1
|
Liu B, Li L, Zhang Z, Ran H, Xing M. Modeling the Potential Distribution and Future Dynamics of Important Vector Culex tritaeniorhynchus Under Climate Change Scenarios in China. INSECTS 2025; 16:382. [PMID: 40332829 PMCID: PMC12028164 DOI: 10.3390/insects16040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
In the context of global warming, there is an increasing risk of the emergence and re-emergence of vector-borne diseases (VBDs). As one of the most important vectors, Culex tritaeniorhynchus can carry and transmit numerous human and animal infectious pathogens. To better understand the current distribution and possible future dynamics of Cx. tritaeniorhynchus in China, an ecological niche modeling approach (MaxEnt) was adopted to model its current and future habitat suitability. The most comprehensive dataset (1100 occurrence records) in China to date was established for model training. Multiple global climate models (GCMs) and climate change scenarios were introduced into the model to counter the uncertainties of future climate change. Based on the model prediction, Cx. tritaeniorhynchus currently exhibits high habitat suitability in southern, central, and coastal regions of China. It is projected that its suitable niche will experience continuous expansion, and the core distribution is anticipated to shift northward in the future 21st century (by the 2050s, 2070s and 2090s). Several environmental variables that reflect temperature, precipitation, and land-use conditions were considered to have a significant influence on the distribution of Cx. tritaeniorhynchus, among which annual mean temperature and urban land contribute the most to the model. Our study conducted a quantitative analysis of the shift and expansion of the future habitats of Cx. tritaeniorhynchus, providing references for vector monitoring and the prevention and control of VBDs.
Collapse
Affiliation(s)
- Boyang Liu
- College of Wildlife and Protected Area, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (L.L.); (Z.Z.); (H.R.)
| | | | | | | | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (L.L.); (Z.Z.); (H.R.)
| |
Collapse
|
2
|
Bursali F, Simsek FM. Population Genetics of Culex tritaeniorhynchus (Diptera: Culicidae) in Türkiye. Acta Parasitol 2024; 69:1157-1171. [PMID: 38592372 PMCID: PMC11182820 DOI: 10.1007/s11686-024-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Mosquitoes are important vectors of pathogens that can affect humans and animals. Culex tritaeniorhynchus is an important vector of arboviruses such as Japanese encephalitis virus, West Nile virus among various human and animal communities. These diseases are of major public health concern and can have huge economic and health burdens in prevalent countries. Although populations of this important mosquito species have been detected in the Mediterranean and Aegean regions of Türkiye; little is known about its population structure. Our study is to examine the population genetics and genetic composition of Cx. tritaeniorhynchus mosquitoes collected from several localities using cytochrome oxidase subunit I (COI) and the NADH dehydrogenase subunit 5 genes (ND5). This is the first extensive study of Cx. tritaeniorhynchus in the mainland Türkiye with sampling spanning many of provinces. METHODS In this study, DNA extraction, amplification of mitochondrial COI and ND5 genes and population genetic analyses were performed on ten geographic populations of Culex tritaeniorhynchus in the Aegean and Mediterranean region of Türkiye. RESULTS Between 2019 and 2020, 96 samples were collected from 10 geographic populations in the Aegean and Mediterranean regions; they were molecularly analyzed and 139 sequences (50 sequence for COI and 89 sequence for ND5) were used to determine the population structure and genetic diversity. For ND5 gene region, the samples produced 24 haplotypes derived from 15 variable sites and for COI gene region, 43 haplotypes were derived from 17 variable sites. The haplotype for both gene regions was higher than nucleotide diversity. Haplotype phylogeny revealed two groups present in all populations. AMOVA test results show that the geographical populations were the same for all gene regions. Results suggest that Cx. tritaeniorhynchus is a native population in Türkiye, the species is progressing towards speciation and there is no genetic differentiation between provinces and regions. CONCLUSION This study provides useful information on the molecular identifcation and genetic diversity of Cx. tritaeniorhynchus; these results are important to improve mosquito control programs.
Collapse
Affiliation(s)
- Fatma Bursali
- Faculty of Science, Department of Biology, Aydın Adnan Menderes University, Aydın, 09100, Türkiye.
| | - Fatih Mehmet Simsek
- Faculty of Science, Department of Biology, Aydın Adnan Menderes University, Aydın, 09100, Türkiye
| |
Collapse
|
3
|
Krambrich J, Akaberi D, Lindahl JF, Lundkvist Å, Hesson JC. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasit Vectors 2024; 17:220. [PMID: 38741172 PMCID: PMC11092019 DOI: 10.1186/s13071-024-06269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.
Collapse
Affiliation(s)
- Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden.
| | - Dario Akaberi
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Johanna F Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health and Antibiotic Strategies, Swedish National Veterinary Institute, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| |
Collapse
|
4
|
Gossner CM, Dhollander S, Presser LD, Briet O, Bakonyi T, Schaffner F, Figuerola J. Potential for emergence of Japanese encephalitis in the European Union. Zoonoses Public Health 2024; 71:274-280. [PMID: 38110840 DOI: 10.1111/zph.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND AND OBJECTIVE No autochthonous human cases of Japanese encephalitis (JE) have been reported to date in the European Union (EU). In this study, we assess the likelihood of Japanese encephalitis virus (JEV) introduction and transmission within the EU and propose outbreak response measures. RISK ASSESSMENT Given the global geographical distribution of JEV, the probability of virus introduction into the EU is currently very low, with viremic bird migration being the most plausible pathway of introduction. However, this likelihood would significantly increase if the virus were to become established in the Middle East, Caucasus, Central Asia or Africa. Considering the environmental conditions that are expected to be conducive for virus circulation, there is a high likelihood of virus transmission within the EU after its introduction in environmentally suitable areas. The spread of the virus within the EU would likely occur through the movement of wild birds, pigs and mosquitoes. MITIGATION To mitigate or potentially contain the emergence of JE in the EU, early detection of both human and animal cases will be crucial.
Collapse
Affiliation(s)
- Céline M Gossner
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Lance D Presser
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Oliver Briet
- European Centre for Disease Prevention and Control, Solna, Sweden
| | - Tamas Bakonyi
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Jordi Figuerola
- Estación Biológica de Doñana (CSIC), Sevilla, Spain and CIBER Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
5
|
Jeffries CL, Tantely LM, Kadriaj P, Blagrove MSC, Lytra I, Orsborne J, Al-Amin HM, Mohammed AR, Alam MS, Girod R, Afrane YA, Bino S, Robert V, Boyer S, Baylis M, Velo E, Hughes GL, Walker T. Mitochondrial and microbial diversity of the invasive mosquito vector species Culex tritaeniorhynchus across its extensive inter-continental geographic range. Wellcome Open Res 2024; 9:18. [PMID: 38800519 PMCID: PMC11128058 DOI: 10.12688/wellcomeopenres.20761.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Background Culex (Cx.) tritaeniorhynchus is an invasive mosquito species with an extensive and expanding inter-continental distribution, currently reported across Asia, Africa, the Middle East, Europe and now Australia. It is an important vector of medical and veterinary pathogens which cause significant morbidity and mortality in human and animal populations. Across regions endemic for Japanese encephalitis virus (JEV), Cx. tritaeniorhynchus is considered the major vector and has also been shown to contribute to the transmission of several other zoonotic arboviruses including Rift Valley fever virus (RVFV) and West Nile virus (WNV). Methods In this study, we used laboratory vector competence experiments to determine if Cx. tritaeniorhynchus from a Southern European population were competent JEV vectors. We also obtained samples from multiple geographically dispersed Cx. tritaeniorhynchus populations from countries within Europe, Africa, Eurasia and Asia to perform phylogenetic analysis to measure the level of mitochondrial divergence using the cytochrome oxidase subunit 1 ( CO1) gene. We also undertook bacterial 16S rRNA gene amplicon sequencing to determine microbial diversity and used multi-locus sequence typing (MLST) to determine any evidence for the presence of strains of the naturally occurring endosymbiotic bacterium Wolbachia. Results Cx. tritaeniorhynchus from a Greek population were shown be be competent vectors of JEV with high levels of virus present in saliva. We found a signficant level of mitochondrial genetic diversity using the mosquito CO1 gene between geographically dispersed populations. Furthermore, we report diverse microbiomes identified by 16S rRNA gene amplicon sequencing within and between geographical populations. Evidence for the detection of the endosymbiotic bacteria Wolbachia was confirmed using Wolbachia-specific PCR and MLST. Conclusions This study enhances our understanding of the diversity of Cx. tritaeniorhynchus and the associated microbiome across its inter-continental range and highlights the need for greater surveillance of this invasive vector species in Europe.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luciano M Tantely
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Perparim Kadriaj
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
| | - Ioanna Lytra
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - James Orsborne
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hasan Mohammad Al-Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Romain Girod
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Silvia Bino
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Vincent Robert
- MIVEGEC, CNRS, Institute of Research for Development (IRD), University of Montpellier, Montpellier, France
| | - Sebastien Boyer
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Matthew Baylis
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
| | - Enkelejda Velo
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, University of Liverpool, Liverpool, England, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, University of Warwick, Coventry, England, UK
| |
Collapse
|
6
|
Soltan-Alinejad P, Bahrami S, Keshavarzi D, Shahriari-Namadi M, Hosseinpour A, Soltani A. Physicochemical characteristics of larval habitats and biodiversity of mosquitoes in one of the most important metropolises of southern Iran. Heliyon 2023; 9:e22754. [PMID: 38107319 PMCID: PMC10724668 DOI: 10.1016/j.heliyon.2023.e22754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
The present study aimed to investigate the roles of the physicochemical characteristics of larval habitats in biodiversity and other bionomic factors of mosquitoes in Shiraz. The physical parameters of all habitats were recorded separately. The collected mosquito larvae were identified based on morphological characters. The water samples of larval habitats were analyzed for Biochemical Oxygen Demand (BOD, mg/L), Chemical Oxygen Demand (COD, mg/L), pH, alkalinity, turbidity, total hardness (mg/L), Electrical Conductivity (EC, μS/cm), Total Dissolved Solids (TDS, mg/L), Cl2 (mg/L), and water temperature (°C). In addition, three main indices were used for surveying biodiversity. A total of 1229 larvae were collected from April to September 2018 and May to August 2019. Seven medically important mosquito species were identified morphologically. Culex quinquefasciatus and Cx. laticinctus had the highest distribution and abundance. Ecological results showed that the richness and diversity of species were higher and more stable in natural sites than in manmade places. The optimum BOD, COD, alkalinity, TDS, EC, pH, and temperature of water for mosquitoes of the studied areas were 140 mg/L, 360 mg/L, 160 mg/L, 420 mg/L, 840 μS/cm, 8.3, and 24 °C, respectively. Most mosquitoes tended to live in manmade, temporary, and sunny larval habitats with turbid water. The results provided a better understanding of the biology and ecology of mosquitoes as the most important group of disease vectors to humans and animals. Hence, they could be used to apply some safer and more environmentally friendly methods for mosquito control.
Collapse
Affiliation(s)
- Parisa Soltan-Alinejad
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Bahrami
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Keshavarzi
- Department of Medical Entomology and Vector Control, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziae Shahriari-Namadi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Hosseinpour
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aboozar Soltani
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Tong Y, Jiang H, Xu N, Wang Z, Xiong Y, Yin J, Huang J, Chen Y, Jiang Q, Zhou Y. Global Distribution of Culex tritaeniorhynchus and Impact Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4701. [PMID: 36981610 PMCID: PMC10048298 DOI: 10.3390/ijerph20064701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Culex tritaeniorhynchus is the primary vector of Japanese encephalitis (JE) and has a wide global distribution. However, the current and future geographic distribution maps of Cx. tritaeniorhynchus in global are still incomplete. Our study aims to predict the potential distribution of Cx. tritaeniorhynchus in current and future conditions to provide a guideline for the formation and implementation of vector control strategies all over the world. We collected and screened the information on the occurrence of Cx. tritaeniorhynchus by searching the literature and online databases and used ten algorithms to investigate its global distribution and impact factors. Cx. tritaeniorhynchus had been detected in 41 countries from 5 continents. The final ensemble model (TSS = 0.864 and AUC = 0.982) indicated that human footprint was the most important factor for the occurrence of Cx. tritaeniorhynchus. The tropics and subtropics, including southeastern Asia, Central Africa, southeastern North America and eastern South America, showed high habitat suitability for Cx. tritaeniorhynchus. Cx. tritaeniorhynchus is predicted to have a wider distribution in all the continents, especially in Western Europe and South America in the future under two extreme emission scenarios (SSP5-8.5 and SSP1-2.6). Targeted strategies for the control and prevention of Cx. tritaeniorhynchus should be further strengthened.
Collapse
Affiliation(s)
- Yixin Tong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Honglin Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ning Xu
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Zhengzhong Wang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ying Xiong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Jiangfan Yin
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Junhui Huang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON K1G 5Z3, Canada
| | - Qingwu Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yibiao Zhou
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| |
Collapse
|
8
|
Giunti G, Becker N, Benelli G. Invasive mosquito vectors in Europe: From bioecology to surveillance and management. Acta Trop 2023; 239:106832. [PMID: 36642256 DOI: 10.1016/j.actatropica.2023.106832] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Invasive mosquitoes (Diptera: Culicidae) play a key role in the spread of a number of mosquito-borne diseases worldwide. Anthropogenic changes play a significant role in affecting their distribution. Invasive mosquitoes usually take advantage from biotic homogenization and biodiversity reduction, therefore expanding in their distribution range and abundance. In Europe, climate warming and increasing urbanization are boosting the spread of several mosquito species of high public health importance. The present article contains a literature review focused on the biology and ecology of Aedes albopictus, Ae. aegypti, Ae. japonicus japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus, outlining their distribution and public health relevance in Europe. Bioecology insights were tightly connected with vector surveillance and control programs targeting these species. In the final section, a research agenda aiming for the effective and sustainable monitoring and control of invasive mosquitoes in the framework of Integrated Vector Management and One Health is presented. The WHO Vector Control Advisory Group recommends priority should be given to vector control tools with proven epidemiological impact.
Collapse
Affiliation(s)
- Giulia Giunti
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Norbert Becker
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany; Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, Speyer 67346, Germany; IcyBac-Biologische Stechmückenbekämpfung GmbH (ICYBAC), Georg-Peter-Süß-Str. 1, Speyer 67346, Germany
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, Pisa 56124, Italy.
| |
Collapse
|
9
|
Hernández-Triana LM, Folly AJ, Sewgobind S, Lean FZX, Ackroyd S, Nuñez A, Delacour S, Drago A, Visentin P, Mansfield KL, Johnson N. Susceptibility of Aedes albopictus and Culex quinquefasciatus to Japanese encephalitis virus. Parasit Vectors 2022; 15:210. [PMID: 35710580 PMCID: PMC9204976 DOI: 10.1186/s13071-022-05329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is the principal cause of mosquito-borne encephalitis in human populations within Asia. If introduced into new geographic areas, it could have further implications for public and animal health. However, potential mosquito vectors for virus transmission have not been fully investigated. The Asian tiger mosquito, Aedes albopictus, has emerged in Europe and is now expanding its geographical range into more northerly latitudes. Culex quinquefasciatus, although absent from Europe, has been detected in Turkey, a country with territory in Europe, and could act as a vector for JEV in other regions. To assess the risk of these invasive species acting as vectors for JEV and therefore potentially contributing to its geographical expansion, we have investigated the vector competence of Ae. albopictus and Cx. quinquefasciatus. METHODS Two colonised lines of Ae. albopictus (Italy and Spain) and a line of Cx. quinquefasciatus (Tanzania) were compared for susceptibility to infection by oral feeding with JEV strain SA-14, genotype III at 106 PFU/ml and maintained at 25 °C. Specimens were processed at 7 and 14 days post-inoculation (dpi). Rates of infection, dissemination and transmission were assessed through detection of viral RNA by real-time polymerase chain reaction (RT-PCR) in mosquito body, legs and saliva, respectively, at each time point. Where possible, infection and dissemination were confirmed by immunohistochemical (IHC) detection of the JEV envelope protein. RESULTS Aedes albopictus from Italy showed no susceptibility to infection with JEV strain SA-14. Conversely, Ae. albopictus colonised in Spain was susceptible and 100% of infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Culex quinquefasciatus was highly susceptible to infection as early as 7 dpi and 50% of infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Infection and dissemination were confirmed in Cx. quinquefasciatus by IHC detection of JEV envelope protein in both the mid-gut and salivary glands. CONCLUSIONS Aedes albopictus from two different locations in Europe range from being susceptible to JEV and capable of transmission through to being resistant. Culex quinquefasciatus also appears highly susceptible; therefore, both species could potentially act as vectors for JEV and facilitate the emergence of JEV into new regions.
Collapse
Affiliation(s)
| | - Arran J Folly
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Sanam Sewgobind
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Fabian Z X Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Stuart Ackroyd
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Alejandro Nuñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Sarah Delacour
- Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Andrea Drago
- Entostudio SrL, Viale del Lavoro 66, Ponte San Nicolò, Padua, Italy
| | | | - Karen L Mansfield
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Nicholas Johnson
- Vector Borne Diseases, Animal and Plant Health Agency, Addlestone, Surrey, UK
| |
Collapse
|
10
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
11
|
Nikookar SH, Fazeli-Dinan M, Enayati A. Population Fluctuations and Abundance Indices of Mosquitoes (Diptera: Culicid), as the Potential Bridge Vectors of Pathogens to Humans and Animals in Mazandaran Province, Northern Iran. J Arthropod Borne Dis 2022; 15:207-224. [PMID: 35111859 PMCID: PMC8782748 DOI: 10.18502/jad.v15i2.7490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Seasonal activity patterns of mosquitoes are essential as baseline knowledge to understand the transmission dynamics of vector-borne diseases. This study was conducted to evaluate the monthly dynamics of the mosquito populations and their relation to meteorological factors in Mazandaran Province, north of Iran. Methods Mosquito adults and larvae were collected from 16 counties of Mazandaran Province using different sampling techniques, once a month from May to December 2014. "Index of Species Abundance" (ISA) along with "Standardized ISA" (SISA) was used for assessing the most abundant species of mosquitoes based on the explanations of Robert and Hsi. Pearson's correlation coefficient (R) was used to assess the relationships between the monthly population fluctuations and meteorological variables. Results Overall, 23750 mosquitoes belonging to four genera and nineteen species were collected and identified. The highest population density of mosquitoes was in July and the lowest in May. The ISA/SISA indices for Culex pipiens were both 1 for larvae and 1.25/0.973 for adults in total catch performed in human dwellings. For Cx. tritaeniorhynchus, the ISA/SISA were 1.68/0.938 in pit shelter method. A significant positive correlation was observed between population fluctuations of Cx. tritaeniorhynchus and mean temperature (R: 0.766, P< 0.027). Conclusion The results indicated that the mosquitoes are more active in July, and Cx. pipiens and Cx. tritaeniorhynchus were the most abundant species. Considering the potential of these species as vectors of numerous pathogens, control programs can be planed based on their monthly activity pattern in the area.
Collapse
Affiliation(s)
- Seyed Hassan Nikookar
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Fazeli-Dinan
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Spanoudis CG, Pappas CS, Savopoulou-Soultani M, Andreadis SS. Composition, seasonal abundance, and public health importance of mosquito species in the regional unit of Thessaloniki, Northern Greece. Parasitol Res 2021; 120:3083-3090. [PMID: 34338859 DOI: 10.1007/s00436-021-07264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Mosquitoes (Diptera: Culicidae) are the largest group of blood-feeding insects that disturb not only humans but also other mammals and birds. This study reports the presence of native mosquito species in the regional unit of Thessaloniki and the monitoring of their population. In total, 13 mosquito species belonging to four genera were identified. The most dominant species was Culex pipiens, followed by Aedes caspius. In the present study, we report for the first time the presence of Ae. vittatus in Greece and of Anopheles plumbeus in the regional unit of Thessaloniki. Regarding the seasonal variation, species of the genus Aedes were the ones that first appeared in late March, followed by Culex species at the end of April and finally species of the genus Anopheles in July. Species of the Aedes genus were found to be the most abundant in the first quarter of the year (late March to early April). Population of Cx. pipiens remained at high levels from late April to late September. Species of the genus Anopheles were found in high densities from early August to October. The current study contributes to the knowledge of the mosquito species composition and their relative abundance in an area where West Nile virus caused severe epidemic outbreaks.
Collapse
Affiliation(s)
- Christos G Spanoudis
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christos S Pappas
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Matilda Savopoulou-Soultani
- Laboratory of Applied Zoology and Parasitology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefanos S Andreadis
- Hellenic Agricultural Organization Dimitra, Institute of Plant Breeding and Genetic Resources, 57001, Thermi, Greece.
| |
Collapse
|
13
|
Auerswald H, Maquart PO, Chevalier V, Boyer S. Mosquito Vector Competence for Japanese Encephalitis Virus. Viruses 2021; 13:v13061154. [PMID: 34208737 PMCID: PMC8234777 DOI: 10.3390/v13061154] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic pathogen mainly found in East and Southeast Asia and transmitted by mosquitoes. The objective of this review is to summarize the knowledge on the diversity of JEV mosquito vector species. Therefore, we systematically analyzed reports of JEV found in field-caught mosquitoes as well as experimental vector competence studies. Based on the investigated publications, we classified 14 species as confirmed vectors for JEV due to their documented experimental vector competence and evidence of JEV found in wild mosquitoes. Additionally, we identified 11 mosquito species, belonging to five genera, with an experimentally confirmed vector competence for JEV but lacking evidence on their JEV transmission capacity from field-caught mosquitoes. Our study highlights the diversity of confirmed and potential JEV vector species. We also emphasize the variety in the study design of vector competence investigations. To account for the diversity of the vector species and regional circumstances, JEV vector competence should be studied in the local context, using local mosquitoes with local virus strains under local climate conditions to achieve reliable data. In addition, harmonization of the design of vector competence experiments would lead to better comparable data, informing vector and disease control measures.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia
- Correspondence:
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia; (P.-O.M.); (S.B.)
| | - Véronique Chevalier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia;
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, 34000 Montpellier, France
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia; (P.-O.M.); (S.B.)
- Institut Pasteur, 75015 Paris, France
| |
Collapse
|
14
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Ackroyd S, Vidana B, Lean FZX, Hicks D, Nuñez A, Johnson N. Temperate conditions restrict Japanese encephalitis virus infection to the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes. Sci Rep 2021; 11:6133. [PMID: 33731761 PMCID: PMC7971067 DOI: 10.1038/s41598-021-85411-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the main cause of viral encephalitis in Asia. However, with changing climate JEV has the potential to emerge in novel temperate regions. Here, we have assessed the vector competence of the temperate mosquito Culex pipiens f. pipiens to vector JEV genotype III at temperatures representative of those experienced, or predicted in the future during the summer months, in the United Kingdom. Our results show that Cx. pipiens is susceptible to JEV infection at both temperatures. In addition, at 25 °C, JEV disseminated from the midgut and was recovered in saliva samples, indicating the potential for transmission. At a lower temperature, 20 °C, following an incubation period of fourteen days, there were reduced levels of JEV dissemination and virus was not detected in saliva samples. The virus present in the bodies of these mosquitoes was restricted to the posterior midgut as determined by microscopy and viable virus was successfully recovered. Apart from the influence on virus dissemination, mosquito mortality was significantly increased at the higher temperature. Overall, our results suggest that temperature is a critical factor for JEV vector competence and infected-mosquito survival. This may in turn influence the vectorial capacity of Cx. pipiens to vector JEV genotype III in temperate areas.
Collapse
Affiliation(s)
- Arran J Folly
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| | - Daniel Dorey-Robinson
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Pirbright Institute, Ash Road, Woking, Surrey, GU24 ONF, UK
| | - Luis M Hernández-Triana
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Stuart Ackroyd
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Beatriz Vidana
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.,Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Fabian Z X Lean
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Nicholas Johnson
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
15
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front Vet Sci 2020; 7:20. [PMID: 32118054 PMCID: PMC7010938 DOI: 10.3389/fvets.2020.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Daniel Dorey-Robinson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | | | - L. Paul Phipps
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
- Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
16
|
Liu B, Gao X, Ma J, Jiao Z, Xiao J, Wang H. Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091848. [PMID: 30150565 PMCID: PMC6165309 DOI: 10.3390/ijerph15091848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022]
Abstract
Culex tritaeniorhynchus is an important vector that transmits a variety of human and animal diseases. Japanese encephalitis (JE), an endemic disease in the Asia-Pacific region, is primarily transmitted by Cx. tritaeniorhynchus. Insufficient monitoring of vector mosquitoes has led to a poor understanding of the distribution of Cx. tritaeniorhynchus in China. To delineate the habitat of Cx. tritaeniorhynchus and any host and environmental factors that affect its distribution, we used a maximum entropy modeling method to predict its distribution in China. Our models provided high resolution predictions on the potential distribution of Cx. tritaeniorhynchus. The predicted suitable habitats of the JE vector were correlated with areas of high JE incidence in parts of China. Factors driving the distribution of Cx. tritaeniorhynchus in China were also revealed by our models. Furthermore, human population density and the maximum NDVI were the most important predictors in our models. Bioclimate factors and elevation also significantly impacted the distribution of Cx. tritaeniorhynchus. Our findings may serve as a reference for vector and disease control.
Collapse
Affiliation(s)
- Boyang Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiang Gao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Zhihui Jiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jianhua Xiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hongbin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Di Francesco J, Choeung R, Peng B, Pring L, Pang S, Duboz R, Ong S, Sorn S, Tarantola A, Fontenille D, Duong V, Dussart P, Chevalier V, Cappelle J. Comparison of the dynamics of Japanese encephalitis virus circulation in sentinel pigs between a rural and a peri-urban setting in Cambodia. PLoS Negl Trop Dis 2018; 12:e0006644. [PMID: 30138381 PMCID: PMC6107123 DOI: 10.1371/journal.pntd.0006644] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 06/28/2018] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis is mainly considered a rural disease, but there is growing evidence of a peri-urban and urban transmission in several countries, including Cambodia. We, therefore, compared the epidemiologic dynamic of Japanese encephalitis between a rural and a peri-urban setting in Cambodia. We monitored two cohorts of 15 pigs and determined the force of infection-rate at which seronegative pigs become positive-in two study farms located in a peri-urban and rural area, respectively. We also studied the mosquito abundance and diversity in proximity of the pigs, as well as the host densities in both areas. All the pigs seroconverted before the age of 6 months. The force of infection was 0.061 per day (95% confidence interval = 0.034-0.098) in the peri-urban cohort and 0.069 per day (95% confidence interval = 0.047-0.099) in the rural cohort. Several differences in the epidemiologic dynamic of Japanese encephalitis between both study sites were highlighted. The later virus amplification in the rural cohort may be linked to the later waning of maternal antibodies, but also to the higher pig density in direct proximity of the studied pigs, which could have led to a dilution of mosquito bites at the farm level. The force of infection was almost identical in both the peri-urban and the rural farms studied, which shifts the classic epidemiologic cycle of the virus. This study is a first step in improving our understanding of Japanese encephalitis virus ecology in different environments with distinct landscapes, human and animal densities.
Collapse
Affiliation(s)
- Juliette Di Francesco
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- University of Calgary, Faculty of Veterinary Medicine, Department of Ecosystem and Public Health, Calgary, Canada
- * E-mail:
| | - Rithy Choeung
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Borin Peng
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Long Pring
- Royal University of Agriculture, Phnom Penh, Cambodia
| | - Senglong Pang
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Raphaël Duboz
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Sivuth Ong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - San Sorn
- Ministry of Agriculture, Forestry, and Fisheries, Department of Animal Health and Production, Phnom Penh, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| | | | - Veasna Duong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Philippe Dussart
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Véronique Chevalier
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Julien Cappelle
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- UMR EpiA, VetAgro Sup, INRA, Marcy l’étoile, France
| |
Collapse
|
18
|
Pearce JC, Learoyd TP, Langendorf BJ, Logan JG. Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med 2018; 25:S16-S26. [PMID: 29718435 DOI: 10.1093/jtm/tay009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/20/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Japanese encephalitis (JE) is a viral disease predominantly located in South East Asia and commonly associated with transmission between amplifying hosts, such as pigs, and the mosquito Culex tritaeniorhynchus, where human infection represents a dead end in the life cycle of the virus. The expansion of JE beyond an Asiatic confine is dependent on a multitude of complex factors that stem back to genetic subtype variation. A complex interplay of the genetic variation and vector competencies combine with variables such as geography, climate change and urbanization. METHODS Our understanding of JE is still at an early stage with long-term longitudinal vector surveillance necessary to better understand the dynamics of JE transmission and to characterize the role of potential secondary vectors such as Cx. pipiens and Cx. bitaeniorhynchus. The authors review the vectors indicated in transmission and the ecological, genetic and anthropological factors that affect the disease's range and epidemiology. CONCLUSION Monitoring for the presence of JE virus in mosquitoes in general can be used to estimate levels of potential JE exposure, intensity of viral activity and genetic variation of JEV throughout surveyed areas. Increased surveillance and diagnosis of viral encephalitis caused by genotype 5 JE virus is required in particular, with the expansion in epidemiology and disease prevalence in new geographic areas an issue of great concern. Additional studies that measure the impact of vectors (e.g. bionomics and vector competence) in the transmission of JEV and that incorporate environmental factors (e.g. weekly rainfall) are needed to define the roles of Culex species in the viral pathogenesis during outbreak and non-outbreak years.
Collapse
Affiliation(s)
- James C Pearce
- ARCTEC, Keppel Street, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Tristan P Learoyd
- Valneva UK Ltd, Centaur House, Ancells Business Park, Ancells Road, Fleet, Hampshire GU51 2UJ, UK
| | - Benjamin J Langendorf
- ARCTEC, Keppel Street, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - James G Logan
- ARCTEC, Keppel Street, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
19
|
Filatov S. Little pigeons can carry great messages: potential distribution and ecology of Uranotaenia (Pseudoficalbia) unguiculata Edwards, 1913 (Diptera: Culicidae), a lesser-known mosquito species from the Western Palaearctic. Parasit Vectors 2017; 10:464. [PMID: 29017545 PMCID: PMC5634949 DOI: 10.1186/s13071-017-2410-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Uranotaenia unguiculata is a Palaearctic mosquito species with poorly known distribution and ecology. This study is aimed at filling the gap in our understanding of the species potential distribution and its environmental requirements through a species distribution modelling (SDM) exercise. Furthermore, aspects of the mosquito ecology that may be relevant to the epidemiology of certain zoonotic vector-borne diseases in Europe are discussed. RESULTS A maximum entropy (Maxent) modelling approach has been applied to predict the potential distribution of Ur. unguiculata in the Western Palaearctic. Along with the high accuracy and predictive power, the model reflects well the known species distribution and predicts as highly suitable some areas where the occurrence of the species is hitherto unknown. CONCLUSIONS To our knowledge, the potential distribution of a mosquito species from the genus Uranotaenia is modelled for the first time. Provided that Ur. unguiculata is a widely-distributed species, and some pathogens of zoonotic concern have been detected in this mosquito on several occasions, the question regarding its host associations and possible epidemiological role warrants further investigation.
Collapse
Affiliation(s)
- Serhii Filatov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine.
| |
Collapse
|
20
|
Longbottom J, Browne AJ, Pigott DM, Sinka ME, Golding N, Hay SI, Moyes CL, Shearer FM. Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasit Vectors 2017; 10:148. [PMID: 28302156 PMCID: PMC5356256 DOI: 10.1186/s13071-017-2086-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito's geographical distribution. RESULTS We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally unique presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These presence data were combined with a background dataset capturing sample bias in our presence dataset, along with environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental suitability for Cx. tritaeniorhynchus at each 5 × 5 km gridded cell within areas of JE risk. The resulting fine-scale map highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated. CONCLUSIONS Our map contributes towards efforts determining the spatial heterogeneity in Cx. tritaeniorhynchus distribution within the limits of JE transmission. Specifically, this map can be used to inform vector control programs and can be used to identify key areas where the prevention of Cx. tritaeniorhynchus establishment should be a priority.
Collapse
Affiliation(s)
- Joshua Longbottom
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Annie J. Browne
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - David M. Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA USA
| | - Marianne E. Sinka
- Oxford Long Term Ecology Laboratory, Department of Zoology, University of Oxford, Oxford, UK
| | - Nick Golding
- Quantitative & Applied Ecology Group, School of BioSciences, University of Melbourne, Parkville, VIC Australia
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA USA
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Catherine L. Moyes
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Freya M. Shearer
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Cappelle J, Duong V, Pring L, Kong L, Yakovleff M, Prasetyo DB, Peng B, Choeung R, Duboz R, Ong S, Sorn S, Dussart P, Tarantola A, Buchy P, Chevalier V. Intensive Circulation of Japanese Encephalitis Virus in Peri-urban Sentinel Pigs near Phnom Penh, Cambodia. PLoS Negl Trop Dis 2016; 10:e0005149. [PMID: 27926937 PMCID: PMC5142769 DOI: 10.1371/journal.pntd.0005149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022] Open
Abstract
Despite the increased use of vaccination in several Asian countries, Japanese Encephalitis (JE) remains the most important cause of viral encephalitis in Asia in humans with an estimated 68,000 cases annually. Considered a rural disease occurring mainly in paddy-field dominated landscapes where pigs are amplifying hosts, JE may nevertheless circulate in a wider range of environment given the diversity of its potential hosts and vectors. The main objective of this study was to assess the intensity of JE transmission to pigs in a peri-urban environment in the outskirt of Phnom Penh, Cambodia. We estimated the force of JE infection in two cohorts of 15 sentinel pigs by fitting a generalised linear model on seroprevalence monitoring data observed during two four-month periods in 2014. Our results provide evidence for intensive circulation of JE virus in a periurban area near Phnom Penh, the capital and most populated city of Cambodia. Understanding JE virus transmission in different environments is important for planning JE virus control in the long term and is also an interesting model to study the complexity of vector-borne diseases. Collecting quantitative data such as the force of infection will help calibrate epidemiological model that can be used to better understand complex vector-borne disease epidemiological cycles.
Collapse
Affiliation(s)
- Julien Cappelle
- CIRAD-ES, UPR AGIRs, Montpellier, France
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Long Pring
- Royal University of Agriculture, Phnom Penh, Cambodia
| | - Lida Kong
- Royal University of Agriculture, Phnom Penh, Cambodia
| | - Maud Yakovleff
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| | | | - Borin Peng
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Rithy Choeung
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Raphaël Duboz
- CIRAD-ES, UPR AGIRs, Montpellier, France
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| | - Sivuth Ong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - San Sorn
- National Veterinary Research Institute, Phnom Penh, Cambodia
| | - Philippe Dussart
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| | | | | |
Collapse
|
22
|
Jeffries CL, Walker T. The Potential Use of Wolbachia-Based Mosquito Biocontrol Strategies for Japanese Encephalitis. PLoS Negl Trop Dis 2015; 9:e0003576. [PMID: 26086337 PMCID: PMC4472807 DOI: 10.1371/journal.pntd.0003576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic pathogen transmitted by the infectious bite of Culex mosquitoes. The virus causes the development of the disease Japanese encephalitis (JE) in a small proportion of those infected, predominantly affecting children in eastern and southern Asia. Annual JE incidence estimates range from 50,000–175,000, with 25%–30% of cases resulting in mortality. It is estimated that 3 billion people live in countries in which JEV is endemic. The virus exists in an enzootic transmission cycle, with mosquitoes transmitting JEV between birds as reservoir hosts and pigs as amplifying hosts. Zoonotic infection occurs as a result of spillover events from the main transmission cycle. The reservoir avian hosts include cattle egrets, pond herons, and other species of water birds belonging to the family Ardeidae. Irrigated rice fields provide an ideal breeding ground for mosquitoes and attract migratory birds, maintaining the transmission of JEV. Although multiple vaccines have been developed for JEV, they are expensive and require multiple doses to maintain efficacy and immunity. As humans are a “dead-end” host for the virus, vaccination of the human population is unlikely to result in eradication. Therefore, vector control of the principal mosquito vector, Culex tritaeniorhynchus, represents a more promising strategy for reducing transmission. Current vector control strategies include intermittent irrigation of rice fields and space spraying of insecticides during outbreaks. However, Cx. Tritaeniorhynchus is subject to heavy exposure to pesticides in rice fields, and as a result, insecticide resistance has developed. In recent years, significant advancements have been made in the potential use of the bacterial endosymbiont Wolbachia for mosquito biocontrol. The successful transinfection of Wolbachia strains from Drosophila flies to Aedes (Stegomyia) mosquitoes has resulted in the generation of “dengue-refractory” mosquito lines. The successful establishment of Wolbachia in wild Aedes aegypti populations has recently been demonstrated, and open releases in dengue-endemic countries are ongoing. This review outlines the current control methods for JEV in addition to highlighting the potential use of Wolbachia-based biocontrol strategies to impact transmission. JEV and dengue virus are both members of the Flavivirus genus, and the successful establishment of Drosophila Wolbachia strains in Cx. Tritaeniorhynchus, as the principal vector of JEV, is predicted to significantly impact JEV transmission.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|