1
|
Zhao M, Mu Y, Shi Z, Wang X, Liu W, Zhou Y, Yi H, Zhang L, Zhang Z. Effects of different lactic acid bacteria on the physicochemical properties, functional characteristics and metabolic characteristics of fermented hawthorn juice. Food Chem 2025; 470:142672. [PMID: 39742598 DOI: 10.1016/j.foodchem.2024.142672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/03/2025]
Abstract
Lactic acid bacteria (LAB) fermentation enhances the flavour and functionality of juice substrates; however, research on hawthorn juice is limited. We hypothesize that due to strain specificity, the changes in hawthorn juice after fermentation with different LAB may vary. After selecting LAB strains based on pH and sensory evaluation, the physicochemical properties and anti-inflammatory potential in a lipopolysaccharide-induced RAW 264.7 macrophage model were analysed in vitro. Non-targeted metabolomics revealed fermentation-driven metabolic changes. All strains exhibited increased total acidity and decreased reducing sugar and flavonoid contents. In particular, the Lactobacillus plantarum SC-1.3 and FWDG (strain preservation number) strains suppressed the pro-inflammatory cytokines interleukin-6 and tumour necrosis factor-α, with FWDG exhibiting the strongest effect. Moreover, fermentation resulted in the enrichment of bioactive metabolites, including prunetin and glycitein, which are unique to FWDG. The results provided a basis for the industrialization of hawthorn juice as a dietary product.
Collapse
Affiliation(s)
- Maozhen Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yunjuan Mu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Zhiping Shi
- Qingdao University Affiliated Women and Children's Hospital, Qingdao 266000, China
| | - Xueqi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Wenhao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yuhan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
2
|
Frolova LN, Kovaleva EL, Shelestova VV, Kuteynikov VY, Flisyuk EV, Pozharitskaya ON, Shikov AN. Comparison of Analytical Methods Used for Standardization of Triterpenoid Saponins in Herbal Monographs Included in the Russian and Other Pharmacopeias. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39971278 DOI: 10.1002/pca.3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Harmonization of methodological approaches to the analysis of herbal substances containing triterpenoid saponins, considered the largest group of phytochemicals, is essential for the pharmaceutical industry worldwide. OBJECTIVES This review aimed to perform a comparative analysis of the requirements for the standardization of herbal substances, herbal medicinal products (HMPs), and other herbal materials containing triterpenoid saponins in the pharmacopeial texts of the Russian Federation and the world's leading pharmacopeias. MATERIALS AND METHODS The review covers the data on the quantitative and qualitative analysis of herbal substances containing triterpenoid saponins, as presented in the State Register of Medicinal Products of Russia and the monographs of the world's leading pharmacopeias: the European Pharmacopeia, United States Pharmacopeia, British Pharmacopeia, Japanese Pharmacopeia, and the national pharmacopeias of the Eurasian Economic Union (EEU) Member States. RESULTS This review compares and discusses the analytical methods used for the standardization of Aesculus hippocastanum L. seeds, Aralia elata (Miq.) Seem roots, Glycyrrhiza spp. roots, Orthosiphon aristatus (Blume) Miq. leaves, and Polemonium caeruleum L. rhizomes with roots. The most common analytical methods used are (HP)TLC and (U)HPLC. The Russian Pharmacopeia also includes titrimetry and spectrophotometry. CONCLUSIONS The appropriate selection of a group of biologically active compounds for HMP standardization is still challenging. We believe that a rational approach to the standardization of herbal substances and HMPs should be based on the use of herbal substances with maximum extractability and specific pharmacological activity. The harmonized procedures and reference substances for the identification and assay of active metabolites in HMPs must be implemented at all stages of production control from herbal substances to finished dosage forms.
Collapse
Affiliation(s)
- Larisa N Frolova
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Elena L Kovaleva
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Valentina V Shelestova
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Vladislav Yu Kuteynikov
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Elena V Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Murmansk, Russia
| | - Alexander N Shikov
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| |
Collapse
|
3
|
Taveepanich S, Chayajarus K, Jittimanee J, Phusri N, Thongdee P, Sawatdee K, Kamsri P, Punkvang A, Suttisintong K, Pungpo P, Suwannaloet W, Thongrung R, Pangjit K. Iron chelating, antioxidant, and anti-inflammatory properties of brazilin from Caesalpinia sappan Linn. Heliyon 2024; 10:e38213. [PMID: 39397930 PMCID: PMC11470788 DOI: 10.1016/j.heliyon.2024.e38213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Background Iron overload and inflammation are severe conditions that can lead to various chronic diseases. However, the current iron chelator drugs have their limitations. The phytochemical compounds from herbals, such as brazilin, the major active compound in Caesalpinia sappan Linn., have significant therapeutic potential in various chronic diseases. Our study was designed to examine the effect of brazilin on iron chelating properties, antioxidant activity in hepatocytes, and anti-inflammatory potential in macrophages. Methods This study focused on the isolation, purification, and evaluation of brazilin, the principal bioactive constituent found in C. sappan wood. Brazilin was extracted via methanol maceration followed by column chromatography purification. The purified compound was characterized using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). The antioxidant potential of brazilin was assessed by in vitro assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzthiazolin-6-sulfonic acid (ABTS), and ferric-reducing antioxidant power (FRAP). Furthermore, its cellular antioxidant activity was evaluated using hydrogen peroxide-induced oxidative stress in the hepatocellular carcinoma cell line (Huh-7). The iron-chelating capacity of brazilin was determined spectrophotometrically, and Job's plot method was used to elucidated the stoichiometry of the iron-brazilin complex formation. The anti-inflammatory properties of brazilin were investigated in lipopolysaccharide (LPS)-stimulated macrophages (RAW 264.7). Nitric oxide (NO) inhibition was quantified using the Griess reagent, while the expression levels of pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were evaluated by RT-qPCR. Results The results demonstrated that brazilin exhibited potent antioxidant activity in vitro and hepatocytes in a concentration-dependent manner. It also showed anti-inflammatory activity, in which NO production was significantly reduced and IL-6 and TNF-α expression in LPS-induced macrophages were repressed. Furthermore, it can bind ferric and ferrous ions. Brazilin acts as a bidentate iron chelator that forms a complex with iron in a 2:1 ratio, and two water molecules are used as additional chelators in this complex. Conclusions Our findings have significant implications. Brazilin can potentially alleviate the harmful effects of iron-induced oxidative stress and inflammatory disorders.
Collapse
Affiliation(s)
- Somjintana Taveepanich
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kampanart Chayajarus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Jutharat Jittimanee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Naruedon Phusri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Khemmisara Sawatdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pornpan Pungpo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Wanwisa Suwannaloet
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Ruttiya Thongrung
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
4
|
Yin P, Qian H, Li S, Tang B, Wang J, Chen S, Ni G, Dong F, Li Y, Huang F, Zhang R, He H, Li B. Aralianudaside A, an unusual skeleton triterpenoid saponin with anti-airway inflammatory activity from Aralia elata. Nat Prod Res 2024; 38:1036-1043. [PMID: 37221665 DOI: 10.1080/14786419.2023.2214290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Aralianudaside A, a triterpene saponin with an unusual skeleton of pentacyclic triterpenoid, along with a new triterpene glycoside and six known compounds were obtained from the buds of Aralia elata. Their structures were determined through extensive spectral analysis, including HRESIMS, IR, 1D and 2D NMR, glycolysis and GC. All compounds were evaluated for anti-airway inflammatory activity in lipopolysaccharides (LPS)-induced airway epithelial cells (16HBE), compounds 1, 3, 5, 7 and 8 significantly decreased the expression of pro-inflammatory cytokines IL-1β and IL-4.
Collapse
Affiliation(s)
- Pengcheng Yin
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Haishan Qian
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shaohua Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Benqin Tang
- Department of Medical Science, Shunde Polytechnic, Foshan, China
| | - Juan Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuai Chen
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Guanghui Ni
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fawu Dong
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yanping Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Feng Huang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongping Zhang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Hongping He
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Baojing Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
He D, Zeng L, Chen P. Research progress in pharmacological effects of Aralia elata. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:616-626. [PMID: 37916310 PMCID: PMC10630058 DOI: 10.3724/zdxbyxb-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/24/2023] [Indexed: 10/08/2023]
Abstract
The traditional Chinese medicine Aralia elata (Miq.) Seem., also known as Aralia mandshurica, has the effect of "tonifying Qi and calming the mind, strengthening the essence and tonifying the kidneys, and dispelling wind and invigorating blood circulation". It is used in the treatment of neurasthenia, Yang deficiency and Qi deficiency, kidney Qi deficiency, spleen Yang deficiency, water-dampness stagnation, thirst, and bruises. Aralia elata saponins are the main components for the pharmacological effects. From the perspective of modern pharmacological science, Aralia elata has a wide range of effects, including anti-myocardial ischaemia and alleviation of secondary myocardium ischemic reperfusion injury by regulating ionic homeostasis, anti-tumor activity by inhibiting proliferation, promoting apoptosis and enhancing immunity, hypoglycemia and lipid lowering effects by regulating glucose and lipid metabolism, and hepato-protective, neuroprotective, anti-inflammatory/analgesic effects. The studies on pharmacological mechanisms of Aralia elata will be conducive to its development and application in the future. This article reviews the research progress of Aralia elata domestically and internationally in the last two decades and proposes new directions for further research.
Collapse
Affiliation(s)
- Dahong He
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Peng Chen
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
6
|
Lallo S, Hardianti B, Djabir YY, Ismail I, Indrisari M, Aswad M, Hertati A, Habibie H, Hayakawa Y. Piper retrofractum ameliorates imiquimod-induced skin inflammation via modulation of TLR4 axis and suppression of NF-κB activity. Heliyon 2023; 9:e20151. [PMID: 37809486 PMCID: PMC10559909 DOI: 10.1016/j.heliyon.2023.e20151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Chronic inflammation is a significant concern due to its association with various pathological conditions. As a result, extensive research has been conducted to identify new natural products that can effectively treat acute inflammation, which has the potential to inhibit the chronic inflammation. In our study, we aimed to identify Indonesian medicinal plants with the ability to inhibit proinflammatory agents, specifically targeting NF-κB, a crucial regulator of gene transcription involved in the production of proinflammatory proteins/cytokines. Through a series of identification processes, we found that Piper retrofractum (Javanese chili) extract demonstrated promising inhibitory effects on NF-κB and proinflammatory molecules. Further investigation was conducted using a variety of assays, including reporter assay, viability test, ELISA, and Western blotting. The results revealed that the extract significantly reduced LPS, NO, COX-2, IL-6, IL-1, and NF-κB through the TLR4 axis. Notably, Piper retrofractum extract was found to enhance the survival of human keratinocytes by protecting them from cell death induced by TRAIL, a member of the TNF superfamily. Moreover, immunohistochemistry analysis in an Imiquimod-induced skin inflammation mice model showed downregulation of COX-2 and IL-1β expression upon treatment with the extract. In conclusion, our findings suggest that Piper retrofractum extract possesses anti-inflammatory properties by reducing proinflammatory cytokine production through inhibition of NF-κB signaling pathway. These promising results highlight the potential of Piper retrofractum extract as a candidate for future drug development in the clinical treatment of inflammation-related conditions, offering hope for the advancement of therapeutic interventions.
Collapse
Affiliation(s)
- Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Besse Hardianti
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Indonesia
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | - Ismail Ismail
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ai Hertati
- Pusat Riset Rekayasa Genetika Jl. Raya Jakarta-Bogor No.KM 46, Pakansari, Kec. Cibinong, Kabupaten Bogor, Jawa Barat 16911, Indonesia
| | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Kim R, Islam MS, Yoo YJ, Shin HY, Lee JH, Cho JH, Park YG, Choi J, Tae HJ, Park BY. Anti-inflammatory effects of the Aralia elata and Cirsium japonicum in Raw264.7 cells and in vivo colitis model in mice and dogs. Biomed Pharmacother 2022; 151:113186. [PMID: 35643063 DOI: 10.1016/j.biopha.2022.113186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
Ulcerative colitis (UC) is a severe inflammatory disease that has spread throughout the world. Cirsium japonicum (CJ) and Aralia elata (AE) are natural herbs with potent antioxidative antidiabetics and anti-inflammatory effects. In this investigation, we studied the defensive role of the combination of CJ and AE against LPS-induced inflammation in RAW 264.7 cells, dextran sulfate sodium (DSS)-induced colitis in mice, and acetic acid-induced colitis in dogs. MTT assay was performed to identify the toxic effect of CJ and AE extracts. NO, and MDA level was also measured by NO and MDA assay. To measure the pro-inflammatory protein expression, a western blot was performed. To induce colitis, 3% DSS was used for mice and 6% acetic acid was used for dogs. Histopathology and colonoscopy were executed to detect the effect of extracts. CJ and AE pretreatment reduced the level of NO, MDA, and the expression of pro-inflammatory proteins cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7. Compared to the separate doses of CJ and AE, the combined dose of CJ and AE significantly reduced clinical symptoms induced by DSS in mice and acetic acid in dogs including weight loss, bloody stool, shortening of the colon, and the severity of colitis and degree of histological damage in the colon. Therefore, these results indicated that a combined dose of CJ and AE has a protective effect against LPS-induced RAW 264.7 cells, DSS-mediated colonic inflammation in mice, and acetic acid-induced colitis in dogs.
Collapse
Affiliation(s)
- Ryunhee Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Ha-Young Shin
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jeong Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang-gun 56015, Republic of Korea.
| | - Jeong-Hwi Cho
- R&D Division, HUVET Co., Ltd., Iksan-si 54531, Republic of Korea
| | - Yang-Gyu Park
- R&D Division, HUVET Co., Ltd., Iksan-si 54531, Republic of Korea
| | - Jinyoung Choi
- R&D Division, HUVET Co., Ltd., Iksan-si 54531, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
8
|
Xu Y, Liu J, Zeng Y, Jin S, Liu W, Li Z, Qin X, Bai Y. Traditional uses, phytochemistry, pharmacology, toxicity and quality control of medicinal genus Aralia: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114671. [PMID: 34627983 DOI: 10.1016/j.jep.2021.114671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aralia, which belongs to Araliaceae family, is mainly distributed in Asia, such as China, Japan and South Korea. It has a long medicinal history and is widely used in the treatment of various diseases, such as hepatitis, rheumatoid arthritis, bruises, lumps and carbuncles. AIM OF THE STUDY The purpose of this review is to systematically evaluate the traditional uses, phytochemistry, pharmacology, toxicity and quality control of main medicinal plants of Aralia, discusses the application of ethnic medicine, modern scientific research and the relationship between them, and put forward some suggestions to promote the further development and utilization of Aralia. MATERIALS AND METHODS The relevant information on Aralia was collected through electronic databases (PubMed, Web of Science, Science Direct, Springer, CNKI and Wanfang), Chinese herbal classics, Ph.D. and M.Sc. dissertations, Chinese Pharmacopoeia. Plant names were verified by "The Plant List" (http://www.theplantlist.org). The literature cited in this review can be traced back to 1878 to 2021. RESULTS More than 290 chemical constituents have been isolated from the genus Aralia, including triterpenoid saponins, terpenoids, organic acids, flavonoids, polyacetylenes, phenylpropanoids and other constituents. Pharmacological studies have shown that the extracts and compounds of Aralia have a wide range of pharmacological activities, including anti-inflammation, analgesic, anti-tumor, liver protection, protection of cardiovascular and nervous system, regulating substance metabolism, antibacterial, antiviral and antioxidation. CONCLUSIONS The genus Aralia is not only an excellent traditional herbal medicine, but also a source of bioactive molecules with good application prospects. However, the structure-activity relationship, in vivo activity and action mechanism of its bioactive components need to be further studied. In addition, more toxicological and quality control studies are essential to evaluate the efficacy and safety of Aralia as medicine.
Collapse
Affiliation(s)
- Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junyu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanlian Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wentao Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China
| | - Zulun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yaolin Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
9
|
Dracocephalum moldavica Ethanol Extract Suppresses LPS-Induced Inflammatory Responses through Inhibition of the JNK/ERK/NF-κB Signaling Pathway and IL-6 Production in RAW 264.7 Macrophages and in Endotoxic-Treated Mice. Nutrients 2021; 13:nu13124501. [PMID: 34960054 PMCID: PMC8706341 DOI: 10.3390/nu13124501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1β, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.
Collapse
|
10
|
Jin J, He H, Zhang X, Wu R, Gan L, Li D, Lu Y, Wu P, Wong WL, Zhang K. The in vitro and in vivo study of oleanolic acid indole derivatives as novel anti-inflammatory agents: Synthesis, biological evaluation, and mechanistic analysis. Bioorg Chem 2021; 113:104981. [PMID: 34020279 DOI: 10.1016/j.bioorg.2021.104981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Oleanolic acid (OA) is a well-known natural product possessing many important pharmacological activities; however, its weak bioactivities significantly restrict the potential application in drug development. The structural modification of oleanolic acid is an effective mean to enhance its bioactivity with lower toxicity but it is challenging. In the present study, we systematically synthesized a series of new 11-oxooleanolic acid derivatives and evaluated their anti-inflammatory activities with a LPS induced BV2 cells inflammation model and a 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that compounds 8 and 9 show more potent anti-inflammatory effects than OA and exhibit a low cytotoxicity. The possible mechanism of action was also investigated. The in vitro and in vivo results revealed that these two new 11-oxooleanolic acid derivatives may exert anti-inflammatory activities through the inhibition of NO, pro-inflammatory cytokines and chemokines (IL-1β, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10), which may be caused by inhibiting the activation of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and the activation of Nrf2/HO-1 signaling pathway. The results suggest that these two 11-oxooleanolic acid derivatives may be potential candidates for further anti-inflammatory drug development and our study demonstrated an important and practical strategy for drug discovery through the rational modification of natural products.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Hao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Tian YQ, Zhao HT, Zhang XL, Zhang WT, Liu XC, Gao SH. Comparison of different extraction techniques and optimization of the microwave-assisted extraction of saponins from Aralia elata (Miq.) Seem fruits and rachises. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Jo A, Yoo HJ, Lee M. Robustaflavone Isolated from Nandina domestica Using Bioactivity-Guided Fractionation Downregulates Inflammatory Mediators. Molecules 2019; 24:molecules24091789. [PMID: 31072069 PMCID: PMC6540067 DOI: 10.3390/molecules24091789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Nandina domestica (Berberidaceae) has been used in traditional medicine for the treatment of cough. This plant is distributed in Korea, Japan, China, and India This study aimed to investigate the anti-inflammatory phytochemicals obtained from the N. domestica fruits. We isolated a biflavonoid-type phytochemical, robustaflavone (R), from N. domestica fruits through bioactivity-guided fractionation based on its capacity to inhibit inflammation. The anti-inflammatory mechanism of R isolated from N. domestica has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of R using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that R reduces the production of nitric oxide (NO), pro-inflammatory cytokine interleukin-1 beta (IL-1β), and IL-6. Western blot analysis showed that R suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and downregulates the expression of LPS-induced nuclear factor-kappa B (NF-κB) and the phosphorylation of extracellular-regulated kinases (pERK 1/2). Moreover, R inhibited IL-8 release in LPS-induced human colonic epithelial cells (HT-29). These results suggest that R could be a potential therapeutic candidate for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Ara Jo
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Hyun Ji Yoo
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| |
Collapse
|
13
|
Zhou HC, Pellerin RJ, Waminal NE, Yang TJ, Kim HH. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 2019; 41:839-847. [PMID: 30903554 DOI: 10.1007/s13258-019-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
14
|
Xia YG, Wang TL, Yu SM, Liang J, Kuang HX. Structural characteristics and hepatoprotective potential of Aralia elata root bark polysaccharides and their effects on SCFAs produced by intestinal flora metabolism. Carbohydr Polym 2018; 207:256-265. [PMID: 30600007 DOI: 10.1016/j.carbpol.2018.11.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022]
Abstract
The structural characteristics of the polysaccharides from Aralia elata root barks (AERP) were systematically investigated by FT-IR, HPSEC-ELSD and colorimetric methods as well as by GCMS based monosaccharide compositions, Smith degradations, and methylation analysis. The result showed average molecular weights of AERP were between 42.7 kDa and 93.9 kDa. AERP was composed of Ara, Rha, GlcA, Man, Glc, and Gal in a molar ratio of 22.2: 10.3: 8.1: 32.7: 5.7: 21.2 along with a small number of sulfate (3.38%) and acetyl (4.87%) groups. The abundant glycosidic linkages of Man, Ara, Gal, and Rha were observed as more than 90% of all the monosaccharides detected. Studies to evaluate hepatoprotective potentials of AERP showed that they had potent hepatoprotective effects in vivo in carbon tetrachloride-induced acute liver injury (CIALI) in mice by histopathological evaluation, biochemical examinations and ELISA assays. GCMS was further used to determine the effects of AERP on the chemical profiles of nine common short-chain fatty acids (SCFAs) produced by intestinal flora metabolism in CIALI mice. These findings not only provide novel insights into the pharmacological actions of AERP on the protection from CIALI in mice, but they also demonstrate that determining SCFA profiles by targeted GC-MS metabolomics is an effective technique to investigate the molecular mechanisms of the effects of plant polysaccharides on intestinal flora metabolism.
Collapse
Affiliation(s)
- Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| | - Tian-Long Wang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Si-Miao Yu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
15
|
Xing X, Yan M, Zhang X, Yang L, Jiang H. Quantitative analysis of triterpenoids in different parts of Aralia elata (Miq.) Seem using HPLC–ELSD and their inhibition of human umbilical vein endothelial cell ox-LDL-induced apoptosis. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1399138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xudong Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Meiling Yan
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Xiaojuan Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| |
Collapse
|
16
|
Zhang W, Zhu N, Hu M, Yu S, Sun Z, Wu H, Li P, Yang J, Ma G, Xu X. Congmujingnosides B-G, triterpene saponins from the stem of Aralia chinensis and their protective effects against H 2O 2-induced myocardial cell injury. Nat Prod Res 2017; 33:500-505. [PMID: 29115145 DOI: 10.1080/14786419.2017.1399384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phytochemical investigation of the stem of Aralia chinensis yielded six new oleanane-type triterpene saponins named as congmujingnosides B-G (1-6). The new ones were elucidated on the basis of the chemical and spectroscopic analysis. Protective effects of compounds 1-6 were tested against H2O2-induced H9c2 cardiomyocyte injury, and the data showed that compounds 1 and 5 had significant cell-protective effects. No significant DPPH radical scavenging activity was observed for compounds 1-6.
Collapse
Affiliation(s)
- Wen Zhang
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China.,b School of Pharmacy , Ahhui University of Traditional Chinese Medicine , Hefei , China
| | - Nailiang Zhu
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Meigeng Hu
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Shichun Yu
- b School of Pharmacy , Ahhui University of Traditional Chinese Medicine , Hefei , China
| | - Zhonghao Sun
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Haifeng Wu
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Pengfei Li
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Junshan Yang
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Guoxu Ma
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Xudong Xu
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
17
|
Park JY, Chung TW, Jeong YJ, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Lee YC, Ha KT, Magae J, Chang YC, Kim CH. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages. PLoS One 2017; 12:e0171322. [PMID: 28207754 PMCID: PMC5313137 DOI: 10.1371/journal.pone.0171322] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The natural fungal compound ascofuranone (5-chloro-3-[(2E,6E)-7-[(2S)-5,5-dimethyl-4-oxo-tetrahydrofuran-2-yl]-3-methyl-octa-2,6-dienyl]-2,4-dihydroxy-6-methyl-benzaldehyde, MW 420.93) (AF) isolated from Ascochyta viciae has been known to promote cell cycle arrest and inhibit invasion of tumor cells. We have previously studied a structurally similar compound ascochlorin (ASC; MW 404.93) with regard to its anti-inflammatory activity in LPS- stimulated RAW 264.7 macrophages. In order to examine the relationship between the anti-inflammatory activities and the molecular differences between AF and ASC, the activity of AF is herein studied, because ASC has a unique trimethyl oxocyclohexyl structure, while AF has a unique dimethyl-oxo-tetrahydrofuran structure. AF dose-dependently inhibited the production of NO and iNOS and the COX-2 mRNA and protein levels in RAW 264.7 cells. In addition, AF suppressed mRNA expression levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as assessed by RT-PCR. AF (30-50 μg/ml) treatment clearly inhibited the nuclear translocation of NF-κB, AP-1 (p-c-Jun) from the cytosolic space. Phosphorylation of IκB, which functions to maintain the activity of NF-κB, was decreased by AF treatment. Moreover, AF suppressed the binding of NF-κB (p65). Inhibition of IkBa phosphorylation and degradation inhibits nuclear translocation of p65. Immunofluorescence confocal microscopy analysis also revealed that translocation of NF-κB and AP-1 (p-c-Jun) was decreased upon AF treatment. AF specifically decreased the expression level of p-ERK, but not the expression level of p-p38 or p-JNK. Given these results, we suggest that AF suppresses the inflammatory response by targeting p-ERK. This indicates that AF is a negative regulator of LPS-stimulated nuclear translocation of NF-κB and AP-1 (p-c-Jun) in RAW 264.7 macrophages, and specifically it targets p-ERK. Therefore, AF and ASC exert their effects in different ways, most probably because their structural differences allow for specific recognition and inhibition of their target MAPKs. Our results further suggest that AF could be a natural bioactive compound useful for treating inflammation-mediated pathological diseases.
Collapse
Affiliation(s)
- Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Tae-Wook Chung
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju, Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49–4 Fujimidai, Tsukuba, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
18
|
Effect of micronization process on the functional component content and anti-inflammatory activity of Luffa cylindrical peel. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Shikov AN, Pozharitskaya ON, Makarov VG. Aralia elata var. mandshurica (Rupr. & Maxim.) J.Wen: An overview of pharmacological studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1409-1421. [PMID: 27765361 DOI: 10.1016/j.phymed.2016.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE Aralia elata var. mandshurica (Rupr. & Maxim.) J.Wen syn. A. mandshurica Rupr. & Maxim is evaluated for its medicinal application. The aim of this study is to analyze pharmacological studies on A. elata var. mandshurica published until December 2015. METHODS The information regarding the chemistry, safety, effectiveness, and pharmacological and clinical effects of A. elata was systematically collected from the scientific literature through library catalogs; online services such as E-library.ru, Medline/PubMed, Scopus, Web of Science, and Google Scholar. RESULTS A. elata is often considered an example of a medicinal plant used in Chinese, Korean, and Japanese traditional medicine. However, the contemporary applications of Aralia in officinal medicine result primarily from a large number of pharmacological and clinical investigations carried out in the former USSR in the mid-20th century. Since the 1950s, medicinal preparations from radices of A. elata and radices of A. mandshurica have secured an established position within Russian/USSR medicine as evidenced by the inclusion of the drug in recent editions of the National Pharmacopoeia of the USSR and in the Register of Medicinal Preparations of Russia. Pharmacological studies on animals have shown that Aralia increases physical working capacity and affords a stress-protective effect against a broad spectrum of harmful factors including cold stress, immobilization, UV irradiation, and low air pressure. The phytoadaptogen exerts an effect on the central nervous, reproductive, immune, respiratory, and gastrointestinal systems; the metabolic syndrome including hypolipidemic and antidiabetic effects; and blood coagulation. Together with general properties of adaptogens, Aralia has its own specificity, which manifests in cardioprotective and antiarrhythmic activities. Studies on isolated organs, cells, and enzymes have revealed that Aralia preparations exhibit antioxidant activities and enhance sarcoplasmic reticulum Ca2+-ATPase activity, inhibit endoplasmic reticulum stress-associated apoptosis markers (GRP78, CHOP, Caspase-12, and JNK), and increase phosphorylation of STAT3 and Bcl2/Bax ratio; they also show cytotoxic activities against some tumor cell lines; affect NF-κB and PPARs activities; and regulate biosynthesis of pro-inflammatory cytokines and inflammation-related protein expression, tissue respiration, and oxygen consumption. In healthy subjects, Aralia increases mental performance, working capacity, and endurance of movement. Numerous clinical trials have shown the efficiency of Aralia preparations in patients with traumatic brain injury (accompanied with asthenic syndrome and neurotic reactions, depression, neurasthenia, and psychasthenia), neurological diseases (accompanied with astheno-depressive and astheno-hypochondriasis syndromes), myasthenia syndrome (accompanied with chronic post-influenza arachnoiditis), and arterial hypotension. Aralia tincture and "Saparal" are useful as antiviral remedies. Radioprotective properties of Aralia have been reported in pregnant women. Synergistic antiobesity effect was reported for the combination of A. mandshurica and Engelhardtia chrysolepis extracts and antidiabetic effect for the combination of Aralia and glipizide. Promising stress-relieving effects of Aralia are reported for professionals whose work requires a high level of attention. Its proposed ability to moderate stress-induced damage and dysfunction in the cardiovascular tissue might make Aralia the adaptogen of choice among patients with higher risk for cardiovascular diseases. Because Aralia extract administration appears to affect plasma glucose level and hepatic lipid accumulation and ameliorate hyperinsulinemia, it might also provide benefits and be the adaptogen of choice for patients with obesity and diabetes. CONCLUSION This review describes the considerable diversity of pharmacological effects of A. elata reported in numerous studies carried out in the former USSR and other countries, which have been confirmed over >47 years of use of the plant as an official medicinal remedy. The knowledge discussed in this review can be applied to the expansion of the use of this high-value plant in the pharmacotherapy of European and other countries and for the further discovery of new drugs based on the secondary metabolites of this plant. Modern approaches in mechanisms of action, including a study of gene expression profiling, suggest the most up-to-date challenges for the future research of Aralia.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg Institute of Pharmacy, Leningrad region, Vsevolozhsky district, 188663, Kuzmolovo P 245, Russia.
| | - Olga N Pozharitskaya
- Saint-Petersburg Institute of Pharmacy, Leningrad region, Vsevolozhsky district, 188663, Kuzmolovo P 245, Russia
| | - Valery G Makarov
- Saint-Petersburg Institute of Pharmacy, Leningrad region, Vsevolozhsky district, 188663, Kuzmolovo P 245, Russia
| |
Collapse
|
20
|
Hwang KA, Hwang YJ, Kim GR, Choe JS. Extracts from Aralia elata (Miq) Seem alleviate hepatosteatosis via improving hepatic insulin sensitivity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:347. [PMID: 26438035 PMCID: PMC4595215 DOI: 10.1186/s12906-015-0871-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/21/2015] [Indexed: 02/07/2023]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common liver disease that is strongly associated with obesity and dysregulation of insulin in the liver. However, currently no pharmacological agents have been established for the treatment of NAFLD. In this regard, we sought to evaluate the anti-NAFLD effects of Aralia elata (Miq) Seem (AE) extract and its ability to inhibit hepatic lipid accumulation and modulate cellular signaling in a high fat diet (HFD)-induced obese mouse model. Methods A model of hepatic steatosis in the HepG2 cells was induced by oleic acid. Intracellular lipid droplets were detected by Oil-Red-O staining, and the expression of sterol regulatory element-binding protein 1(SREBP-1), Fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC) 1 and 2, Peroxisome proliferator activated receptor-α (PPARα), and carnitine palmitoyl transferase 1(CPT-1) was analyzed by real time reverse transcription–Polymerase chain reaction (qRT–PCR). And glucose consumption was measured with commercial kit. Furthermore, Male C57BL/6 J mice were fed with HFD to induce NAFLD. Groups of mice were given plant extracts orally at 100 and 300 mg/kg at daily for 4 weeks. After 3 weeks of AE extract treatment, we performed oral glucose tolerance test (OGTT). Liver tissue was procured for histological examination, Phosphoinositide 3-kinase (PI3K) and Protein kinase B (PKB/Akt) activity. Results In the present study, AE extract was shown to reduce hepatic lipid accumulation and significantly downregulate the level of lipogenic genes and upregulate the expression of lipolysis genes in HepG2 cells. And also, AE extract significantly increased the glucose consumption, indicating that AE extract improved insulin resistance. Subsequently, we confirmed the inhibitory activity of AE extract on NAFLD, in vivo. Treatment with AE extract significantly decreased body weight and the fasting glucose level, alleviated hyperinsulinism and hyperlipidemia, and reduced glucose levels, as determined by OGTT. Additionally, AE extract decreased PI3K and Akt activity. Conclusions Our results suggest that treatment with AE extract ameliorated NAFLD by inhibiting insulin resistance through activation of the Akt/GLUT4 pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0871-5) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Abstract
Previous study has demonstrated that oleanolic acid (OA) possessing the anti-inflammatory and anti-oxidant properties blunted high-glucose-induced diabetic cardiomyopathy and ameliorated experimental autoimmune myocarditis in mice. However, little is known about its effects on pressure overload-induced cardiac remodeling. Herein, we investigated the effect of OA on cardiac remodeling and underlying mechanism. Mice, subjected to aortic banding (AB), were randomly assigned into control group and experimental group. OA premixed in diets was administered to mice after 3 days of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed after 8 weeks' treatment of OA. Histologic examination and molecular analyses were used to assess cardiac hypertrophy and tissue fibrosis. In addition, the inhibitory effects of OA on H9c2 cardiomyocytes and cardiac primary fibroblast responded to the stimulation of AngII were also investigated. OA ameliorated the systolic and diastolic dysfunction induced by pressure overload evidenced by echocardiography and catheter-based measurements. OA also decreased the mRNA expression of cardiac hypertrophy and fibrosis markers evidenced by RT-PCR. It has been shown in our study that pressure overload activated the phosphorylations of Akt, mTOR, p70s6k, S6, GSK3β, and FoxO3a, and treatment of OA attenuated the phosphorylation of these proteins. In addition, hypertrophy of cardiomyocytes and fibrosis markers induced by AngII was inhibited by OA in vitro. Our findings uncover that OA suppressed AB-induced cardiac hypertrophy, partly by inhibiting the activity of Akt/mTOR pathway, and suggest that treatment of OA may have a benefit on retarding the progress of cardiac remodeling under long terms of pressure overload.
Collapse
|
22
|
A New Ligustrazine Derivative-Selective Cytotoxicity by Suppression of NF-κB/p65 and COX-2 Expression on Human Hepatoma Cells. Part 3. Int J Mol Sci 2015; 16:16401-13. [PMID: 26193270 PMCID: PMC4519956 DOI: 10.3390/ijms160716401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023] Open
Abstract
A new anticancer ligustrazine derivative, 3β-hydroxyolea-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methylester (T-OA, C38H58O3N2), was previously reported. It was synthesized via conjugating hepatoprotective and anticancer ingredients of traditional Chinese medicine. We found that T-OA exerted its anticancer activity by preventing the expression of nuclear transcription factor NF-κB/p65 and COX-2 in S180 mice. However, the selective cytotoxicity of T-OA on various kinds of cell lines has not been studied sufficiently. In the present study, compared with Cisplatin, T-OA was more toxic to human hepatoma cell line Bel-7402 (IC50 = 6.36 ± 1.56 µM) than other three cancer cell lines (HeLa, HT-29, BGC-823), and no toxicity was observed toward Madin–Darby canine kidney cell line MDCK (IC50 > 150 µM). The morphological changes of Bel-7402 cells demonstrated that T-OA had an apoptosis-inducing effect which had been substantiated using 4ʹ,6-diamidino-2-phenylindole (DAPI) staining, acridine orange (AO)/ethidium bromide (EB) staining, flow cytometry and mitochondrial membrane potential assay. Combining the immumohistochemical staining, we found T-OA could prevent the expression of NF-κB/p65 and COX-2 in Bel-7402 cells. Both of the proteins have been known to play roles in apoptosis and are mainly located in the nuclei. Moreover subcellular localization was performed to reveal that T-OA exerts in nuclei of Bel-7402 cells. The result was in accordance with the effects of down-regulating the expression of NF-κB/p65 and COX-2.
Collapse
|
23
|
Wang Z, Wu Q, Meng Y, Sun Y, Wang Q, Yang C, Wang Q, Yang B, Kuang H. Determination and pharmacokinetic study of two triterpenoid saponins in rat plasma after oral administration of the extract of Aralia elata leaves by UHPLC–ESI–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 985:164-71. [DOI: 10.1016/j.jchromb.2015.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 11/24/2022]
|
24
|
Chen RC, Wang J, Yu YL, Sun GB, Sun XB. Protective effect of total saponins of Aralia elata (Miq) Seem on lipopolysaccharide-induced cardiac dysfunction via down-regulation of inflammatory signaling in mice. RSC Adv 2015. [DOI: 10.1039/c4ra16353b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TAS attenuates LPS-induced cardiomyocyte dysfunctionviadown-regulation of inflammatory signaling in mice.
Collapse
Affiliation(s)
- Rong-Chang Chen
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
- Beijing 100094
- China
| | - Jian Wang
- Research Center of Life Science and Environment Science
- Harbin University of Commerce
- Harbin
- China
| | - Ying-Li Yu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
- Beijing 100094
- China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
- Beijing 100094
- China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
- Beijing 100094
- China
| |
Collapse
|
25
|
Camer D, Huang XF. Comment on: Oleanolic acid co-administration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulation (sic) in rats. Chem Biol Interact 2014; 223:116. [DOI: 10.1016/j.cbi.2014.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/06/2023]
|
26
|
Bhandari P, Patel NK, Gangwal RP, Sangamwar AT, Bhutani KK. Oleanolic acid analogs as NO, TNF-α and IL-1β inhibitors: Synthesis, biological evaluation and docking studies. Bioorg Med Chem Lett 2014; 24:4114-9. [DOI: 10.1016/j.bmcl.2014.07.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/07/2014] [Accepted: 07/19/2014] [Indexed: 01/11/2023]
|
27
|
Camer D, Yu Y, Szabo A, Huang XF. The molecular mechanisms underpinning the therapeutic properties of oleanolic acid, its isomer and derivatives for type 2 diabetes and associated complications. Mol Nutr Food Res 2014; 58:1750-9. [PMID: 24740831 DOI: 10.1002/mnfr.201300861] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Recent research has uncovered the molecular mechanisms responsible for the therapeutic properties of oleanolic acid (OA), its isomer ursolic acid (UA), and derivatives. In particular, recent reports have highlighted the benefits of these compounds in the prevention and treatment of type 2 diabetes and associated life-threatening complications, such as nonalcoholic fatty liver disease, nephropathy, retinopathy, and atherosclerosis. The prevalence of type 2 diabetes is of major concern since it is reaching global epidemic levels. Treatments targeting the signaling pathways altered in type 2 diabetes are being actively investigated, and OA and UA in natural and derivative forms are potential candidates to modulate these pathways. We will explore the findings from in vitro and in vivo studies showing that these compounds: (i) improve insulin signaling and reduce hyperglycemia; (ii) reduce oxidative stress by upregulating anti-oxidants and; (iii) reduce inflammation by inhibiting proinflammatory signaling. We will discuss the molecular mechanisms underpinning these therapeutic properties in this review in order to provide a rationale for the future use of OA, UA, and their derivatives for the prevention and treatment of type 2 diabetes and associated comorbidities.
Collapse
Affiliation(s)
- Danielle Camer
- Centre for Translational Neuroscience, School of Medicine, Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
28
|
Sánchez-Quesada C, López-Biedma A, Warleta F, Campos M, Beltrán G, Gaforio JJ. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12173-82. [PMID: 24279741 DOI: 10.1021/jf403154e] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.
Collapse
Affiliation(s)
- Cristina Sánchez-Quesada
- Immunology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén , Campus las Lagunillas s/n, 23071 Jaén, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Chen L, Mola M, Deng X, Mei Z, Huang X, Shu G, Wei L, Hou X, Lan Z, Lin Q. Dolichos falcata Klein attenuated the inflammation induced by monosodium urate crystals in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:545-552. [PMID: 24060409 DOI: 10.1016/j.jep.2013.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/30/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dolichos falcata Klein (DF), a Chinese Dai ethnic medicine popularly known as "Tuoyeteng" in Yunnan province of China, has been widely used as a traditional herbal medicine for the treatment of fracture and beriberoid disease for a long time in China. The present study was carried out to investigate the anti-inflammatory activity and the bioactive chemical constituents of DF, and further to assess its possible mechanism on gouty arthritis in an animal model of the MSU crystals-induced gouty inflammation. MATERIALS AND METHODS The ethanol extract (EE) of DF at the doses of 10, 20 and 40 mg/kg was administered to the rats treated with MSU crystals to evaluate the anti-gouty arthritis effect. Subsequently, the components of EE were isolated and identified using classical methods. Phyto-chemical analysis of EE was further carried out by HPLC-DAD. Finally, the anti-inflammatory effect of EE and two isolated components were assessed using the MSU crystals-treated monocyte/macrophage cell line RAW 264.7 in vitro. RESULTS EE (10, 20 and 40 mg/kg) significantly attenuated the pain threshold value, the joint swelling degree, the inflammatory cell infiltration of articular tissue and the increased levels of pro-inflammatory cytokines in MSU crystals-treated rats. Moreover, doliroside A (DA) and medicagenic acid-3-O-β-D-glucopyranoside (MG) were isolated and identified from EE. The major components of EE, including DA, MG and other triterpenoids, were well confirmed by HPLC. A further study revealed that EE, DA and MG (10, 20, 40μg/mL) exhibited stronger inhibitory effects on the production of pro-inflammatory cytokines (including interleukin-1β, interleukin-6 and tumor necrosis factor-α) in MSU crystals-treated RAW 264.7 cells. CONCLUSION These findings indicate that the major triterpenoids present in DF have a remarkable effect on improving symptoms of acute gouty arthritis induced by MSU crystals through inhibiting the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Lvyi Chen
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cardioprotective effect of Aralia elata polysaccharide on myocardial ischemic reperfusion (IR) injury in rats. Int J Biol Macromol 2013; 59:328-32. [DOI: 10.1016/j.ijbiomac.2013.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022]
|
31
|
Liang C, Ding Y, Song SB, Kim JA, Cuong NM, Ma JY, Kim YH. Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB. J Ginseng Res 2013; 37:74-9. [PMID: 23717159 PMCID: PMC3659621 DOI: 10.5142/jgr.2013.37.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 02/06/2023] Open
Abstract
In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-κB activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-κB, with IC50 values between 3.1 to 18.9 μM. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-κB activity by reducing the concentration of inflammatory factors in HepG2 cells.
Collapse
Affiliation(s)
- Chun Liang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea ; Herbal Medicine Improvement Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Protective role of Aralia elata polysaccharide on mercury(II)-induced cardiovascular oxidative injury in rats. Int J Biol Macromol 2013; 59:301-4. [PMID: 23612361 DOI: 10.1016/j.ijbiomac.2013.04.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022]
Abstract
Mercury(II) is a highly toxic environmental pollutant leading to oxidative stress in animals and human beings. In this study we aimed to investigate the possible protective effect of a water-soluble polysaccharide (AEP-w1) from the root bark of Aralia elata against experimental mercury(II)-induced cardiovascular oxidative injury in rat model. The results showed that delayed AEP-w1 supplement to HgCl2-treated mice not only decreased serum lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) levels, but also increased serum nitric oxide (NO) metabolite levels and antioxidant capacity. Moreover, AEP-w1 administration to HgCl2-treated mice significantly decreased malondialdehyde (MDA) level and myeloperoxidase (MPO) activity and increased superoxide dismutase (SOD) and catalase (CAT) activities, along with glutathione (GSH) level in rat cardiac tissue. In addition, elevated serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine (Cr) levels in the saline-treated Hg group were also reversed by AEP-w1 treatment. Therefore, the present study demonstrates that alleviation of HgCl2-induced oxidative injury in rat by AEP-w1 contributes to better understanding of its beneficial effect against cardiovascular diseases.
Collapse
|
33
|
Cardioprotective and antioxidant activities of a polysaccharide from the root bark of Aralia elata (Miq.) Seem. Carbohydr Polym 2013; 93:442-8. [DOI: 10.1016/j.carbpol.2012.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/05/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
|
34
|
Wang Q, Kuang H, Su Y, Sun Y, Feng J, Guo R, Chan K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:9-39. [PMID: 23274744 DOI: 10.1016/j.jep.2012.12.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Though inflammatory response is beneficial to body damage repair, if it is out of control, it can produce adverse effects on the body. Although purely western anti-inflammatory drugs, orthodox medicines, can control inflammation occurrence and development, it is not enough. The clinical efficacy of anti-inflammation therapies is unsatisfactory, thus the search for new anti-inflammation continues. Chinese Material Medica (CMM) remains a promising source of new therapeutic agents. CMM and herbal formulae from Traditional Chinese Medicine (TCM), unorthodox medicines, play an improtant anti-inflammatory role in multi-targets, multi-levels, and multi-ways in treating inflammation diseases in a long history in China, based on their multi-active ingredient characteristics. Due to these reasons, recently, CMM has been commercialized as an anti-inflammation agent which has become increasingly popular in the world health drug markets. Major research contributions in ethnopharmacology have generated vast amount of data associated with CMM in anti-inflammtion aspect. Therefore, a systematic introduction of CMM anti-inflammatory research progress is of great importance and necessity. AIM OF THE STUDY This paper strives to describe the progress of CMM in the treatment of inflammatory diseases from different aspects, and provide the essential theoretical support and scientific evidence for the further development and utilization of CMM resources as a potential anti-inflammation drug through a variety of databases. MATERIAL AND METHODS Literature survey was performed via electronic search (SciFinder®, Pubmed®, Google Scholar and Web of Science) on papers and patents and by systematic research in ethnopharmacological literature at various university libraries. RESULTS This review mainly introduced the current research on the anti-inflammatory active ingredient, anti-inflammatory effects of CMM, their mechanism, anti-inflammatory drug development of CMM, and toxicological information. CONCLUSION CMM is used clinically to treat inflammation symptoms in TCM, and its effect is mediated by multiple targets through multiple active ingredients. Although scholars around the world have made studies on the anti-inflammatory studies of CMM from different pathways and aspects and have made substantial progress, further studies are warranted to delineate the inflammation actions in more cogency models, establish the toxicological profiles and quality standards, assess the potentials of CMM in clinical applications, and make more convenient preparations easy to administrate for patients. Development of the clinically anti-inflammatory drugs are also warranted.
Collapse
Affiliation(s)
- Qiuhong Wang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhang Y, Peng Y, Li L, Zhao L, Hu Y, Hu C, Song S. Studies on cytotoxic triterpene saponins from the leaves of Aralia elata. Food Chem 2012; 138:208-13. [PMID: 23265478 DOI: 10.1016/j.foodchem.2012.10.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 05/17/2012] [Accepted: 10/06/2012] [Indexed: 11/30/2022]
Abstract
Aralia elata has long been used as a tonic, anticancer and antidiabetic agent in China and Japan, and is widely consumed as food. Phytochemical investigation of the leaves of A. elata has led to the isolation of four new compounds, 3-O-[β-D-glucopyranosyl(1 → 3)-β-D-glucopyranosyl] echinocystic acid 28-O-β-D-glucopyranosyl ester (congmuyenoside I, 1), 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl] hederagenin 28-O-β-D-glucopyranosyl ester (congmuyenoside II, 2), 3-O-{[β-D-glucopyranosyl(1 → 2)]-[β-D-glucopyranosyl(1 → 3)-β-D-glucopyranosyl(1 → 3)]-β-D-glucopyranosyl} echinocystic acid 28-O-β-D-glucopyranosyl ester (congmuyenoside III, 3) and 3-O-β-D-glucopyranosyl caulophyllogenin 28-O-β-D-glucopyranosyl ester (congmuyenoside IV, 4), and eight known triterpene saponins (5-12). The structural determination was accomplished with spectroscopic analysis, in particularly (13)C NMR, 2D NMR and HR-ESI-MS techniques. In addition, compounds 5–10 were found for the first time in the genus Aralia. Compounds 1-12 were tested for their inhibition of the growth of HL60, A549 and DU145 cancer cells. In addition, compound 8 showed significant cytotoxic activities against HL60, A549 and DU145 cancer cells with IC(50) values of 15.62, 11.25 and 7.59 μM, respectively.
Collapse
Affiliation(s)
- Yan Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Ma Z, Hu C, Wang L, Li L, Song S. Cytotoxic triterpene saponins from the leaves of Aralia elata. Fitoterapia 2012; 83:806-11. [DOI: 10.1016/j.fitote.2012.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 11/26/2022]
|
37
|
Nhiem NX, Lim HY, Kiem PV, Minh CV, Thu VK, Tai BH, Quang TH, Song SB, Kim YH. Oleanane-type triterpene saponins from the bark of Aralia elata and their NF-κB inhibition and PPAR activation signal pathway. Bioorg Med Chem Lett 2011; 21:6143-7. [PMID: 21889336 DOI: 10.1016/j.bmcl.2011.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/23/2011] [Accepted: 08/03/2011] [Indexed: 11/19/2022]
Abstract
Two new oleanane-type triterpene saponins, tarasaponin IV (1) and elatoside L (2), and four known; stipuleanoside R(2) (3), kalopanax-saponin F (4), kalopanax-saponin F methylester (5), and elatoside D (6) were isolated from the bark of Aralia elata. Kalopanax-saponin F methyl ester was isolated from nature for the first time. Their chemical structures were elucidated using the chemical and physical methods as well as good agreement with those of reported in the literature. Oleanane-type triterpene saponins are the main component of A. elata. All compounds were investigated the anti-inflammatory activity. We measured their inhibition of NF-κB and activation of PPARs activities in HepG2 cells using luciferase reporter system. As results, compounds 2 and 4 were found to inhibit NF-κB activation stimulated by TNFα in a dose-dependent manner with IC(50) values of 4.1 and 9.5 μM, respectively, when compared with that of positive control, sulfasalazine (0.9 μM). Compounds 2 and 4 also inhibited TNFα-induced expression of iNOS and COX-2 mRNA. Furthermore, compounds 1-6 were evaluated PPAR activity using PPAR subtype transactivation assays. Among of them, compounds 4-6 significantly increased PPARγ transactivation. However, compounds 4-6 did not activate in any other PPAR subtypes.
Collapse
Affiliation(s)
- Nguyen Xuan Nhiem
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Puangpraphant S, Berhow MA, de Mejia EG. Mate (Ilex paraguariensis St. Hilaire) saponins induce caspase-3-dependent apoptosis in human colon cancer cells in vitro. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Balestrazzi A, Agoni V, Tava A, Avato P, Biazzi E, Raimondi E, Macovei A, Carbonera D. Cell death induction and nitric oxide biosynthesis in white poplar (Populus alba) suspension cultures exposed to alfalfa saponins. PHYSIOLOGIA PLANTARUM 2011; 141:227-38. [PMID: 21128946 DOI: 10.1111/j.1399-3054.2010.01436.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The present work reports on the biological activity of alfalfa (Medicago sativa) saponins on white poplar (Populus alba, cultivar 'Villafranca') cell suspension cultures. The extracts from alfalfa roots, aerial parts and seeds were characterized for their saponin content by means of thin layer chromatography (TLC) and electrospray ionisation coupled to mass spectrometry. The quantitative saponin composition from the different plant extracts was determined considering the aglycone moieties and determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) analyses. Only soyasapogenin I was detected in the seed extract while several other saponins were found in the root and leaf extracts. Actively proliferating white poplar cell cultures were challenged with the different saponin extracts. Only alfalfa root saponins, at 50 µg ml⁻¹, induced significant cell death rates (75.00 ± 4.90%). Different cell subpopulations with peculiar cell death morphologies were observed and the programmed cell death (PCD)/necrosis ratio was reduced at increasing saponin concentrations. Enhancement of nitric oxide (NO) production was observed in white poplar cells treated with root saponins (RSs) at 50 µg ml⁻¹ and release of reactive oxygen species (ROS) in the culture medium was also demonstrated. Saponin-induced NO production was sensitive to sodium azide and N(G)-monomethyl-L-arginine, two specific inhibitors of distinct pathways for NO biosynthesis in plant cells.
Collapse
Affiliation(s)
- Alma Balestrazzi
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Via Ferrata 1, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang LJ, Gao WY, Li X, Zhao WS, Huang LQ, Liu CX. Evaluation of the in vivo anti-inflammatory effects of extracts from Pyrus bretschneideri Rehd. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8983-7. [PMID: 20672838 DOI: 10.1021/jf101390q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pyrus bretschneideri Rehd., as a pharmaceutical supplement, is widely used in northern China to treat respiratory diseases. Our previous studies showed the ethanol extract of P. bretschneideri had significant anti-inflammatory activity. To isolate and identify the active ingredients, the ethanol extract was separated into petroleum ether, ethyl acetate, n-butanol, and aqueous fractions. The bioactivity of each fraction was investigated using an in vivo model. Results showed that the ethyl acetate fraction exhibited the strongest anti-inflammatory effect. Subsequently, this fraction was subjected to separation and purification using silica gel column chromatography, C18-ODS, and recrystallization, leading to two sterols and two triterpenes, which were identified as β-sitosterol, daucosterol, oleanolic acid, and ursolic acid. Moreover, all of the isolated compounds could significantly inhibit the ear edema induced by xylene. These results indicated that P. bretschneideri had good anti-inflammatory effects and the constituents β-sitosterol, daucosterol, oleanolic acid, and ursolic acid might well account for it.
Collapse
Affiliation(s)
- Li-Jing Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
41
|
Ichikawa H, Yagi H, Tanaka T, Cyong JC, Masaki T. Lagerstroemia speciosa extract inhibit TNF-induced activation of nuclear factor-kappaB in rat cardiomyocyte H9c2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:254-256. [PMID: 20045454 DOI: 10.1016/j.jep.2009.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/05/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Lagerstroemia speciosa has been used as a folk medicine among people with diabetes in the Philippines. It is known to exhibit antidiabetic, antiobesity, and glucose transport activities through mechanisms not well defined. Diabetes leads to cardiomyocyte hypertrophy in association with an upregulation of vasoactive factors and activation of nuclear factor (NF)-kappaB and activating protein-1. We therefore investigated the effect of Lagerstroemia speciosa on the activation of NF-kappaB as a key mediator of cardiomyocyte hypertrophy, in rat cardiomyocyte H9c2 cells. MATERIALS AND METHODS Water extract of Lagerstroemia speciosa (Lythraceae family) was prepared. H9c2 cells were used for treatment of Lagerstroemia speciosa extract with/without tumor necrosis factor (TNF). To examine NF-kappaB's activation, we performed an electrophoretic mobility shift assay (EMSA). RESULTS The activation of NF-kappaB by TNF was completely blocked by a Lagerstroemia speciosa extract in a dose- and time-dependent manner in H9c2 cells. CONCLUSION Overall, our results indicate that Lagerstroemia speciosa can inhibit DNA-binding of NF-kappaB. This may explain its possible inhibition of diabetes-induced cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Haruyo Ichikawa
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | |
Collapse
|
42
|
Koelzer J, Pereira DA, Dalmarco JB, Pizzolatti MG, Fröde TS. Evaluation of the anti-inflammatory efficacy of Lotus corniculatus. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.04.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Nataraju A, Saini D, Ramachandran S, Benshoff N, Liu W, Chapman W, Mohanakumar T. Oleanolic Acid, a plant triterpenoid, significantly improves survival and function of islet allograft. Transplantation 2009; 88:987-94. [PMID: 19855244 PMCID: PMC2769028 DOI: 10.1097/tp.0b013e3181b9cbc4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND.: Oleanolic acid (OA) is a ubiquitous triterpenoid, with potent antioxidant and anti-inflammatory properties. Here, we tested whether these combined properties of OA can prevent nonimmunologic primary nonfunctioning and immunologic phenomena ascribed to graft rejection hence prolong islet allograft survival. METHODS.: Islet transplants were performed under kidney capsule of streptozotocin-induced diabetic C57BL/6 mice with BALB/c islets. Recipients were treated with 0.5 mg/day of OA intraperitoneally, and serum samples were collected once in 2 days and used for luminex, ELISA, and donor-specific antibody screening. Transplanted mice were killed at different time intervals to obtain splenocytes and kidney samples for ELISPOT, mixed leukocyte reaction, and immunohistochemical studies. RESULTS.: After transplantation, the decrement of blood glucose was significantly faster in mice receiving OA less than 2+/-1 days compared with untreated (4+/-2 days). OA prolonged survival of transplanted islets up to 23+/-3 days and reversed diabetes even with 250 islets. Treatment group showed increased serum interleukin (IL)-10 (twofold) and decreased inducible protein-10 and IL-4 (threefold) in luminex. Significantly reduced frequency of interferon-gamma (4.5-fold), IL-4 (3.5-fold), IL-2 (2.3-fold), and IL-17 (fourfold) producing T-cell populations were found in ELISPOT. OA-treated grafts had significant reduced and delayed infiltration of CD4+ and CD8+ T cells. OA also delayed donor-specific antibody generation up to 19 days after transplantation. Combined treatment with cyclosporine A, OA further prolonged the islet allograft survival to 34+/-3 days. CONCLUSIONS.: In conclusion, OA is an attractive, dietary nontoxic plant triterpenoid, which suppresses the production of proinflammatory cytokines and delays graft-specific immune responses to prolong islet allograft survival.
Collapse
Affiliation(s)
- A Nataraju
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - D Saini
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - S Ramachandran
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - N Benshoff
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - W Liu
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - W Chapman
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - T Mohanakumar
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunology and Pathology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
44
|
Byeon SE, Choi WS, Hong EK, Lee J, Rhee MH, Park HJ, Cho JY. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch Pharm Res 2009; 32:813-22. [PMID: 19557357 DOI: 10.1007/s12272-009-1601-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/15/2009] [Accepted: 04/07/2009] [Indexed: 11/29/2022]
Abstract
Saponin components are known to be pharmaceutically, cosmetically and nutraceutically valuable principles found in various herbal medicine. In this study, we evaluated the inhibitory role of saponin fraction (SF), prepared from C. lanceolata, an ethnopharmacologically famous plant, on various inflammatory responses managed by monocytes, macrophages, lymphocytes and mast cells. SF clearly suppressed the release of nitric oxide (NO) and tumor necrosis factor (TNF)-alpha, but not prostaglandin E(2) (PGE(2)). While this fraction did not scavenge the reactivity of SNP-induced radicals in RAW264. 7 cells, it negatively modulated the phagocytic uptake of macrophages treated with FITC-dextran. Interestingly, SF completely diminished cell-cell adhesion events induced by both CD29 and CD43, but not cell-fibronectin adhesion. Concanavalin (Con) A [as well phytohemaglutinin A (PHA)]-induced proliferation of splenic lymphocytes as well as interferon (IFN)-gamma production were also clearly suppressed by SF treatment. Finally, SF also significantly blocked the degranulation process of mast cell line RBL-2H3 cell as assessed by DNP-BSA-induced beta-hexosaminidase activity. The anti-inflammatory activities of SF on NO production seemed to be due to inhibition of nuclear factor (NF)-kappaB activation signaling, since it blocked the phosphorylation of inhibitor of kappaB (IkappaB)alpha as well as inducible NO synthase (iNOS) expression. Therefore, these results suggest that SF may be considered as a promising herbal medicine with potent anti-inflammatory actions.
Collapse
Affiliation(s)
- Se Eun Byeon
- School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Cho SO, Ban JY, Kim JY, Jeong HY, Lee IS, Song KS, Bae K, Seong YH. Aralia cordata Protects Against Amyloid β Protein (25–35)–Induced Neurotoxicity in Cultured Neurons and Has Antidementia Activities in Mice. J Pharmacol Sci 2009; 111:22-32. [DOI: 10.1254/jphs.08271fp] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|