1
|
Khanda M, Seal P, Mohan AJ, Arya N, Boda SK. Antimicrobial peptides and their application to combat implant-associated infections - opportunities and challenges. NANOSCALE 2025; 17:10462-10484. [PMID: 40227869 DOI: 10.1039/d5nr00953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Despite minimally invasive surgeries and advancements in aseptic techniques, implant-associated infections are a significant complication in post-surgical implantation of medical devices. The standard practice of systemic antibiotic administration is often ineffective due to the development of bacterial antibiotic resistance, poor antibiotic penetration into biofilms, and low antibiotic bioavailability at the infected site. Infected implants are typically salvaged by tissue resection and antibacterial reinforcements during revision surgery. Towards this end, antimicrobial peptides (AMPs) have emerged as a promising alternative to traditional antibiotics to combat infections. Herein, a comprehensive overview of antimicrobial peptides, their structure and function, comparison with conventional antibiotics, antimicrobial properties, mechanisms of action of AMPs, and bacterial resistance to AMPs in relation to antibiotics are discussed. Furthermore, stimuli-responsive AMP delivery and contact killing via AMP coatings on implant surfaces are deliberated. We discuss various methods of AMP immobilization and coatings on implant materials through physico-chemical coating strategies. The review also addresses the clinical status and current limitations of AMP coatings such as proteolytic instability and potential cytotoxicity. Finally, we conclude with future directions to develop small, effective AMP mimetics and encapsulation of AMPs within nanocarriers to improve antimicrobial properties and design-controlled release systems for sustained antimicrobial activity.
Collapse
Affiliation(s)
- Milan Khanda
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - Pallabi Seal
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - Arya J Mohan
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Sunil Kumar Boda
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
- Department of Medical Science and Technology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
2
|
Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered Silk Protein-Based 3D In Vitro Models for Tissue Engineering and Drug Development: From Silk Matrix Properties to Biomedical Applications. Adv Healthc Mater 2024; 13:e2401458. [PMID: 39009465 DOI: 10.1002/adhm.202401458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Indexed: 07/17/2024]
Abstract
3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Tian F, Zhang S, Wang M, Yan Y, Cao Y, Wang Y, Fan K, Wang H, Zhang J, Zhang XD. Clinical Grade Fibroin Sutures with Bioactive Gold Clusters Enhance Surgical Wound Healing via Inflammation Modulation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359176 DOI: 10.1021/acsami.4c10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Silk sutures are common in surgeries, and silk-based textiles are widely used in clinical medicine on account of their great mechanical properties and biodegradability. However, due to the lack of biocatalytic activity, silk sutures show unsatisfactory anti-inflammatory properties and healing speed. To address this constraint, we construct clinical grade bioactive gold cluster-sutures through a heterojunction. The antioxidant activity of bioactive gold cluster-sutures is ∼160 times more than that of clinical sutures. Meanwhile, the suture displays superb reactive oxygen species (ROS) scavenging, superoxide dismutase-like (SOD-like, 5 times more than the silk suture), and catalase-like (CAT-like) activities. The clusters assemble on the surface of silk through hydrogen bonding, leading to a durable catalytic and structural stability for 15 months without decay. Subsequently, the suture significantly accelerates wound healing by exerting excellent anti-inflammatory effects, improving neovascularization and collagen deposition. Clinical grade bioactive gold clusters with high bioactivity, stability, and biocompatibility hold promise for clinical translation and pave the way for other implanted biomaterials from wound healing to intelligent textiles.
Collapse
Affiliation(s)
- Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yiyao Cao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Schwenck LDC, Abreu PA, Nunes-da-Fonseca R. Spider's Silk as a Potential Source of Antibiotics: An Integrative Review. Probiotics Antimicrob Proteins 2024; 16:1608-1622. [PMID: 38460106 DOI: 10.1007/s12602-024-10241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Spiders produce webs, which are still a largely unexplored source of antibacterial compounds, although the reports of its application in the medical field. Therefore, this study aims to present an integrative review of the antibacterial activity of spider webs. The research was conducted using Google Scholar, Scielo, Web of Science, PubMed, ScienceDirect, Medline EBSCO, LILACS, and Embase. The inclusion criteria were original articles written in English that studied the antibiotic properties of the web or isolated compounds tested. The studies were compared according to the spider species studied, the type of web, treatment of the sample, type of antimicrobial test, and the results obtained. Nine hundred and seventy-three publications were found, and after applying the inclusion and exclusion criteria, sixteen articles were selected. Bacterial inhibition was found in seven studies against various species of bacteria such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella Typhi, Bacillus megaterium, Listeria monocytogenes, Acinetobacter baumannii, Streptococcus pneumoniae, Pasteurella multocida, and Bacillus subtilis. Additionally, there was no apparent relationship between the proximity of the spider species evaluated in the studies and the presence or absence of activity. Methodological problems detected may affected the reproducibility and reliability of the results in some studies, such as the lack of description of the web or microorganism strain, as well as the absence of adequate controls and treatments to sterilize the sample. Spider webs can be a valuable source of antibiotics; however, more studies are needed to confirm the real activity of the web or components involved.
Collapse
Affiliation(s)
- Lucas da Costa Schwenck
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto, 764, Macaé, Rio de Janeiro, CEP: 27920-560, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto, 764, Macaé, Rio de Janeiro, CEP: 27920-560, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto, 764, Macaé, Rio de Janeiro, CEP: 27920-560, Brazil.
| |
Collapse
|
5
|
Guessous G, Blake L, Bui A, Woo Y, Manzanarez G. Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction. ACS Biomater Sci Eng 2024; 10:5412-5438. [PMID: 39136701 PMCID: PMC11388149 DOI: 10.1021/acsbiomaterials.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.
Collapse
Affiliation(s)
- Ghita Guessous
- Department of Physics, University of California at San Diego, La Jolla, California 92092, United States
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
| | - Lauren Blake
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Tufts University Center for Cellular Agriculture (TUCCA), Tufts University, Medford, Massachusetts 02155, United States
| | - Anthony Bui
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850, United States
| | - Yelim Woo
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Questrom School of Business, Boston University, Boston, Massachusetts 02215, United States
| | - Gabriel Manzanarez
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92092, United States
| |
Collapse
|
6
|
Giorgi L, Ponti V, Boriani F, Margara A. Nonabsorbable Barbed Sutures for Diastasis Recti. A Useful Device with Unexpected Risk: Two Case Reports. Arch Plast Surg 2024; 51:474-479. [PMID: 39346000 PMCID: PMC11436327 DOI: 10.1055/a-2181-8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2024] Open
Abstract
The introduction of nonabsorbable barbed sutures in plastic surgery has allowed the achievement of significant results in terms of efficacy and short- and long-term outcomes. However, a nonabsorbable material with no antibacterial coating could act as a substrate for subclinical bacterial colonization and thereby determine recurrent subacute and chronic infective-inflammatory processes. The authors report a clinical experience of subacute infectious complications after two cases of diastasis recti surgical correction. The authors present a two-case series in which a nonabsorbable barbed suture was used for the repair of diastasis recti. The postoperative course was complicated by surgical site infection. The origin of the infectious process was clearly localized in the fascial suture used for diastasis correction. The suture was colonized by bacteria resulting in the formation of multiple granulomas of the abdominal wall a few months postoperatively. In both the reported cases, the patients partially responded to the antibiotic targeted therapy and reoperation was required. The microbiological analyses confirmed the colonization of sutures by Staphylococcus aureus . Barbed nonabsorbable sutures should be avoided for diastasis recti surgical correction to minimize the risk of infectious suture-related complications. The paper's main novel aspect is that this is the first clinical report describing infectious complications after surgical correction of diastasis recti with barbed polypropylene sutures. The risk of microbiological subclinical colonization of polypropylene suture untreated with antibacterial coating, therefore, should be taken into account.
Collapse
Affiliation(s)
- Lorenzo Giorgi
- Division of General Surgery, Department of Surgery, Humanitas S. Pio X Hospital, Milan, IT, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Veronica Ponti
- Plastic Surgery Service, Humanitas S. Pio X Hospital, Milan, IT, Italy
| | - Filippo Boriani
- Department of Plastic Surgery and Microsurgery, University Hospital of Cagliari, University of Cagliari, Monserrato, CA, Italy
| | - Andrea Margara
- Plastic Surgery Service, Humanitas S. Pio X Hospital, Milan, IT, Italy
| |
Collapse
|
7
|
Cai J, Zhang M, Peng J, Wei Y, Zhu W, Guo K, Gao M, Wang H, Wang H, Wang L. Peptide-AIE Nanofibers Functionalized Sutures with Antimicrobial Activity and Subcutaneous Traceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400531. [PMID: 38716716 DOI: 10.1002/adma.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Indexed: 05/18/2024]
Abstract
As one of the most widely used medical devices, sutures face challenges related to surgical site infections (SSIs) and lack of subcutaneous traceability. In the present study, a facile and effective approach using peptide-AIE nanofibers (NFs-K18) to create fluorescent-traceable antimicrobial sutures, which have been applied to four commercially available sutures is developed. The functionalized sutures of PGAS-NFs-K18 and PGLAS-NFs-K18 exhibit fluorescence with excellent penetration from 4 mm chicken breasts. They also demonstrate remarkable stability after 24 h of white light illumination and threading through chicken breasts 10 times. These sutures efficiently generate ROS, resulting in significant suppression of four clinical bacteria, with the highest antimicrobial rate of ≈100%. Moreover, the sutures exhibit favorable hemocompatibility and biocompatibility. In vivo experiments demonstrate that the optimized PGLAS-NFs-K18 suture displays potent antimicrobial activity against MRSA, effectively inhibiting inflammation and promoting tissue healing in both skin wound and abdominal wall wound models, outperforming the commercially available Coated VICRYL Plus Antibacterial suture. Importantly, PGLAS-NFs-K18 exhibits sensitive subcutaneous traceability, allowing for accurate in situ monitoring of its degradation. It is believed that this straightforward strategy offers a new pathway for inhibiting SSIs and monitoring the status of sutures.
Collapse
Affiliation(s)
- Junyi Cai
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Meng Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Jingqi Peng
- The Third General Surgery Department, Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Research Institute The Fourth Affiliated Hospital of Xinjiang Medical University), Urumqi, 830011, China
| | - Yingqi Wei
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Henan Provincial Key Laboratory of Radiation Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Zhao L, Zhang S, Xiao R, Zhang C, Lyu Z, Zhang F. Diversity and Functionality of Bacteria Associated with Different Tissues of Spider Heteropoda venatoria Revealed through Integration of High-Throughput Sequencing and Culturomics Approaches. MICROBIAL ECOLOGY 2024; 87:67. [PMID: 38703220 PMCID: PMC11069485 DOI: 10.1007/s00248-024-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China
| | - Shanfeng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruoyi Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Chao Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhitang Lyu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| | - Feng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| |
Collapse
|
9
|
Zhao T, Ma H, Liu Y, Chen Z, Shi Q, Ning L. Interfacial interactions between spider silk protein and cellulose studied by molecular dynamics simulation. J Mol Model 2024; 30:156. [PMID: 38693294 DOI: 10.1007/s00894-024-05945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
CONTEXT Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.
Collapse
Affiliation(s)
- Tengfei Zhao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Huaiqin Ma
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuxi Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Zhenjuan Chen
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Qingwen Shi
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
10
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
11
|
Khalid GM, Billa N. Drug-Eluting Sutures by Hot-Melt Extrusion: Current Trends and Future Potentials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7245. [PMID: 38005174 PMCID: PMC10672932 DOI: 10.3390/ma16227245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Surgical site infections (SSIs) may result from surgical procedures requiring a secondary administration of drugs at site or systemically in treating the infection. Drug-eluting sutures containing antimicrobial agents symbolise a latent strategy that precludes a secondary drug administration. It also offers the possibility of delivering a myriad of therapeutic agents to a localised wound site to effect analgesia, anti-inflammation, or the deployment of proteins useful for wound healing. Further, the use of biodegradable drug-eluting sutures eliminates the need for implanting foreign material into the wound, which needs to be removed after healing. In this review, we expound on recent trends in the manufacture of drug-eluting sutures with a focus on the hot-melt extrusion (HME) technique. HME provides a solvent-free, continuous one-step manufacturing conduit for drug-eluting sutures, hence, there is no drying step, which can be detrimental to the drug or suture threads and, thus, environmentally friendly. There is the possibility of combining the technology with additive manufacturing platforms to generate personalised drug-loaded implantable devices through prototyping and scalability. The review also highlights key material requirements for fabricating drug-eluting sutures by HME, as well as quality attributes. Finally, a preview of emerging drug-eluting sutures and advocacy for harmonisation of quality assurance by regulatory authorities that permits quality evaluation of novelty sutures is presented.
Collapse
Affiliation(s)
- Garba M. Khalid
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FabRx Ltd., Henwood House, Henwood, Asford TN24 8DH, UK
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
12
|
Tripathi AK, Singh J, Trivedi R, Ranade P. Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications. J Funct Biomater 2023; 14:539. [PMID: 37998108 PMCID: PMC10672284 DOI: 10.3390/jfb14110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules with the potential to combat infections associated with medical implants and biomaterials. This review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in medical implants and biomaterials, along with their diverse clinical applications. The incorporation of AMPs into various medical implants and biomaterials has shown immense potential in mitigating biofilm formation and preventing implant-related infections. We review the latest advancements in biomedical sciences and discuss the AMPs that were immobilized successfully to enhance their efficacy and stability within the implant environment. We also highlight successful examples of AMP coatings for the treatment of surgical site infections (SSIs), contact lenses, dental applications, AMP-incorporated bone grafts, urinary tract infections (UTIs), medical implants, etc. Additionally, we discuss the potential challenges and prospects of AMPs in medical implants, such as effectiveness, instability and implant-related complications. We also discuss strategies that can be employed to overcome the limitations of AMP-coated biomaterials for prolonged longevity in clinical settings.
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Jyotsana Singh
- Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rucha Trivedi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Payal Ranade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| |
Collapse
|
13
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
14
|
Trossmann VT, Lentz S, Scheibel T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J Funct Biomater 2023; 14:434. [PMID: 37623678 PMCID: PMC10455157 DOI: 10.3390/jfb14080434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Biomaterials are an indispensable part of biomedical research. However, although many materials display suitable application-specific properties, they provide only poor biocompatibility when implanted into a human/animal body leading to inflammation and rejection reactions. Coatings made of spider silk proteins are promising alternatives for various applications since they are biocompatible, non-toxic and anti-inflammatory. Nevertheless, the biological response toward a spider silk coating cannot be generalized. The properties of spider silk coatings are influenced by many factors, including silk source, solvent, the substrate to be coated, pre- and post-treatments and the processing technique. All these factors consequently affect the biological response of the environment and the putative application of the appropriate silk coating. Here, we summarize recently identified factors to be considered before spider silk processing as well as physicochemical characterization methods. Furthermore, we highlight important results of biological evaluations to emphasize the importance of adjustability and adaption to a specific application. Finally, we provide an experimental matrix of parameters to be considered for a specific application and a guided biological response as exemplarily tested with two different fibroblast cell lines.
Collapse
Affiliation(s)
- Vanessa T. Trossmann
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Sarah Lentz
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Faculty of Medicine, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
15
|
Liu C, Hu X, Zhou X, Ma Y, Leung PHM, Xin JH, Fei B. Guanidine-containing double-network silks with enhanced tensile and antibacterial property. Int J Biol Macromol 2023:125470. [PMID: 37336382 DOI: 10.1016/j.ijbiomac.2023.125470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The bacterial infection of surgical wounds results in prolonged hospitalization and even death of patients, calling for antibacterial function in modern suture products. To tackle this challenge, cationic guanidine-containing copolymer was synthesized, exhibiting antibacterial potency over 5 log reduction against both Gram-positive S. aureus and Gram-negative E. coli. Furthermore, we developed a double-network silk suture by integrating a guanidine-containing copolymer network into the silk fibroin network. This suture exhibited biocidal activity against S. aureus and E. coli, and superior strength compared to the commercial product in both dry and wet conditions. These results may bring general benefits to public health and medical equipment sustainability.
Collapse
Affiliation(s)
- Chang Liu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Xin Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Ma
- Jinzhou Central Hospital, Jinzhou, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
16
|
Corcoll F, Pérez-Prieto D, Karbysheva S, Trampuz A, Fariñas O, Monllau JC. Are Hamstring Grafts a Predisposing Factor to Infection in R-ACL Surgery? A Comparative In Vitro Study. Pathogens 2023; 12:761. [PMID: 37375451 DOI: 10.3390/pathogens12060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The objective of the present study was to evaluate the formation of biofilms in bone patellar tendon bone grafts (BPTB grafts), and to compare it to the formation of biofilm formation in quadrupled hamstring anterior cruciate ligament grafts (4×Ht graft). METHODS A descriptive in vitro study was conducted. One 4×Ht graft and one BPTB graft were prepared. They were then contaminated with a strain of S. epidermidis. Later, a quantitative analysis was conducted by means of microcalorimetry and sonication with plating. Additionally, a qualitative analysis was conducted by means of electron microscopy. RESULTS No significant differences were found between the bacterial growth profiles of the 4×Ht graft and the BPTB graft in microcalorimetry and colony counting. In the samples analyzed with electron microscopy, no specific biofilm growth pattern was identified upon comparing the BPTB graft to the 4×Ht graft. CONCLUSIONS There were no significant differences found at either the quantitative or qualitative level when comparing bacterial growth in the BPTB graft to that in the 4×Ht graft. Therefore, the presence of sutures in the 4×Ht graft cannot be established as a predisposing factor for increased biofilm growth in this in vitro study.
Collapse
Affiliation(s)
- Ferran Corcoll
- Department of Traumatology and Orthopaedic Surgery, Hospital del Mar-Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Daniel Pérez-Prieto
- Department of Traumatology and Orthopaedic Surgery, Hospital del Mar-Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Svetlana Karbysheva
- Center for Musculoskeletal Surgery, Charite'-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charite'-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Oscar Fariñas
- Banc de Sang i Teixits de Catalunya, Barcelona (BST), 08005 Barcelona, Spain
| | - Juan Carles Monllau
- Department of Traumatology and Orthopaedic Surgery, Hospital del Mar-Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
- Departament de Ciències Morfològiques, Edifici M Facultat de Medicina Avinguda Can Domènech S/N Campus de la Universitat Autònoma de Barcelona (UAB) Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| |
Collapse
|
17
|
Välisalmi T, Roas-Escalona N, Meinander K, Mohammadi P, Linder MB. Highly Hydrophobic Films of Engineered Silk Proteins by a Simple Deposition Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4370-4381. [PMID: 36926896 PMCID: PMC10061925 DOI: 10.1021/acs.langmuir.2c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Molecular engineering of protein structures offers a uniquely versatile route for novel functionalities in materials. Here, we describe a method to form highly hydrophobic thin films using genetically engineered spider silk proteins. We used structurally engineered protein variants containing ADF3 and AQ12 spider silk sequences. Wetting properties were studied using static and dynamic contact angle measurements. Solution conditions and the surrounding humidity during film preparation were key parameters to obtain high hydrophobicity, as shown by contact angles in excess of 120°. Although the surface layer was highly hydrophobic, its structure was disrupted by the added water droplets. Crystal-like structures were found at the spots where water droplets had been placed. To understand the mechanism of film formation, different variants of the proteins, the topography of the films, and secondary structures of the protein components were studied. The high contact angle in the films demonstrates that the conformations that silk proteins take in the protein layer very efficiently expose their hydrophobic segments. This work reveals a highly amphiphilic nature of silk proteins and contributes to an understanding of their assembly mechanisms. It will also help in designing diverse technical uses for recombinant silk.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Nelmary Roas-Escalona
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Kristoffer Meinander
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland, Limited (VTT), FI-02044 Espoo, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| |
Collapse
|
18
|
Chen MJ, Pappas GA, Massella D, Schlothauer A, Motta SE, Falk V, Cesarovic N, Ermanni P. Tailoring crystallinity for hemocompatible and durable PEEK cardiovascular implants. BIOMATERIALS ADVANCES 2023; 146:213288. [PMID: 36731379 DOI: 10.1016/j.bioadv.2023.213288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Polymers have the potential to replace metallic or bioprosthetic heart valve components due to superior durability and inertness while allowing for native tissue-like flexibility. Despite these appealing properties, certain polymers such as polyetheretherketone (PEEK) have issues with hemocompatibility, which have previously been addressed through assorted complex processes. In this paper, we explore the enhancement of PEEK hemocompatibility with polymer crystallinity. Amorphous, semi-crystalline and crystalline PEEK are investigated in addition to a highly crystalline carbon fiber (CF)/PEEK composite material (CFPEEK). The functional group density of the PEEK samples is determined, showing that higher crystallinity results in increased amount of surface carbonyl functional groups. The increase of crystallinity (and negatively charged groups) appears to cause significant reductions in platelet adhesion (33 vs. 1.5 % surface coverage), hemolysis (1.55 vs. 0.75 %∙cm-2), and thrombin generation rate (4840 vs. 1585 mU/mL/min/cm2). In combination with the hemocompatibility study, mechanical characterization demonstrates that tailoring crystallinity is a simple and effective method to control both hemocompatibility and mechanical performance of PEEK. Furthermore, the results display that CFPEEK composite performed very well in all categories due to its enhanced crystallinity and complete carbon encapsulation, allowing the unique properties of CFPEEK to empower new concepts in cardiovascular device design.
Collapse
Affiliation(s)
- Mary Jialu Chen
- Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, Switzerland.
| | - Georgios A Pappas
- Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, Switzerland
| | - Daniele Massella
- Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, Switzerland
| | - Arthur Schlothauer
- Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine, University of Zürich, Switzerland
| | - Volkmar Falk
- Translational Cardiovascular Technologies, ETH Zürich, Switzerland; Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum Berlin, Germany; Klinik für Kardiovaskuläre Chirurgie, Charité Universitätsmedizin Berlin, Germany
| | - Nikola Cesarovic
- Translational Cardiovascular Technologies, ETH Zürich, Switzerland; Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum Berlin, Germany
| | - Paolo Ermanni
- Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, Switzerland
| |
Collapse
|
19
|
Pulat G, Muganlı Z, Ercan UK, Karaman O. Effect of antimicrobial peptide conjugated surgical sutures on multiple drug-resistant microorganisms. J Biomater Appl 2023; 37:1182-1194. [PMID: 36510770 DOI: 10.1177/08853282221145872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surgical site infections are commonly encountered as a risk factor in clinics that increase the morbidity of a patient after a surgical operation. Surgical sutures are one of the leading factor for the formation of surgical site infections that induce bacterial colonization by their broad surface area. Current strategies to overcome with surgical site infections consist utilization of antibiotic agent coatings such as triclosan. However, the significant increase in antibiotic resistance majorly decreases their efficiency against recalcitrant pathogens such as; Pseudomonas aeruginosa and Staphylococcus aureus. Therefore, the development of a multi drug-resistant antimicrobial suture without any cytotoxic effect to combat surgical site infections is vital. Antimicrobial peptides are the first defense line which has a broad range of spectrum against Gram-positive, and Gram-negative bacteria and even viruses. In addition, antimicrobial peptides have a rapid killing mechanism which is enhanced by membrane disruption and inhibition of functional proteins in pathogens without the development of antimicrobial resistance. In the scope of the current study, the antimicrobial effect of antimicrobial peptide conjugated poly (glycolic acid-co-caprolactone) (PGCL) sutures were investigated against P. aeruginosa and methicillin-resistant S. aureus (MRSA) strains by using antimicrobial peptide sequences of KRFRIRVRV-NH2, RWRWRWRW-NH2 and their dual combination (1:1). In addition, in vitro wound scratch assays were performed to evaluate the effect of antimicrobial peptide conjugated sutures on keratinocyte cell lines. Our results indicated that antimicrobial peptide modified sutures could be a potential novel medical device to overcome surgical site infections by the superior acceleration of wound healing.
Collapse
Affiliation(s)
- Günnur Pulat
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| | - Zülal Muganlı
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| | - Utku Kürşat Ercan
- Plasma Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
20
|
Gu Z, Fan S, Kundu SC, Yao X, Zhang Y. Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells. Regen Biomater 2023; 10:rbad001. [PMID: 36726609 PMCID: PMC9887345 DOI: 10.1093/rb/rbad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Due to the innate extracellular matrix mimicking features, fibrous materials exhibited great application potential in biomedicine. In developing excellent fibrous biomaterial, it is essential to reveal the corresponding inherent fiber features' effects on cell behaviors. Due to the inevitable 'interference' cell adhesions to the background or between adjacent fibers, it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat. A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein. In this unique material platform, the 'interference' cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background. The 'interference' cell adhesions between adjacent fibers could also be excluded from the sparsely arranged (SA) fiber patterns. The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired 'interference' cell adhesions in a controllable way. On the SA fiber patterns, small diameter fiber (SA-D1, D1 means 1 μm in diameter) may seriously restrict cell proliferation and osteogenesis when compared to the middle (SA-D8) and large (SA-D56) ones and SA-D8 shows the optimal osteogenesis enhancement effect. At the same time, the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged (DA) fiber patterns with small diameter fiber (DA-D1) when compared to the middle (DA-D8) and large (DA-D56) ones. The 'interference' cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters. Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively, thus providing valuable reference and guidance for developing effective fibrous biomaterials.
Collapse
Affiliation(s)
- Zhanghong Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
21
|
Manivasagam VK, Popat KC. Improved Hemocompatibility on Superhemophobic Micro-Nano-Structured Titanium Surfaces. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010043. [PMID: 36671615 PMCID: PMC9855096 DOI: 10.3390/bioengineering10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Blood-contacting titanium-based implants such as endovascular stents and heart valve casings are prone to blood clotting due to improper interactions at the surface level. In complement, the current clinical demand for cardiovascular implants is at a new apex. Hence, there is a crucial necessity to fabricate an implant with optimal mechanical properties and improved blood compatibility, while simultaneously interacting differentially with cells and other microbial agents. The present study intends to develop a superhydrophobic implant surface with the novel micro-nano topography, developed using a facile thermochemical process. The surface topography, apparent contact angle, and crystal structure are characterized on different surfaces. The hemo/blood compatibility on different surfaces is assessed by evaluating hemolysis, fibrinogen adsorption, cell adhesion and identification, thrombin generation, complement activation, and whole blood clotting kinetics. The results indicate that the super-hemo/hydrophobic micro-nano titanium surface improved hemocompatibility by significantly reducing fibrinogen adsorption, platelet adhesion, and leukocyte adhesion. Thus, the developed surface has high potential to be used as an implant. Further studies are directed towards analyzing the mechanisms causing the improved hemocompatibility of micro/nano surface features under dynamic in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Vignesh K. Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence:
| |
Collapse
|
22
|
Luan Z, Liu S, Wang W, Xu K, Ye S, Dan R, Zhang H, Shu Z, Wang T, Fan C, Xing M, Yang S. Aligned nanofibrous collagen membranes from fish swim bladder as a tough and acid-resistant suture for pH-regulated stomach perforation and tendon rupture. Biomater Res 2022; 26:60. [PMID: 36348451 PMCID: PMC9641846 DOI: 10.1186/s40824-022-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Wound closure in the complex body environment places higher requirements on suture's mechanical and biological performance. In the scenario of frequent mechanical gastric motility and extremely low pH, single functional sutures have limitations in dealing with stomach bleeding trauma where the normal healing will get deteriorated in acid. It necessitates to advance suture, which can regulate wounds, resist acid and intelligently sense stomach pH. METHODS Based on fish swim bladder, a double-stranded drug-loaded suture was fabricated. Its cytotoxicity, histocompatibility, mechanical properties, acid resistance and multiple functions were verified. Also, suture's performance suturing gastric wounds and Achilles tendon was verified in an in vivo model. RESULTS By investigating the swim bladder's multi-scale structure, the aligned tough collagen fibrous membrane can resist high hydrostatic pressure. We report that the multi-functional sutures on the twisted and aligned collagen fibers have acid resistance and low tissue reaction. Working with an implantable "capsule robot", the smart suture can inhibit gastric acid secretion, curb the prolonged stomach bleeding and monitor real-time pH changes in rabbits and pigs. The suture can promote stomach healing and is strong enough to stitch the fractured Achilles tendon. CONCLUSIONS As a drug-loaded absorbable suture, the suture shows excellent performance and good application prospect in clinical work.
Collapse
Affiliation(s)
- Zhaohui Luan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Shuang Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Wei Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shaosong Ye
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Hong Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Nan Road, Shunqing District, Nanchong City, Sichuan, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Tongchuan Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China.
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China.
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, China.
| |
Collapse
|
23
|
Virk HS, Popat KC. Erythrocyte interaction with titanium nanostructured surfaces. IN VITRO MODELS 2022; 1:347-363. [PMID: 39872234 PMCID: PMC11756472 DOI: 10.1007/s44164-022-00031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2025]
Abstract
Titanium and its alloys are used to make different medical devices such as stents, artificial heart valves, and catheters for cardiovascular diseases due to their superior biocompatibility. Thrombus formation begins on the surface of these devices as soon as they encounter blood. This leads to the formation of blood clots, which obstructs the flow of blood that leads to severe complications. Recent advancements in nanoscale fabrication and superhydrophobic surface modification techniques have demonstrated that these surfaces have antiadhesive properties and the ability to reduce thrombosis. In this study, the interaction of erythrocytes and whole blood clotting kinetics on superhydrophobic titanium nanostructured surfaces was investigated. These surfaces were characterized for their wettability (contact angle), surface morphology and topography (scanning electron microscopy (SEM)), and crystallinity (glancing angled X-ray diffraction (GAXRD)). Erythrocyte morphology on different surfaces was characterized using SEM, and overall cell viability was demonstrated through fluorescence microscopy. The hemocompatibility of these surfaces was characterized using commercially available assays: thrombin generation assay thrombin generation, hemolytic assay hemolysis, and complement convertase assay complement activity. The results indicate that superhydrophobic titanium nanostructured surfaces had lower erythrocyte adhesion, less morphological changes in adhered cells, lower thrombin generation, lower complement activation, and were less cytotoxic compared to control surfaces. Thus, superhydrophobic titanium nanostructured surfaces may be a promising approach to prevent thrombosis for several medical devices.
Collapse
Affiliation(s)
- Harvinder Singh Virk
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
24
|
Jamshaid H, Mishra R, Hussain U, Rajput AW, Tichy M, Muller M. Natural Fiber Based Antibacterial, Wound Healing Surgical Sutures by the Application of Herbal Antimicrobial Compounds. JOURNAL OF NATURAL FIBERS 2022; 19:9531-9546. [DOI: 10.1080/15440478.2021.1988798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Hafsa Jamshaid
- Faculty of Textile Engineering, National Textile University, Faisalabad, Pakistan
| | - Rajesh Mishra
- Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic
| | - Uzair Hussain
- Faculty of Textile Engineering, National Textile University, Faisalabad, Pakistan
| | - Abdul Waqar Rajput
- Department of Textile Engineering, Bzu College of Textile Engineering, Multan, Pakistan
| | - Martin Tichy
- Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic
| | - Miroslav Muller
- Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Franco AR, Pirraco R, Fernandes EM, Rodrigues F, Leonor IB, Kaplan DL, Reis RL. Untangling the biological and inflammatory behavior of silk-like sutures In vivo. Biomaterials 2022; 290:121829. [DOI: 10.1016/j.biomaterials.2022.121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
26
|
Sanchez Armengol E, Blanka Kerezsi A, Laffleur F. Allergies caused by textiles: control, research and future perspective in the medical field. Int Immunopharmacol 2022; 110:109043. [PMID: 35843147 DOI: 10.1016/j.intimp.2022.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Textile production forms one of the most polluting industries worldwide. However, other than damaging environmental effects, chemical waste products, such as formaldehyde or thiazolinone, are problematic for human health, as allergic potential is present in these compounds. Mostly, contact dermatitis occurs when human skin is exposed to textiles. Moreover, non-eczemous variants are mainly associated to textiles. In order to diagnose the possible allergy of the patient towards these compounds, in vivo and in vitro methods ca be performed, such as patch testing or cytokine detection assays, respectively. Newest research focuses on medical textiles such as garments or sutures to help in diagnosis, therapy and recovery of the patients. Sutures and dressings with antimicrobial properties, with the release of oxygen and growth factors offer greater properties. In this review, state of the art in the field as well as future perspectives will be discussed, which are based on the smart textiles that are going to become more important and probably widespread after the current limits exceeded.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aletta Blanka Kerezsi
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217:112693. [PMID: 35853393 PMCID: PMC9262651 DOI: 10.1016/j.colsurfb.2022.112693] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus pandemic has evidenced the importance of creating bioactive materials to mitigate viral infections, especially in healthcare settings and public places. Advances in antiviral coatings have led to materials with impressive antiviral performance; however, their application may face health and environmental challenges. Bio-inspired antimicrobial peptides (AMPs) are suitable building blocks for antimicrobial coatings due to their versatile design, scalability, and environmentally friendly features. This review presents the advances and opportunities on the AMPs to create virucidal coatings. The review first describes the fundamental characteristics of peptide structure and synthesis, highlighting the recent findings on AMPs and the role of peptide structure (α-helix, β-sheet, random, and cyclic peptides) on the virucidal mechanism. The following section presents the advances in AMPs coating on medical devices with a detailed description of the materials coated and the targeted pathogens. The use of peptides in vaccine formulations is also reported, emphasizing the molecular interaction of peptides with different viruses and the current clinical stage of each formulation. The role of several materials (metallic particles, inorganic materials, and synthetic polymers) in the design of antiviral coatings is also presented, discussing the advantages and the drawbacks of each material. The final section offers future directions and opportunities for using AMPs on antiviral coatings to prevent viral outbreaks.
Collapse
Affiliation(s)
- Emanuelle D Freitas
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Rogério A Bataglioli
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Josephine Oshodi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Marisa M Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil.
| |
Collapse
|
28
|
Ran C, Wang J, He Y, Ren Q, Hu H, Zhu J, Gu X, Li M, Zheng L, Li J. Recent Advances in Bioinspired Hydrogels with Environment-Responsive Characteristics for Biomedical Applications. Macromol Biosci 2022; 22:e2100474. [PMID: 35089646 DOI: 10.1002/mabi.202100474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Indexed: 11/12/2022]
Abstract
The development of hydrogel-integrated soft materials via the incorporation of therapeutic medicines into biocompatible hydrogels, serving as host, will significantly contribute to advances in medical diagnosis and treatment. Furthermore, intelligent hydrogels having the ability to respond to local environmental conditions offer a promising approach for the development of novel solutions in the biomedical field. Bioinspired intelligent hydrogels are now becoming a potentially powerful biomaterial class for tissue engineering, drug delivery, and medical device. Recent advances include bioinspired intelligent hydrogels that possess unique mechanical and optical properties as a result of their nature-inspired complex-structured design. This review highlights the latest advances in intelligent bionic hydrogels, as well as strategies targeting smart response of their characteristics across multiple dimensions (such as temperature, light, pH, among others). Finally, the potential development and prospective application of mimicking the natural intelligence of multifunctional medical hydrogels are also discussed.
Collapse
Affiliation(s)
- Chao Ran
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Jiacheng Wang
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yonggang He
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Qian Ren
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Hao Hu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Jiangqin Zhu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xunxin Gu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Meng Li
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| |
Collapse
|
29
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
30
|
Zhang L, Wang W, Xie B, Sun P, Wei S, Wu H, Zhang C, Li J, Li Z, Bai H. PLGA Nanoparticle Rapamycin- or Necrostatin-1-Coated Sutures Inhibit Inflammatory Reactions after Arterial Closure in Rats. ACS APPLIED BIO MATERIALS 2022; 5:1501-1507. [PMID: 35297594 DOI: 10.1021/acsabm.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: The inflammatory reaction of sutures and oozing after arterial closure depends on the suture material and the amount of oozing surrounding the sutures. Anti-inflammation coatings have been proven to be an effective strategy to decrease this reaction. The aim of this study was to establish an arterial closure oozing model in rats and to test the effect of poly (lactic-co-glycolic acid) (PLGA) nanoparticle (NP) rapamycin- or necrostatin-1(NEC-1)-coated sutures on the inflammatory reaction after arterial closure. Methods and Materials: A 10 mm arteriotomy was carried out on the carotid artery of Sprague-Dawley rats and closed using 11-0 sutures. PLGA NP-rapamycin and NEC-1 were made. The 11/0 nylon sutures were coated with PLGA NP-rapamycin and NEC-1. Sutures were examined by scanning electron microscopy, hemolysis test, and cumulative release. The carotid arteriotomy was closed using uncoated PLGA NP-rapamycin- and NP-NEC-1-coated sutures. The carotid artery was harvested on day 7. Tissues were examined by histology and immunohistochemistry. Results: There were severe inflammatory reactions in the oozing arteries compared to the normal healing arteries (P = 0.0192). PLGA NP-rapamycin- and NEC -1-coated sutures reduced foreign body reaction compared to the uncoated sutures. There were significantly smaller number of CD3 (P = 0.0068), CD45 (P = 0.0300), and CD68 (P = 0.0011) cells in the PLGA NP-rapamycin- and NP-NEC-1-coated groups compared to the uncoated group. There was a smaller number of p-mTOR (P = 0.0198)-positive cells in the PLGA NP-rapamycin-coated group compared to the uncoated group. There was a smaller number of TNFα (P = 0.0198)-positive cells in the PLGA NP-NEC-1-coated group compared to the uncoated group. Conclusions: In this rat carotid artery oozing model, PLGA NP-rapamycin- or NP-NEC-1-coated sutures can inhibit inflammatory reaction and foreign body reaction. Although this was a small rodent animal experiment, this coated suture may have a potential clinical application in the future.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Wang Wang
- Department of Physiology, Medical School of Zhengzhou University, Henan 450001, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Henan 450001, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| |
Collapse
|
31
|
Ghalei S, Handa H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. MATERIALS TODAY. CHEMISTRY 2022; 23:100673. [PMID: 34901586 PMCID: PMC8664245 DOI: 10.1016/j.mtchem.2021.100673] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
32
|
Bibire T, Yilmaz O, Ghiciuc CM, Bibire N, Dănilă R. Biopolymers for Surgical Applications. COATINGS 2022; 12:211. [DOI: 10.3390/coatings12020211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biopolymers have gained significant attention as a class of polymer materials with a wide range of applications, especially in the medical and pharmaceutical field. Due to particular characteristics, such as biocompatibility, biodegradability, non-toxicity, and functionality, they have become promising candidates for various surgical applications, including as bioadhesives, sealants, wound dressings, sutures, drug carriers, coating materials, etc. Recent research shows that further modification of biopolymers by advanced techniques can improve their functionality i.e., antibacterial activity, cell viability, drug-releasing capability, good wet adhesion performance, and good mechanical properties. This mini review aims to provide a brief report on the type of biopolymers and recent developments regarding their use in various surgical applications.
Collapse
Affiliation(s)
- Tudor Bibire
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania
- 3rd Surgery Clinic, Saint Spiridon University Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Onur Yilmaz
- Leather Engineering Department, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania
| | - Radu Dănilă
- 3rd Surgery Clinic, Saint Spiridon University Clinical Emergency Hospital, 700111 Iasi, Romania
- Department of Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
33
|
Engineering surgical stitches to prevent bacterial infection. Sci Rep 2022; 12:834. [PMID: 35039588 PMCID: PMC8764053 DOI: 10.1038/s41598-022-04925-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Surgical site infections (SSIs) account for a massive economic, physiological, and psychological burden on patients and health care providers. Sutures provide a surface to which bacteria can adhere, proliferate, and promote SSIs. Current methods for fighting SSIs involve the use of sutures coated with common antibiotics (triclosan). Unfortunately, these antibiotics have been rendered ineffective due to the increasing rate of antibiotic resistance. A promising new avenue involves the use of metallic nanoparticles (MNPs). MNPs exhibit low cytotoxicity and a strong propensity for killing bacteria while evading the typical antibiotic resistance mechanisms. In this work, we developed a novel MNPs dip-coating method for PDS-II sutures and explored the capabilities of a variety of MNPs in killing bacteria while retaining the cytocompatibility. Our findings indicated that our technique provided a homogeneous coating for PDS-II sutures, maintaining the strength, structural integrity, and degradability. The MNP coatings possess strong in vitro antibacterial properties against P aeruginosa and S. aureus—varying the %of dead bacteria from ~ 40% (for MgO NPs) to ~ 90% (for Fe2O3) compared to ~ 15% for uncoated PDS-II suture, after 7 days. All sutures demonstrated minimal cytotoxicity (cell viability > 70%) reinforcing the movement towards the use MNPs as a viable antibacterial technology.
Collapse
|
34
|
Kiseleva A, Nestor G, Östman JR, Kriuchkova A, Savin A, Krivoshapkin P, Krivoshapkina E, Seisenbaeva GA, Kessler VG. Modulating Surface Properties of the Linothele fallax Spider Web by Solvent Treatment. Biomacromolecules 2021; 22:4945-4955. [PMID: 34644050 PMCID: PMC8672351 DOI: 10.1021/acs.biomac.1c00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.
Collapse
Affiliation(s)
- Aleksandra Kiseleva
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Gustav Nestor
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Johnny R. Östman
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Anastasiia Kriuchkova
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Artemii Savin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Pavel Krivoshapkin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Elena Krivoshapkina
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | | | - Vadim G. Kessler
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
35
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
36
|
Bakhshandeh B, Nateghi SS, Gazani MM, Dehghani Z, Mohammadzadeh F. A review on advances in the applications of spider silk in biomedical issues. Int J Biol Macromol 2021; 192:258-271. [PMID: 34627845 DOI: 10.1016/j.ijbiomac.2021.09.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
Spider silk, as one of the hardest natural and biocompatible substances with extraordinary strength and flexibility, have become an ideal option in various areas of science and have made their path onto the biomedical industry. Despite its growing popularity, the difficulties in the extraction of silks from spiders and farming them have made it unaffordable and almost impossible for industrial scale. Biotechnology helped production of spider silks recombinantly in different hosts and obtaining diverse morphologies out of them based on different processing and assembly procedures. Herein, the characteristics of these morphologies and their advantages and disadvantages are summarized. A detailed view about applications of recombinant silks in skin regeneration and cartilage, tendon, bone, teeth, cardiovascular, and neural tissues engineering are brought out, where there is a need for strong scaffolds to support cell growth. Likewise, spider silk proteins have applications as conduit constructs, medical sutures, and 3D printer bioinks. Other characteristics of spider silks, such as low immunogenicity, hydrophobicity, homogeneity, and adjustability, have attracted much attention in drug and gene delivery. Finally, the challenges and obstacles ahead for industrializing the production of spider silk proteins in sufficient quantities in biomedicine, along with solutions to overcome these barriers, are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Seyedeh Saba Nateghi
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Maddah Gazani
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
37
|
Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021; 13:1820. [PMID: 34834239 PMCID: PMC8621177 DOI: 10.3390/pharmaceutics13111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
Collapse
Affiliation(s)
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
38
|
Gulati R, Sharma S, Sharma RK. Antimicrobial textile: recent developments and functional perspective. Polym Bull (Berl) 2021; 79:5747-5771. [PMID: 34276116 PMCID: PMC8275915 DOI: 10.1007/s00289-021-03826-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial textiles are functionally active textiles, which may kill the microorganisms or inhibit their growth. The present article explores the applications of different synthetic and natural antimicrobial compounds used to prepare antimicrobial textiles. Different types of antimicrobial textiles including: antibacterial, antifungal and antiviral have also been discussed. Different strategies and methods used for the detection of a textile's antimicrobial properties against bacterial and fungal pathogens as well as viral particles have also been highlighted. These antimicrobial textiles are used in a variety of applications ranging from households to commercial including air filters, food packaging, health care, hygiene, medical, sportswear, storage, ventilation and water purification systems. Public awareness on antimicrobial textiles and growth in commercial opportunities has been observed during past few years. Not only antimicrobial properties, but its durability along with the color, prints and designing are also important for fashionable clothing; thus, many commercial brands are now focusing on such type of materials. Overall, this article summarizes the scientific aspect dealing with different fabrics including natural or synthetic antimicrobial agents along with their current functional perspective and future opportunities. Graphic abstract
Collapse
Affiliation(s)
- Rehan Gulati
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Saurav Sharma
- Department of Fashion Design, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| |
Collapse
|
39
|
Kim Y, Chang H, Yoon T, Park W, Choi H, Na S. Nano-fishnet formation of silk controlled by Arginine density. Acta Biomater 2021; 128:201-208. [PMID: 33862282 DOI: 10.1016/j.actbio.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022]
Abstract
Silk fiber is renowned for its superb mechanical properties, such as over 7 times the toughness of Kevlar 49 Fibre. As the spider silk is tougher than any man-made fiber, there is a lot to be learned from spider silk. Recently, it has been reported that a large portion of the properties of silk is from naturally formed nano-fishnet structures of silk, but neither its formation mechanism nor its formation condition has been explained. Here, we show how the formation and disappearance of nano-fishnet of silk is determined by humidity, and how the humidity-dependency of nano-fishnet formation can be overcome by changing density of Arginine through sequence mutation. We demonstrate that the nano-fishnet-structured silk exhibits higher strength and toughness than its counterparts. This information on controllable nano-fishnet formation of silk is expected to pave the way for development of protein and synthetic fiber design. STATEMENT OF SIGNIFICANCE: Silk fibers are a very interesting material in that it exhibits superb mechanical properties such as 7 times the toughness of Kevlar 49 Fibre, despite being only composed of proteins. Therefore, it is important that we understand the principle of its high mechanical properties so that it may be applied in designing synthetic fibers. Recently, it has been reported that a large portion of its mechanical property comes from its nano-fishnet structures, but no detailed explanation on the condition or mechanism of formation. Through molecular dynamic simulations, we simulated the nano-fishnet formation of silk and analyzed the condition and mechanism behind it, and showed how the formation of nano-fishnet structures could be controlled by changing the density of Arginine residues. Our study provides information on fiber enhancement mechanism that could be applied to synthetic and protein fiber design.
Collapse
|
40
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
41
|
Dematei A, Nunes JB, Moreira DC, Jesus JA, Laurenti MD, Mengarda ACA, Vieira MS, do Amaral CP, Domingues MM, de Moraes J, Passero LFD, Brand G, Bessa LJ, Wimmer R, Kuckelhaus SAS, Tomás AM, Santos NC, Plácido A, Eaton P, Leite JRSA. Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper ( Bothrops atrox). JOURNAL OF NATURAL PRODUCTS 2021; 84:1787-1798. [PMID: 34077221 DOI: 10.1021/acs.jnatprod.1c00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.
Collapse
Affiliation(s)
- Anderson Dematei
- Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - João B Nunes
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Jéssica A Jesus
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Márcia D Laurenti
- Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
| | - Ana C A Mengarda
- Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Maria Silva Vieira
- I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
- IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
| | - Constança Pais do Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Josué de Moraes
- Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Luiz F D Passero
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
- Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
| | - Guilherme Brand
- Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Lucinda J Bessa
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Selma A S Kuckelhaus
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Ana M Tomás
- I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
- IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
- ICBAS, Abel Salazar Institute for Biomedical Research, University of Porto, Porto 4099-002, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K
| | - José Roberto S A Leite
- Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
42
|
Protein-Engineered Polymers Functionalized with Antimicrobial Peptides for the Development of Active Surfaces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.
Collapse
|
43
|
Wu Q, He C, Wang X, Zhang S, Zhang L, Xie R, Li Y, Wang X, Han Z, Zheng Z, Li G. Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk-Fibroin-Based Berberine Loading System. ACS Biomater Sci Eng 2021; 7:2845-2857. [PMID: 34043327 DOI: 10.1021/acsbiomaterials.1c00481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical sutures with sustainable antibacterial properties can effectively inhibit pathogens, thus avoiding the occurrence of surgical site infection and reducing the recurrence of patients resulting in postoperative death. This paper describes a facile scalable antibacterial surgical suture with sustainable antibacterial function and fair mechanical and biocompatible properties using a simple, efficient, and eco-friendly method. Silk filaments were braided into a core-shell structure using a braiding machine, and then silk fibroin (SF) films loaded with different percentages of berberine (BB) were coated onto the surface of the suture. The drug-loaded sutures performed a slow drug-release profile of more than 7 days. Retention of the knot-pull tensile strength of all groups was above 87% during in vitro degradation within 42 days. The sutures had no toxicity to the cells' in vitro cytotoxicity. The results of the in vivo biocompatibility test showed mild inflammation and clear signs of supporting angiogenesis in the implantation site of the rats. This work provides a new route for achieving a BB-loaded and high-performance antibacterial suture, which is of great potential in applications for surgical operations.
Collapse
Affiliation(s)
- Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chaoheng He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ruijuan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yi Li
- The School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhifen Han
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Liu Y, Huang W, Meng M, Chen M, Cao C. Progress in the application of spider silk protein in medicine. J Biomater Appl 2021; 36:859-871. [PMID: 33853426 DOI: 10.1177/08853282211003850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spider silk protein has attracted much attention on account of its excellent mechanical properties, biodegradability, and biocompatibility. As the main protein component of spider silk, spidroin plays important role in spider spinning under natural circumstances and biomaterial application in medicine as well. Compare to the native spidroin which has a large molecular weight (>300 kDa) with highly repeat glycine and polyalanine regions, the recombinant spidroin was maintained the core amino motifs and much easier to collect. Here, we reviewed the application of recombinant spider silk protein eADF4(C16), major ampullate spidroin (MaSp), minor ampullate spidroin (MiSp), and the derivatives of recombinant spider silk protein in drug delivery system. Moreover, we also reviewed the application of spider silk protein in the field of alternative materials, repairing materials, wound dressing, surgical sutures along with advances in recombinant spider silk protein.
Collapse
Affiliation(s)
- Yi Liu
- 1Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Wei Huang
- 1Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Minsi Meng
- 1Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Minhui Chen
- 2Department of Neurosurgery, Zigong Fourth People's Hospital, Zigong, China
| | - Chengjian Cao
- 3Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
45
|
Deng X, Qasim M, Ali A. Engineering and polymeric composition of drug-eluting suture: A review. J Biomed Mater Res A 2021; 109:2065-2081. [PMID: 33830631 DOI: 10.1002/jbm.a.37194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/14/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Sutures are the most popular surgical implants in the global surgical equipment market. They are used for holding tissues together to achieve wound closure. However, controlling the body's immune response to these "foreign bodies" at site of infection is challenging. Natural polymers such as collagen, silk, nylon, and cotton, and synthetic polymers such as polycaprolactone, poly(lactic-co-glycolic acid), poly(p-dioxanone) and so forth, contribute the robust foundation for the engineering of drug-eluting sutures. The incorporation of active pharmaceutical ingredients (APIs) with polymeric composition of suture materials is an efficient way to reduce inflammatory reaction in the wound site as well as to control bacterial growth, while allowing wound healing. The incorporation of polymeric composition in surgical sutures has been found to add high flexibility as well as excellent physical and mechanical properties. Fabrication processes and polymer materials allow control over drug-eluting profiles to effectively address wound healing requirements. This review outlines and discusses (a) polymer materials and APIs used in suture applications, including absorbable and nonabsorbable sutures; (b) suture structures, such as monofilament, multifilament, barded and smart sutures; and (c) the existing manufacturing techniques for drug-eluting suture production, including electrospinning, melt-extrusion and coating.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad Qasim
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Lobo FCM, Franco AR, Fernandes EM, Reis RL. An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules 2021; 26:1749. [PMID: 33804712 PMCID: PMC8004007 DOI: 10.3390/molecules26061749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogenic microbes are a major source of health and environmental problems, mostly due to their easy proliferation on most surfaces. Currently, new classes of antimicrobial agents are under development to prevent microbial adhesion and biofilm formation. However, they are mostly from synthetic origin and present several disadvantages. The use of natural biopolymers such as cellulose, hemicellulose, and lignin, derived from lignocellulosic materials as antimicrobial agents has a promising potential. Lignocellulosic materials are one of the most abundant natural materials from renewable sources, and they present attractive characteristics, such as low density and biodegradability, are low-cost, high availability, and environmentally friendly. This review aims to provide new insights into the current usage and potential of lignocellulosic materials (biopolymer and fibers) as antimicrobial materials, highlighting their future application as a novel drug-free antimicrobial polymer.
Collapse
Affiliation(s)
- Flávia C. M. Lobo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Albina R. Franco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
47
|
Qing C, Li QY, Xue NN, Yuan SM, Liu CJ, Zhang CG, Li HW, Zhao Y. The Outlook of the Development of Innovative Products from Biocompatible Natural Spider Silk in the Beauty Thread-Lifting Industry. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:21-30. [PMID: 33398712 PMCID: PMC7933321 DOI: 10.1007/s13659-020-00291-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 05/05/2023]
Abstract
Embedding thread lift rhytidectomy, also known as "thread lifting" in China, with the natures of simple operation, less trauma and quick recovery, is progressively used in clinical practice as a new technology of face lifting. Herewith, a brief introduction of the previous advances of thread lifting techniques and materials in the facial beauty industry, combined with the discussion on various types of sutures, common complications, and the site of actions were provided. The main limitations of present thread lifting material include: (1) the use of non-absorbable sutures is liable to cause allergies and a series of complications; (2) the absorbable sutures are easily degradation, and people need to reshape in a relatively short period. Therefore, the high biocompatible spider silk was proposed as a novel material of thread lifting suture and related devices, the advantages and preliminary achievements on spider silk were also addressed.
Collapse
Affiliation(s)
- Chen Qing
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
| | - Qi-Yan Li
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
- Center of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Nan-Nan Xue
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
| | - Shi-Meng Yuan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
| | - Chuan-Jun Liu
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
| | - He-Wei Li
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
- Jiangsu Weibo Hi-Tech Biological Technology Co., Ltd., Changzhou, 213000, People's Republic of China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China.
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China.
| |
Collapse
|
48
|
Wulandari E, Namivandi-Zangeneh R, Judzewitsch PR, Budhisatria R, Soeriyadi AH, Boyer C, Wong EHH. Silk Sponges with Surface Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Erna Wulandari
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Rashin Namivandi-Zangeneh
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Peter R. Judzewitsch
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Rachel Budhisatria
- Mochtar Riady Institute of Nanotechnology (MRIN), Banten 15810, Indonesia
| | | | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Ding ZY, Tan Y, Peng Q, Zuo J, Li N. Novel applications of platelet concentrates in tissue regeneration (Review). Exp Ther Med 2021; 21:226. [PMID: 33603835 PMCID: PMC7851614 DOI: 10.3892/etm.2021.9657] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have explored the suitability of biocompatible materials in regenerative medicine. Platelet concentrates are derived from centrifuged blood and are named according to their biological characteristics, such as platelet-rich plasma, platelet-rich fibrin and concentrated growth factor. Platelet concentrates have gained considerable attention in soft and hard tissue engineering. Indeed, multiple components of autologous platelet concentrates, such as growth factors, fibrin matrix and platelets, serve essential roles in wound healing. Current studies are focused on cutting-edge strategies to meet the requirements for tissue restoration by improving the properties of autologous platelet concentrates. In the present review, applications of platelet concentrates for tissue engineering are discussed, presenting a selection of recent advances and novel protocols. In addition, several aspects of these strategies, such as the advantages of lyophilized platelet concentrates and the combination of platelet concentrates with biomaterials, stem cells or drugs are discussed. The present review aims to summarize novel strategies using platelet concentrates to improve the outcomes of wound healing.
Collapse
Affiliation(s)
- Zhen-Yu Ding
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Tan
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Peng
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Zuo
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
50
|
Berninghausen LK, Osterhoff G, Langer S, Kohler LH. Scar quality examination comparing titanium-coated suture material and non-coated suture material on flap donor sites in reconstructive surgery. BMC Surg 2020; 20:268. [PMID: 33143708 PMCID: PMC7640681 DOI: 10.1186/s12893-020-00932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023] Open
Abstract
Background Wound healing and scar quality after trauma are subject to impairment through excessive wound healing, chronic wound or even surgical site infections. Optimizing the process of scar formation and skin healing is crucial in virtually all fields of medicine. In this regard, we tested the possible usage and advantages of titanium coated suture material. Methods We performed a prospective observational cohort study including 30 patients who underwent soft tissue reconstruction. One half of the donor flap site was sutured with titanium coated suture material, while the other half was closed with non-coated sutures. Scar quality of the donor flap site was assessed by photographs and POSAS scores on days 2–5, 14, 42, 72 and 180 postoperatively. Results No difference between the titanium coated sutures and non-coated sutures was seen in the POSAS assessment, neither for the patient scale at 14, 42, 72 and 180 days, nor for the observer scale on the same dates. Comorbidities like diabetes, chronic renal failure and smoking as well as the BMI of each patient affected the wound healing process to an equal degree on both sides of the suture. Conclusions No difference between the titanium coated and non-titanium-coated suture material was seen in the POSAS assessment in regard to scar quality and wound healing. The titanium-coated suture material can be considered to be equally as effective and safe in all qualities as the non-titanium-coated suture material, even in patients with comorbidities. Clinical trial register This study is registered at the German Clinical Trials Register (DRKS) under the registration number DRKS00021767. (https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00021767)
Collapse
Affiliation(s)
- Laura K Berninghausen
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany
| | - Georg Osterhoff
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany
| | - Stefan Langer
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany
| | - Lukas H Kohler
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany.
| |
Collapse
|