1
|
Liu J, Sun J, Hu J, Xue H, Lei L, Pan X. Biomaterial-based drug delivery strategies for oral mucosa. Colloids Surf B Biointerfaces 2025; 251:114604. [PMID: 40081256 DOI: 10.1016/j.colsurfb.2025.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Drug therapy is a key field in modern medicine, and the optimization of its delivery method is crucial. Traditional methods are inherently limited by first-pass effects, high-risk adverse reactions, and patient compliance challenges, which significantly restrict the effectiveness and application potential of drugs. Oral mucosal drug delivery has become a minimally invasive and effective drug delivery strategy. The unique anatomical structure of the oral mucosa facilitates the rapid absorption of drugs into the systemic circulation, thus producing rapid therapeutic effects. However, a complex oral microenvironment and mucosal barrier impede drug absorption. Biomaterials have become an important driving force for the innovative development of oral medicine, owing to their unique and excellent properties. They are widely used for preventing, diagnosing, treating, and rehabilitating oral diseases. This review explores recent advancements in biomaterial-enabled oral mucosal drug delivery systems, analyzing key physiological factors and absorption barriers that impact therapeutic outcomes. Focusing on innovative material engineering strategies highlights significant progress in extending drug residence time and improving delivery precision within the oral cavity. Furthermore, the study identifies critical challenges in translating these advancements from research to clinical practice, emphasizing the need for solutions to bridge this gap.
Collapse
Affiliation(s)
- Junhui Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jiao Sun
- Changsha Stomatological Hospital, Changsha 410000, China
| | - Jun Hu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
2
|
Yourdkhani A, Esfandyari-Manesh M, Ranjbaran P, Amani M, Dinarvand R. Recent progress in topical and transdermal approaches for melanoma treatment. Drug Deliv Transl Res 2025; 15:1457-1495. [PMID: 39653958 DOI: 10.1007/s13346-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 04/04/2025]
Abstract
The global incidence of melanoma, the most lethal form of skin cancer, continues to escalate, emphasizing the urgent need for more effective therapeutic strategies. This review assesses the latest advancements in topical and transdermal drug delivery systems, positioning them as promising alternatives. These systems allow for the direct application of therapeutic agents to tumor sites, enhancing drug effectiveness, improving patient compliance, and reducing systemic toxicity. Specifically, innovations such as nanoparticles, microneedles, and vesicular systems are explored for their potential to optimize topical and localized drug delivery. By incorporating a graphical overview of these drug delivery vehicles, we visually underscore their roles in enhancing therapeutic outcomes across various treatment categories such as chemotherapy, immunotherapy, phototherapy, phytotherapy, and targeted therapy. This article critically evaluates recent breakthroughs, addresses the current challenges faced by researchers, and explores the future directions of topical and transdermal approaches in melanoma management. By presenting a summary of the latest research and predicting future trends, this review aims to inform ongoing developments and encourage further innovation in strategies for treating melanoma.
Collapse
Affiliation(s)
- Alaleh Yourdkhani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Paniz Ranjbaran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdiyar Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
3
|
Zhu L, Qiao G, Gao H, Jiang A, Zhang L, Wang X. Enhancing melanoma therapy with hydrogel microneedles. Front Oncol 2025; 15:1590534. [PMID: 40313257 PMCID: PMC12043666 DOI: 10.3389/fonc.2025.1590534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Melanoma is highly invasive and resistant to conventional treatments, accounting for nearly 75% of skin cancer-related deaths globally. Traditional therapies, such as chemotherapy and immunotherapy, often exhibit limited efficacy and are associated with significant side effects due to systemic drug exposure. Microneedles (MNs), as an emerging drug delivery system, offer multiple advantages, including safety, painlessness, minimal invasiveness, and controlled drug release. Among these, hydrogel microneedles (HMNs) stand out due to their extracellular matrix-like structure and swelling-induced continuous hydrogel channels, which enable the direct delivery of therapeutic agents into the tumor microenvironment (TME). This approach enhances drug bioavailability while reducing systemic toxicity, establishing HMNs as a promising platform for melanoma treatment. This review highlights recent advancements in HMNs for melanoma therapy, focusing on their applications in biomarker extraction for early diagnosis and their role in supporting multimodal treatment strategies, such as chemotherapy, immunotherapy, phototherapy, targeted therapy, and combination therapy. Furthermore, the current matrix materials and fabrication techniques for HMNs are discussed. Finally, the limitations of HMNs in melanoma treatment are critically analyzed, and recommendations for future research and development are provided.
Collapse
Affiliation(s)
- Lanqi Zhu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guanlin Qiao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiyang Gao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Aowei Jiang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linan Zhang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaobing Wang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Wang T, Liu H, Li M, Ji Z, Zhang X, Wang N, Chen Y, Sun J, Liu F. Microneedle-based nanodrugs for tumor immunotherapy. J Control Release 2025; 380:539-562. [PMID: 39923854 DOI: 10.1016/j.jconrel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Microneedles have emerged as a promising and effective method for delivering therapeutic drugs and immunobiologics to treat various diseases. It is widely recognized that immune therapy has limited efficacy in solid tumors due to physical barriers and the immunosuppressive tumor microenvironment. Microneedle-based nanodrugs (NDMNs) offer a novel approach to overcome these limitations. These tiny needles are designed to load a variety of inorganic and organic nanoparticles, antigen vaccines, gene drugs, oncolytic viruses, and more. Utilizing microneedle arrays, NDMNs can effectively penetrate the skin barrier, delivering drugs precisely to the tumor site or immunoactive regions within the skin. Additionally, by designing and optimizing the microneedle structure, shape, and functionality, NDMNs enable precise drug release and efficient penetration, thereby enhancing the efficacy of tumor immunotherapy. In this review, we comprehensively discuss the pivotal role of NDMNs in cancer immunotherapy, summarizing innovative microneedle design strategies, mechanisms of immune activation, and delivery strategies of various nanodrugs. Furthermore, we explore the current clinical realities, limitations, and future prospects of NDMNs in tumor immunotherapy.
Collapse
Affiliation(s)
- Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Department of General Surgery, The First Hospital of Dalian Medical University, Dalian 116000, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Meng Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Zao Ji
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang 110001, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems Ministry of Education, Shenyang 110016, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Hussain Y, You BG, Huang L, Liu X, Dormocara A, Shah KA, Ali T, Cao QR, Lee BJ, Elbehairi SEI, Iqbal H, Cui JH. Dissolving microneedles for melanoma: Most recent updates, challenges, and future perspectives. Int J Pharm 2025; 673:125382. [PMID: 39988214 DOI: 10.1016/j.ijpharm.2025.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Skin cancer is one among the common types of cancers, affecting millions of individual globally. The conventional anticancer therapy such as chemotherapy results in worst systemic and local side effects as well as inhibit the growth of healthy cells around the tumor cells. Dissolving microneedles (DMNs) is a groundbreaking technology with less invasive and more targeted features. Physically, these tiny dissolving needles deliver the anticancer payloads drug to the tumor site after its direct application on the skin surface. Specifically, the DMNs release the anticancer drug cargoes into the cancerous cell sparing the healthy cells around the tumor, thus has provided a significant contribution in the landscape of traditional skin cancer therapy. This targeted therapeutic approach of dissolving microneedles shows a significant therapeutic outcome in decreasing the growth of cancer cells in pre-clinical studies. Dissolving microneedles (DMNs) have demonstrated effectiveness in the targeted delivery of drugs, genes, and vaccines specifically at the site of skin tumors. This method mimics the localized release of adjuvants and immunomodulators, leading to significant humoral and cellular immune responses that are beneficial for skin cancer therapy. In this review, the current trends and potential roles of dissolving microneedles in delivering therapeutic agents focused on treating skin melanoma have been highlighted, drawing insights from recent literature. This emphasizes the promising applications of DMNs in enhancing treatment outcomes for skin cancer patients. Lastly, future perspectives were identified for improving the therapeutic potential and translation of DMNs into clinic.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ben-Gang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linyu Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoyin Liu
- School of Radiation Medicine and Protection of Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
7
|
Pan H, Hu W, Zhou C, Jian J, Xu J, Lu C, Quan G, Wu C, Pan X, Peng T. Microneedle-Mediated Treatment of Obesity. Pharmaceutics 2025; 17:248. [PMID: 40006614 PMCID: PMC11859603 DOI: 10.3390/pharmaceutics17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity has become a major public health threat, as it can cause various complications such as diabetes, cardiovascular disease, sleep apnea, cancer, and osteoarthritis. The primary anti-obesity therapies include dietary control, physical exercise, surgical interventions, and drug therapy; however, these treatments often have poor therapeutic efficacy, significant side effects, and unavoidable weight rebound. As a revolutionized transdermal drug delivery system, microneedles (MNs) have been increasingly used to deliver anti-obesity therapeutics to subcutaneous adipose tissue or targeted absorption sites, significantly enhancing anti-obese effects. Nevertheless, there is still a lack of a review to comprehensively summarize the latest progress of MN-mediated treatment of obesity. This review provides an overview of the application of MN technology in obesity, focusing on the delivery of various therapeutics to promote the browning of white adipose tissue (WAT), suppress adipogenesis, and improve metabolic function. In addition, this review presents detailed examples of the integration of MN technology with iontophoresis (INT) or photothermal therapy (PTT) to promote drug penetration into deeper dermis and exert synergistic anti-obese effects. Furthermore, the challenges and prospects of MN technology used for obesity treatment are also discussed, which helps to guide the design and optimization of MNs. Overall, this review provides insight into the development and clinical translation of MN technology for the treatment of obesity.
Collapse
Affiliation(s)
- Huanhuan Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chunxian Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jubo Jian
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jing Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen 529031, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| |
Collapse
|
8
|
Nguyen HX, Banga AK. Advanced transdermal drug delivery system: A comprehensive review of microneedle technologies, novel designs, diverse applications, and critical challenges. Int J Pharm 2025; 670:125118. [PMID: 39710310 DOI: 10.1016/j.ijpharm.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Transdermal drug delivery presents numerous advantages over conventional administration routes, including non-invasiveness, enhanced patient adherence, circumvention of hepatic first-pass metabolism, self-administration capabilities, controlled release, and increased bioavailability. Nevertheless, the barrier function of stratum corneum limits this strategy to molecules possessing requisite physicochemical attributes. To expand the field of transdermal delivery, researchers have pioneered physical enhancement techniques, with micron-sized needles emerging as a particularly promising platform for the transdermal and intradermal delivery of therapeutic agents across a spectrum of molecular sizes. Microneedles function by disrupting the skin's integrity, generating microchannels that facilitate efficient drug permeation. This innovative technology boasts a captivating profile characterized by non-invasive drug delivery, enhanced efficacy and onset time, improved patient acceptability, self-administration possibilities, and precise dosing capabilities. Consequently, both academic institutions and industry have invested substantial resources in the development of microneedle systems for pharmaceutical delivery. This comprehensive review elucidates the multifaceted aspects of microneedle technology, encompassing its historical evolution, diverse materials, innovative designs, fabrication methodologies, and characterization techniques. The review extends to various microneedle types, including solid, hollow, coated, dissolving, swelling, and porous microneedles, as well as cutting-edge designs such as stimulus-responsive, iontophoresis-assisted, and bionic microneedles. Furthermore, we explore microneedle applications in vaccination, targeted delivery, and the administration of biologics, long-acting therapeutic agents, and cosmetics. Critical challenges in microneedle development, including dimensional considerations, safety concerns, acceptability factors, production scalability, regulatory hurdles, and sustainability issues, are thoroughly addressed, alongside a presentation of future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam.
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
9
|
Jing HH, Shati AA, Alfaifi MY, Elbehairi SEI, Sasidharan S. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. J Adv Res 2025; 67:133-159. [PMID: 38320729 PMCID: PMC11725112 DOI: 10.1016/j.jare.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbon dots (CDs) as anticancer agents had sparked a transformation in cancer research and treatment strategies. These fluorescent CDs, initially introduced in the early 2000 s, possess exceptional biocompatibility, tunable fluorescence, and surface modification capabilities, positioning them as promising tools in biomedical applications. AIM OF REVIEW The review encapsulates the transformative trajectory of green CDs as future anticancer nanomedicine, poised to redefine the strategies employed in the ongoing fight against cancer. KEY SCIENTIFIC CONCEPTS OF REVIEW The versatility of CDs was rooted in their various synthesis approaches and sustainable strategies, enabling their adaptability for diverse therapeutic uses. In vitro studies had showcased CDs' selective cytotoxicity against cancer cells while sparing healthy counterparts, forming the basis for targeted therapeutic potential. This selectivity had been attributed to the reactive oxygen species (ROS) generation, which opened avenues for targeted interventions. The role of CDs in combination therapies, synergizing with chemotherapy, radiotherapy, and targeted approaches was then investigated to heighten their anticancer efficacy. Notably, in vivo studies highlight CDs' remarkable biocompatibility and minimal side effects, endorsing their translational promise. Integration with conventional cancer treatments such as chemotherapy, radiotherapy, and immunotherapy amplified the versatility and effectiveness of CDs. The exploration of CDs' applications in photo-induced treatments further solidified their significance, positioning them as photosensitizers (PS) in photodynamic therapy (PDT) and photothermal agents (PA) in photothermal therapy (PTT). In PDT, CDs triggered the generation of ROS upon light exposure, facilitating cancer cell elimination, while in PTT, they induced localized hyperthermia within cancer cells, enhancing therapeutic outcomes. In vitro and in vivo investigations validated CDs' efficacy in PDT and PTT, affirming their potential for integration into combination therapies. Looking ahead, the future of CDs in anticancer treatment encompasses bioavailability, biocompatibility, synergistic treatments, tumor targeting, artificial intelligence (AI) and robotics integration, personalized medicine, and clinical translation. This transformative odyssey of CDs as future anticancer agents is poised to redefine the paradigm of cancer treatment strategies.
Collapse
Affiliation(s)
- Hong Hui Jing
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia.
| |
Collapse
|
10
|
Wen T, Zhao Y, Fu Y, Chen Y, Li X, Shi C, Xian D, Zhao W, Yang D, Lu C, Wu C, Pan X, Quan G. "On-demand" nanosystem-integrated microneedles for amplified triple therapy against recalcitrant bacteria and biofilm growth. Mater Today Bio 2024; 29:101327. [PMID: 39582781 PMCID: PMC11585702 DOI: 10.1016/j.mtbio.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Phototherapy has emerged to eradicate recalcitrant bacteria without causing drug resistance, but it is often accompanied by considerable limitations owing to a high tolerance of recalcitrant bacteria to heat and oxidative damage, leading to low efficiency of monotherapy and unwanted side effects. Assuming that employing antimicrobial peptides (AMPs) to disrupt bacterial membranes could reduce bacterial tolerance, a multifunctional "on-demand" nanosystem based on zeolitic imidazolate framework-8 (ZIF-8) with metal ions for intrinsic antibacterial activity was constructed to potently kill methicillin-resistant Staphylococcus aureus (MRSA). Then, microneedles (MNs) were used to transdermally deliver the ZIF-8-based nanosystem for localized skin infection. After MNs insertion, the nanoplatform could specifically deliver the loaded therapeutic components to bacterial infection sites through employing hyaluronic acid (HA) as a capping agent, thus realizing the "on-demand" payload release triggered by excess hyaluronidase secreted by MRSA. The prepared nanosystem and MNs were confirmed to exert an amplified triple therapy originating from membranolytic effect, phototherapy, and ion therapy, thus displaying a powerful bactericidal and MRSA biofilm destruction ability. This intelligent antimicrobial strategy may bring a dawn of hope for eradicating multidrug-resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanping Fu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Ying Chen
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Xiaodie Li
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chaonan Shi
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Wanchen Zhao
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
11
|
Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm Sin B 2024; 14:5161-5180. [PMID: 39807331 PMCID: PMC11725105 DOI: 10.1016/j.apsb.2024.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/16/2025] Open
Abstract
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally, the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeoning market traction of cosmetic MN formulations. The review summarizes the scientific and commercial challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics, biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It emphasizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obstacles and fully realize MNs' potential in treating skin diseases and improving patient welfare.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
12
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
13
|
Farasatkia A, Maeso L, Gharibi H, Dolatshahi-Pirouz A, Stojanovic GM, Edmundo Antezana P, Jeong JH, Federico Desimone M, Orive G, Kharaziha M. Design of nanosystems for melanoma treatment. Int J Pharm 2024; 665:124701. [PMID: 39278291 DOI: 10.1016/j.ijpharm.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Melanoma is a prevalent and concerning form of skin cancer affecting millions of individuals worldwide. Unfortunately, traditional treatments can be invasive and painful, prompting the need for alternative therapies with improved efficacy and patient outcomes. Nanosystems offer a promising solution to these obstacles through the rational design of nanoparticles (NPs) which are structured into nanocomposite forms, offering efficient approaches to cancer treatment procedures. A range of NPs consisting of polymeric, metallic and metal oxide, carbon-based, and virus-like NPs have been studied for their potential in treating skin cancer. This review summarizes the latest developments in functional nanosystems aimed at enhancing melanoma treatment. The fundamentals of these nanosystems, including NPs and the creation of various functional nanosystem types, facilitating melanoma treatment are introduced. Then, the advances in the applications of functional nanosystems for melanoma treatment are summarized, outlining both their benefits and the challenges encountered in implementing nanosystem therapies.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Hamidreza Gharibi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Goran M Stojanovic
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jee-Heon Jeong
- Laboratory of Drug Delivery and Cell Therapy (LDDCT). Department of Precision Medicine. School of Medicine, Sungkyunkwan University. South Korea
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
14
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
15
|
Dong Y, Tao J, Wang B, Zhang A, Xiang G, Li S, Jiang T, Zhao X. Partitioned Microneedle Patch Based on NO Release and HSP Inhibition for mPTT/GT Combination Treatment of Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49104-49113. [PMID: 39234752 DOI: 10.1021/acsami.4c10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Photothermal therapy (PTT) shows promise in cancer treatments due to its good spatiotemporal selectivity and minimal invasiveness. However, PTT has some problems such as excessive heat damage to normal tissues, tumor thermo-resistance caused by heat shock proteins (HSPs), and limited efficacy of monotherapy. Here, we construct a patch named "partitioned microneedles" (PMN-SNAP/CuS), which separates the "catalyst" bovine serum albumin-based copper sulfide nanoparticles (CuS@BSA NPs) and the "reactant" S-nitroso-N-acetylpenicillamine (SNAP) into different regions of microneedles, for enhancing mild PTT (mPTT) of melanoma. PMN-SNAP/CuS showed an excellent photothermal effect, Fenton-like catalytic activity, and nitric oxide (NO) generation ability. The combination of NO and reactive oxygen species (ROS) produced by PMN-SNAP/CuS effectively blocked the synthesis of HSPs at the source and enhanced the efficacy of mPTT. Both in vitro and in vivo results proved that PMN-SNAP/CuS significantly enhanced the inhibition of melanoma under 808 nm laser irradiation. In conclusion, our partitioned microneedle strategy based on the combination of enhanced mPTT and gas therapy (GT) provides a promising approach to enhance the therapeutic effect on melanoma.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aijia Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
16
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
17
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
18
|
Bigham A, Islami N, Khosravi A, Zarepour A, Iravani S, Zarrabi A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311903. [PMID: 38453672 DOI: 10.1002/smll.202311903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Negar Islami
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
19
|
Wang Q, Gan Z, Wang X, Li X, Zhao L, Li D, Xu Z, Mu C, Ge L, Li D. Dissolving Hyaluronic Acid-Based Microneedles to Transdermally Deliver Eugenol Combined with Photothermal Therapy for Acne Vulgaris Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21595-21609. [PMID: 38635857 DOI: 10.1021/acsami.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A microneedle transdermal drug delivery system simultaneously avoids systemic toxicity of oral administration and low efficiency of traditional transdermal administration, which is of great significance for acne vulgaris therapy. Herein, eugenol-loaded hyaluronic acid-based dissolving microneedles (E@P-EO-HA MNs) with antibacterial and anti-inflammatory activities are developed for acne vulgaris therapy via eugenol transdermal delivery integrated with photothermal therapy. E@P-EO-HA MNs are pyramid-shaped with a sharp tip and a hollow cavity structure, which possess sufficient mechanical strength to penetrate the stratum corneum of the skin and achieve transdermal delivery, in addition to excellent in vivo biocompatibility. Significantly, E@P-EO-HA MNs show effective photothermal therapy to destroy sebaceous glands and achieve antibacterial activity against deep-seated Propionibacterium acnes (P. acnes) under near-infrared-light irradiation. Moreover, cavity-loaded eugenol is released from rapidly dissolved microneedle bodies to play a sustained antibacterial and anti-inflammatory therapy on the P. acnes infectious wound. E@P-EO-HA MNs based on a synergistic therapeutic strategy combining photothermal therapy and eugenol transdermal administration can significantly alleviate inflammatory response and ultimately facilitate the repair of acne vulgaris. Overall, E@P-EO-HA MNs are expected to be clinically applied as a functional minimally invasive transdermal delivery strategy for superficial skin diseases therapy in skin tissue engineering.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhiyang Gan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinxin Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinying Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Derong Li
- People's Hospital of Lanshan District, Linyi 27600, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
20
|
Scattolin T, Tonon G, Botter E, Canale VC, Hasanzadeh M, Cuscela DM, Buschini A, Zarepour A, Khosravi A, Cordani M, Rizzolio F, Zarrabi A. Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy. J Mater Chem B 2024; 12:3807-3839. [PMID: 38529820 DOI: 10.1039/d4tb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Denise Maria Cuscela
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
21
|
Zhang Q, Liu X, He J. Applications and prospects of microneedles in tumor drug delivery. J Mater Chem B 2024; 12:3336-3355. [PMID: 38501172 DOI: 10.1039/d3tb02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As drug delivery devices, microneedles are used widely in the local administration of various drugs. Such drug-loaded microneedles are minimally invasive, almost painless, and have high drug delivery efficiency. In recent decades, with advancements in microneedle technology, an increasing number of adaptive, engineered, and intelligent microneedles have been designed to meet increasing clinical needs. This article summarizes the types, preparation materials, and preparation methods of microneedles, as well as the latest research progress in the application of microneedles in tumor drug delivery. This article also discusses the current challenges and improvement strategies in the use of microneedles for tumor drug delivery.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
22
|
Gupta N, Gupta G, Razdan K, Albekairi NA, Alshammari A, Singh D. Development of nanoemulgel of 5-Fluorouracil for skin melanoma using glycyrrhizin as a penetration enhancer. Saudi Pharm J 2024; 32:101999. [PMID: 38454919 PMCID: PMC10918269 DOI: 10.1016/j.jsps.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to enhance the topical delivery of 5-Fluorouracil (5-FU), a cancer treatment, by developing a nanoemulgel formulation. Glycyrrhizin (GLY), a natural penetration enhancer has been investigated to exhibit synergistic effects with 5-FU in inhibiting melanoma cell proliferation and inducing apoptosis, Hence, GLY, along with suitable lipids was utilized to create an optimized nanoemulsion (NE) based gel. Solubility studies and ternary phase diagram revealed isopropyl myristate (IPM), Span 80, Tween 80 as Smix and Transcutol P as co-surfactant. IPM demonstrates excellent solubilizing properties facilitates higher drug loading, ensuring efficient delivery to the target site.,The optimized formulation consisting of 40 % IPM, 30 % of mixture of Tween80: Span80 (Smix) and 15 % Transcutol P provides with a nanometric size of 64.1 ± 5.13 nm and drug loading of 97.3 ± 5.83 %. The optimized formulation observed with no creaming and breakeing of NE and found thermodynamically stable during different stress conditions (temperatures of 4.0 °C and 45.0 °C) and physical thawing (-21.0 ± 0.50 °C to 20.0 ± 0.50 °C). The NE was then transformed into a nanoemulgel (NEG) using 1.5 % w/w Carbopol base and 0.1 % w/w glycyrrhizin. The ex vivo permeability studies showed significant enhancements in drug permeability with the GLY-based 5-FU-NEG formulation compared to pure 5-FU gel in excised pig skin upto1440 min in PBS 7.4 as receptor media. The IC50 values for Plain 5-FU gel, 5-FU-NEG, and GLY-based 5-FU-NEG were found to be 20 µg/mL, 1.1 µg/mL, and 0.1 µg/mL, respectively in B16F10 cell lines. The percentage intracellular uptake of GLY-5-FU-NEG and 5-FU-NEG was found to be 44.3 % and 53.6 %, respectively. GLY-based 5-FU-NEG formulation showed alterations in cell cycle distribution, in compared to 5-FU-NE gel. The overall findings suggest that the GLY-based 5-FU-NEG holds promise for improving anti-melanoma activity.
Collapse
Affiliation(s)
- Nimish Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - G.D. Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Karan Razdan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
- University Institute of Pharma Sciences, Chandigarh University, Gharuan (140413), Mohali, India
| |
Collapse
|
23
|
Gao Z, Liu Y, Lin W, Lian H, Meng Z. A microneedle patch realizes weight loss through photothermal induction of fat browning. Biomater Sci 2024; 12:1726-1737. [PMID: 38357975 DOI: 10.1039/d3bm01767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As a globally prevalent disease, obesity leads to many chronic diseases, so it is important to develop safe and effective treatments with fewer side effects and lasting weight loss. In this study, we developed a biodegradable hyaluronic acid microneedle patch loaded with polydopamine nanoparticles and mirabegron, which directly acted on subcutaneous white adipose tissue, and then induced browning of white adipose tissue through mild photothermal therapy. The approach showed excellent browning-promoting ability and biocompatibility. It is noteworthy that the weight of untreated mice increased by 9%, while the weight of obese mice decreased by nearly 19% after photothermal treatment. In addition, when mirabegron was used in combination with photothermal therapy, the weight loss of obese mice was more significant, with a weight loss of about 22%. This microneedle patch exhibited attractive potential for body slimming.
Collapse
Affiliation(s)
- Zichun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixuan Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjiao Lin
- Qingmao Technology (Shenzhen) Co., Ltd., China
| | - He Lian
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
24
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
25
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
26
|
Wang C, Zeng Y, Chen KF, Lin J, Yuan Q, Jiang X, Wu G, Wang F, Jia YG, Li W. A self-monitoring microneedle patch for light-controlled synergistic treatment of melanoma. Bioact Mater 2023; 27:58-71. [PMID: 37035421 PMCID: PMC10074410 DOI: 10.1016/j.bioactmat.2023.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Melanoma is the most aggressive and malignant form of skin cancer. Current melanoma treatment methods generally suffer from frequent drug administration as well as difficulty in direct monitoring of drug release. Here, a self-monitoring microneedle (MN)-based drug delivery system, which integrates a dissolving MN patch with aggregation-induced emission (AIE)-active PATC microparticles, is designed to achieve light-controlled pulsatile chemo-photothermal synergistic therapy of melanoma. The PATC polymeric particles, termed D/I@PATC, encapsulate both of chemotherapeutic drug doxorubicin (DOX) and the photothermal agent indocyanine green (ICG). Upon light illumination, PATC gradually dissociates into smaller particles, causing the release of encapsulated DOX and subsequent fluorescence intensity change of PATC particles, thereby not only enabling direct observation of the drug release process under light stimuli, but also facilitating verification of drug release by fluorescence recovery after light trigger. Moreover, encapsulation of ICG in PATC particles displays significant improvement of its photothermal stability both in vitro and in vivo. In a tumor-bearing mouse, the application of one D/I@PATC MN patch combining with two cycles of light irradiation showed excellent controllable chemo-photothermal efficacy and exhibited ∼97% melanoma inhibition rate without inducing any evident systemic toxicity, suggesting a great potential for skin cancer treatment in clinics.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yongnian Zeng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiawei Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xue Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
27
|
Tao J, Wang B, Dong Y, Chen X, Li S, Jiang T, Zhao X. Photothermal and Acid-Responsive Fucoidan-CuS Bubble Pump Microneedles for Combined CDT/PTT/CT Treatment of Melanoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40267-40279. [PMID: 37594128 DOI: 10.1021/acsami.3c08368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Transdermal cancer therapy faces great challenges in clinical practice due to the low drug transdermal efficiency and the unsatisfactory effect of monotherapy. Herein, we develop a novel bubble pump microneedle system (BPMN-CuS/DOX) by embedding sodium bicarbonate (NaHCO3) into hyaluronic acid microneedles (MNs) loaded with fucoidan-based copper sulfide nanoparticles (Fuc-CuS NPs) and doxorubicin (DOX). BPMN-CuS/DOX can generate CO2 bubbles triggered by an acidic tumor microenvironment for deep and rapid intradermal drug delivery. Fuc-CuS NPs exhibit excellent photothermal effect and Fenton-like catalytic activity, producing more reactive oxygen species (ROS) by photothermal therapy (PTT) and chemodynamic therapy (CDT), which enhances the antitumor efficacy of DOX and reduces the dosage of its chemotherapy (CT). Simultaneously, DOX increases intracellular hydrogen peroxide (H2O2) supplementation and promotes the sustained production of ROS. BPMN-CuS/DOX significantly inhibits melanoma both in vitro and in vivo by the combination of CDT, PTT, and CT. In short, our study significantly enhances the effectiveness of transdermal drug delivery by constructing BPMNs and provides a promising novel strategy for transdermal cancer treatment with multiple therapies.
Collapse
Affiliation(s)
- Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - XiangYan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
28
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
29
|
Zhang JY, Gao WD, Lin JY, Xu S, Zhang LJ, Lu XC, Luan X, Peng JQ, Chen Y. Nanotechnology-based photo-immunotherapy: a new hope for inhibition of melanoma growth and metastasis. J Drug Target 2023:1-14. [PMID: 37216425 DOI: 10.1080/1061186x.2023.2216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Melanoma is the most aggressive form of skin cancer and there is a need for the development of effective anti-melanoma therapies as it shows high metastatic ability and low response rate. In addition, it has been identified that traditional phototherapy could trigger immunogenic cell death (ICD) to activate antitumor immune response, which could not only effectively arrest primary tumor growth, but also exhibit superior effects in terms of anti-metastasis, anti-recurrence for metastatic melanoma treatment However, the limited tumor accumulation of photosensitizers/photothermal agents and immunosuppressive tumor microenvironment severely weaken the immune effects. The application of nanotechnology facilitates a higher accumulation of photosensitizers/photothermal agents at the tumor site, which can thus improve the antitumor effects of photo-immunotherapy (PIT). In this review, we summarize the basic principles of nanotechnology-based PIT and highlight novel nanotechnologies that are expected to enhance the antitumor immune response for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Ji-Yuan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Chen Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
30
|
Wang S, Zhao M, Yan Y, Li P, Huang W. Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope. RESEARCH (WASHINGTON, D.C.) 2023; 6:0128. [PMID: 37223469 PMCID: PMC10202386 DOI: 10.34133/research.0128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.
Collapse
Affiliation(s)
| | | | - Yibo Yan
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Peng Li
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Wei Huang
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| |
Collapse
|
31
|
Zhang R, Miao Q, Deng D, Wu J, Miao Y, Li Y. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids Surf B Biointerfaces 2023; 226:113302. [PMID: 37086686 DOI: 10.1016/j.colsurfb.2023.113302] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Transdermal drug delivery is an effective way of drug delivery in addition to oral and intravenous administration. Among them, microneedle administration is a new type of subcutaneous drug delivery, which forms micron-level pores on the surface of the skin, making the drug enter the dermis through the cuticular layer of the skin in the least invasive way. This mode of drug delivery not only increases the permeation efficiency of transdermal drug delivery but also improves the bioavailability of drug delivery. At present, there are many kinds of research on microneedles, such as solid microneedles, hollow microneedles, soluble polymer microneedles, etc. However, some new microneedle drug delivery systems have been gradually developed and applied with the development of microneedle drug delivery technology, for meeting the more complex pathological environment. In this review, we focus on the principle, structure, and function of some new types of microneedles, such as stimulus-response microneedles, iontophoresis microneedles, and bionic microneedles. We summarize the effects of materials, geometry, and size on the properties of microneedles as well as their applications and potential developments in the field of biomedicine. We hope that this review can provide new ideas and help with the development of new microneedle drug delivery systems.
Collapse
Affiliation(s)
- Rui Zhang
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
32
|
Roy S, Roy J, Guo B. Nanomaterials as multimodal photothermal agents (PTAs) against 'Superbugs'. J Mater Chem B 2023; 11:2287-2306. [PMID: 36857688 DOI: 10.1039/d2tb02396b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Superbugs, also known as multidrug-resistant bacteria, have become a lethal and persistent threat due to their unresponsiveness toward conventional antibiotics. The main reason for this is that superbugs can rapidly mutate and restrict any foreign drug/molecule in their vicinity. Herein, nanomaterial-mediated therapies have set their path and shown burgeoning efficiency toward the ablation of superbugs. Notably, treatment modalities like photothermal therapy (PTT) have shown prominence in killing multidrug-resistant bacteria with their ability to generate local heat shock-mediated hyperthermia in such species. However, photothermal treatment has some serious limitations, such as high cost, complexity, and even toxicity to some extent. Hence, it is important to resolve such shortcomings of PTTs as they provide substantial tissue penetration. This is why multimodal PTTs have emerged and taken over this domain of research for the past few years. In this work, we have summarized and critically reviewed such exceptional works of recent times and provided a perspective to enhance their efficiencies. Profoundly, we discuss the design rationales of some novel photothermal agents (PTAs) and shed light on their mechanisms. Finally, challenges for PTT-derived multimodal therapy are presented, and capable synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
33
|
Priya S, Tomar Y, Desai VM, Singhvi G. Enhanced skin drug delivery using dissolving microneedles: a potential approach for the management of skin disorders. Expert Opin Drug Deliv 2023:1-18. [PMID: 36893450 DOI: 10.1080/17425247.2023.2190095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION For decades, finding effective long-term or disease-modifying treatments for skin disorders has been a major focus of scientists. The conventional drug delivery systems showed poor efficacy with high doses and are associated with side effects, which lead to challenges in adherence to therapy. Therefore, to overcome the limitations of conventional drug delivery systems, drug delivery research has focused on topical, transdermal, and intradermal drug delivery systems. Among all, the dissolving microneedles have gained attention with a new range of advantages of drug delivery in skin disorders such as breaching skin barriers with minimal discomfort and its simplicity of application to the skin, which allows patients to administer it themselves. AREAS COVERED This review highlighted the insights into dissolving microneedles for different skin disorders in detail. Additionally, it also provides evidence for its effective utilization in the treatment of various skin disorders. The clinical trial status and patents for dissolving microneedles for the management of skin disorders are also covered. EXPERT OPINION The current review on dissolving microneedles for skin drug delivery is accentuating the breakthroughs achieved so far in the management of skin disorders. The output of the discussed case studies anticipated that dissolving microneedles can be a novel drug delivery strategy for the long-term treatment of skin disorders.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| |
Collapse
|
34
|
Liu L, Zhang H, Peng L, Wang D, Zhang Y, Yan B, Xie J, Xing S, Peng F, Liu X. A copper-metal organic framework enhances the photothermal and chemodynamic properties of polydopamine for melanoma therapy. Acta Biomater 2023; 158:660-672. [PMID: 36640955 DOI: 10.1016/j.actbio.2023.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
The combination of photothermal treatment and chemodynamic therapy has attracted extensive attention for improving therapeutic effects and compensating the insufficiency of monotherapy. In this work, a copper-metal organic framework (Cu-BTC) was used to augment the photothermal effect of polydopamine (PDA) and endow it with a chemodynamic ability by constructing a Cu-BTC@PDA nanocomposite. Density functional theory calculations revealed that the plasmonic vibrations formed by the d-d transition of Cu at the Fermi level in Cu-BTC@PDA could enhance the photothermal performance of PDA. In addition, more Cu2+ released from Cu-BTC@PDA in the acidic microenvironment of the tumor was then reduced to Cu+ by glutathione (GSH) and further catalyzed H2O2 to generate more toxic hydroxyl radical (•OH), which synergized with photothermal treatment for melanoma therapy. Furthermore, Cu-BTC@PDA could quickly and effectively kill bacteria under the action of PTT, and the sustained release of Cu ions could contribute to the long-term and stable bacteriostatic ability of the material. This sustained release of Cu ions could also promote the cell migration and angiogenesis, and upregulate the expression of COL-, TGF-, and VEGF-related genes to accelerate wound healing. This multifunctional nanomaterial has potential application in the treatment of melanoma and repair of wounds. STATEMENT OF SIGNIFICANCE: We constructed a multifunctional nanoplatform (Cu-BTC@PDA) by two steps. This nanoplatform can not only perform cascade catalysis in the tumor microenvironment to generate more toxic hydroxyl radical (•OH), but also synergize with photothermal treatment for melanoma therapy. Additionally, Cu-BTC@PDA possesses enhanced photothermal performance through the plasmonic vibrations formed by the d-d transition of Cu at the Fermi level in Cu-BTC@PDA, which is revealed by DFT calculations. And Cu-BTC@PDA shows good antitumor, antibacterial, and wound healing properties in vivo and in vitro. Such a multifunctional nanomaterial has potential application in the treatment of melanoma and repair of wounds.
Collapse
Affiliation(s)
- Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Luxi Peng
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200050, China
| | - Donghui Wang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yu Zhang
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Juning Xie
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Shun Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Feng Peng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
35
|
Zhou Y, Yang L, Lyu Y, Wu D, Zhu Y, Li J, Jiang D, Xin X, Yin L. Topical Delivery of ROS-Responsive Methotrexate Prodrug Nanoassemblies by a Dissolvable Microneedle Patch for Psoriasis Therapy. Int J Nanomedicine 2023; 18:899-915. [PMID: 36824414 PMCID: PMC9941683 DOI: 10.2147/ijn.s394957] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/01/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose Oxidative stress, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and adenosine signaling are factors associated with psoriatic inflammation. Topical delivery of methotrexate (MTX) has become an option to overcome the side effects caused by systemic therapy in psoriasis, leading to the suppression of NF-κB activation through boosting adenosine release. However, thickened psoriatic skin is the primary restriction against local drug delivery. Methods In this study, a ROS responsive MTX prodrug (MTX-TK-HA) was synthesized with the feature of CD44 mediated active targeting to hyperproliferative keratinocytes. MTX prodrug and PLA-mPEG were formulated by nano-precipitation method to develop the MTX-TK-HA/PLA-mPEG nanoassemblies. To achieve painless transdermal delivery, a dissolving microneedle was applied for direct loading of these nanoassemblies by micromolding technique. The particle size, zeta potential, ROS-responsiveness, permeability, and mechanical strength of nanoassemblies and microneedle arrays were determined, respectively. Then, MTT assay, immunoblot analysis, ELISA assay, flow cytometry, and histological staining were utilized to thoroughly evaluate the efficacy of nanoassemblies-loaded microneedles in an imiquimod-induced psoriatic mouse model. Results Nanoassemblies-loaded microneedle arrays were capable of significantly penetrating imiquimod-induced psoriatic epidermis in mice. The efficient topical delivery of these nanoassemblies was achieved by potent mechanical strength and hyaluronic acid as the dissolvable matrix for microneedle arrays. CD44-mediated endocytosis enabled the intracellular uptake of nanoassemblies in keratinocytes, and methotrexate was released from MTX-TK-HA with ROS stimuli, followed by suppressing the proliferation of epidermal cells via NF-κB pathway blockade. Conclusion In a psoriatic mouse model, nanoassemblies loaded microneedle arrays relieve inflammatory skin disorders via regulation of adenosine and NF-κB signaling. Our study offered a rational design for the transdermal delivery of hydrophobic agents and defined an effective therapeutic option for psoriasis treatment.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Dabo Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China, Nanjing, People’s Republic of China,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, People’s Republic of China,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, People’s Republic of China,Correspondence: Lifang Yin; Xiaofei Xin, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China, Tel +86 (025)83271018, Email ;
| |
Collapse
|
36
|
Wawrzyńczak A, Nowak I, Woźniak N, Chudzińska J, Feliczak-Guzik A. Synthesis and Characterization of Hierarchical Zeolites Modified with Polysaccharides and Its Potential Role as a Platform for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020535. [PMID: 36839857 PMCID: PMC9968069 DOI: 10.3390/pharmaceutics15020535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Hierarchical zeolites are aluminosilicates with a crystal structure, which next to the micropores possess secondary porosity in the range of mesopores and/or small macropores. Due to their ordered structure and additional secondary porosity, they have aroused great interest among scientists in recent years. Therefore, the present work concerns the synthesis and characterization of hierarchical zeolites with secondary mesoporosity, based on commercial zeolites such as MFI (ZSM-5), BEA (β) and FAU (Y), and modified with polysaccharides such as inulin, hyaluronic acid, and heparin. All materials were characterized by various analytical techniques and applied as a platform for delivery of selected drug molecules. On the basis of X-ray diffraction (presence of reflections in the 2θ angle range of 1.5-2.5°) and low-temperature nitrogen sorption isotherms (mixture of isotherms of I and IV type) additional secondary porosity was found in the mesopore range. Additional tests were also conducted to determine the possibility of loading selected molecules with biological activity into the aforementioned materials and then releasing them in the therapeutic process. Molecules with different therapeutic options were selected for testing, namely ibuprofen, curcumin, and ferulic acid with anti-inflammatory, potentially anticancer, antioxidant, and skin discoloration activities, respectively. Preliminary studies have confirmed the possibility of using hierarchical zeolites as potential carriers for bioactive molecules, as the loading percentage of active substances ranged from 39-79% and cumulative release for ibuprofen reached almost 100% after 8 h of testing.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Correspondence: (A.W.); (A.F.-G.); Tel.: +48-61-829-1749 (A.W.); +48-61-829-1747 (A.F.-G)
| | | | | | | | | |
Collapse
|
37
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
38
|
Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2023; 353:1050-1067. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microneedles (MN) technology is an emerging technology for the transdermal delivery of therapeutics. When combined with photoresponsive (PR) materials, MNs can deliver therapeutics precisely and effectively with enhanced efficacy or synergistic effects. This review systematically summarizes the therapeutic applications of PRMNs in cancer therapy, wound healing, diabetes treatment, and diagnostics. Different PR approaches to activate and control the release of therapeutic agents from MNs are also discussed. Overall, PRMNs are a powerful tool for stimuli-responsive controlled-release therapeutic delivery to treat various diseases.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, United States; School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Brian Youden
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada; Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Sujing Lin
- School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, United States.
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
39
|
Polymeric Microneedle-Based Drug Delivery Platforms for Application in Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Kang H, Zuo Z, Lin R, Yao M, Han Y, Han J. The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv 2022; 29:3087-3110. [PMID: 36151726 PMCID: PMC9518289 DOI: 10.1080/10717544.2022.2125600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microneedle patch (MNP) is an alternative to the oral route and subcutaneous injection with unique advantages such as painless administration, good compliance, and fewer side effects. Herein, we report MNP as a prominent strategy for drug delivery to treat local or systemic disease. Hyaluronic acid (HA) has advantageous properties, such as human autologous source, strong water absorption, biocompatibility, and viscoelasticity. Therefore, the Hyaluronic acid microneedle patch (HA MNP) occupies a large part of the MNP market. HA MNP is beneficial for wound healing, targeted therapy of certain specific diseases, extraction of interstitial skin fluid (ISF), and preservation of drugs. In this review, we summarize the benefits of HA and cross-linked HA (x-HA) as an MNP matrix. Then, we introduce the types of HA MNP, delivered substances, and drug distribution. Finally, we focus on the biomedical application of HA MNP as an excellent drug carrier in some specific diseases and the extraction and analysis of biomarkers. We also discuss the future development prospect of HA MNP in transdermal drug delivery systems (TDDS).
Collapse
Affiliation(s)
- Huizhi Kang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Zuo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ru Lin
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Muzi Yao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
41
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
42
|
Pinto S, Gaspar MM, Ascensão L, Faísca P, Reis CP, Pacheco R. Nanoformulation of Seaweed Eisenia bicyclis in Albumin Nanoparticles Targeting Cardiovascular Diseases: In Vitro and In Vivo Evaluation. Mar Drugs 2022; 20:608. [PMID: 36286431 PMCID: PMC9605150 DOI: 10.3390/md20100608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation's impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs.
Collapse
Affiliation(s)
- Sofia Pinto
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Avenida Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologia, 1749-024 Lisboa, Portugal
- CBIOS-Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologia, 1749-024 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rita Pacheco
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Avenida Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
43
|
Zeng Y, Xu G, Kong X, Ye G, Guo J, Lu C, Nezamzadeh-Ejhieh A, Shahnawaz Khan M, Liu J, Peng Y. Recent advances of the core-shell MOFs in tumour therapy. Int J Pharm 2022; 627:122228. [PMID: 36162610 DOI: 10.1016/j.ijpharm.2022.122228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022]
Abstract
Coordination chemistry has always been vital to explore the material prominence of metal-organic systems. The metal-organic chemistry plays a fundamental role in decisive structural features, which are accountable for tuning the properties of materials. Tumour therapy has become an important research field of medical treatment in the world. Metal-organic frameworks (MOFs) have attracted extensive interest in medical science research due to their large effective surface area, clear pore network, and critical catalytic performance. Compared with traditional MOF materials, MOF materials with core-shell structures have a higher loading rate and better stability, which can overcome a single function. They have been successfully used in tumour medical research and have excellent prospects for diagnosing and treating various tumours. The current review article thoroughly describes the various synthetic approaches for engineering core-shell MOF materials, the structural types, and the potential functional applications. We also discussed core-shell MOF materials for the various treatment of tumours, such as tumour chemotherapy, tumour phototherapy and tumour microenvironment anti-hypoxia therapy. In this paper, the synthesized procedures of core-shell MOFs and their applications for tumour treatment have been discussed, and their future research has prospected. The current improved strategies, challenges, and prospects are also presented because of the metal-organic chemistry governing the structural modification of core-shell MOFs for tumour therapy applications. Therefore, the present review article opens a new door for medicinal chemists to tune the structural features of the core-shell MOF materials to modulate tumour therapy with simple, low-cost materials for better human lives.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guihua Xu
- Department of Science and Education, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Xiangyang Kong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
44
|
The safe Laccase@ZIF-8-prodrug system with GSH redox cycle for effective targeted cancer therapy with low off-target toxicity. Colloids Surf B Biointerfaces 2022; 220:112853. [DOI: 10.1016/j.colsurfb.2022.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022]
|
45
|
Drug delivery with dissolving microneedles: Skin puncture, its influencing factors and improvement strategies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Tavafoghi M, Nasrollahi F, Karamikamkar S, Mahmoodi M, Nadine S, Mano JF, Darabi MA, Jahangiry J, Ahadian S, Khademhosseini A. Advances and challenges in developing smart, multi-functional microneedles for biomedical applications. Biotechnol Bioeng 2022; 119:2715-2730. [PMID: 35854645 DOI: 10.1002/bit.28186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Microneedles (MNs) have been developed as minimally invasive tools for diagnostic and therapeutic applications. However, in recent years, there has been an increasing interest in developing smart multi-functional MN devices to provide automated and closed-loop systems for body fluid extraction, biosensing, and drug delivery in a stimuli-responsive manner. Although this technology is still in its infancy and far from being translated into the clinic, preclinical trials have shown some promise for the broad applications of multi-functional MN devices. The main challenge facing the fabrication of smart MN patches is the integration of multiple modules, such as drug carriers, highly sensitive biosensors, and data analyzers in one miniaturized MN device. Researchers have shown the feasibility of creating smart MNs by integrating stimuli-responsive biomaterials and advanced microscale technologies, such as microsensors and microfluidic systems, to precisely control the transportation of biofluids and drugs throughout the system. These multi-functional MN devices can be envisioned in two distinct strategies. The first type includes individual drug delivery and biosensing MN units with a microfluidic system and a digital analyzer responsible for fluid transportation and communication between these two modules. The second type relies on smart biomaterials that can function as drug deliverers and biosensors by releasing drugs in a stimuli-responsive manner. These smart biomaterials can undergo structural changes when exposed to external stimuli, such as pH and ionic changes, mimicking the biological systems. Studies have demonstrated a high potential of hydrogel-based MN devices for a wide variety of biomedical applications, such as drug and cell delivery, as well as interstitial fluid extraction. Biodegradable hydrogels have also been advantageous for fabricating multi-functional MNs due to their high loading capacity and biocompatibility with the drug of choice. Here, we first review a set of MN devices that can be employed either for biosensing or delivery of multiple target molecules and compare them to the conventional and more simple systems, which are mainly designed for single-molecule sensing or delivery. Subsequently, we expand our insight into advanced MN systems with multiple competencies, such as body fluid extraction, biosensing, and drug delivery at the point of care. The improvement of biomaterials knowledge and biofabrication techniques will allow us to efficiently tune the next generation of smart MNs and provide a realistic platform for more effective personalized therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maryam Tavafoghi
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fatemeh Nasrollahi
- Department of Bioengineering, University of California, Los Angeles, California, USA.,Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | | | - Mahboobeh Mahmoodi
- Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Sara Nadine
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Jamileh Jahangiry
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| |
Collapse
|
47
|
Research progress of microneedles in the treatment of melanoma. J Control Release 2022; 348:631-647. [PMID: 35718209 DOI: 10.1016/j.jconrel.2022.06.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/24/2022]
Abstract
Melanoma is an aggressive malignancy deriving from melanocytes, which is characterized by high tendency of metastases and mortality rate. Current therapies for melanoma, like chemotherapy, immunotherapy and targeted therapy, have the problem of systemic exposure of drugs, which will lead to many side effects and premature degradation of drugs. The resulting low drug accumulation at the lesion limits the therapeutic effect on melanoma and makes the cure rate low. As an emerging drug delivery system, microneedles (MNs) can efficiently deliver drugs through the skin, increase the drug distribution in deeper tumor sites and minimize the leakage of therapeutic drugs into adjacent tissues, thus improving the therapeutic effect. In addition, compared with traditional drug delivery methods, MN-based drug delivery system has the advantages of simplicity, safety and little pain. So MNs can be developed for the treatment of melanoma, which can relieve the pain of patients and improve the survival rate. This review aims to introduce an update on the progress of MNs as an innovative strategy for melanoma, especially when MNs combining with different therapies against melanoma, such as chemotherapy, targeted therapy, immunotherapy, photothermal therapy (PTT), photodynamic therapy (PDT) and synergic therapy.
Collapse
|
48
|
Shi C, Yang D, Zhao Y, Wen T, Zhao W, Hu P, Huang Z, Quan G, Wu C, Pan X. The spatial-dimensional and temporal-dimensional fate of nanocarrier-loaded dissolving microneedles with different lengths of needles. MEDICINE IN DRUG DISCOVERY 2022; 14:100124. [DOI: 10.1016/j.medidd.2022.100124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
50
|
Rao C, Liao D, Pan Y, Zhong Y, Zhang W, Ouyang Q, Nezamzadeh-Ejhieh A, Liu J. Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opin Drug Deliv 2022; 19:1183-1202. [PMID: 35426756 DOI: 10.1080/17425247.2022.2064450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Congying Rao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Yuyu Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qin Ouyang
- Department of general surgery, Dalang Hospital, Dongguan, 523800, China
| | | | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|