) contained phosphomimetics (S15E/S17E or S22E/S26E), the basal activity was also increased but membrane binding affinity was not increased. Furthermore, when only one residue in each domain mimicked an endogenous phosphorylated serine (S15E/S22E or S17E/S26E), the Syt1-induced activity as well as membrane binding affinity decreased relative to 4A. These results indicate that these endogenous phosphorylation sites contribute differentially to membrane binding and enzymatic activity.
Collapse
Affiliation(s)
- Millie X Barbernitz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren R Devine
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physiology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Potrich C, Pedrotti A, Pederzolli C, Lunelli L. Functional surfaces for exosomes capturing and exosomal microRNAs analysis. Colloids Surf B Biointerfaces 2024; 233:113627. [PMID: 37948834 DOI: 10.1016/j.colsurfb.2023.113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Exosomes are small extracellular vesicles well-studied both as cell signaling elements and as source of highly informative biomarkers, in particular microRNAs. Standard techniques for exosome isolation are in general scarcely efficient and give low purity vesicles. New techniques combining microfluidics with suitable functionalized surfaces could overcome these disadvantages. Here, different functional surfaces aimed at exosomes capture are developed thank to the functionalization of silicon oxide substrates. Charged surfaces, both positive and negative, neutral and immunoaffinity surfaces are characterized and tested in functional assays with both exosome mimicking vesicles and exosomes purified from cell supernatants. The different surfaces showed promising properties, in particular the negatively-charged surface could capture more than 4 × 108 exosomes per square centimeter. The captured exosomes could be recovered and their biomarker cargo analyzed. Exosomal microRNAs were successfully analyzed with RT-PCR, confirming the good performances of the negatively-charged surface. The best-performing functionalization could be easily moved to microdevice surfaces for developing modular microfluidic systems for on-chip isolation of exosomes, to be integrated in simple and fast biosensors aimed at biomarker analysis both in clinical settings and in research.
Collapse
Affiliation(s)
- Cristina Potrich
- FBK-Fondazione Bruno Kessler, Center for Sensors and Devices, via Sommarive, 18, I-38123, Trento, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via alla Cascata 56/C, I-38123, Trento, Italy.
| | - Anna Pedrotti
- FBK-Fondazione Bruno Kessler, Center for Sensors and Devices, via Sommarive, 18, I-38123, Trento, Italy
| | - Cecilia Pederzolli
- FBK-Fondazione Bruno Kessler, Center for Sensors and Devices, via Sommarive, 18, I-38123, Trento, Italy
| | - Lorenzo Lunelli
- FBK-Fondazione Bruno Kessler, Center for Sensors and Devices, via Sommarive, 18, I-38123, Trento, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via alla Cascata 56/C, I-38123, Trento, Italy
| |
Collapse
|
5
|
Löffler PMG, Risgaard NA, Svendsen BL, Jepsen KA, Rabe A, Vogel S. Label-free observation of DNA-encoded liposome fusion by surface plasmon resonance. Chem Commun (Camb) 2023; 59:10548-10551. [PMID: 37566388 DOI: 10.1039/d3cc02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Assembly and fusion between different populations of lipid nanoparticles was mediated by membrane-anchored lipidated nucleic acid (LiNA) strands and observed using surface plasmon resonance (SPR) as a label-free real-time assay. Irreversible membrane fusion was distinguished from reversible assembly by enzymatical cleavage of dsDNA tethers in situ. The assay enables user-friendly monitoring and application of membrane fusion in the context of liposomal drug delivery or synthetic biology.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Nikolaj A Risgaard
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Bettina L Svendsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Katrine A Jepsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Alexander Rabe
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Stefan Vogel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| |
Collapse
|
6
|
Rončević T, Maleš M, Sonavane Y, Guida F, Pacor S, Tossi A, Zoranić L. Relating Molecular Dynamics Simulations to Functional Activity for Gly-Rich Membranolytic Helical Kiadin Peptides. Pharmaceutics 2023; 15:pharmaceutics15051433. [PMID: 37242675 DOI: 10.3390/pharmaceutics15051433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Kiadins are in silico designed peptides with a strong similarity to diPGLa-H, a tandem sequence of PGLa-H (KIAKVALKAL) and with single, double or quadruple glycine substitutions. They were found to show high variability in their activity and selectivity against Gram-negative and Gram-positive bacteria, as well as cytotoxicity against host cells, which are influenced by the number and placing of glycine residues along the sequence. The conformational flexibility introduced by these substitutions contributes differently peptide structuring and to their interactions with the model membranes, as observed by molecular dynamics simulations. We relate these results to experimentally determined data on the structure of kiadins and their interactions with liposomes having a phospholipid membrane composition similar to simulation membrane models, as well as to their antibacterial and cytotoxic activities, and also discuss the challenges in interpreting these multiscale experiments and understanding why the presence of glycine residues in the sequence affected the antibacterial potency and toxicity towards host cells in a different manner.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Matko Maleš
- Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Yogesh Sonavane
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Filomena Guida
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| |
Collapse
|
7
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
9
|
Omersa N, Aden S, Kisovec M, Podobnik M, Anderluh G. Design of Protein Logic Gate System Operating on Lipid Membranes. ACS Synth Biol 2020; 9:316-328. [PMID: 31995709 PMCID: PMC7308068 DOI: 10.1021/acssynbio.9b00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Lipid membranes are becoming increasingly popular in synthetic biology due to their biophysical properties and crucial role in communication between different compartments. Several alluring protein-membrane sensors have already been developed, whereas protein logic gates designs on membrane-embedded proteins are very limited. Here we demonstrate the construction of a two-level protein-membrane logic gate with an OR-AND logic. The system consists of an engineered pH-dependent pore-forming protein listeriolysin O and its DARPin-based inhibitor, conjugated to a lipid vesicle membrane. The gate responds to low pH and removal of the inhibitor from the membrane either by switching to a reducing environment, protease cleavage, or any other signal depending on the conjugation chemistry used for inhibitor attachment to the membrane. This unique protein logic gate vesicle system advances generic sensing and actuator platforms used in synthetic biology and could be utilized in drug delivery.
Collapse
Affiliation(s)
- Neža Omersa
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
- Biomedicine
Doctoral Program, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Saša Aden
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
- Biomedicine
Doctoral Program, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
10
|
Kari OK, Ndika J, Parkkila P, Louna A, Lajunen T, Puustinen A, Viitala T, Alenius H, Urtti A. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. NANOSCALE 2020; 12:1728-1741. [PMID: 31894806 DOI: 10.1039/c9nr08186k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methodological constraints have limited our ability to study protein corona formation, slowing nanomedicine development and their successful translation into the clinic. We determined hard and soft corona structural properties along with the corresponding proteomic compositions on liposomes in a label-free workflow: surface plasmon resonance and a custom biosensor for in situ structure determination on liposomes and corona separation, and proteomics using sensitive nanoliquid chromatography tandem mass spectrometry with open-source bioinformatics platforms. Undiluted human plasma under dynamic flow conditions was used for in vivo relevance. Proof-of-concept is presented with a regular liposome formulation and two light-triggered indocyanine green (ICG) liposome formulations in preclinical development. We observed formulation-dependent differences in corona structure (thickness, protein-to-lipid ratio, and surface mass density) and protein enrichment. Liposomal lipids induced the enrichment of stealth-mediating apolipoproteins in the hard coronas regardless of pegylation, and their preferential enrichment in the soft corona of the pegylated liposome formulation with ICG was observed. This suggests that the soft corona of loosely interacting proteins contributes to the stealth properties as a component of the biological identity modulated by nanomaterial surface properties. The workflow addresses significant methodological gaps in biocorona research by providing truly complementary hard and soft corona compositions with corresponding in situ structural parameters for the first time. It has been designed into a convenient and easily reproducible single-experiment format suited for preclinical development of lipid nanomedicines.
Collapse
Affiliation(s)
- Otto K Kari
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marson D, Guida F, Şologan M, Boccardo S, Pengo P, Perissinotto F, Iacuzzi V, Pellizzoni E, Polizzi S, Casalis L, Pasquato L, Pacor S, Tossi A, Posocco P. Mixed Fluorinated/Hydrogenated Self-Assembled Monolayer-Protected Gold Nanoparticles: In Silico and In Vitro Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900323. [PMID: 30941901 DOI: 10.1002/smll.201900323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Indexed: 05/23/2023]
Abstract
Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.
Collapse
Affiliation(s)
- Domenico Marson
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Filomena Guida
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Maria Şologan
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Silvia Boccardo
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Fabio Perissinotto
- NanoInnovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Basovizza, Italy
| | - Valentina Iacuzzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Pellizzoni
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Stefano Polizzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University, 30172, Venezia, Italy
- Centro di Microscopia Elettronica "G. Stevanato,", 30172, Venezia-Mestre, Italy
| | - Loredana Casalis
- NanoInnovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Basovizza, Italy
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
12
|
Membrane-active antimicrobial peptide identified in Rana arvalis by targeted DNA sequencing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:651-659. [DOI: 10.1016/j.bbamem.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
13
|
Šakanovič A, Hodnik V, Anderluh G. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes. Methods Mol Biol 2019; 2003:53-70. [PMID: 31218613 DOI: 10.1007/978-1-4939-9512-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipids or lipid membranes. In most of the approaches a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here we provide an overview of SPR in protein-lipid and protein-membrane interactions, different approaches described in the literature and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
Affiliation(s)
- Aleksandra Šakanovič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Pacor S, Guida F, Xhindoli D, Benincasa M, Gennaro R, Tossi A. Effect of targeted minimal sequence variations on the structure and biological activities of the human cathelicidin LL‐37. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sabrina Pacor
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Filomena Guida
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Daniela Xhindoli
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Monica Benincasa
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Renato Gennaro
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Alessandro Tossi
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| |
Collapse
|
15
|
Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8983-8993. [PMID: 29983071 DOI: 10.1021/acs.langmuir.8b02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.
Collapse
Affiliation(s)
- Valerija Vezočnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Simona Sitar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | | | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Ksenija Kogej
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , Ljubljana 1000 , Slovenia
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ema Žagar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| |
Collapse
|
16
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
17
|
Sakamoto Y, Kikuchi K, Umeda K, Nakanishi H. Effects of various spacers between biotin and the phospholipid headgroup on immobilization and sedimentation of biotinylated phospholipid-containing liposomes facilitated by avidin-biotin interactions. J Biochem 2017; 162:221-226. [PMID: 28444248 DOI: 10.1093/jb/mvx016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 11/13/2022] Open
Abstract
Immobilization and sedimentation of liposomes (lipid vesicles) are used in liposome-protein binding assays, facilitated by avidin/streptavidin/NeutrAvidin and biotinylated phospholipid-containing liposomes. Here, we examined the effects of three spacers [six-carbon (X), polyethylene glycol (PEG) 180 (molecular weight 180) and PEG2000 (molecular weight 2,000)] between biotin and the phospholipid headgroup on the immobilization and sedimentation of small unilamellar liposomes/vesicles (SUVs). PEG180 and PEG2000 showed more efficient immobilization of biotinylated SUVs on NeutrAvidin-coated plates than X, but X and PEG180 showed more efficient sedimentation of biotinylated SUVs upon NeutrAvidin addition than PEG2000. Thus, the most appropriate spacers differed between immobilization and sedimentation. A spacer for biotinylated SUVs must be selected according to the particular liposome-protein binding assays examined.
Collapse
Affiliation(s)
- Yasuhisa Sakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Koji Kikuchi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Kazuaki Umeda
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| |
Collapse
|
18
|
Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:749-771. [PMID: 28865004 PMCID: PMC5693983 DOI: 10.1007/s00249-017-1250-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 10/27/2022]
Abstract
Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.
Collapse
|
19
|
Wallner J, Lhota G, Schosserer M, Vorauer-Uhl K. An approach for liposome immobilization using sterically stabilized micelles (SSMs) as a precursor for bio-layer interferometry-based interaction studies. Colloids Surf B Biointerfaces 2017; 154:186-194. [DOI: 10.1016/j.colsurfb.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
20
|
Formation of the layer of influenza A virus M1 matrix protein on lipid membranes at pH 7.0. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1644-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance. Sci Rep 2017; 7:45647. [PMID: 28358389 PMCID: PMC5372468 DOI: 10.1038/srep45647] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
Understanding the interplay between molecules and lipid membranes is fundamental when studying cellular and biotechnological phenomena. Partition between aqueous media and lipid membranes is key to the mechanism of action of many biomolecules and drugs. Quantifying membrane partition, through adequate and robust parameters, is thus essential. Surface Plasmon Resonance (SPR) is a powerful technique for studying 1:1 stoichiometric interactions but has limited application to lipid membrane partition data. We have developed and applied a novel mathematical model for SPR data treatment that enables determination of kinetic and equilibrium partition constants. The method uses two complementary fitting models for association and dissociation sensorgram data. The SPR partition data obtained for the antibody fragment F63, the HIV fusion inhibitor enfuvirtide, and the endogenous drug kyotorphin towards POPC membranes were compared against data from independent techniques. The comprehensive kinetic and partition models were applied to the membrane interaction data of HRC4, a measles virus entry inhibitor peptide, revealing its increased affinity for, and retention in, cholesterol-rich membranes. Overall, our work extends the application of SPR beyond the realm of 1:1 stoichiometric ligand-receptor binding into a new and immense field of applications: the interaction of solutes such as biomolecules and drugs with lipids.
Collapse
|
22
|
New aspects of the structure and mode of action of the human cathelicidin LL-37 revealed by the intrinsic probe p-cyanophenylalanine. Biochem J 2015; 465:443-57. [PMID: 25378136 DOI: 10.1042/bj20141016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human cathelicidin peptide LL-37 is an important effector of our innate immune system and contributes to host defence with direct antimicrobial activity and immunomodulatory properties, and by stimulating wound healing. Its sequence has evolved to confer specific structural characteristics that strongly affect these biological activities, and differentiate it from orthologues of other primate species. In the present paper we report a detailed study of the folding and self-assembly of this peptide in comparison with rhesus monkey peptide RL-37, taking into account the different stages of its trajectory from bulk solution to contact with, and insertion into, biological membranes. Phenylalanine residues in different positions throughout the native sequences of LL-37 and RL-37 were systematically replaced with the non-invasive fluorescent and IR probe p-cyanophenylalanine. Steady-state and time-resolved fluorescence studies showed that LL-37, in contrast to RL-37, forms oligomers with a loose hydrophobic core in physiological solutions, which persist in the presence of biological membranes. Fourier transform IR and surface plasmon resonance studies also indicated different modes of interaction for LL-37 and RL-37 with anionic and neutral membranes. This correlated with a distinctly different mode of bacterial membrane permeabilization, as determined using a flow cytometric method involving impermeant fluorescent dyes linked to polymers of defined sizes.
Collapse
|
23
|
Rauscher A, Frindel M, Maurel C, Maillasson M, Le Saëc P, Rajerison H, Gestin JF, Barbet J, Faivre-Chauvet A, Mougin-Degraef M. Influence of pegylation and hapten location at the surface of radiolabelled liposomes on tumour immunotargeting using bispecific antibody. Nucl Med Biol 2014; 41 Suppl:e66-74. [DOI: 10.1016/j.nucmedbio.2013.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 11/25/2022]
|
24
|
Wittenberg NJ, Wootla B, Jordan LR, Denic A, Warrington AE, Oh SH, Rodriguez M. Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Expert Rev Neurother 2014; 14:449-63. [PMID: 24625008 PMCID: PMC3989105 DOI: 10.1586/14737175.2014.896199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Characterization of binding kinetics and affinity between a potential drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment.
Collapse
Affiliation(s)
- Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Luke R. Jordan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | | | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Moses Rodriguez
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
25
|
Czogalla A, Grzybek M, Jones W, Coskun U. Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1049-59. [PMID: 24374254 DOI: 10.1016/j.bbalip.2013.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
The cell membrane serves, at the same time, both as a barrier that segregates as well as a functional layer that facilitates selective communication. It is characterized as much by the complexity of its components as by the myriad of signaling process that it supports. And, herein lays the problems in its study and understanding of its behavior - it has a complex and dynamic nature that is further entangled by the fact that many events are both temporal and transient in their nature. Model membrane systems that bypass cellular complexity and compositional diversity have tremendously accelerated our understanding of the mechanisms and biological consequences of lipid-lipid and protein-lipid interactions. Concurrently, in some cases, the validity and applicability of model membrane systems are tarnished by inherent methodical limitations as well as undefined quality criteria. In this review we introduce membrane model systems widely used to study protein-lipid interactions in the context of key parameters of the membrane that govern lipid availability for peripheral membrane proteins. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany.
| | - Michał Grzybek
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany
| | - Walis Jones
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany
| | - Unal Coskun
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
26
|
Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 2013; 95:1855-64. [DOI: 10.1016/j.biochi.2013.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/16/2022]
|
27
|
Bera LK, Ong KS, Wong ZZ, Fu Z, Nallani M, Shea SO. Trapping of vesicles on patterned surfaces by physisorption for potential biosensing applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:6563-7. [PMID: 23367433 DOI: 10.1109/embc.2012.6347498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pre-defined selective positioning of a controlled number of vesicles on a rigid substrate is crucial in many potential applications such as diagnostics, biosensors, lab-on-a chip, microanalyses and reaction chambers. In this paper, the vesicles made up of block copolymer using Poly [-(2-methyloxazoline) -poly- (dimethylsiloxane)-poly- (2-methyloxazoline)] (ABA) with dimensions of 100-200 nm are trapped by physisorption on hydrophilic surfaces. We discuss the protocols established for vesicle trapping. The optimum conditions obtained for physisorption is 15 minutes incubation followed by one cycle of DI water rinse. Trapping of 1-10 vesicles in lobe shape micro-wells fabricated by photo lithography using photoresist on UltraStick(™) slides was demonstrated. To overcome the issue of amalgamation of emitted light from optically sensitive photoresist and fluorescently tagged vesicles, an alternative approach of Si/SiO(2) microwell array coupled with APTES (3-AminoPropylTriEthoxySilane) treated bottom surfaces was developed.
Collapse
Affiliation(s)
- L K Bera
- Institute of Materials Research and Engineering, Agency forScience, Technology and Research, 3 Research Link, Singapore
| | | | | | | | | | | |
Collapse
|
28
|
Popovic M, Zlatev V, Hodnik V, Anderluh G, Felli IC, Pongor S, Pintar A. Flexibility of the PDZ-binding motif in the micelle-bound form of Jagged-1 cytoplasmic tail. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1706-16. [PMID: 22465068 DOI: 10.1016/j.bbamem.2012.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/07/2023]
Abstract
Human Jagged-1, one of the ligands of Notch receptors, is a transmembrane protein composed of a large extracellular region and a 125-residue cytoplasmic tail which bears a C-terminal PDZ recognition motif. To investigate the interaction between Jagged-1 cytoplasmic tail and the inner leaflet of the plasma membrane we determined, by solution NMR, the secondary structure and dynamics of the recombinant protein corresponding to the intracellular region of Jagged-1, J1_tmic, bound to negatively charged lysophospholipid micelles. NMR showed that the PDZ binding motif is preceded by four alpha-helical segments and that, despite the extensive interaction between J1_tmic and the micelle, the PDZ binding motif remains highly flexible. Binding of J1_tmic to negatively charged, but not to zwitterionic vesicles, was confirmed by surface plasmon resonance. To study the PDZ binding region in more detail, we prepared a peptide corresponding to the last 24 residues of Jagged-1, J1C24, and different phosphorylated variants of it. J1C24 displays a marked helical propensity and undergoes a coil-helix transition in the presence of negatively charged, but not zwitterionic, lysophospholipid micelles. Phosphorylation at different positions drastically decreases the helical propensity of the peptides and abolishes the coil-helix transition triggered by lysophospholipid micelles. We propose that phosphorylation of residues upstream of the PDZ binding motif may shift the equilibrium from an ordered, membrane-bound, interfacial form of Jagged-1 C-terminal region to a more disordered form with an increased accessibility of the PDZ recognition motif, thus playing an indirect role in the interaction between Jagged-1 and the PDZ-containing target protein.
Collapse
Affiliation(s)
- Matija Popovic
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park Padriciano 99, 1-34149 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Olaru A, Gheorghiu M, David S, Polonschii C, Gheorghiu E. Quality assessment of SPR sensor chips; case study on L1 chips. Biosens Bioelectron 2013; 45:77-81. [PMID: 23455045 DOI: 10.1016/j.bios.2013.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Surface quality of the Surface Plasmon Resonance (SPR) chips is a major limiting issue in most SPR analyses, even more for supported lipid membranes experiments, where both the organization of the lipid matrix and the subsequent incorporation of the target molecule depend on the surface quality. A novel quantitative method to characterize the quality of SPR sensors chips is described for L1 chips subject to formation of lipid films, injection of membrane disrupting compounds, followed by appropriate regeneration procedures. The method consists in analysis of the SPR reflectivity curves for several standard solutions (e.g. PBS, HEPES or deionized water). This analysis reveals the decline of sensor surface as a function of the number of experimental cycles (consisting in biosensing assay and regeneration step) and enables active control of surface regeneration for enhanced reproducibility. We demonstrate that quantitative evaluation of the changes in reflectivity curves (shape of the SPR dip) and of the slope of the calibration curve provides a rapid and effective procedure for surface quality assessment. Whereas the method was tested on L1 SPR sensors chips, we stress on its amenability to assess the quality of other types of SPR chips, as well.
Collapse
Affiliation(s)
- Andreea Olaru
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest 6, Romania
| | | | | | | | | |
Collapse
|
30
|
Ward KE, Bhardwaj N, Vora M, Chalfant CE, Lu H, Stahelin RV. The molecular basis of ceramide-1-phosphate recognition by C2 domains. J Lipid Res 2013; 54:636-648. [PMID: 23277511 PMCID: PMC3617939 DOI: 10.1194/jlr.m031088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/29/2012] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A₂ (cPLA₂α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain β-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA₂α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg⁵⁹, Arg⁶¹, and His⁶² (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN
| | - Nitin Bhardwaj
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Mohsin Vora
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| | - Charles E Chalfant
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, the Massey Cancer Center, and Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| |
Collapse
|
31
|
Surface plasmon resonance for measuring interactions of proteins with lipid membranes. Methods Mol Biol 2013; 974:23-36. [PMID: 23404270 DOI: 10.1007/978-1-62703-275-9_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipid membranes. In most of the approaches, a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here, we provide an overview of SPR in protein-membrane interactions, different approaches described in the literature, and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
|
32
|
|
33
|
Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. SENSORS 2012; 12:16420-32. [PMID: 23443386 PMCID: PMC3571790 DOI: 10.3390/s121216420] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/30/2012] [Accepted: 11/22/2012] [Indexed: 01/18/2023]
Abstract
Great interest is currently being devoted to the development of nanoparticles (NPs) for biomedical purposes, designed to improve the pharmacokinetic profile of their cargos (either imaging probes or drugs) and to enhance the specific targeting at the disease site. Recent works suggest that Surface Plasmon Resonance (SPR), widely used for the analysis of biomolecular interactions, represents a technique of choice for rapid and quantitative analyses of the interaction between NPs—functionalized with specific ligands—and their putative biological targets. Moreover, SPR can provide important details on the formation and the role of the protein “corona”, i.e., the protein layer which coats NPs once they come into contact with biological fluids. These novel applications of SPR sensors may be very useful to characterize, screen and develop nanodevices for biomedical purposes.
Collapse
|
34
|
The membrane-proximal region (MPR) of herpes simplex virus gB regulates association of the fusion loops with lipid membranes. mBio 2012; 3:mBio.00429-12. [PMID: 23170000 PMCID: PMC3509434 DOI: 10.1128/mbio.00429-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycoprotein B (gB), gD, and gH/gL constitute the fusion machinery of herpes simplex virus (HSV). Prior studies indicated that fusion occurs in a stepwise fashion whereby the gD/receptor complex activates the entire process, while gH/gL regulates the fusion reaction carried out by gB. Trimeric gB is a class III fusion protein. Its ectodomain of 773 amino acids contains a membrane-proximal region (MPR) (residues 731 to 773) and two fusion loops (FLs) per protomer. We hypothesized that the highly hydrophobic MPR interacts with the FLs, thereby masking them on virions until fusion begins. To test this hypothesis, we made a series of deletion, truncation, and point mutants of the gB MPR. Although the full-length deletion mutants were expressed in transfected cells, they were not transported to the cell surface, suggesting that removal of even small stretches of the MPR was highly detrimental to gB folding. To circumvent this limitation, we used a baculovirus expression system to generate four soluble proteins, each lacking the transmembrane region and cytoplasmic tail. All retained the FLs and decreasing portions of the MPR [gB(773t) (gB truncated at amino acid 773), gB(759t), gB(749t), and gB(739t)]. Despite the presence of the FLs, all were compromised in their ability to bind liposomes compared to the control, gB(730t), which lacks the MPR. We conclude that residues 731 to 739 are sufficient to mask the FLs, thereby preventing liposome association. Importantly, mutation of two aromatic residues (F732 and F738) to alanine restored the ability of gB(739t) to bind liposomes. Our data suggest that the MPR is important for modulating the association of gB FLs with target membranes. To successfully cause disease, a virus must infect host cells. Viral infection is a highly regulated, multistep process. For herpesviruses, genetic material transfers from the virus to the target cell through fusion of the viral and host cell lipid membranes. Here, we provide evidence that the ability of the herpes simplex virus (HSV) glycoprotein B (gB) fusion protein to interact with the host membrane is regulated by its membrane-proximal region (MPR), which serves to cover or shield its lipid-associating moieties (fusion loops). This in turn prevents the premature binding of gB with host cells and provides a level of regulation to the fusion process. These findings provide important insight into the complex regulatory steps required for successful herpesvirus infection.
Collapse
|
35
|
Mattiazzi M, Sun Y, Wolinski H, Bavdek A, Petan T, Anderluh G, Kohlwein SD, Drubin DG, Križaj I, Petrovič U. A neurotoxic phospholipase A2 impairs yeast amphiphysin activity and reduces endocytosis. PLoS One 2012; 7:e40931. [PMID: 22844417 PMCID: PMC3402474 DOI: 10.1371/journal.pone.0040931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Presynaptically neurotoxic phospholipases A(2) inhibit synaptic vesicle recycling through endocytosis. PRINCIPAL FINDINGS Here we provide insight into the action of a presynaptically neurotoxic phospholipase A(2) ammodytoxin A (AtxA) on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin. CONCLUSIONS We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein-protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A(2) work can open new ways to regulate endocytosis.
Collapse
Affiliation(s)
- Mojca Mattiazzi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andrej Bavdek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sepp D. Kohlwein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
36
|
Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 2012; 20:1498-507. [PMID: 22819216 PMCID: PMC3526787 DOI: 10.1016/j.str.2012.06.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 11/23/2022]
Abstract
Pore-forming proteins insert from solution into membranes to create lesions, undergoing a structural rearrangement often accompanied by oligomerization. Lysenin, a pore-forming toxin from the earthworm Eisenia fetida, specifically interacts with sphingomyelin (SM) and may confer innate immunity against parasites by attacking their membranes to form pores. SM has important roles in cell membranes and lysenin is a popular SM-labeling reagent. The structure of lysenin suggests common ancestry with other pore-forming proteins from a diverse set of eukaryotes and prokaryotes. The complex with SM shows the mode of its recognition by a protein in which both the phosphocholine headgroup and one acyl tail are specifically bound. Lipid interaction studies and assays using viable target cells confirm the functional reliance of lysenin on this form of SM recognition.
Collapse
|
37
|
Wittenberg NJ, Im H, Xu X, Wootla B, Watzlawik J, Warrington AE, Rodriguez M, Oh SH. High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal Chem 2012; 84:6031-9. [PMID: 22762372 PMCID: PMC3417152 DOI: 10.1021/ac300819a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis is a progressive neurological disorder that results in the degradation of myelin sheaths that insulate axons in the central nervous system. Therefore promotion of myelin repair is a major thrust of multiple sclerosis treatment research. Two mouse monoclonal natural autoantibodies, O1 and O4, promote myelin repair in several mouse models of multiple sclerosis. Natural autoantibodies are generally polyreactive and predominantly of the IgM isotype. The prevailing paradigm is that because they are polyreactive, these antibodies bind antigens with low affinities. Despite their wide use in neuroscience and glial cell research, however, the affinities and kinetic constants of O1 and O4 antibodies have not been measured to date. In this work, we developed a membrane biosensing platform based on surface plasmon resonance in gold nanohole arrays with a series of surface modification techniques to form myelin-mimicking lipid bilayer membranes to measure both the association and dissociation rate constants for O1 and O4 antibodies binding to their myelin lipid antigens. The ratio of rate constants shows that O1 and O4 bind to galactocerebroside and sulfated galactocerebroside, respectively, with unusually small apparent dissociation constants (K(D) ≈ 0.9 nM) for natural autoantibodies. This is approximately one to 2 orders of magnitude lower than typically observed for the highest affinity natural autoantibodies. We propose that the unusually high affinity of O1 and O4 to their targets in myelin contributes to the mechanism by which they signal oligodendrocytes and induce central nervous system repair.
Collapse
Affiliation(s)
- Nathan J. Wittenberg
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Hyungsoon Im
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Xiaohua Xu
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Bharath Wootla
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Jens Watzlawik
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Arthur E. Warrington
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Moses Rodriguez
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Sang-Hyun Oh
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
38
|
Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJC, Anderluh G. pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 2011; 279:126-41. [PMID: 22023160 DOI: 10.1111/j.1742-4658.2011.08405.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Listeriolysin O (LLO) is the major factor implicated in the escape of Listeria monocytogenes from the phagolysosome. It is the only representative of cholesterol-dependent cytolysins that exhibits pH-dependent activity. Despite intense studies of LLO pH-dependence, this feature of the toxin still remains incompletely explained. Here we used fluorescence and CD spectroscopy to show that the structure of LLO is not detectably affected by pH at room temperature. We observed slightly altered haemolytic and permeabilizing activities at different pH values, which we relate to reduced binding of LLO to the lipid membranes. However, alkaline pH and elevated temperatures caused rapid denaturation of LLO. Aggregates of the toxin were able to bind Congo red and Thioflavin T dyes and were visible under transmission electron microscopy as large, amorphous, micrometer-sized assemblies. The aggregates had the biophysical properties of amyloid. Analytical ultracentrifugation indicated dimerization of the protein in acidic conditions, which protects the protein against premature denaturation in the phagolysosome, where toxin activity takes place. We therefore suggest that LLO spontaneously aggregates at the neutral pH found in the host cell cytosol and that this is a major mechanism of LLO inactivation.
Collapse
Affiliation(s)
- Andrej Bavdek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
39
|
Sánchez-Martín MJ, Urbán P, Pujol M, Haro I, Alsina MA, Busquets MA. Biophysical Investigations of GBV-C E1 Peptides as Potential Inhibitors of HIV-1 Fusion Peptide. Chemphyschem 2011; 12:2816-22. [DOI: 10.1002/cphc.201100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 01/04/2023]
|
40
|
Cale EM, Bazick HS, Rianprakaisang TA, Alam SM, Letvin NL. Mutations in a dominant Nef epitope of simian immunodeficiency virus diminish TCR:epitope peptide affinity but not epitope peptide:MHC class I binding. THE JOURNAL OF IMMUNOLOGY 2011; 187:3300-13. [PMID: 21841125 DOI: 10.4049/jimmunol.1101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.
Collapse
Affiliation(s)
- Evan M Cale
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
41
|
Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:368535. [PMID: 21490749 PMCID: PMC3066559 DOI: 10.1155/2011/368535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
Abstract
Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex) and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR). Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.
Collapse
|
42
|
Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:47-54. [DOI: 10.1016/j.bbamem.2010.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/17/2010] [Accepted: 08/24/2010] [Indexed: 01/23/2023]
|
43
|
Hou X, Small DH, Aguilar MI. Surface plasmon resonance spectroscopy: a new lead in studying the membrane binding of amyloidogenic transthyretin. Methods Mol Biol 2011; 752:215-228. [PMID: 21713640 DOI: 10.1007/978-1-60327-223-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface plasmon resonance (SPR) employs the optical principle of SPR to measure changes in mass on a sensor chip surface in real time. Surface chemistry has been developed which enables the immoblization of lipid bilayers and determination of protein-membrane interactions in real time. In the last decade, the plasma membrane has been demonstrated to play an important role in amyloidogenesis and cytotoxicity induced by amyloidogenic proteins. SPR provides an ideal way to study the membrane binding of amyloidogenic proteins. In this chapter, we describe the application of SPR to the study of amyloidogenic transthyretin binding to the plasma membrane and artificial lipid bilayers.
Collapse
Affiliation(s)
- Xu Hou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
44
|
Thompson AK, Singh H, Dalgleish DG. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11962-11968. [PMID: 20964432 DOI: 10.1021/jf102580r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.
Collapse
Affiliation(s)
- Abby K Thompson
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
45
|
Selective toxin–lipid membrane interactions of natural, haemolytic Scyphozoan toxins analyzed by surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1944-52. [DOI: 10.1016/j.bbamem.2010.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 11/18/2022]
|
46
|
Hearty S, Conroy PJ, Ayyar BV, Byrne B, O'Kennedy R. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev Vaccines 2010; 9:645-64. [PMID: 20518719 DOI: 10.1586/erv.10.52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lack of a clear correlation between design and protection continues to present a barrier to progress in vaccine research. In this article, we outline how surface plasmon resonance (SPR) biosensors are emerging as tools to help resolve some of the key biophysical determinants of protection and, thereby, facilitate more rational vaccine design campaigns. SPR technology has contributed significantly to our understanding of the complex biophysical determinants of HIV neutralization and offers a platform for preclinical evaluation of vaccine candidates. In particular, the concept of reverse-engineering HIV vaccine targets based on known broadly neutralizing antibody modalities is explored and extended to include other infectious diseases, such as malaria and influenza, and other diseases such as cancer. The analytical capacity afforded by SPR includes serum screening to monitor immune responses and highly efficient quality-control surveillance measures. These are discussed alongside key technological advances, such as developments in sample throughput, and a perspective predicting continued growth and diversification of the role of SPR in vaccine development is proposed.
Collapse
Affiliation(s)
- Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
47
|
Lundquist A, Hansen SB, Nordström H, Danielson UH, Edwards K. Biotinylated lipid bilayer disks as model membranes for biosensor analyses. Anal Biochem 2010; 405:153-9. [PMID: 20599649 DOI: 10.1016/j.ab.2010.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 02/03/2023]
Abstract
The aim of this study was to investigate the potential of polyethylene glycol (PEG)-stabilized lipid bilayer disks as model membranes for surface plasmon resonance (SPR)-based biosensor analyses. Nanosized bilayer disks that included 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)(2000)] (DSPE-PEG(2000)-biotin) were prepared and structurally characterized by cryo-transmission electron microscopy (cryo-TEM) imaging. The biotinylated disks were immobilized via streptavidin to three different types of sensor chips (CM3, CM4, and CM5) varying in their degree of carboxymethylation and thickness of the dextran matrix. The bilayer disks were found to interact with and bind stably to the streptavidin-coated sensor surfaces. As a first step toward the use of these bilayer disks as model membranes in SPR-based studies of membrane proteins, initial investigations were carried out with cyclooxygenases 1 and 2 (COX 1 and COX 2). Bilayer disks were preincubated with the respective protein and thereafter allowed to interact with the sensor surface. The signal resulting from the interaction was, in both cases, significantly enhanced as compared with the signal obtained when disks alone were injected over the surface. The results of the study suggest that bilayer disks constitute a new and promising type of model membranes for SPR-based biosensor studies.
Collapse
Affiliation(s)
- Anna Lundquist
- Department of Physical and Analytical Chemistry, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
48
|
Abstract
Surface plasmon resonance has become one of the most important techniques for studying bimolecular interactions. Most of the researchers are using it to study protein-protein interactions, but in recent years membrane model systems have also become available and this makes it possible to study protein-membrane interactions as well. In this review chapter we describe possible ways to prepare lipid membrane surfaces on various sensor chips and some of the experimental considerations one has to take into account when performing such experiments.
Collapse
|
49
|
Hodnik V, Anderluh G. Capture of intact liposomes on biacore sensor chips for protein-membrane interaction studies. Methods Mol Biol 2010; 627:201-11. [PMID: 20217623 DOI: 10.1007/978-1-60761-670-2_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Qualitative and quantitative aspects of protein interactions with membranes may be studied by optical sensors. Biacore offers two dedicated chips for working with lipids and membranes: the L1 and HPA sensor chips. The L1 chip is the most frequently used in protein-membrane interaction studies and it allows the capture of intact liposomes. This chapter describes the protocol for immobilization of liposomes on L1 sensor chips and discusses some of the experimental considerations. An alternative approach that utilizes a streptavidin-coated sensor chip (SA sensor chip) is described for cases when it is not possible to use an L1 chip.
Collapse
Affiliation(s)
- Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
50
|
Bakrac B, Kladnik A, Macek P, McHaffie G, Werner A, Lakey JH, Anderluh G. A toxin-based probe reveals cytoplasmic exposure of Golgi sphingomyelin. J Biol Chem 2010; 285:22186-95. [PMID: 20463009 DOI: 10.1074/jbc.m110.105122] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although sphingomyelin is an important cellular lipid, its subcellular distribution is not precisely known. Here we use a sea anemone cytolysin, equinatoxin II (EqtII), which specifically binds sphingomyelin, as a new marker to detect cellular sphingomyelin. A purified fusion protein composed of EqtII and green fluorescent protein (EqtII-GFP) binds to the SM rich apical membrane of Madin-Darby canine kidney (MDCK) II cells when added exogenously, but not to the SM-free basolateral membrane. When expressed intracellularly within MDCK II cells, EqtII-GFP colocalizes with markers for Golgi apparatus and not with those for nucleus, mitochondria, endoplasmic reticulum or plasma membrane. Colocalization with the Golgi apparatus was confirmed by also using NIH 3T3 fibroblasts. Moreover, EqtII-GFP was enriched in cis-Golgi compartments isolated by gradient ultracentrifugation. The data reveal that EqtII-GFP is a sensitive probe for membrane sphingomyelin, which provides new information on cytosolic exposure, essential to understand its diverse physiological roles.
Collapse
Affiliation(s)
- Biserka Bakrac
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna Pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|