1
|
Su R, Ma C, Han B, Zhang H, Liu K. Proteins for Hyperelastic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406388. [PMID: 39910850 DOI: 10.1002/smll.202406388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Meticulous engineering and the yielded hyperelastic performance of structural proteins represent a new frontier in developing next-generation functional biomaterials. These materials exhibit outstanding and programmable mechanical properties, including elasticity, resilience, toughness, and active biological characteristics, such as degradability and tissue repairability, compared with their chemically synthetic counterparts. However, there are several critical issues regarding the preparation approaches of hyperelastic protein-based materials: limited natural sequence modules, non-hierarchical assembly, and imbalance between compressive and tensile elasticity, leading to unmet demands. Therefore, it is pivotal to develop an alternative strategy for biofabricating hyperelastic materials. Herein, the molecular design, engineering, and property regulation of hyperelastic structural proteins are overviewed. First, methodologies for deeper exploration of mechanical modules, including machine learning-aided de novo design, random mutations of natural sequences, and multiblock fusion techniques, are actively introduced. These methodologies facilitate the generation of elastomeric protein modules and demonstrate enhanced structural and functional versatility. Subsequently, assembly tactics of hyperelastic proteins (i.e., physical modulation, genetic adaptations, and chemical modifications) are reviewed, yielding hierarchically ordered structures. Finally, advances in biophysical techniques for more nuanced characterization of protein ensembles are discussed, unveiling the tuning mechanisms of protein elasticity across scales. Future developments in structural hyperelastic protein-based biomaterials are also envisioned.
Collapse
Affiliation(s)
- Rui Su
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Bing Han
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| |
Collapse
|
2
|
Ma X, Zhu X, Lv S, Yang C, Wang Z, Liao M, Zhou B, Zhang Y, Sun S, Chen P, Liu Z, Chen H. 3D bioprinting of prefabricated artificial skin with multicomponent hydrogel for skin and hair follicle regeneration. Theranostics 2025; 15:2933-2950. [PMID: 40083946 PMCID: PMC11898285 DOI: 10.7150/thno.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Background: The timely management of large-scale wounds and the regeneration of skin appendages constitute major clinical issues. The production of high-precision and customizable artificial skin via 3D bioprinting offers a feasible means to surmount the predicament, within which the selection of bioactive materials and seed cells is critical. This study is aimed at employing skin stem cells and multicomponent hydrogels to prefabricate artificial skin through 3D bioprinting, which enables the regeneration of skin and its appendages. Methods and Results: We employed gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) as bioactive materials, in conjunction with epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs), to fabricate artificial skin utilizing 3D bioprinting. The photosensitive multicomponent hydrogel, comprising 5% GelMA and 0.5% HAMA, demonstrated excellent printability, suitable solubility and swelling rates, as well as stable mechanical properties. Moreover, this hydrogel exhibited exceptional biocompatibility, effectively facilitating the proliferation of SKPs while maintaining the cellular characteristics of both SKPs and Epi-SCs. The transplantation of this artificial skin into cutaneous wounds in nude mice led to complete wound healing and functional tissue regeneration. The regenerated tissue comprised epidermis, dermis, hair follicles, blood vessels, and sebaceous glands, closely resembling native skin. Remarkably, the artificial skin demonstrated sustained tissue regeneration capacity even after 12 h of in vitro culture, facilitating comprehensive functional skin regeneration. Conclusions: Our research presented a skin repair strategy for prefabricated cell-loaded artificial skin, thereby successfully facilitating the regeneration of the epidermis, dermis, hair follicles, blood vessels, and sebaceous glands within the wound.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- Peptide and Small Molecule Drug RD Platform, Furong laboratory, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Sheng Lv
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chunyan Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zihao Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Meilan Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yiming Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shiyu Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China
- Peptide and Small Molecule Drug RD Platform, Furong laboratory, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Li L, Dong L, Cheng Y, Huang X, Xue B, Jiang C, Cao Y, Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. CHEM & BIO ENGINEERING 2024; 1:887-915. [PMID: 39975572 PMCID: PMC11835278 DOI: 10.1021/cbe.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 02/21/2025]
Abstract
The liver's role in metabolism, detoxification, and immune regulation underscores the urgency of addressing liver diseases, which claim millions of lives annually. Due to donor shortages in liver transplantation, liver tissue engineering (LTE) offers a promising alternative. Hydrogels, with their biocompatibility and ability to mimic the liver's extracellular matrix (ECM), support cell survival and function in LTE. This review analyzes recent advances in hydrogel-based strategies for LTE, including decellularized liver tissue hydrogels, natural polymer-based hydrogels, and synthetic polymer-based hydrogels. These materials are ideal for in vitro cell culture and obtaining functional hepatocytes. Hydrogels' tunable properties facilitate creating artificial liver models, such as organoids, 3D bioprinting, and liver-on-a-chip technologies. These developments demonstrate hydrogels' versatility in advancing LTE's applications, including hepatotoxicity testing, liver tissue regeneration, and treating acute liver failure. This review highlights the transformative potential of hydrogels in LTE and their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Luofei Li
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liang Dong
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Jiapeng Yang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
4
|
Liu Z, Li H, Li J, Yu J, Liu K. Engineered protein elastomeric materials. Chem Commun (Camb) 2024; 60:11267-11274. [PMID: 39258457 DOI: 10.1039/d4cc02905d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural evolution endows some insects and marine organisms with a special class of protein-based elastic tissues that possess energy feedback characteristics, providing them with the foundation for jumping and flying, and protecting them from the damage caused by movements or waves. However, the design and fabrication of such protein-based elastomeric materials that can function in human society through biomimetic strategies still remains challenging. Recombinant proteins designed by synthetic biology can mimic the advantageous structures in natural proteins and can be biosynthesized without the requirements for harsh conditions such as high temperatures and cytotoxic agents, which provides a great opportunity to prepare protein-based elastomeric materials. In this review, starting from the design of protein molecules, we highlight an overview of the synthesis of elastomeric materials based on recombinant resilin, recombinant elastin-like proteins and other recombinant folded proteins, etc., and then demonstrate their application progress in the fields of biomedicine and high technology. Finally, the challenges and prospects for the future development of protein-based elastomeric materials are envisioned to provide insights into the design and synthesis of the next generation of protein-based elastomeric materials.
Collapse
Affiliation(s)
- Zhongcheng Liu
- Department of Chemistry, Tsinghua University, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Beijing 100084, P. R. China.
| | - Haopeng Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Beijing 100084, P. R. China.
- Xiangfu Laboratory, Jiaxing 314102, P. R. China
| |
Collapse
|
5
|
Krymchenko R, Coşar Kutluoğlu G, van Hout N, Manikowski D, Doberenz C, van Kuppevelt TH, Daamen WF. Elastogenesis in Focus: Navigating Elastic Fibers Synthesis for Advanced Dermal Biomaterial Formulation. Adv Healthc Mater 2024; 13:e2400484. [PMID: 38989717 DOI: 10.1002/adhm.202400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Elastin, a fibrous extracellular matrix (ECM) protein, is the main component of elastic fibers that are involved in tissues' elasticity and resilience, enabling them to undergo reversible extensibility and to endure repetitive mechanical stress. After wounding, it is challenging to regenerate elastic fibers and biomaterials developed thus far have struggled to induce its biosynthesis. This review provides a comprehensive summary of elastic fibers synthesis at the cellular level and its implications for biomaterial formulation, with a particular focus on dermal substitutes. The review delves into the intricate process of elastogenesis by cells and investigates potential triggers for elastogenesis encompassing elastin-related compounds, ECM components, and other molecules for their potential role in inducing elastin formation. Understanding of the elastogenic processes is essential for developing biomaterials that trigger not only the synthesis of the elastin protein, but also the formation of a functional and branched elastic fiber network.
Collapse
Affiliation(s)
- Roman Krymchenko
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Gizem Coşar Kutluoğlu
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
- MedSkin Solutions Dr. Suwelack AG, 48727, Billerbeck, Germany
| | - Noor van Hout
- Department of Dermatology, Radboud university medical center, Nijmegen, 6525 GA, The Netherlands
| | | | | | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
6
|
Li M, Li J, Liu K, Zhang H. Artificial structural proteins: Synthesis, assembly and material applications. Bioorg Chem 2024; 144:107162. [PMID: 38308999 DOI: 10.1016/j.bioorg.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Yang J, Wang X, Zeng X, Wang R, Ma Y, Fu Z, Wan Z, Wang Z, Yang L, Chen G, Gong X. One-step stromal vascular fraction therapy in osteoarthritis with tropoelastin-enhanced autologous stromal vascular fraction gel. Front Bioeng Biotechnol 2024; 12:1359212. [PMID: 38410163 PMCID: PMC10895027 DOI: 10.3389/fbioe.2024.1359212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is a debilitating degenerative joint disease, leading to significant pain and disability. Despite advancements, current regenerative therapies, such as mesenchymal stem cells (MSCs), face challenges in clinical efficacy and ethical considerations. This study aimed to evaluate the therapeutic potential of stromal vascular fraction gel (SVF-gel) in comparison to available treatments like hyaluronic acid (HA) and adipose-derived stem cells (ADSCs) and to assess the enhancement of this potential by incorporating tropoelastin (TE). Methods: We conducted a comparative laboratory study, establishing an indirect co-culture system using a Transwell assay to test the effects of HA, ADSCs, SVF-gel, and TE-SVF-gel on osteoarthritic articular chondrocytes (OACs). Chondrogenic and hypertrophic markers were assessed after a 72-hour co-culture. SVF-gel was harvested from rat subcutaneous abdominal adipose tissue, with its mechanical properties characterized. Cell viability was specifically analyzed for SVF-gel and TE-SVF-gel. The in vivo therapeutic effectiveness was further investigated in a rat model of OA, examining MSCs tracking, effects on cartilage matrix synthesis, osteophyte formation, and muscle weight changes. Results: Cell viability assays revealed that TE-SVF-gel maintained higher cell survival rates than SVF-gel. In comparison to the control, HA, and ADSCs groups, SVF-gel and TE-SVF-gel significantly upregulated the expression of chondrogenic markers COL 2, SOX-9, and ACAN and downregulated the hypertrophic marker COL 10 in OACs. The TE-SVF-gel showed further improved expression of chondrogenic markers and a greater decrease in COL 10 expression compared to SVF-gel alone. Notably, the TE-SVF-gel treated group in the in vivo OA model exhibited the most MSCs on the synovial surface, superior cartilage matrix synthesis, increased COL 2 expression, and better muscle weight recovery, despite the presence of fewer stem cells than other treatments. Discussion: The findings suggest that SVF-gel, particularly when combined with TE, provides a more effective regenerative treatment for OA by enhancing the therapeutic potential of MSCs. This combination could represent an innovative strategy that overcomes limitations of current therapies, offering a new avenue for patient treatment. Further research is warranted to explore the long-term benefits and potential clinical applications of this combined approach.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - XueBao Zeng
- Chongqing Yan Yu Medical Beauty Clinic, Chongqing, China
| | - Rong Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanming Ma
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zu Wan
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Sethi V, Cohen-Gerassi D, Meir S, Ney M, Shmidov Y, Koren G, Adler-Abramovich L, Chilkoti A, Beck R. Modulating hierarchical self-assembly in thermoresponsive intrinsically disordered proteins through high-temperature incubation time. Sci Rep 2023; 13:21688. [PMID: 38066072 PMCID: PMC10709347 DOI: 10.1038/s41598-023-48483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.
Collapse
Affiliation(s)
- Vaishali Sethi
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Dana Cohen-Gerassi
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sagi Meir
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Gil Koren
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Roy Beck
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
9
|
Sethi V, Cohen-Gerassi D, Meir S, Ney M, Shmidov Y, Koren G, Adler-Abramovich L, Chilkoti A, Beck R. Modulating Hierarchical Self-Assembly In Thermoresponsive Intrinsically Disordered Proteins Through High-Temperature Incubation Time. RESEARCH SQUARE 2023:rs.3.rs-3306733. [PMID: 37720053 PMCID: PMC10503869 DOI: 10.21203/rs.3.rs-3306733/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to β-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.
Collapse
Affiliation(s)
- Vaishali Sethi
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Cohen-Gerassi
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sagi Meir
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gil Koren
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Roy Beck
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Lee KZ, Jeon J, Jiang B, Subramani SV, Li J, Zhang F. Protein-Based Hydrogels and Their Biomedical Applications. Molecules 2023; 28:4988. [PMID: 37446650 DOI: 10.3390/molecules28134988] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels made from proteins are attractive materials for diverse medical applications, as they are biocompatible, biodegradable, and amenable to chemical and biological modifications. Recent advances in protein engineering, synthetic biology, and material science have enabled the fine-tuning of protein sequences, hydrogel structures, and hydrogel mechanical properties, allowing for a broad range of biomedical applications using protein hydrogels. This article reviews recent progresses on protein hydrogels with special focus on those made of microbially produced proteins. We discuss different hydrogel formation strategies and their associated hydrogel properties. We also review various biomedical applications, categorized by the origin of protein sequences. Lastly, current challenges and future opportunities in engineering protein-based hydrogels are discussed. We hope this review will inspire new ideas in material innovation, leading to advanced protein hydrogels with desirable properties for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Juya Jeon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Bojing Jiang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Shri Venkatesh Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Jingyao Li
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| |
Collapse
|
11
|
Hume RD, Kanagalingam S, Deshmukh T, Chen S, Mithieux SM, Rashid FN, Roohani I, Lu J, Doan T, Graham D, Clayton ZE, Slaughter E, Kizana E, Stempien-Otero AS, Brown P, Thomas L, Weiss AS, Chong JJ. Tropoelastin Improves Post-Infarct Cardiac Function. Circ Res 2023; 132:72-86. [PMID: 36453283 PMCID: PMC9829044 DOI: 10.1161/circresaha.122.321123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.
Collapse
Affiliation(s)
- Robert D. Hume
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Shaan Kanagalingam
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Tejas Deshmukh
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Siqi Chen
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Suzanne M. Mithieux
- Charles Perkins Centre, University of Sydney, NSW, Australia (S.M.M., A.S.W.).,School of Life and Environmental Sciences, University of Sydney, NSW, Australia (S.M.M., A.S.W.)
| | - Fairooj N. Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Iman Roohani
- School of Biomedical Engineering, University of Sydney, NSW, Australia (I.R.).,School of Chemistry, University of New South Wales, Australia (I.R.)
| | - Juntang Lu
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Tram Doan
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.)
| | - Dinny Graham
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.).,Westmead Breast Cancer Institute, NSW, Australia (D.G.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | - Zoe E. Clayton
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - April S. Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA (A.S.S.-O.)
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | | | - James J.H. Chong
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| |
Collapse
|
12
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
13
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
14
|
Yang C, Weiss AS, Tarakanova A. Changes in elastin structure and extensibility induced by hypercalcemia and hyperglycemia. Acta Biomater 2022; 163:131-145. [PMID: 35364318 DOI: 10.1016/j.actbio.2022.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Elastin is a key elastomeric protein responsible for the elasticity of many organs, including heart, skin, and blood vessels. Due to its intrinsic long life and low turnover rate, damage in elastin induced by pathophysiological conditions, such as hypercalcemia and hyperglycemia, accumulates during biological aging and in aging-associated diseases, such as diabetes mellitus and atherosclerosis. Prior studies have shown that calcification induced by hypercalcemia deteriorates the function of aortic tissues. Glycation of elastin is triggered by hyperglycemia and associated with elastic tissue damage and loss of mechanical functions via the accumulation of advanced glycation end products. To evaluate the effects on elastin's structural conformations and elasticity by hypercalcemia and hyperglycemia at the molecular scale, we perform classical atomistic and steered molecular dynamics simulations on tropoelastin, the soluble precursor of elastin, under different conditions. We characterize the interaction sites of glucose and calcium and associated structural conformational changes. Additionally, we find that elevated levels of calcium ions and glucose hinder the extensibility of tropoelastin by rearranging structural domains and altering hydrogen bonding patterns, respectively. Overall, our investigation helps to reveal the behavior of tropoelastin and the biomechanics of elastin biomaterials in these physiological environments. STATEMENT OF SIGNIFICANCE: Elastin is a key component of elastic fibers which endow many important tissues and organs, from arteries and veins, to skin and heart, with strength and elasticity. During aging and aging-associated diseases, such as diabetes mellitus and atherosclerosis, physicochemical stressors, including hypercalcemia and hyperglycemia, induce accumulated irreversible damage in elastin, and consequently alter mechanical function. Yet, molecular mechanisms associated with these processes are still poorly understood. Here, we present the first study on how these changes in elastin structure and extensibility are induced by hypercalcemia and hyperglycemia at the molecular scale, revealing the essential roles that calcium and glucose play in triggering structural alterations and mechanical stiffness. Our findings yield critical insights into the first steps of hypercalcemia- and hyperglycemia-mediated aging.
Collapse
Affiliation(s)
- Chengeng Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
15
|
Hoareau M, El Kholti N, Debret R, Lambert E. Zebrafish as a Model to Study Vascular Elastic Fibers and Associated Pathologies. Int J Mol Sci 2022; 23:2102. [PMID: 35216218 PMCID: PMC8875079 DOI: 10.3390/ijms23042102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
Many extensible tissues such as skin, lungs, and blood vessels require elasticity to function properly. The recoil of elastic energy stored during a stretching phase is provided by elastic fibers, which are mostly composed of elastin and fibrillin-rich microfibrils. In arteries, the lack of elastic fibers leads to a weakening of the vessel wall with an increased risk to develop cardiovascular defects such as stenosis, aneurysms, and dissections. The development of new therapeutic molecules involves preliminary tests in animal models that recapitulate the disease and whose response to drugs should be as close as possible to that of humans. Due to its superior in vivo imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study human pathologies. Moreover, it is particularly adapted to large scale studies, making it an attractive model in particular for the first steps of investigations. In this review, we discuss the relevance of the zebrafish model for the study of elastic fiber-related vascular pathologies. We evidence zebrafish as a compelling alternative to conventional mouse models.
Collapse
Affiliation(s)
- Marie Hoareau
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7, Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (N.E.K.); (R.D.)
| | | | | | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7, Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (N.E.K.); (R.D.)
| |
Collapse
|
16
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
17
|
Ramos R, Bernard J, Ganachaud F, Miserez A. Protein‐Based Encapsulation Strategies: Toward Micro‐ and Nanoscale Carriers with Increased Functionality. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ricardo Ramos
- Université de Lyon INSA Lyon CNRS IMP 5223 Villeurbanne Cedex 69621 France
- INSA-Lyon, IMP Villeurbanne F-69621 France
- CNRS, UMR 5223 Ingénierie des Matériaux Polymères Villeurbanne F-69621 France
| | - Julien Bernard
- Université de Lyon INSA Lyon CNRS IMP 5223 Villeurbanne Cedex 69621 France
- INSA-Lyon, IMP Villeurbanne F-69621 France
- CNRS, UMR 5223 Ingénierie des Matériaux Polymères Villeurbanne F-69621 France
| | - François Ganachaud
- Université de Lyon INSA Lyon CNRS IMP 5223 Villeurbanne Cedex 69621 France
- INSA-Lyon, IMP Villeurbanne F-69621 France
- CNRS, UMR 5223 Ingénierie des Matériaux Polymères Villeurbanne F-69621 France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory Center for Sustainable Materials (SusMat), School of Materials Science and Engineering Nanyang Technological University (NTU) 50 Nanyang Avenue Singapore 637 553 Singapore
- School of Biological Sciences NTU 59 Nanyang Drive Singapore 636921 Singapore
| |
Collapse
|
18
|
Park BH, Jeong ES, Lee S, Jang JH. Bio-functionalization and in-vitro evaluation of titanium surface with recombinant fibronectin and elastin fragment in human mesenchymal stem cell. PLoS One 2021; 16:e0260760. [PMID: 34914752 PMCID: PMC8675760 DOI: 10.1371/journal.pone.0260760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.
Collapse
Affiliation(s)
- Bo-Hyun Park
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Eui-Seung Jeong
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
- * E-mail:
| |
Collapse
|
19
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
20
|
Florio G, Pugno NM, Buehler MJ, Puglisi G. A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations. Acta Biomater 2021; 134:477-489. [PMID: 34303013 DOI: 10.1016/j.actbio.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
We propose a simple general framework to predict folding, native states, energy barriers, protein unfolding, as well as mutation induced diseases and other protein structural analyses. The model should not be considered as an alternative to classical approaches (Molecular Dynamics or Monte Carlo) because it neglects low scale details and rather focuses on global features of proteins and structural information. We aim at the description of phenomena that are out of the range of classical molecular modeling approaches due to the large computational cost: multimolecular interactions, cyclic behavior under variable external interactions, and similar. To demonstrate the effectiveness of the approach in a real case, we focus on the folding and unfolding behavior of tropoelastin and its mutations. Specifically, we derive a discrete mechanical model whose structure is deduced based on a coarse graining approach that allows us to group the amino acids sequence in a smaller number of `equivalent' masses. Nearest neighbor energy terms are then introduced to reproduce the interaction of such amino acid groups. Nearest and non-nearest neighbor energy terms, inter and intra functional blocks are phenomenologically added in the form of Morse potentials. As we show, the resulting system reproduces important properties of the folding-unfolding mechanical response, including the monotonic and cyclic force-elongation behavior, representing a physiologically important information for elastin. The comparison with the experimental behavior of mutated tropoelastin confirms the predictivity of the model. STATEMENT OF SIGNIFICANCE: Classical approaches to the study of phenomena at the molecular scale such as Molecular Dynamics (MD) represent an incredible tool to unveil mechanical and conformational properties of macromolecules, in particular for biological and medical applications. On the other hand, due to the computational cost, the time and spatial scales are limited. Focusing of the real case of tropoelastin, we propose a new approach based on a careful coarse graining of the system, able to describe the overall properties of the macromolecule and amenable of extension to larger scale effects (protein bundles, protein-protein interactions, cyclic loading). The comparison with tropoelastin behavior, also for mutations, is very promising.
Collapse
|
21
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
22
|
Juanes-Gusano D, Santos M, Reboto V, Alonso M, Rodríguez-Cabello JC. Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers. J Pept Sci 2021; 28:e3362. [PMID: 34545666 DOI: 10.1002/psc.3362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
Despite lacking cooperatively folded structures under native conditions, numerous intrinsically disordered proteins (IDPs) nevertheless have great functional importance. These IDPs are hybrids containing both ordered and intrinsically disordered protein regions (IDPRs), the structure of which is highly flexible in this unfolded state. The conformational flexibility of these disordered systems favors transitions between disordered and ordered states triggered by intrinsic and extrinsic factors, folding into different dynamic molecular assemblies to enable proper protein functions. Indeed, prokaryotic enzymes present less disorder than eukaryotic enzymes, thus showing that this disorder is related to functional and structural complexity. Protein-based polymers that mimic these IDPs include the so-called elastin-like polypeptides (ELPs), which are inspired by the composition of natural elastin. Elastin-like recombinamers (ELRs) are ELPs produced using recombinant techniques and which can therefore be tailored for a specific application. One of the most widely used and studied characteristic structures in this field is the pentapeptide (VPGXG)n . The structural disorder in ELRs probably arises due to the high content of proline and glycine in the ELR backbone, because both these amino acids help to keep the polypeptide structure of elastomers disordered and hydrated. Moreover, the recombinant nature of these systems means that different sequences can be designed, including bioactive domains, to obtain specific structures for each application. Some of these structures, along with their applications as IDPs that self-assemble into functional vesicles or micelles from diblock copolymer ELRs, will be studied in the following sections. The incorporation of additional order- and disorder-promoting peptide/protein domains, such as α-helical coils or β-strands, in the ELR sequence, and their influence on self-assembly, will also be reviewed. In addition, chemically cross-linked systems with controllable order-disorder balance, and their role in biomineralization, will be discussed. Finally, we will review different multivalent IDPs-based coatings and films for different biomedical applications, such as spatially controlled cell adhesion, osseointegration, or biomaterial-associated infection (BAI).
Collapse
Affiliation(s)
- Diana Juanes-Gusano
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Virginia Reboto
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| |
Collapse
|
23
|
Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021; 132:129-148. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have proven their clinical relevance in stem cell transplantation to cure patients with hematological disorders. Key to their regenerative potential is their natural microenvironment - their niche - in the bone marrow (BM). Developments in the field of biomaterials enable the recreation of such environments with increasing preciseness in the laboratory. Such artificial niches help to gain a fundamental understanding of the biophysical and biochemical processes underlying the interaction of HSCs with the materials in their environment and the disturbance of this interplay during diseases affecting the BM. Artificial niches also have the potential to multiply HSCs in vitro, to enable the targeted differentiation of HSCs into mature blood cells or to serve as drug-testing platforms. In this review, we will introduce the importance of artificial niches followed by the biology and biophysics of the natural archetype. We will outline how 2D biomaterials can be used to dissect the complexity of the natural niche into individual parameters for fundamental research and how 3D systems evolved from them. We will present commonly used biomaterials for HSC research and their applications. Finally, we will highlight two areas in the field of HSC research, which just started to unlock the possibilities provided by novel biomaterials, in vitro blood production and studying the pathophysiology of the niche in vitro. With these contents, the review aims to give a broad overview of the different biomaterials applied for HSC research and to discuss their potentials, challenges and future directions in the field. STATEMENT OF SIGNIFICANCE: Hematopoietic stem cells (HSCs) are multipotent cells responsible for maintaining the turnover of all blood cells. They are routinely applied to treat patients with hematological diseases. This high clinical relevance explains the necessity of multiplication or differentiation of HSCs in the laboratory, which is hampered by the missing natural microenvironment - the so called niche. Biomaterials offer the possibility to mimic the niche and thus overcome this hurdle. The review introduces the HSC niche in the bone marrow and discusses the utility of biomaterials in creating artificial niches. It outlines how 2D systems evolved into sophisticated 3D platforms, which opened the gateway to applications such as, expansion of clinically relevant HSCs, in vitro blood production, studying niche pathologies and drug testing.
Collapse
|
24
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
25
|
Yanagisawa H, Yokoyama U. Extracellular matrix-mediated remodeling and mechanotransduction in large vessels during development and disease. Cell Signal 2021; 86:110104. [PMID: 34339854 DOI: 10.1016/j.cellsig.2021.110104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM-mainly the elastic fiber matrix-in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
26
|
Rodriguez-Cabello JC, Gonzalez De Torre I, González-Pérez M, González-Pérez F, Montequi I. Fibrous Scaffolds From Elastin-Based Materials. Front Bioeng Biotechnol 2021; 9:652384. [PMID: 34336798 PMCID: PMC8323661 DOI: 10.3389/fbioe.2021.652384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Current cutting-edge strategies in biomaterials science are focused on mimicking the design of natural systems which, over millions of years, have evolved to exhibit extraordinary properties. Based on this premise, one of the most challenging tasks is to imitate the natural extracellular matrix (ECM), due to its ubiquitous character and its crucial role in tissue integrity. The anisotropic fibrillar architecture of the ECM has been reported to have a significant influence on cell behaviour and function. A new paradigm that pivots around the idea of incorporating biomechanical and biomolecular cues into the design of biomaterials and systems for biomedical applications has emerged in recent years. Indeed, current trends in materials science address the development of innovative biomaterials that include the dynamics, biochemistry and structural features of the native ECM. In this context, one of the most actively studied biomaterials for tissue engineering and regenerative medicine applications are nanofiber-based scaffolds. Herein we provide a broad overview of the current status, challenges, manufacturing methods and applications of nanofibers based on elastin-based materials. Starting from an introduction to elastin as an inspiring fibrous protein, as well as to the natural and synthetic elastin-based biomaterials employed to meet the challenge of developing ECM-mimicking nanofibrous-based scaffolds, this review will follow with a description of the leading strategies currently employed in nanofibrous systems production, which in the case of elastin-based materials are mainly focused on supramolecular self-assembly mechanisms and the use of advanced manufacturing technologies. Thus, we will explore the tendency of elastin-based materials to form intrinsic fibers, and the self-assembly mechanisms involved. We will describe the function and self-assembly mechanisms of silk-like motifs, antimicrobial peptides and leucine zippers when incorporated into the backbone of the elastin-based biomaterial. Advanced polymer-processing technologies, such as electrospinning and additive manufacturing, as well as their specific features, will be presented and reviewed for the specific case of elastin-based nanofiber manufacture. Finally, we will present our perspectives and outlook on the current challenges facing the development of nanofibrous ECM-mimicking scaffolds based on elastin and elastin-like biomaterials, as well as future trends in nanofabrication and applications.
Collapse
Affiliation(s)
- Jose Carlos Rodriguez-Cabello
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Israel Gonzalez De Torre
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Irene Montequi
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
27
|
López Barreiro D, Minten IJ, Thies JC, Sagt CMJ. Structure-Property Relationships of Elastin-like Polypeptides: A Review of Experimental and Computational Studies. ACS Biomater Sci Eng 2021. [PMID: 34251181 DOI: 10.1021/acsbiomaterials.1c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behavior, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.
Collapse
Affiliation(s)
- Diego López Barreiro
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Inge J Minten
- DSM Materials Science Center - Applied Science Center, DSM, Urmonderbaan 22, 6160 BB, Geleen, The Netherlands
| | - Jens C Thies
- DSM Biomedical, DSM, Koestraat 1, 6167 RA, Geleen, The Netherlands
| | - Cees M J Sagt
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| |
Collapse
|
28
|
Li H. There Is Plenty of Room in The Folded Globular Proteins: Tandem Modular Elastomeric Proteins Offer New Opportunities in Engineering Protein‐Based Biomaterials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongbin Li
- Department of Chemistry University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
29
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
31
|
Ozsvar J, Yang C, Cain SA, Baldock C, Tarakanova A, Weiss AS. Tropoelastin and Elastin Assembly. Front Bioeng Biotechnol 2021; 9:643110. [PMID: 33718344 PMCID: PMC7947355 DOI: 10.3389/fbioe.2021.643110] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Elastic fibers are an important component of the extracellular matrix, providing stretch, resilience, and cell interactivity to a broad range of elastic tissues. Elastin makes up the majority of elastic fibers and is formed by the hierarchical assembly of its monomer, tropoelastin. Our understanding of key aspects of the assembly process have been unclear due to the intrinsic properties of elastin and tropoelastin that render them difficult to study. This review focuses on recent developments that have shaped our current knowledge of elastin assembly through understanding the relationship between tropoelastin’s structure and function.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Chengeng Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Stefan LM, Iosageanu A, Ilie D, Stanciuc AM, Matei C, Berger D, Craciunescu O. Extracellular matrix biomimetic polymeric membranes enriched with silver nanoparticles for wound healing. Biomed Mater 2021; 16. [PMID: 33571971 DOI: 10.1088/1748-605x/abe55d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Severe skin injuries, including burns, represent a real concern for the global health-care system and therefore, there is an increased interest in developing wound dressings, in order to stimulate and enhance skin tissue repair. The aim of this study was to design novel hybrid materials, biomimetic to skin extracellular matrix and enriched with silver nanoparticles (nAg), in order to provide both dermal tissue regeneration and antimicrobial activity. Two material variants (variant A and variant B) consisting of type I collagen (COL), chondroitin sulfate (CS) and k-elastin peptides (EL) enriched with positively-charged nAg, were conditioned as membranes. UV exposure ensured both sterilisation and cross-linking of the materials. Physico-chemical characterization of the hybrid biomaterials showed values of density and swelling degree higher than those of COL membrane, while the process of in vitro degradation followed a similar pattern. Infrared spectroscopy and X-ray diffraction indicated alterations of the characteristic structural features and crystallinity of COL after blending with CS and EL and nAg embedding. Scanning electron microscopy observations revealed different surface morphologies of the hybrid membranes, according to their composition. In vitro studies on L929 fibroblasts and HaCaT keratinocytes showed that both hybrid membranes exhibited good cytocompatibility and promoted higher cell proliferation compared to COL sample, as evaluated by MTT and Live/Dead assays. The presence of actin filaments highlighted by fluorescent labelling confirmed the fibroblast and keratinocyte adhesion onto the surface of hybrid membranes. Most importantly, both materials showed an increased wound healing ability in an in vitro scratch assay model, stimulating cell migration at 24 h post-seeding. In addition, good antimicrobial activity was recorded, especially against Gram-positive bacterial strain. Altogether, our findings recommend COL-CS-EL-nAg hybrid membranes as good candidates for wound healing acceleration and bioengineering of skin tissue.
Collapse
Affiliation(s)
- Laura Mihaela Stefan
- Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296, Sp Indepedentei, Bucharest, Bucharest, 060031, ROMANIA
| | - Andreea Iosageanu
- Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296, Sp Indepedentei, Bucharest, Bucharest, 060031, ROMANIA
| | - Daniela Ilie
- Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296, Sp Indepedentei, Bucharest, Bucharest, 060031, ROMANIA
| | - Ana-Maria Stanciuc
- Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296, Sp Indepedentei, Bucharest, Bucuresti, Bucharest, 060031, ROMANIA
| | - Cristian Matei
- Polytehnica University of Bucharest Faculty of Applied Sciences, 1-7 Gh Polizu street, Bucuresti, 011061, ROMANIA
| | - Daniela Berger
- Polytehnica University of Bucharest Faculty of Applied Sciences, 1-7 Gh Polizu street, Bucuresti, 011061, ROMANIA
| | - Oana Craciunescu
- Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296, Sp Indepedentei, Bucharest, Bucharest, 060031, ROMANIA
| |
Collapse
|
33
|
Almeida-González FR, González-Vázquez A, Mithieux SM, O'Brien FJ, Weiss AS, Brougham CM. A step closer to elastogenesis on demand; Inducing mature elastic fibre deposition in a natural biomaterial scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111788. [PMID: 33545914 DOI: 10.1016/j.msec.2020.111788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
Elastic fibres play a key role in bodily functions where fatigue resistance and elastic recovery are necessary while regulating phenotype, proliferation and migration in cells. While in vivo elastic fibres are created at a late foetal stage, a major obstacle in the development of engineered tissue is that human vascular smooth muscle cells (hVSMCs), one of the principal elastogenic cells, are unable to spontaneously promote elastogenesis in vitro. Therefore, the overall aim of this study was to activate elastogenesis in vitro by hVSMCs seeded in fibrin, collagen, glycosaminoglycan (FCG) scaffolds, following the addition of recombinant human tropoelastin. This combination of scaffold, tropoelastin and cells induced the deposition of elastin and formation of lamellar maturing elastic fibres, similar to those found in skin, blood vessels and heart valves. Furthermore, higher numbers of maturing branched elastic fibres were synthesised when a higher cell density was used and by drop-loading tropoelastin onto cell-seeded FCG scaffolds prior to adding growth medium. The addition of tropoelastin showed no effect on cell proliferation or mechanical properties of the scaffold which remained dimensionally stable throughout. With these results, we have established a natural biomaterial scaffold that can undergo controlled elastogenesis on demand, suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Francisco R Almeida-González
- Biomedical Research Group, School of Mechanical and Design Engineering, Technological University Dublin, Bolton St, Dublin 1, Ireland; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, Ireland
| | - Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, Ireland
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Claire M Brougham
- Biomedical Research Group, School of Mechanical and Design Engineering, Technological University Dublin, Bolton St, Dublin 1, Ireland; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
34
|
Bochicchio B, Yeo GC, Lee P, Emul D, Pepe A, Laezza A, Ciarfaglia N, Quaglino D, Weiss AS. Domains 12 to 16 of tropoelastin promote cell attachment and spreading through interactions with glycosaminoglycan and integrins alphaV and alpha5beta1. FEBS J 2021; 288:4024-4038. [DOI: 10.1111/febs.15702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Giselle C. Yeo
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
| | - Pearl Lee
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
| | - Deniz Emul
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
| | - Antonietta Pepe
- Department of Science University of Basilicata Potenza Italy
| | - Antonio Laezza
- Department of Science University of Basilicata Potenza Italy
| | | | - Daniela Quaglino
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Anthony S. Weiss
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
- Sydney Nano Institute The University of Sydney NSW Australia
| |
Collapse
|
35
|
Reichheld SE, Muiznieks LD, Huynh Q, Wang N, Ing C, Miao M, Sitarz EE, Pomès R, Sharpe S, Keeley FW. The evolutionary background and functional consequences of the rs2071307 polymorphism in human tropoelastin. Biopolymers 2020; 112:e23414. [PMID: 33351193 DOI: 10.1002/bip.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Elastin is a major polymeric protein of the extracellular matrix, providing critical properties of extensibility and elastic recoil. The rs2071307 genomic polymorphism, resulting in the substitution of a serine for a glycine residue in a VPG motif in tropoelastin, has an unusually high minor allele frequency in humans. A consequence of such allelic heterozygosity would be the presence of a heterogeneous elastin polymer in up to 50% of the population, a situation which appears to be unique to Homo sapiens. VPG motifs are extremely common in hydrophobic domains of tropoelastins and are the sites of transient β-turns that are essential for maintaining the conformational flexibility required for its function as an entropic elastomer. Earlier data demonstrated that single amino acid substitutions in tropoelastin can have functional consequences for polymeric elastin, particularly when present in mixed polymers. Here, using NMR and molecular dynamics approaches, we show the rs2071307 polymorphism reduces local propensity for β-turn formation, with a consequent increase in polypeptide hydration and an expansion of the conformational ensemble manifested as an increased hydrodynamic radius, radius of gyration and asphericity. Furthermore, this substitution affects functional properties of polymeric elastin, particularly in heterogeneous polymers mimicking allelic heterozygosity. We discuss whether such effects, together with the unusually high minor allele frequency of the polymorphism, could imply some some evolutionary advantage for the heterozygous state.
Collapse
Affiliation(s)
- Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Elvesys Microfluidics Innovation Center, 172 rue de Charonne, 75011, Paris, France
| | - Quang Huynh
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Nick Wang
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,135 W 52nd St. Apt 20A, 10019-7691, New York, New York, USA
| | - Christopher Ing
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,ProteinQure, Suite 304, 119 Spadina Avenue, M5V2L1, Toronto, Ontario, Canada
| | - Ming Miao
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Eva E Sitarz
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fred W Keeley
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Addressing the tumour microenvironment in early drug discovery: a strategy to overcome drug resistance and identify novel targets for cancer therapy. Drug Discov Today 2020; 26:663-676. [PMID: 33278601 DOI: 10.1016/j.drudis.2020.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) comprises not only malignant and non-malignant cells, but also the extracellular matrix (ECM), secreted factors, and regulators of cellular functions. In addition to genetic alterations, changes of the biochemical/biophysical properties or cellular composition of the TME have been implicated in drug resistance. Here, we review the composition of the ECM and different elements of the TME contributing to drug resistance, including soluble factors, hypoxia, extracellular acidity, and cell adhesion properties. We discuss selected approaches for modelling the TME, current progress, and their use in low-and high-throughput assays for preclinical studies. Lastly, we summarise the status quo of advanced 3D cancer models compatible with high-throughput screening (HTS), the technical practicalities and challenges.
Collapse
|
37
|
Dai M, Goudounet G, Zhao H, Garbay B, Garanger E, Pecastaings G, Schultze X, Lecommandoux S. Thermosensitive Hybrid Elastin-like Polypeptide-Based ABC Triblock Hydrogel. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michèle Dai
- LCPO, UMR 5629, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
- L’Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | | - Hang Zhao
- LCPO, UMR 5629, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Bertrand Garbay
- LCPO, UMR 5629, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Elisabeth Garanger
- LCPO, UMR 5629, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Gilles Pecastaings
- LCPO, UMR 5629, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Xavier Schultze
- L’Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | |
Collapse
|
38
|
Aghaei-Ghareh-Bolagh B, Mukherjee S, Lockley KM, Mithieux SM, Wang Z, Emmerson S, Darzi S, Gargett CE, Weiss AS. A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Mater Today Bio 2020; 8:100081. [PMID: 33210083 PMCID: PMC7658716 DOI: 10.1016/j.mtbio.2020.100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022] Open
Abstract
Pelvic organ prolapse is a common condition that affects 1 in 4 women across all age groups. It is mainly caused by vaginal birth injury and can be exacerbated by obesity and increased age. Until recently, treatment strategies often used non-degradable synthetic meshes for reconstructive surgery. However, owing to their frequent, unacceptable rate of adverse events such as mesh erosion, transvaginal meshes have been banned in many countries. Recent reports have highlighted the urgent need for biocompatible design of meshes for a safe and effective treatment in the long term. This study reports the design and evaluation of a novel, elastin based degradable mesh using an ovine model of POP as a potential surgical treatment. Elastin is a protein component of the ECM and provides elasticity to tissues throughout the body. Tropoelastin, the monomer subunit of elastin, has been used with success in electrospun constructs as it is a naturally cell interactive polymer. Biomaterials that incorporate tropoelastin support cell attachment and proliferation, and have been proven to encourage elastogenesis and angiogenesis in vitro and in vivo. The biological properties of tropoelastin were combined with the physical properties of PCL, a degradable synthetic polymer, with the aim of producing, characterizing and assessing the performance of continuous tropoelastin:PCL electrospun yarns. Using a modified spinneret electrospinning system and adjusting settings based on relative humidity, four blends of tropoelastin:PCL yarns were fabricated with concentration ratios of 75:25, 50:50, 25:75 and 0:100. Yarns were assessed for ease of manufacture, fibrous architecture, protein/polymer content, yarn stability - including initial tropoelastin release, mechanical strength, and ability to support cell growth. Based on overall favorable properties, a mesh woven from the 50:50 tropoelastin:PCL yarn was implanted into the vagina of a parous ewe with vaginal wall weakness as a model of pelvic organ prolapse. This mesh showed excellent integration with new collagen deposition by SEM and a predominant M2 macrophage response with few pro-inflammatory M1 macrophages after 30 days. The woven tropoelastin:PCL electrospun mesh shows potential as an alternative to non-degradable, synthetic pelvic organ prolapse mesh products.
Collapse
Affiliation(s)
- B Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - K M Lockley
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S M Mithieux
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - Z Wang
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Emmerson
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - S Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia
| | - C E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - A S Weiss
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
39
|
Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-Recombinant-Elastin-Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003915. [PMID: 33000880 PMCID: PMC7658039 DOI: 10.1002/adma.202003915] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/19/2020] [Indexed: 05/08/2023]
Abstract
Bioprinting has emerged as an advanced method for fabricating complex 3D tissues. Despite the tremendous potential of 3D bioprinting, there are several drawbacks of current bioinks and printing methodologies that limit the ability to print elastic and highly vascularized tissues. In particular, fabrication of complex biomimetic structure that are entirely based on 3D bioprinting is still challenging primarily due to the lack of suitable bioinks with high printability, biocompatibility, biomimicry, and proper mechanical properties. To address these shortcomings, in this work the use of recombinant human tropoelastin as a highly biocompatible and elastic bioink for 3D printing of complex soft tissues is demonstrated. As proof of the concept, vascularized cardiac constructs are bioprinted and their functions are assessed in vitro and in vivo. The printed constructs demonstrate endothelium barrier function and spontaneous beating of cardiac muscle cells, which are important functions of cardiac tissue in vivo. Furthermore, the printed construct elicits minimal inflammatory responses, and is shown to be efficiently biodegraded in vivo when implanted subcutaneously in rats. Taken together, these results demonstrate the potential of the elastic bioink for printing 3D functional cardiac tissues, which can eventually be used for cardiac tissue replacement.
Collapse
Affiliation(s)
- Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Yvonne Guan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anthony S Weiss
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
40
|
O'Neill Moore S, Grubb TJ, Kothapalli CR. Insights into the biophysical forces between proteins involved in elastic fiber assembly. J Mater Chem B 2020; 8:9239-9250. [PMID: 32966543 DOI: 10.1039/d0tb01591a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elastogenesis is a complex process beginning with transcription, translation, and extracellular release of precursor proteins leading to crosslinking, deposition, and assembly of ubiquitous elastic fibers. While the biochemical pathways by which elastic fibers are assembled are known, the biophysical forces mediating the interactions between the constituent proteins are unknown. Using atomic force microscopy, we quantified the adhesive forces among the elastic fiber components, primarily between tropoelastin, elastin binding protein (EBP), fibrillin-1, fibulin-5, and lysyl oxidase-like 2 (LOXL2). The adhesive forces between tropoelastin and other tissue-derived proteins such as insoluble elastin, laminin, and type I collagens were also assessed. The adhesive forces between tropoelastin and laminin were strong (1767 ± 126 pN; p < 10-5vs. all others), followed by forces (≥200 pN) between tropoelastin and human collagen, mature elastin, or tropoelastin. The adhesive forces between tropoelastin and rat collagen, EBP, fibrillin-1, fibulin-5, and LOXL2 coated on fibrillin-1 were in the range of 100-200 pN. The forces between tropoelastin and LOXL2, LOXL2 and fibrillin-1, LOXL2 and fibulin-5, and fibrillin-1 and fibulin-5 were less than 100 pN. Introducing LOXL2 decreased the adhesive forces between the tropoelastin monomers by ∼100 pN. The retraction phase of force-deflection curves was fitted to the worm-like chain model to calculate the rigidity and flexibility of these proteins as they unfolded. The results provided insights into how each constituent's stretching under deformation contributes to structural and mechanical characteristics of these fibers and to elastic fiber assembly.
Collapse
Affiliation(s)
- Sean O'Neill Moore
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - Tyler Jacob Grubb
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| |
Collapse
|
41
|
Djajamuliadi J, Ohgo K, Kumashiro KK. A Two-State Model Describes the Temperature-Dependent Conformational Equilibrium in the Alanine-Rich Domains in Elastin. J Phys Chem B 2020; 124:9017-9028. [PMID: 32936634 DOI: 10.1021/acs.jpcb.0c06811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elastin is the insoluble elastomeric protein that provides extensibility and resilience to vertebrate tissues. Limited high-resolution structural data for elastin are notably complex. To access this information, this protein is considered in the simplified context of its two general domain types, that is, hydrophobic (HP) and crosslinking (CL). The question of elastin's structure-function has directed the focus of nearly all previous studies in the literature to the unique repeating sequences characteristic of this protein, found primarily in the HP domains. The CL domains were assumed to play a very limited role in biological elasticity due in part to the significant α-helical character that was (incorrectly) predicted for these regions. In this study, the conformational heterogeneity of alanines in native elastin's CL domains is examined in the context of helix-coil transition theory (HCTT) using solid-state nuclear magnetic resonance (SSNMR) spectroscopy in tandem with strategic isotopic labeling. Helix and coil populations are observed at all temperatures, but the former increases significantly at lower temperatures. Below the glass transition temperature (Tg), two major populations of alanines in the CL regions are resolved by two-dimensional SSNMR; one-dimensional methods are used for characterization in nativelike conditions. The spectra of 13CO-Ala in the CL regions are simulated using an HCTT-based statistical mechanical representation. Below Tg, longer segments with significant helical probabilities are consistent with the experimental data. At higher temperatures, the SSNMR lineshapes are best fit with a distribution of shorter (Ala)n segments, most in random coil. These results are used to refine a structure-function model for elastin in the context of HCTT, redirecting attention to the CL domains and their role in elasticity.
Collapse
Affiliation(s)
- Jhonsen Djajamuliadi
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kosuke Ohgo
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kristin K Kumashiro
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
42
|
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive biopolymers derived from human elastin. Their unique properties—including lower critical solution temperature phase behavior and minimal immunogenicity—make them attractive materials for a variety of biomedical applications. ELPs also benefit from recombinant synthesis and genetically encoded design; these enable control over the molecular weight and precise incorporation of peptides and pharmacological agents into the sequence. Because their size and sequence are defined, ELPs benefit from exquisite control over their structure and function, qualities that cannot be matched by synthetic polymers. As such, ELPs have been engineered to assemble into unique architectures and display bioactive agents for a variety of applications. This review discusses the design and representative biomedical applications of ELPs, focusing primarily on their use in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Anastasia K. Varanko
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jonathan C. Su
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
43
|
Bardet SM, Cortese J, Blanc R, Mounayer C, Rouchaud A. Multiphoton microscopy for pre-clinical evaluation of flow-diverter stents for treating aneurysms. J Neuroradiol 2020; 48:200-206. [PMID: 32205257 DOI: 10.1016/j.neurad.2020.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Conventional histological analyses are the gold standard for the study of aneurysms and vascular pathologies in pre-clinical research. Over the past decade, in vivo and ex vivo imaging using multiphoton microscopy have emerged as powerful pre-clinical tools for detailed tissue analyses that can assess morphology, the extracellular matrix (ECM), cell density and vascularisation. Multiphoton microscopy allows for deeper tissue penetration with minor phototoxicity. OBJECTIVE The present study aimed to demonstrate the current status of multimodality imaging, including multiphoton microscopy, for detailed analyses of neo-endothelialisation and ECM evolution after flow-diverter stent (FDS) treatment in an experimental rabbit model of aneurysms. METHODS Multiphoton microscopy tools for assessing autofluorescence and second harmonic generation (SHG) signals from biological tissues were used to evaluate the endovascular treatment of intracranial aneurysms in an animal model of aneurysms (pig, rabbit). Results from multiphoton microscopy were compared to those from standard histology, electronic and bright field microscopy. CONCLUSIONS The present study describes novel evaluation modes based on multiphoton microscopy for visualising tissue morphology (e.g., collagen, elastin, and cells) to qualify and quantify the extent of neo-intimal formation of covered arteries and device integration into the arterial wall using a rabbit model of intracranial aneurysms treated with FDS.
Collapse
Affiliation(s)
- Sylvia M Bardet
- University of Limoges, 123, avenue Albert-Thomas, XLIM UMR CNRS 7252, 87060 Limoges, France.
| | - Jonathan Cortese
- Bichat University Hospital, INSERM U1148-LVTS, Paris, France; Bicetre Hospital, Department of Interventional Neuroradiology, Paris, France
| | - Raphaël Blanc
- Department of Interventional Neuroradiology, Fondation Ophtalmologique Adolphe-de-Rothschild, Paris, France
| | - Charbel Mounayer
- University of Limoges, 123, avenue Albert-Thomas, XLIM UMR CNRS 7252, 87060 Limoges, France; University Hospital, Department of Interventional Neuroradiology, Limoges, France
| | - Aymeric Rouchaud
- University of Limoges, 123, avenue Albert-Thomas, XLIM UMR CNRS 7252, 87060 Limoges, France; University Hospital, Department of Interventional Neuroradiology, Limoges, France.
| |
Collapse
|
44
|
Vos BE, Martinez-Torres C, Burla F, Weisel JW, Koenderink GH. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering. Acta Biomater 2020; 104:39-52. [PMID: 31923718 DOI: 10.1016/j.actbio.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
Fibrin is an elastomeric protein forming highly extensible fiber networks that provide the scaffold of blood clots. Here we reveal the molecular mechanisms that explain the large extensibility of fibrin networks by performing in situ small angle X-ray scattering measurements while applying a shear deformation. We simultaneously measure shear-induced alignment of the fibers and changes in their axially ordered molecular packing structure. We show that fibrin networks exhibit distinct structural responses that set in consecutively as the shear strain is increased. They exhibit an entropic response at small strains (<5%), followed by progressive fiber alignment (>25% strain) and finally changes in the fiber packing structure at high strain (>100%). Stretching reduces the fiber packing order and slightly increases the axial periodicity, indicative of molecular unfolding. However, the axial periodicity changes only by 0.7%, much less than the 80% length increase of the fibers, suggesting that fiber elongation mainly stems from uncoiling of the natively disordered αC-peptide linkers that laterally bond the molecules. Upon removal of the load, the network structure returns to the original isotropic state, but the fiber structure becomes more ordered and adopts a smaller packing periodicity compared to the original state. We conclude that the hierarchical packing structure of fibrin fibers, with built-in disorder, makes the fibers extensible and allows for mechanical annealing. Our results provide a basis for interpreting the molecular basis of haemostatic and thrombotic disorders associated with clotting and provide inspiration to design resilient bio-mimicking materials. STATEMENT OF SIGNIFICANCE: Fibrin provides structural integrity to blood clots and is also widely used as a scaffold for tissue engineering. To fulfill their biological functions, fibrin networks have to be simultaneously compliant like skin and resilient against rupture. Here, we unravel the structural origin underlying this remarkable mechanical behaviour. To this end, we performed in situ measurements of fibrin structure across multiple length scales by combining X-ray scattering with shear rheology. Our findings show that fibrin sustains large strains by undergoing a sequence of structural changes on different scales with increasing strain levels. This demonstrates new mechanistic aspects of an important biomaterial's structure and its mechanical function, and serves as an example in the design of biomimicking materials.
Collapse
|
45
|
Jurczak P, Witkowska J, Rodziewicz-Motowidło S, Lach S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv Colloid Interface Sci 2020; 276:102083. [PMID: 31887572 DOI: 10.1016/j.cis.2019.102083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The recent impact of implants on improving the human life quality has been enormous. During the past two decades we witnessed major advancements in both material and structural development of implants. They were driven mainly by the increasing patients' demand and the need to address the major issues that come along with the initially underestimated complexity of the bone-implant interface. While both, the materials and design of implants reached a certain, balanced state, recent years brought a shift in focus towards the bone-implant interface as the weakest link in the increasing implant long-term usability. As a result, several approaches were developed. They aimed at influencing and enhancing the implant osseointegration and its proper behavior when under load and stress. With this review, we would like to discuss the recent advancements in the field of implant surface modifications, emphasizing the importance of chemical methods, focusing on proteins, peptides and peptidomimetics as promising agents for titanium surface coatings.
Collapse
|
46
|
Glucose-induced structural changes and anomalous diffusion of elastin. Colloids Surf B Biointerfaces 2020; 188:110776. [PMID: 31945631 DOI: 10.1016/j.colsurfb.2020.110776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/31/2023]
Abstract
Elastin is the principal protein component of elastic fiber, which renders essential elasticity to connective tissues and organs. Here, we adopted a multi-technique approach to study the transport, viscoelastic, and structural properties of elastin exposed to various glucose concentrations (X=[gluc]/[elastin]). Laser light scattering experiments revealed an anomalous behavior (anomaly exponent, β <0.6) of elastin. In this regime (β <0.6), the diffusion constant decreases by 40% in the presence of glucose (X> 10), which suggests the structural change in elastin. We have observed a peculiar inverse temperature transition of elastin protein, which is a measure of structural change, at 40 °C through rheology experiments. Moreover, we observe its shift towards lower temperature with a higher X. FTIR revealed that the presence of glucose (X < 10) favors the formation of β-sheet structure in elastin. However, for X > 10, dominative crowding effect reduces the mobility of protein and favors the increase in β-turns and γ-turns by 25 ± 1% over the β-sheet (β-sheet decreases by 12 ± 0.8%) and α-helix (α-helix decreases by 13 ± 0.8%). The stiffness of protein is estimated through Flory characteristic ratio, C∞ and found to be increasing with X. These glucose-based structural changes in the elastin may explain the role of glucose in age-related issues of the skin.
Collapse
|
47
|
Gourgas O, Cole GB, Muiznieks LD, Sharpe S, Cerruti M. Effect of the Ionic Concentration of Simulated Body Fluid on the Minerals Formed on Cross-Linked Elastin-Like Polypeptide Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15364-15375. [PMID: 31729882 DOI: 10.1021/acs.langmuir.9b02542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deposition of calcium phosphate minerals on the elastin-rich medial layers of arteries can cause severe cardiovascular complications. There are no available treatments for medial calcification, and the mechanism of mineral formation on elastin layers is still unknown. We recently developed an in vitro model of medial calcification using cross-linked elastin-like polypeptide (ELP) membranes immersed in simulated body fluid (SBF). While mineral phase evolution matched that observed in a mouse model of medial calcification, the long incubation required was a practical limitation of this model. Using higher SBF ion concentrations could be a solution to speed up mineral deposition, but its effect on the mineralization process is still not well understood. Here we analyze mineral formation and phase transformation on ELP membranes immersed in high concentration SBF. We show that while mineral deposition is significantly accelerated in these conditions, the chemistry and morphology of the minerals deposited on the ELP membranes and the overall mineralization process are strongly affected. Overall, this work suggests that while the use of low concentration SBF in this in vitro model is more appropriate to study medial calcification associated with the loss of calcification inhibitors, higher SBF ion concentration may be more relevant to study medial calcification in patients with life-threatening diseases such as chronic kidney disease.
Collapse
Affiliation(s)
- Ophélie Gourgas
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Gregory B Cole
- Molecular Medicine , Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
- Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | - Lisa D Muiznieks
- Molecular Medicine , Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
| | - Simon Sharpe
- Molecular Medicine , Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
- Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| |
Collapse
|
48
|
Vindin H, Mithieux SM, Weiss AS. Elastin architecture. Matrix Biol 2019; 84:4-16. [DOI: 10.1016/j.matbio.2019.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
49
|
Liu Y, Zheng L, Xu J, Sun‐waterhouse D, Sun B, Su G, Zhao M. Identification of novel peptides with high stability against
in vitro
hydrolysis from bovine elastin hydrolysates and evaluation of their elastase inhibitory activity. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Lin Zheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jucai Xu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Dongxiao Sun‐waterhouse
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University Beijing 100048 China
| | - Guowan Su
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Mouming Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University Beijing 100048 China
| |
Collapse
|
50
|
Gourgas O, Muiznieks LD, Bello DG, Nanci A, Sharpe S, Cerruti M. Cross-Linked Elastin-like Polypeptide Membranes as a Model for Medial Arterial Calcification. Biomacromolecules 2019; 20:2625-2636. [DOI: 10.1021/acs.biomac.9b00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ophélie Gourgas
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Lisa D. Muiznieks
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Dainelys Guadarrama Bello
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Antonio Nanci
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|