1
|
Hassan M, Kaifer B, Christian T, Quaas XT, Mueller J, Boehm H. First contact: an interdisciplinary guide into decoding H5N1 influenza virus interactions with glycosaminoglycans in 3D respiratory cell models. Front Cell Infect Microbiol 2025; 15:1596955. [PMID: 40444153 PMCID: PMC12119590 DOI: 10.3389/fcimb.2025.1596955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
The human respiratory system is vulnerable to viral infections. The influenza virus family alone accounts for one billion reported cases annually, some of which are severe and can be fatal. Among these, Influenza A viruses (IAVs) cause the most severe symptoms and course of disease. IAV has been a major health concern, especially since the emergence of the potentially pandemic avian H5N1 strain. However, despite the knowledge that IAVs recognize terminally attached sialic acids on the host cell surface for cell entry, the involvement of other glycans during early infection remains to be elucidated. In particular, the involvement of the alveolar epithelial glycocalyx as a last line of defense is often overlooked. Studying early infection of any virus in real time remains a challenge due to the currently available model systems and imaging techniques. Therefore, we extensively compare the use of different 3D cell systems and provide an overview of currently available scaffold-based and scaffold-free air-liquid interface (ALI) models. In addition, we discuss in detail the preferred use of a recently developed 3D organ tissue equivalent (OTE) model incorporating solubilized extracellular matrix components (sECM) to study viral interaction with glycosaminoglycans (GAGs) during the early stages of IAV infection. We further discuss and recommend the use of various synthetic virus models over IAV virions to reduce complexity by focusing only on surface protein interactions while simultaneously lowering the required biosafety levels, including, but not limited to virus-like particles (VLPs) or DNA origami. Finally, we delve into potential labeling strategies for IAV or IAV-like particles by reviewing internal and external labeling strategies with quantum dots (QDs) and potential GAG labeling, combined with a recommendation to combine high spatial resolution imaging techniques with high temporal resolution tracking, such as single virus tracking.
Collapse
Affiliation(s)
- Mariam Hassan
- Institute of Pharmacy and Molecular Biotechnology, Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
| | - Bianca Kaifer
- Institute of Pharmacy and Molecular Biotechnology, Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
| | - Tyra Christian
- Institute of Pharmacy and Molecular Biotechnology, Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
| | - Xenia Tamara Quaas
- Institute of Pharmacy and Molecular Biotechnology, Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
| | - Johannes Mueller
- Institute of Pharmacy and Molecular Biotechnology, Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
| | - Heike Boehm
- Max Planck Institute for Medical Research (MPIMR), Cellular Biophysics, Heidelberg, Germany
| |
Collapse
|
2
|
Szefczyk M, Szulc N, Bystranowska D, Szczepańska A, Lizandra Pérez J, Dudek A, Pawlak A, Ożyhar A, Berlicki Ł. Construction and cytotoxicity evaluation of peptide nanocarriers based on coiled-coil structures with a cyclic β-amino acid at the knob-into-hole interaction site. J Mater Chem B 2025. [PMID: 40364573 DOI: 10.1039/d5tb00752f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Peptides are highly attractive as nanocarriers for drug delivery and other biomedical applications due to their unique combination of biocompatibility, efficacy, safety, and versatility-qualities that are difficult to achieve with other nanocarrier types. Particularly promising in this context are peptide foldamers containing non-canonical residues, which can yield nanostructures with diverse physicochemical properties. Additionally, the introduction of non-proteinogenic amino acids into the sequence enhances conformational stability and resistance to proteolysis, critical features for bioapplications. In this article, we report the development of novel foldameric bundles based on a coiled-coil structure incorporating trans-(1S,2S)-2-aminocyclopentanecarboxylic acid (trans-ACPC) at the key interacting site. We also provide both theoretical and experimental analyses of how this cyclic β-residue affects the thermodynamic and proteolytic stability, oligomerization state, and encapsulation properties of the resulting foldamers compared to standard coiled-coils. Additionally, we assessed the cytotoxicity of these foldamers using the MTT assay on 3T3 cells. The results demonstrate that neither the foldamers nor trans-ACPC exhibit toxic effects on the 3T3 cell line, highlighting their potential as safe and effective nanocarriers.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Natalia Szulc
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Szczepańska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Juan Lizandra Pérez
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Anita Dudek
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
3
|
Martin C, Côté-Cyr M, Nguyen PT, Archambault D, Bourgault S. Evaluation of cylindrical micelles assembled from amphiphilic β-peptides as antigen delivery nanostructures. NANOSCALE ADVANCES 2025; 7:2979-2987. [PMID: 40177387 PMCID: PMC11960782 DOI: 10.1039/d5na00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
Supramolecular nanostructures assembled from synthetic peptides constitute promising scaffolds for the delivery of antigens for vaccine development. Amphiphilic peptides and self-assembling cross-β-peptides have been shown to promote cellular uptake of antigenic epitopes by antigen-presenting cells, to stimulate the innate immune system and to induce a robust antigen-specific humoral immune response. In this study, we evaluated the use of cylindrical micelles assembled from the amphiphilic β-peptide C16V3A3K3 as a vaccine nanoplatform, combining the properties of cross-β-sheet fibrils and micelles. The ectodomain of the matrix 2 protein (M2e) of the influenza A virus was conjugated with a tetra-Gly linker at the C-terminus of C16V3A3K3. The chimeric peptide assembled into biocompatible unbranched filaments that exposed the antigen on the surface, and these filaments were readily internalized by dendritic cells and activated the toll-like receptor 2/6. These cylindrical micelles induced a robust M2e-specific humoral immune response upon intramuscular immunization in mice without the need for co-administration with adjuvants. Although this strong humoral response did not translate into protection against a lethal infection with the H1N1 influenza virus, these cylindrical micelles assembled from amphiphilic β-peptides expand the repertoire of self-adjuvanted nanostructures to enhance antibody production against peptide epitopes.
Collapse
Affiliation(s)
- Clément Martin
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
- Department of Biological Sciences, Université du Québec C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
- Department of Biological Sciences, Université du Québec C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- Department of Biological Sciences, Université du Québec C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
| |
Collapse
|
4
|
Fischer NG, Lin TY, Xiang Y, Sang T, Ye Z. Emerging supramolecular and living materials in oral medicine. Trends Biotechnol 2025:S0167-7799(25)00091-5. [PMID: 40199625 DOI: 10.1016/j.tibtech.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/12/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
Conventional dental materials lack the ability to promote regeneration, necessitating innovative approaches for repairing dental, oral, and craniofacial (DOC) tissues. Supramolecular materials with reversible, tunable interactions, and engineered living materials (ELMs) that mimic natural tissue dynamics, present a promising pathway towards regenerative solutions in oral medicine. This review introduces the potential of these biomaterials, focusing on their applications in oral bioprinting, therapeutic delivery, and organ-on-a-chip (OOC) systems. We discuss the integration of these technologies into clinical applications, and offer insights into future developments that may redefine oral healthcare by enabling the regeneration of complex, dynamic tissue structures and improving therapeutic outcomes in oral diseases.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), University of Minnesota, Minneapolis, MN, USA.
| | - Tsung-Yi Lin
- Department of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yuanhui Xiang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Ting Sang
- School of Stomatology of Nanchang University and Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Wan L, Yao X, Pan J, Xiang Z, Fu D, Ye Q, Wu F. Crafting the future of bone regeneration: the promise of supramolecular peptide nanofiber hydrogels. Front Bioeng Biotechnol 2025; 13:1514318. [PMID: 40134775 PMCID: PMC11933111 DOI: 10.3389/fbioe.2025.1514318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Bone tissue engineering has rapidly emerged as an ideal strategy to replace autologous bone grafts, establishing a comprehensive system centered on biomaterial scaffolds, seeding cells, bioactive factors, and biophysical stimulation, thus paving the way for new horizons in surgical bone regeneration. However, the scarcity of suitable materials poses a significant challenge in replicating the intricate multi-layered structure of natural bone tissue. Supramolecular peptide nanofiber hydrogels (SPNHs) have shown tremendous potential as novel biomaterials due to their excellent biocompatibility, biodegradability, tunable mechanical properties, and multifunctionality. Various supramolecular peptides can assemble into nanofiber hydrogels, while bioactive sequences and factors can be embedded through physical adsorption or covalent binding, endowing the hydrogels with diverse biochemical properties. Finally, this review explored the future challenges and prospects of SPNHs in bone tissue engineering, with the aim of providing insights for further advancements in this field.
Collapse
Affiliation(s)
- Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyue Yao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiali Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyang Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongjie Fu
- Department of Stomatology, Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingsong Ye
- Department of Stomatology, Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Sydney Dental School, The University of Sydney, Camperdown, NSW, Australia
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Guerrero M, Filho D, Ayala A N, Rafael D, Andrade F, Marican A, Vijayakumar S, Durán-Lara EF. Hydrogel-antimicrobial peptide association: A novel and promising strategy to combat resistant infections. Colloids Surf B Biointerfaces 2025; 247:114451. [PMID: 39693724 DOI: 10.1016/j.colsurfb.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Infections from multi-drug resistant bacteria (MDRB) have raised a worldwide concern, with projections indicating that fatalities from these infections could surpass those from cancer by 2050. This troubling trend is influenced by several factors, including the scarcity of new antibiotics to tackle challenging infections, the prohibitive costs of last-resort antibiotics, the inappropriate use of antimicrobial agents in agriculture and aquaculture, and the over-prescription of antibiotics in community settings. One promising alternative treatment is the application of antimicrobial peptides (AMPs) against MDRB. Hydrogels can facilitate the delivery of these antimicrobials, enhancing their biocompatibility and bioavailability. The Peptide-Hydrogel Association (PHA) capitalizes on the distinct properties of both peptides and hydrogels, resulting in multifunctional systems suitable for various antibacterial purposes. Multiple strategies can be employed to develop a PHA, including peptide-based hydrogels, hydrogels infused with peptides, and hydrogels modified with peptide functionalities. The research examined in this review showcases the strong effectiveness of these systems against MDRB and underscores their potential in creating multifunctional and multi-responsive solutions for various infection scenarios. The high efficacy of PHAs represents a promising and innovative therapeutic strategy in combating infections caused by MDRB.
Collapse
Affiliation(s)
- Marcelo Guerrero
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - David Filho
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Nicolás Ayala A
- Department of Genetics, Microbiology and statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Department of Pharmacy and Pharmaceutical Technology and Physicochemistry, Faculty of Pharmacy and Food Sciences, School of Pharmacy, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Adolfo Marican
- Institute of Chemistry of Natural Research, University of Talca, Talca 3460000, Chile
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Esteban F Durán-Lara
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| |
Collapse
|
8
|
Tang C, Zhang Y, Li B, Fan X, Wang Z, Su R, Qi W, Wang Y. Modular Design of Lipopeptide-Based Organ-Specific Targeting (POST) Lipid Nanoparticles for Highly Efficient RNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415643. [PMID: 39924757 DOI: 10.1002/adma.202415643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Lipid nanoparticles (LNPs) with highly efficient and specific extrahepatic targeting abilities are promising in gene delivery, and the lipopeptides (LPs) with excellent designability and functionality are expected to empower the construction of functional LNPs. This study aims to develop highly efficient ionizable components that accurately match different targeting lipid systems through the modular design of LPs. Based on this, a lipopeptide-based organ-specific targeting (POST) LNP screening strategy is constructed, in which lysine-histidine-based lipopeptides (KH-LPs) are designed as highly efficient ionizable components. The optimal KH-LP LNP screened in vitro shows excellent siRNA/mRNA transfecting ability in various hard-to-transfect cell lines. Compared to the classic LNPs, the POST LNPs screened in vivo achieve even higher (or at least comparable) efficiency and specificity in delivering mRNA and siRNA to the lung, liver, and spleen, respectively. The structure-activity relationship (SAR) proves that the modular regulation of LP structures can accurately provide the optimal ionizable components for different targeting lipid systems, demonstrating the potential of this strategy in developing efficient and selective targeting systems, which is expected to open up more possibilities for gene therapy.
Collapse
Affiliation(s)
- Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yexi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Bowen Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiangwei Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Roointan A, Xu R, Corrie S, Hagemeyer CE, Alt K. Nanotherapeutics in Kidney Disease: Innovations, Challenges, and Future Directions. J Am Soc Nephrol 2025; 36:500-518. [PMID: 39705082 PMCID: PMC11888965 DOI: 10.1681/asn.0000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 12/22/2024] Open
Abstract
The treatment and management of kidney diseases present a significant global challenge, affecting over 800 million individuals and necessitating innovative therapeutic strategies that transcend symptomatic relief. The application of nanotechnology to therapies for kidney diseases, while still in its early stages, holds transformative potential for improving treatment outcomes. Recent advancements in nanoparticle-based drug delivery leverage the unique physicochemical properties of nanoparticles for targeted and controlled therapeutic delivery to the kidneys. Current research is focused on understanding the functional and phenotypic changes in kidney cells during both acute and chronic conditions, allowing for the identification of optimal target cells. In addition, the development of tailored nanomedicines enhances their retention and binding to key renal membranes and cell populations, ultimately improving localization, tolerability, and efficacy. However, significant barriers remain, including inconsistent nanoparticle synthesis and the complexity of kidney-specific targeting. To overcome these challenges, the field requires advanced synthesis techniques, refined targeting strategies, and the establishment of animal models that accurately reflect human kidney diseases. These efforts are critical for the clinical application of nanotherapeutics, which promise novel solutions for kidney disease management. This review evaluates a substantial body of in vivo research, highlighting the prospects, challenges, and opportunities presented by nanotechnology-mediated therapies and their potential to transform kidney disease treatment.
Collapse
Affiliation(s)
- Amir Roointan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Christoph E. Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Wang X, Yang Y, Yang H, Dong H. The Intrinsic Fluorescence of Peptide Self-Assemblies Across pH Levels. Angew Chem Int Ed Engl 2025; 64:e202420567. [PMID: 39668729 DOI: 10.1002/anie.202420567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
The regulation of solution pH on the structural and optical properties of peptide self-assemblies remains a critical yet unresolved issue in peptide research. This study investigates the heptapeptide Ac-IHIHIQI-NH2 and its intrinsic fluorescence across a range of pH levels, demonstrating that variations in pH lead to significant changes in the morphology of the self-assembled structures. While the position of the fluorescence emission remains constant-due to the stability provided by the hydrogen bonding network of the peptide backbone-the intensity of the fluorescence exhibits a direct correlation with the degree of self-assembly. This finding underscores a dynamic relationship between structural morphology and optical properties. Notably, the ability of the peptide to self-assemble under diverse pH conditions is a novel observation that contrasts with previously reported literature. By employing a computationally driven approach, complemented by rigorous experimental validation, this work establishes a new paradigm for studying complex interacting systems such as peptide self-assembly. Our findings enhance the understanding of how environmental factors influence peptide behavior and pave the way for the design of innovative peptide-based materials with tunable optical characteristics, with potential applications in bioluminescent probes and diagnostic tools for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Yuqing Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Haokun Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Centre (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, and Institute for Brain Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Zhou J, Huo T, Miu J, Wang Z, Shan X, Song J, Bai Y, Hao S, Zhang C, Liu S, Wang B, Li G. Bone-Adhesive Peptide Hydrogel Loaded with Cisplatin for Postoperative Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11073-11084. [PMID: 39908045 DOI: 10.1021/acsami.4c19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The inhibition of residual tumor recurrence while repairing bone defects poses a challenging issue for postoperative osteosarcoma treatment. Here, we develop a self-assembling peptide hydrogel (GelA) for the targeted delivery of cisplatin (CDDP), aiming to integrate postoperative tumor inhibition with bone defect repair. GelA exhibits exceptional biocompatibility, high loading capacity for CDDP, and superior bone adhesion. After in situ injection to bone defects, CDDP-loaded hydrogel GelA-CDDP demonstrates a strong affinity for hydroxyapatite, thereby facilitating optimal bone adhesion and prolonging the retention time of CDDP in a postoperative wound. Furthermore, GelA-CDDP can regulate the distribution and release behavior of CDDP, minimizing off-target effects and optimizing the therapeutic outcomes of chemotherapy and osteogenesis. Finally, in the orthotopic osteosarcoma transplantation model in mice, postoperative treatment with GelA-CDDP significantly inhibits residual osteosarcoma recurrence as well as repair of bone defects through synergistic osteogenesis promotion and osteoclastic inhibition. We believe that this hydrogel-based therapy strategy holds great promise in achieving simultaneous tumor inhibition and bone defect repair for postoperative osteosarcoma treatment.
Collapse
Affiliation(s)
- Jianxu Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Taotao Huo
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junxian Miu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ziyi Wang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoyu Shan
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuquan Bai
- Department of Thoracic Surgery of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Shuichu Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Chun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
| | - Shichang Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Biao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Guanying Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P. R. China
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
12
|
Hajinejad M, Far BF, Gorji A, Sahab-Negah S. The effects of self-assembling peptide on glial cell activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1391-1402. [PMID: 39305327 DOI: 10.1007/s00210-024-03415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/26/2024] [Indexed: 02/14/2025]
Abstract
Glial cells play a critical role in the healthy and diseased phases of the central nervous system (CNS). CNS diseases involve a wide range of pathological conditions characterized by poor recovery of neuronal function. Glial cell-related target therapies are progressively gaining interest in inhibiting secondary injury-related death. Modulation of the extracellular matrix by artificial scaffolds plays a critical role in the behavior of glial cells after injury. Among numerous types of scaffolds, self-assembling peptides (SAPs) notably give attention to the design of a proper biophysical and biomechanical microenvironment for cellular homeostasis and tissue regeneration. Implementing SAPs in an injured brain can induce neural differentiation in transplanted stem cells, reducing inflammation and inhibiting glial scar formation. In this review, we investigate the recent findings to elucidate the pivotal role of SAPs in orchestrating the most pivotal secondary response following CNS injury. Notably, we explore their impact on the activation of glial cells and their modulatory effects on microglial and astrocytic polarization.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Neurosurgery Department, Münster University, Münster, Germany
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
13
|
Das TN, Ramesh A, Ghosh A, Moyra S, Maji TK, Ghosh G. Peptide-based nanomaterials and their diverse applications. NANOSCALE HORIZONS 2025; 10:279-313. [PMID: 39629637 DOI: 10.1039/d4nh00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The supramolecular self-assembly of peptides offers a promising avenue for both materials science and biological applications. Peptides have garnered significant attention in molecular self-assembly, forming diverse nanostructures with α-helix, β-sheet, and random coil conformations. These self-assembly processes are primarily driven by the amphiphilic nature of peptides and stabilized by non-covalent interactions, leading to complex nanoarchitectures responsive to environmental stimuli. While extensively studied in biomedical applications, including drug delivery and tissue engineering, their potential applications in the fields of piezoresponsive materials, conducting materials, catalysis and energy harvesting remain underexplored. This review comprehensively elucidates the diverse material characteristics and applications of self-assembled peptides. We discuss the multi-stimuli-responsiveness of peptide self-assemblies and their roles as energy harvesters, catalysts, liquid crystalline materials, glass materials and contributors to electrical conductivity. Additionally, we address the challenges and present future perspectives associated with peptide nanomaterials. This review aims to provide insights into the versatile applications of peptide self-assemblies while concisely summarizing their well-established biomedical roles that have previously been extensively reviewed by various research groups, including our group.
Collapse
Affiliation(s)
- Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Arghya Ghosh
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sourav Moyra
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), International Centre for Materials Science (ICMS), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Liu C, Mao Y, Wang Y, Liu Y, Dong Y, Niu Z, Shi K. Oligopeptide template-guided nanoconfined in situ mineralization of nanotherapeutics boosts self-sufficient immunogenic phototherapy. J Control Release 2025; 377:1-16. [PMID: 39549728 DOI: 10.1016/j.jconrel.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
As a promising cancer treatment modality that has emerged, photodynamic / photothermal therapy can harness antitumor immunity by triggering immunogenic cell death in addition to direct cell ablation. However, the efficacy of this phototherapy is always limited due to the hypoxic tumor microenvironment, and the induccd immune stimulation is insufficient to achieve satisfactory cancer eradication. We herein address the above issues by nanoconfined in situ mineralization of manganese oxide (MnO2) guided with an oligopeptide as template. The synthetic nanocomposites can be co-assembled efficiently with the photosensitiser through π-π stacking interactions. Crucially, the mineralised MnO2 composition catalytically decomposes tumor-derived hydrogen peroxide to alleviate the hypoxic microenvironment, thereby improving the efficacy of the photosensitiser in ROS generation. In the murine model of 4 T1 xenograft tumors, the fabricated nanotherapeutics elicited robust antitumor immune responses and boost immunogenic phototherapy toward malignant tumors.
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Liaoning 110016, PR China
| | - Yuanzhao Mao
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yaru Dong
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Zixian Niu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
15
|
Nizam AAK, Masri S, Fadilah NIM, Maarof M, Fauzi MB. Current Insight of Peptide-Based Hydrogels for Chronic Wound Healing Applications: A Concise Review. Pharmaceuticals (Basel) 2025; 18:58. [PMID: 39861121 PMCID: PMC11768948 DOI: 10.3390/ph18010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic wounds present a substantial healthcare obstacle, marked by an extended healing period that can persist for weeks, months, or even years. Typically, they do not progress through the usual phases of healing, which include hemostasis, inflammation, proliferation, and remodeling, within the expected timeframe. Therefore, to address the socioeconomic burden in taking care of chronic wounds, hydrogel-based therapeutic materials have been proposed. Hydrogels are hydrophilic polymer networks with a 3D structure which allows them to become skin substitutes for chronic wounds. Knowing that peptides are abundant in the human body and possess distinct biological functionality, activity, and selectivity, their adaptability as peptide-based hydrogels to individual therapeutic requirements has made them a significant potential biomaterial for the treatment of chronic wounds. Peptide-based hydrogels possess excellent physicochemical and mechanical characteristics such as biodegradability and swelling, and suitable rheological properties as well great biocompatibility. Moreover, they interact with cells, promoting adhesion, migration, and proliferation. These characteristics and cellular interactions have driven peptide-based hydrogels to be applied in chronic wound healing.
Collapse
Affiliation(s)
- Aifa Asyhira Khairul Nizam
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.K.N.); (S.M.); (N.I.M.F.); (M.M.)
| | - Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.K.N.); (S.M.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.K.N.); (S.M.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.K.N.); (S.M.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.K.N.); (S.M.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
16
|
Guo C, Gao F, Wu G, Li J, Sheng C, He S, Hu H. Precise HER2 Protein Degradation via Peptide-Conjugated Photodynamic Therapy for Enhanced Breast Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410778. [PMID: 39555704 PMCID: PMC11727380 DOI: 10.1002/advs.202410778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Breast cancer, the most prevalent malignancy among women, frequently exhibits high HER2 expression, making HER2 a critical therapeutic target. Traditional treatments combining the anti-HER2 antibody trastuzumab with immunotherapy face limitations due to toxicity and tumor microenvironment immunosuppression. This study introduces an innovative strategy combining HER2-targeting peptides with the photosensitizer (PSs) pyropheophorbide-a (Pha) via a gelatinase-cleavable linker, forming self-assembling nanoparticles. These nanoparticles actively target breast cancer cells and generate reactive oxygen species (ROS) under near-infrared light, effectively degrading HER2 proteins. Upon internalization, the linker is cleaved, releasing Pha-PLG and enhancing intracellular photodynamic therapy (PDT). The Pha-PLG molecules self-assemble into nanofibers, prolonging circulation, boosting immune induction, and activating CD8+ T cells, thus promoting a robust anti-tumor immune response. In vivo, studies confirm superior biosafety, tumor targeting, and HER2 degradation, with increased cytotoxic T cell activity and improved antitumor immunity. This integrated strategy offers a promising new avenue for breast cancer treatment.
Collapse
Affiliation(s)
- Changyong Guo
- School of Medicine or Institute of Translational MedicineShanghai Engineering Research Center of Organ RepairShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Fei Gao
- School of Medicine or Institute of Translational MedicineShanghai Engineering Research Center of Organ RepairShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Guoyuan Wu
- School of Medicine or Institute of Translational MedicineShanghai Engineering Research Center of Organ RepairShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Jinqiu Li
- School of Medicine or Institute of Translational MedicineShanghai Engineering Research Center of Organ RepairShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE)School of PharmacySecond Military Medical University (Naval Medical University)325 Guohe RoadShanghai200433P. R. China
| | - Shipeng He
- School of Medicine or Institute of Translational MedicineShanghai Engineering Research Center of Organ RepairShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Honggang Hu
- School of Medicine or Institute of Translational MedicineShanghai Engineering Research Center of Organ RepairShanghai University99 Shangda RoadShanghai200444P. R. China
| |
Collapse
|
17
|
He G, Liu W, Liu Y, Wei S, Yue Y, Dong L, Yu L. Antifouling hydrogel with different mechanisms:Antifouling mechanisms, materials, preparations and applications. Adv Colloid Interface Sci 2024; 335:103359. [PMID: 39591834 DOI: 10.1016/j.cis.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Biofouling is a long-standing problem for biomedical devices, membranes and marine equipment. Eco-friendly hydrogels show great potential for antifouling applications due to their unique antifouling characteristics. However, a single antifouling mechanism cannot meet a wider practical application of antifouling hydrogels, combined with multiple antifouling mechanisms, the various antifouling advantages can be played, as well as the antifouling performance and service life of antifouling hydrogel can be improved. For the construction of the antifouling hydrogel with multiple antifouling mechanisms, the antifouling mechanisms that have been used in antifouling hydrogels should be analyzed. Hence, this review focus on five major antifouling mechanisms used in antifouling hydrogel: hydration layer, elastic modulus, antifoulant modification, micro/nanostructure and self-renewal surface construction. The methods of exerting the above antifouling mechanisms in hydrogels and the materials of preparing antifouling hydrogel are introduced. Finally, the development of antifouling hydrogel in biomedical materials, membrane and marine related field is summarized, and the existing problems as well as the future trend of antifouling hydrogel are discussed. This review provides reasonable guidance for the future and application of the construction of antifouling hydrogels with multiple antifouling mechanisms.
Collapse
Affiliation(s)
- Guangling He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuqing Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhao Yue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lei Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
18
|
Tang R, Zhang Z, Liu X, Zhu L, Xu Y, Chai R, Zhan W, Shen S, Liang G. Fibroblast Growth Factor Receptor 1-Specific Dehydrogelation to Release Its Inhibitor for Enhanced Lung Tumor Therapy. ACS NANO 2024; 18:29223-29232. [PMID: 39392940 DOI: 10.1021/acsnano.4c11548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is emerging as a promising molecular target of lung cancer, and various FGFR1 inhibitors have exhibited significant therapeutic effects on lung cancer in preclinical research. Due to their low targeting ability or bioavailability, direct administration of these inhibitors may cause side effects. Herein, a hydrogelator, Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr-OH (Nap-Y), was rationally designed to coassemble with an FGFR1 inhibitor nintedanib (Nin) to form a peptide hydrogel Gel Y/Nin for localized administration and FGFR1-triggered release of Nin. Upon specific phosphorylation by FGFR1 overexpressed on lung cancer cells, Nap-Y in Gel Y/Nin is converted to the hydrophilic product Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr(H2PO3)-OH (Nap-Yp), leading to dehydrogelation of the gel and subsequent Nin release. In vitro experiments demonstrate that the release of Nin in a sustained manner from Gel Y/Nin significantly suppresses the survival, migration, and invasion of A549 cells by inhibiting FGFR1 expression and its phosphorylation function on downstream signaling molecules. Nude mouse studies show that Gel Y/Nin exhibits enhanced therapeutic efficacy on lung tumor than free Nin. We anticipate that Gel Y/Nin will be utilized for lung cancer treatment in clinical settings in the near future.
Collapse
Affiliation(s)
- Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Liangxi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuting Xu
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Shurong Shen
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Long J, Liang X, Ao Z, Tang X, Li C, Yan K, Yu X, Wan Y, Li Y, Li C, Zhou M. Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater 2024; 188:27-47. [PMID: 39265673 DOI: 10.1016/j.actbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel disease (IBD) manifests as inflammation in the colon, rectum, and ileum, presenting a global health concern with increasing prevalence. Therefore, effective anti-inflammatory therapy stands as a promising strategy for the prevention and management of IBD. However, conventional nano drug delivery systems (NDDSs) for IBD face many challenges in targeting the intestine, such as physiological and pathological barriers, genetic variants, disease severity, and nutritional status, which often result in nonspecific tissue distribution and uncontrolled drug release. To address these limitations, stimulus-responsive NDDSs have received considerable attention in recent years due to their advantages in providing controlled release and enhanced targeting. This review provides an overview of the pathophysiological mechanisms underlying IBD and summarizes recent advancements in microenvironmental stimulus-responsive nanocarriers for IBD therapy. These carriers utilize physicochemical stimuli such as pH, reactive oxygen species, enzymes, and redox substances to deliver drugs for IBD treatment. Additionally, pivotal challenges in the future development and clinical translation of stimulus-responsive NDDSs are emphasized. By offering insights into the development and optimization of stimulus-responsive drug delivery nanoplatforms, this review aims to facilitate their application in treating IBD. STATEMENT OF SIGNIFICANCE: This review highlights recent advancements in stimulus-responsive nano drug delivery systems (NDDSs) for the treatment of inflammatory bowel disease (IBD). These innovative nanoplatforms respond to specific environmental triggers, such as pH reactive oxygen species, enzymes, and redox substances, to release drugs directly at the inflammation site. By summarizing the latest research, our work underscores the potential of these technologies to improve drug targeting and efficacy, offering new directions for IBD therapy. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective treatments for IBD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiang Long
- Department of Cardiology, Xuyong County People's Hospital, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao Tang
- College of Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Science and Technology Department, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
20
|
Deshmukh R, Sethi P, Singh B, Shiekmydeen J, Salave S, Patel RJ, Ali N, Rashid S, Elossaily GM, Kumar A. Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024; 16:1076. [PMID: 39204421 PMCID: PMC11360117 DOI: 10.3390/pharmaceutics16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials' special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula 244236, India;
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
- Department of Pharmacy, S.N. Medical College, Agra 282002, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India;
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand 388421, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
21
|
Jiang C, Zhao C, Xu P, Song Q, Tao X, Lin S. Effects of Secondary Structures and pH on the Self-Assembly of Poly(ethylene glycol)- b-polytyrosine. Biomacromolecules 2024; 25:5028-5038. [PMID: 38950188 DOI: 10.1021/acs.biomac.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Different from conventional synthetic polymers, polypeptides exhibit a distinguishing characteristic of adopting specific secondary structures, including random coils, α-helixes, and β-sheets. The conformation determines the rigidity and solubility of polypeptide chains, which further direct the self-assembly and morphology of the nanostructures. We studied the effect of distinct secondary structures on the self-assembly behavior of polytyrosine (PTyr)-derived amphiphilic copolymers. Two block copolymers of enantiopure poly(ethylene glycol)-b-poly(l-tyrosine) (PEG-b-P(l-Tyr)) and racemic poly(ethylene glycol)-b-poly(dl-tyrosine) (PEG-b-P(dl-Tyr)) were synthesized through the ring-opening polymerization of l-tyrosine N-thiocarboxyanhydride (l-Tyr-NTA) and dl-tyrosine N-thiocarboxyanhydride (dl-Tyr-NTA), respectively, by using poly(ethylene glycol) amine as the initiator. PEG44-b-P(l-Tyr)10 adopts a β-sheet conformation and self-assembles into rectangular nanosheets in aqueous solutions, while PEG44-b-P(dl-Tyr)9 is primarily in a random coil conformation with a tiny content of β-sheet structures, which self-assembles into sheaf-like nanofibrils. A pH increase results in the ionization of phenolic hydroxyl groups, which decreases the β-sheet content and increases the random coil content of the PTyr segments. Accordingly, PEG44-b-P(l-Tyr)10 and PEG44-b-P(dl-Tyr)9 self-assemble to form slender nanobelts and twisted nanoribbons, respectively, in alkaline aqueous solutions. The secondary structure-driven self-assembly of PTyr-derived copolymers is promising to construct filamentous nanostructures, which have potential for applications in controlled drug release.
Collapse
Affiliation(s)
- Caixia Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chonghao Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qipeng Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Ghosh S, Sepay N, Banerji B. Crystal to Hydrogel Transformation in S-Benzyl-L-Cysteine-Containing Cyclic Dipeptides - Nanostructure Elucidation and Applications. Chemistry 2024:e202401874. [PMID: 38853148 DOI: 10.1002/chem.202401874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Cyclic dipeptides (CDPs) are crucial building blocks for a range of functional nanomaterials due to their simple chemical structure and high molecular stability. In this investigation, we synthesized a set of S-benzyl-L-cysteine-based CDPs (designated as P1-P6) and thoroughly examined their self-assembly behavior in a methanol-water solvent to elucidate the relationship between their structure and gelation properties. The hydrophobicity of the amino acids within the CDPs was gradually increased. The present study employed a comprehensive array of analytical techniques, including NMR, FT-IR, AFM, thioflavin-T, congo-red CD, X-ray crystallography, and biophysical calculations like Hirshfield Surface analysis and DFT analysis. These methods revealed that in addition to hydrogen bonding, the hydrophobic nature of the amino acid side chain significantly influences the propensity of CDPs to form hydrogels. Each CDP yielded distinct nanofibrillar networks rich in β-sheet structures, showcasing unique morphological features. Moreover, we explored the practical application of these CDP-based hydrogels in water purification by utilizing them to remove harmful organic dyes from contaminated water. This application underscores the potential of CDPs in addressing environmental challenges, offering a promising avenue for the future development of these materials in water treatment technologies.
Collapse
Affiliation(s)
- Saswati Ghosh
- Organic & Medicinal Chemistry Division, Indian Institute of Chemical Biology (CSIR-IICB), 4-Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India
| | - Biswadip Banerji
- Organic & Medicinal Chemistry Division, Indian Institute of Chemical Biology (CSIR-IICB), 4-Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
23
|
Alharbi N, Shalash AO, Koirala P, Boer JC, Hussein WM, Khalil ZG, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Cholesterol as an inbuilt immunoadjuvant for a lipopeptide vaccine against group A Streptococcus infection. J Colloid Interface Sci 2024; 663:43-52. [PMID: 38387185 DOI: 10.1016/j.jcis.2024.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/21/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer C Boer
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Wu Y, Wang Z, Ge Y, Zhu Y, Tian T, Wei J, Jin Y, Zhao Y, Jia Q, Wu J, Ge L. Microenvironment Responsive Hydrogel Exerting Inhibition of Cascade Immune Activation and Elimination of Synovial Fibroblasts for Rheumatoid Arthritis Therapy. J Control Release 2024; 370:747-762. [PMID: 38740094 DOI: 10.1016/j.jconrel.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease and drug therapy has been restricted due to poor therapeutic efficacy and adverse effects. In RA synovium, dendritic cells present self-antigens to activate cascade immune pathway. Furthermore, downstream macrophages secrete high levels of pro-inflammatory cytokines; Hyperplasia of activated synovial fibroblasts (FLS) is responsible for hypoxic synovium microenvironment, secretion of cytokines/chemokines and erosion of bone/cartilage tissues. Positive feedback loop of inflammation between macrophages and FLS independent of antigen-presentation is constructed. Herein, an injectable pH-sensitive peptide hydrogel encapsulating siRNA/Methotrexate-polyethyleneimine (siMP, including sip65MP, sip38MP, siCD86MP) and Bismuthene nanosheet/Methotrexate-polyethyleneimine (BiMP) is successfully developed. Among them, siCD86MP reduces protein level of co-stimulatory molecule CD86 while sip65MP and sip38MP separately inhibit NF-κB and MAPK-p38 pathways of macrophages and FLS to suppress secretion of cytokines and MMPs. Meanwhile, reduction in anti-apoptotic property of FLS induced by inhibition of NF-κB pathway has a synergistic effect with photodynamic therapy (PDT) and photothermal therapy (PTT) mediated by BiMP for FLS elimination, effectively ameliorating hypoxic synovium microenvironment. After being injected into synovium, hydrogel responds to acidic microenvironment and serves as a reservoir for sustained drug release and inherent retention capacity of which enables cationic nanoparticles to bypass tissue barrier for precise synovium targeting. This brand-new drug delivery system combines modulating cascade immune pathway from beginning to end by RNAi and eliminating FLS for improving synovium microenvironment by phototherapy together, providing a robust strategy for clinical RA treatment.
Collapse
Affiliation(s)
- Yiqun Wu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Zhongshi Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Department of Pharmacy, The Affiliated Hospital of Nantong University, Jiangsu 226006, China
| | - Yu Ge
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ying Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, China
| | - Tianli Tian
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jun Wei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, Guangdong 510520, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou 510120, China; Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511458, China; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China.
| | - Liang Ge
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
25
|
Criado-Gonzalez M, Peñas MI, Barbault F, Müller AJ, Boulmedais F, Hernández R. Salt-induced Fmoc-tripeptide supramolecular hydrogels: a combined experimental and computational study of the self-assembly. NANOSCALE 2024; 16:9887-9898. [PMID: 38683577 DOI: 10.1039/d4nr00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO42-), a negatively charged tripeptide, in NaCl solution. The electrostatic interactions between Fmoc-FFpY and Na+ ions give rise to different nanofibrillar hydrogels with rheological properties and nanofiber sizes modulated by the NaCl concentration in pure aqueous media. Initiated by the electrostatic interactions between the peptide phosphate groups and the Na+ ions, the peptide self-assembly is stabilized thanks to hydrogen bonds between the peptide backbones and the π-π stacking of aromatic Fmoc and phenyl units. The hydrogels showed self-healing and thermo-responsive properties for potential biomedical applications. Molecular dynamics simulations from systems devoid of prior training not only confirm the aggregation of peptides at a critical salt concentration and the different interactions involved, but also corroborate the secondary structure of the hydrogels at the microsecond timescale. It is worth highlighting the remarkable achievement of reproducing the morphological behavior of the hydrogels using atomistic simulations. To our knowledge, this study is the first to report such a correspondence.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 67034 Strasbourg, France
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
26
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
27
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
28
|
Wang A, Yue K, Yan X, Zhong W, Zhang G, Wang L, Zhang H, Zhang X. Inhibition of platelet adhesion to exposed subendothelial collagen by steric hindrance with blocking peptide nanoparticles. Colloids Surf B Biointerfaces 2024; 237:113866. [PMID: 38520952 DOI: 10.1016/j.colsurfb.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The inhibition of platelet adhesion to collagen in exposed vessels represents an innovative approach to the treatment of atherosclerosis and thrombosis. This study aimed to engineer peptide-based nanoparticles that prevent platelet binding to subendothelial collagen by engaging with collagen with high affinity. We examined the interactions between integrin α2/ glycoprotein VI/ von Willebrand factor A3 domain and collagen, as well as between the synthesized peptide nanoparticles and collagen, utilizing molecular dynamics simulations and empirical assays. Our findings indicated that the bond between von Willebrand factor and collagen was more robust. Specifically, the sequences SITTIDV, VDVMQRE, and YLTSEMH in von Willebrand factor were identified as essential for its attachment to collagen. Based on these sequences, three peptide nanoparticles were synthesized (BPa: Capric-GNNQQNYK-SITTIDV, BPb: Capric-GNNQQNYK-VDVMQRE, BPc: Capric-GNNQQNYK-YLTSEMH), each displaying significant affinity towards collagen. Of these, the BPa nanoparticles exhibited the most potent interaction with collagen, leading to a 75% reduction in platelet adhesion.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Xiaotong Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
29
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
30
|
Bhatt P, Garad PS, Rayala VVSPK, Radhakrishnanand P, Sankaranarayanan K. Non-thermal plasma modulated l-tyrosine self-assemblies: a potential avenue for fabrication of supramolecular self-assembled biomaterials. RSC Adv 2024; 14:13984-13996. [PMID: 38686299 PMCID: PMC11056826 DOI: 10.1039/d4ra01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Aromatic amino acids (AAs) have garnered particular interest due to their pivotal roles in numerous biological processes and disorders. Variations in AA self-assembly not only affect protein structures and functions, but their non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π stacking, yield versatile assemblies vital in bio-inspired material fabrication. Tyrosine (Tyr), a non-essential aromatic amino acid, holds multifaceted significance in the body as a protein building block, neurotransmitter precursor, thyroid hormone contributor, and melanin synthesis regulator. The proficiency of Cold Atmospheric Plasma (CAP) in generating a spectrum of reactive oxygen and nitrogen species has spurred innovative research avenues in the studies of biomolecular components, including its potential for targeted cancer cell ablation and biomolecule modification. In this work, we have assessed the chemical as well as the structural changes in Tyrosine-derived self-assembled structures arising from the CAP-induced reactive species. For a comprehensive understanding of the mechanism, different treatment times, feed gases, and the role of solvent acidification are compared using various spectroscopic and microscopic techniques. LC-ESI-QQQ mass spectra unveiled the emergence of oxygenated and nitro derivatives of l-tyrosine following its interaction with CAP-derived ROS/RNS. SEM and TEM images demonstrated an enhanced surface size of self-assembled structures and the formation of novel nanomaterial-shaped assemblies following CAP treatment. Overall, this study aims to explore CAP's interaction with a single-amino acid, hypothesizing the creation of novel supramolecular structures and scrutinizing CAP-instigated transformations in l-tyrosine self-assembled structures, potentially advancing biomimetic-attributed nanomaterial fabrication which might present a novel frontier in the field of designing functional biomaterials.
Collapse
Affiliation(s)
- Priya Bhatt
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Campus Postal Staff College Area Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Prajakta Sharad Garad
- Department of Medical Device, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - V V S Prasanna Kumari Rayala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
31
|
Chen J, Luo J, Su D, Lu N, Zhao J, Luo Z. A Rapid Self-Assembling Peptide Hydrogel for Delivery of TFF3 to Promote Gastric Mucosal Injury Repair. Molecules 2024; 29:1944. [PMID: 38731435 PMCID: PMC11085398 DOI: 10.3390/molecules29091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable β-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.
Collapse
Affiliation(s)
- Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Jing Luo
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing 400016, China;
| | - Di Su
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Na Lu
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Jiawei Zhao
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Zhongli Luo
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| |
Collapse
|
32
|
Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci 2024; 31:40. [PMID: 38637839 PMCID: PMC11027418 DOI: 10.1186/s12929-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, P.O. Box 1996, Khartoum, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
33
|
Wu Y, Ge Y, Wang Z, Zhu Y, Tian T, Wei J, Jin Y, Zhao Y, Jia Q, Wu J, Ge L. Synovium microenvironment-responsive injectable hydrogel inducing modulation of macrophages and elimination of synovial fibroblasts for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology 2024; 22:188. [PMID: 38632657 PMCID: PMC11025172 DOI: 10.1186/s12951-024-02465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease accompanied by joint swelling, cartilage erosion and bone damage. Drug therapy for RA has been restricted due to poor therapeutic effect, recurrence and adverse effects. Macrophages and synovial fibroblasts both play important roles in the pathology of RA. Macrophages secrete large amount of pro-inflammatory cytokines, while synovial fibroblasts are tightly correlated with hypoxia synovium microenvironment, cytokine release, recruitment of pro-inflammatory cells, bone and cartilage erosion. Therefore, in this timely research, an injectable and pH-sensitive peptide hydrogel loading methotrexate (MTX) and bismuthene nanosheet/polyethyleneimine (BiNS/PEI) has been developed to reduce the activity of macrophages and eliminate over-proliferated synovial fibroblasts simultaneously. MTX can reduce the cytokine secretion of macrophages/anti-apoptosis property of synovial fibroblasts and BiNS/PEI can eliminate synovial fibroblasts via photodynamic therapy (PDT) and photothermal therapy (PTT) routes. The hydrogel was injected into the acidic inflammatory synovium for precise targeting and served as a drug reservoir for pH responsive and sustained drug release, while improving the bioavailability and reducing the toxicity of MTX. Excellent therapeutic efficacy has been achieved in both in vivo and in vitro studies, and this unique drug delivery system provides a new and robust strategy to eliminate synovial fibroblasts and modulate immune system for RA treatment in clinical.
Collapse
Affiliation(s)
- Yiqun Wu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yu Ge
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Zhongshi Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
- Department of Pharmacy, The Affiliated Hospital of Nantong University, Jiangsu, 226006, China
| | - Ying Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215026, Jiangsu, China
| | - Tianli Tian
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Jun Wei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, 510520, Guangdong, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, 510120, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511458, China.
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Liang Ge
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
34
|
Shao T, Noroozifar M, Kraatz HB. Divalent metal ion modulation of a simple peptide-based hydrogel: self-assembly and viscoelastic properties. SOFT MATTER 2024; 20:2720-2729. [PMID: 38454905 DOI: 10.1039/d3sm01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Peptide self-assembly has been highly studied to understand the pathways in forming higher order structures along with the development and application of resulting hydrogel materials. Driven by noncovalent interactions, peptide hydrogels are stimuli-responsive to any addition to its gelling conditions. Here, a Phe-His based peptide, C14-FH(Trt)-OH, was synthesized and characterized with 1H NMR, FT-IR, MS, UV-vis spectroscopies and elemental analysis. Based on SEM imaging, the dipeptide conjugate was capable of forming a nanofibrous, interconnected network encapsulating buffer to produce a supramolecular hydrogel. Through the addition of Zn2+ and Cu2+, there is a clear change in the self-assembled nanostructures characterized through SEM. With this effect on self-assembly follows a change in the viscoelastic properties of the material, as determined through rheological frequency sweeps, with 2 and 3 orders of magnitude decreases in the elastic modulus G' in the presence of Zn2+ and Cu2+ respectively. This highlights the tunability of soft material properties with peptide design and self-assembly, through metal ions and Nδ-directed coordination.
Collapse
Affiliation(s)
- Tsuimy Shao
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| |
Collapse
|
35
|
Ciulla MG, Marchini A, Gazzola J, Forouharshad M, Pugliese R, Gelain F. In Situ Transglutaminase Cross-Linking Improves Mechanical Properties of Self-Assembling Peptides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:1723-1734. [PMID: 38346174 DOI: 10.1021/acsabm.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM). This unique feature ensures their biocompatibility and bioactivity, making them a compelling area of study over the past few decades. As they are soft hydrogels, approaches are necessary to enhance the stiffness and resilience of the SAP materials. This work shows an enzymatic strategy to selectively increase the stiffness and resiliency of functionalized SAPs using transglutaminase (TGase) type 2, an enzyme capable of triggering the formation of isopeptide bonds. To this aim, we synthesized a set of SAP sequences and characterized their cross-linking via rheological experiments, atomic force microscopy (AFM), thioflavin-T binding assay, and infrared spectroscopy (ATR-FTIR) tests. The results showed an improvement of the storage modulus of cross-linked SAPs at no cost of the maximum stress-at-failure. Further, in in vitro tests, we examined and validated the TGase capability to cross-link SAPs without hampering seeded neural stem cells (hNSCs) viability and differentiation, potentially leaving the door open for safe in situ cross-linking reactions in vivo.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Jacopo Gazzola
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, 20125 Milan, Italy
| | - Mahdi Forouharshad
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Raffaele Pugliese
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
36
|
Hill SK, England RM, Perrier S. Modular design of cyclic peptide - polymer conjugate nanotubes for delivery and tunable release of anti-cancer drug compounds. J Control Release 2024; 367:687-696. [PMID: 38262487 DOI: 10.1016/j.jconrel.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
High aspect-ratio nanomaterials have recently emerged as promising drug delivery vehicles due to evidence of strong cellular association and prolonged in vivo circulation times. Cyclic peptide - polymer conjugate nanotubes are excellent candidates due to their elongated morphology, their supramolecular composition and high degree of pliability due to the versatility in manipulating amino acid sequence and polymer type. In this work, we explore the use of a nanotube structure on which a potent anti-cancer drug, camptothecin, is attached alongside hydrophilic or amphiphilic RAFT polymers, which shield the cargo. We show that subtle modifications to the cleavable linker type and polymer architecture have a dramatic influence over the rate of drug release in biological conditions. In vitro studies revealed that multiple cancer cell lines in 2D and 3D models responded effectively to the nanotube treatment, and analogous fluorescently labelled materials revealed key mechanistic information regarding the degree of cellular uptake and intracellular fate. Importantly, the ability to instruct specific drug release profiles indicates a potential for these nanomaterials as vectors which can provide sustained drug concentrations for a maximal therapeutic effect.
Collapse
Affiliation(s)
- Sophie K Hill
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
37
|
Reyes C, Patarroyo MA. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development. Int J Biol Macromol 2024; 259:128944. [PMID: 38145690 DOI: 10.1016/j.ijbiomac.2023.128944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Self-assembly involves a set of molecules spontaneously interacting in a highly coordinated and dynamic manner to form a specific supramolecular structure having new and clearly defined properties. Many examples of this occur in nature and many more came from research laboratories, with their number increasing every day via ongoing research concerning complex biomolecules and the possibility of harnessing it when developing new applications. As a phenomenon, self-assembly has been described on very different types of molecules (biomolecules including), so this review focuses on what is known about peptide self-assembly, its origins, the forces behind it, how the properties of the resulting material can be tuned in relation to experimental considerations, some biotechnological applications (in which the main protagonists are peptide sequences capable of self-assembly) and what is yet to be tuned regarding their research and development.
Collapse
Affiliation(s)
- César Reyes
- PhD Biotechnology Programme, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia; Structure Analysis Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222#55-37, Bogotá DC 111166, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| |
Collapse
|
38
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
39
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
40
|
Shen F, Wang H, Liu Z, Sun L. DNA Nanostructures: Self-Adjuvant Carriers for Highly Efficient Subunit Vaccines. Angew Chem Int Ed Engl 2024; 63:e202312624. [PMID: 37737971 DOI: 10.1002/anie.202312624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Subunit vaccines based on antigen proteins or epitopes of pathogens or tumors show advantages in immunological precision and high safety, but are often limited by their low immunogenicity. Adjuvants can boost immune responses by stimulating immune cells or promoting antigen uptake by antigen presenting cells (APCs), yet existing clinical adjuvants struggle in simultaneously achieving these dual functions. Additionally, the spatial organization of antigens might be crucial to their immunogenicity. Hence, superior adjuvants should potently stimulate the immune system, precisely arrange antigens, and effectively deliver antigens to APCs. Recently, precisely organizing and delivering antigens with the unique editability of DNA nanostructures has been proposed, presenting unique abilities in significantly improving the immunogenicity of antigens. In this minireview, we will discuss the principles behind using DNA nanostructures as self-adjuvant carriers and review the latest advancements in this field. The potential and challenges associated with self-adjuvant DNA nanostructures will also be discussed.
Collapse
Affiliation(s)
- Fengyun Shen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 201240, China
| | - Haihan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
41
|
Zhang Q, Hu W, Guo M, Zhang X, Zhang Q, Peng F, Yan L, Hu Z, Tangthianchaichana J, Shen Y, Hu H, Du S, Lu Y. MMP-2 Responsive Peptide Hydrogel-Based Nanoplatform for Multimodal Tumor Therapy. Int J Nanomedicine 2024; 19:53-71. [PMID: 38187906 PMCID: PMC10771791 DOI: 10.2147/ijn.s432112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Responsive drug delivery systems hold great promise for tumor treatment as they focus on therapeutic agents directly, thus minimizing systemic toxicities and drug leakage. In this study, we covalently bound a matrix metalloproteinases-2 (MMP-2) enzyme-sensitive peptide to a tissue-penetrating peptide to rationally design a MMP-2 responsive multifunctional peptide hydrogel platform (aP/IR@FMKB) for cancer photothermal-chemo-immunotherapy. The constructed aP/IR@FMKB with bufalin (BF) loaded in trimethyl chitosan nanoparticles (TB NPs), photothermal agent IR820, and immune checkpoint inhibitor aPD-L1 by self-assembly could be dissociated in the presence of MMP-2 enzyme, triggering content release. Methods TB NPs, IR820, and aPD-L1 were encapsulated by intermolecular self-assembly and enzyme-sensitive nanogels (aP/IR@FMKB) were constructed. The in vitro cytotoxicity of the blank gels and their ability to induce immunogenic cell death (ICD) in aP/IR@FMKB were evaluated using 4T1 cells. The promotion of deep tumor penetration and enzyme responsiveness was analyzed using a 3D cell model. The retention and antitumor activity at the tumor sites were examined using the primary tumor model. To assess the antitumor effect of aP/IR@FMKB induced by the immune response and its mechanism of action, recurrent tumor and distal tumor models were constructed. Results This hydrogel system demonstrated exceptional photothermal performance and displayed prolonged local retention. Furthermore, the induction of ICD through IR820 and TB NPs sensitized the PD-L1 blockade, resulting in a remarkable 3.5-fold and 5.2-fold increase in the frequency of intratumor-infiltrating CD8+ T-cells in the primary tumor and distal tumor, respectively. Additionally, this system demonstrated remarkable efficacy in suppressing primary, distal, and recurrent tumors, underscoring its potential as a highly potent therapeutic strategy. Conclusion This innovative design of the responsive hydrogel can effectively modulate the tumor immune microenvironment while also demonstrating sensitivity to the PD-1/PD-L1 blockade. This significant finding highlights the promising potential of this hydrogel in the field of multimodal tumor therapy.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Wenjun Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Mingxue Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xinyu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Qin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Fengqi Peng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Liwen Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Zucheng Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | | | - Yan Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Haiyan Hu
- School of Pharmacy, Beijing Health Vocational College, Beijing, 101100, People’s Republic of China
| | - Shouying Du
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Yang Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| |
Collapse
|
42
|
Xiang S, Guilbaud-Chéreau C, Hoschtettler P, Stefan L, Bianco A, Ménard-Moyon C. Preparation and optimization of agarose or polyacrylamide/amino acid-based double network hydrogels for photocontrolled drug release. Int J Biol Macromol 2024; 255:127919. [PMID: 37944737 DOI: 10.1016/j.ijbiomac.2023.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The high water content and biocompatibility of amino-acid-based supramolecular hydrogels have generated growing interest in drug delivery research. Nevertheless, the existing dominant approach of constructing such hydrogels, the exploitation of a single amino acid type, typically comes with several drawbacks such as weak mechanical properties and long gelation times, hindering their applications. Here, we design a near-infrared (NIR) light-responsive double network (DN) structure, containing amino acids and different synthetic or natural polymers, i.e., polyacrylamide, poly(N-isopropylacrylamide), agarose, or low-gelling agarose. The hydrogels displayed high mechanical strength and high drug-loading capacity. Adjusting the ratio of Fmoc-Tyr-OH/Fmoc-Tyr(Bzl)-OH or Fmoc-Phe-OH/Fmoc-Tyr(Bzl)-OH, we could drastically shorten the gelation time of the DN hydrogels at room and body temperatures. Moreover, introducing photothermal agents (graphene oxide, carbon nanotubes, molybdenum disulfide nanosheets, or indocyanine green), we equipped the hydrogels with NIR responsivity. We demonstrated the light-triggered release of the drug baclofen, which is used in severe spasticity treatment. Rheology and stability tests confirmed the positive impact of the polymers on the mechanical strength of the hydrogels, while maintaining good stability under physiological conditions. Overall, our study contributed a novel hydrogel formulation with high mechanical resistance, rapid gel formation, and efficient NIR-controlled drug release, offering new opportunities for biomedical applications.
Collapse
Affiliation(s)
- Shunyu Xiang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Chloé Guilbaud-Chéreau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | | | - Loïc Stefan
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| |
Collapse
|
43
|
Sahu I, Chakraborty P. A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology. Colloids Surf B Biointerfaces 2024; 233:113654. [PMID: 38000121 DOI: 10.1016/j.colsurfb.2023.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Peptide nanotechnology has currently bridged the gap between materials and biological worlds. Bioinspired self-assembly of short-peptide building blocks helps take the leap from molecules to materials by taking inspiration from nature. Owing to their intrinsic biocompatibility, high water content, and extracellular matrix mimicking fibrous morphology, hydrogels engineered from the self-assembly of short peptides exemplify the actualization of peptide nanotechnology into biomedical products. However, the weak mechanical property of these hydrogels jeopardizes their practical applications. Moreover, their functional diversity is limited since they comprise only one building block. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can augment the mechanical properties while retaining their dynamic supramolecular nature. These additives interact with the peptide building blocks supramolecularly and may enhance the branching of the networks via coassembly or crystallographic mismatch. This phenomenon expands the functional diversity of these hydrogels by synergistically combining the attributes of the individual building blocks. This review highlights such nanoengineered peptide hydrogels and their applications in biotechnology. We have included exemplary works on supramolecular modification of the peptide hydrogel networks by integrating other small molecules, synthetic/biopolymers, conductive polymers, and inorganic/carbon nanomaterials and shed light on their various utilities focusing on biotechnology. We finally envision some future prospects in this highly active field of research.
Collapse
Affiliation(s)
- Ipsita Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
44
|
Liu J, Zhu L, Bao Y, Du Z, Shi L, Hong X, Zou Z, Peng G. Injectable dexamethasone-loaded peptide hydrogel for therapy of radiation-induced ototoxicity by regulating the mTOR signaling pathway. J Control Release 2024; 365:729-743. [PMID: 38065412 DOI: 10.1016/j.jconrel.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Radiation-induced ototoxicity is associated with inflammation response and excessive reactive oxygen species in the cochlea. However, the effectiveness of many drugs in clinical settings is limited due to anatomical barriers in the inner ear and pharmacokinetic instability. To address this issue, we developed an injectable hydrogel called RADA32-HRN-dexamethasone (RHD). The RHD hydrogel possesses self-anti-inflammatory properties and can self-assemble into nanofibrous structures, ensuring controlled and sustained release of dexamethasone in the local region. Flow cytometry analysis revealed that the uptake of FITC-conjugated RHD gel by hair cells increased in a time-dependent manner. Compared to free dexamethasone solutions, dexamethasone-loaded RHD gel achieved a longer and more controlled release profile of dexamethasone. Additionally, RHD gel effectively protected against the inflammatory response, reduced excessive reactive oxygen species production, and reversed the decline in mitochondrial membrane potentials induced by ionizing radiation, leading to attenuation of apoptosis and DNA damage. Moreover, RHD gel promoted the recovery of outer hair cells and partially restored auditory function in mice exposed to ionizing radiation. These findings validated the protective effects of RHD gel against radiation-induced ototoxicity in both cell cultures and animal models. Furthermore, RHD gel enhanced the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which was inhibited by ionizing radiation, thereby promoting the survival of hair cells. Importantly, intratympanic injections of RHD gel exhibited excellent biosafety and do not interfere with the anti-tumor effects of radiotherapy. In summary, our study demonstrates the therapeutic potential of injectable dexamethasone-loaded RHD hydrogel for the treatment of radiation-induced hearing loss by regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingyu Liu
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Lisheng Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yuqing Bao
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Zhouyuan Du
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Liangliang Shi
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hong
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Zhenwei Zou
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| | - Gang Peng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
45
|
Pandey G, Phatale V, Khairnar P, Kolipaka T, Shah S, Famta P, Jain N, Srinivasarao DA, Rajinikanth PS, Raghuvanshi RS, Srivastava S. Supramolecular self-assembled peptide-engineered nanofibers: A propitious proposition for cancer therapy. Int J Biol Macromol 2024; 256:128452. [PMID: 38042321 DOI: 10.1016/j.ijbiomac.2023.128452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.
Collapse
Affiliation(s)
- Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
46
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Ghosh A, Mandal J, Dubey SK, Padma S, Ghosh NN, Behera A, Hafiz SA, Ruidas P, Midya R, Roy D, Das D, Das S, Singh S, Bhattacharyya S, Mukherjee S, Bhattacharjee S. Concentration- and Solvent-Induced Chiral Tuning by Manipulating Non-Proteinogenic Amino Acids in Glycoconjugate Supra-Scaffolds: Interaction with Protein, and Streptomycin Delivery. Chemistry 2023; 29:e202302529. [PMID: 37846644 DOI: 10.1002/chem.202302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
We showed solvent- and concentration-triggered chiral tuning of the fibrous assemblies of two novel glycoconjugates Z-P(Gly)-Glu and Z-F(4-N)-Glu made by chemical attachment of Cbz-protected [short as Z)] non-proteinogenic amino acids L-phenylglycine [short as P(Gly)] and 4-Nitro-L-phenylalanine [short as F(4-N)] with D-glucosamine [short as Glu]. Both biomimetic gelators can form self-healing and shape-persistent gels with a very low critical gelator concentration in water as well as in various organic solvents, indicating they are ambidextrous supergelators. Detailed spectroscopic studies suggested β-sheet secondary structure formation during anisotropic self-aggregation of the gelators which resulted in the formation of hierarchical left-handed helical fibers in acetone with an interlayer spacing of 2.4 nm. After the physical characterization of the gels, serum protein interaction with the gelators was assessed, indicating they may be ideal for biomedical applications. Further, both gelators are benign, non-immunogenic, non-allergenic, and non-toxic in nature, which was confirmed by performing the blood parameters and liver function tests on Wister rats. Streptomycin-loaded hydrogels showed efficacious antibacterial activity in vitro and in vivo as well. Finally, cell attachment and biocompatibility of the hydrogels were demonstrated which opens a newer avenue for promising biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Jishu Mandal
- CIF Biophysical Laboratory, CSIR-Indian Institute of Chemical Biology Jadavpur, Kolkata, 700032, West Bengal, India
| | - Soumen Kumar Dubey
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Somrita Padma
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | | | - Ashok Behera
- Faculty of Pharmacy, DIT University, Makkawala, Dehradun, Uttarakhand, India
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Ramkrishna Midya
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Dipanwita Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Dona Das
- Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Surajit Das
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Somendra Singh
- Indian Institute of Technology, Delhi, Sonipat Campus, Sonipat, 131021, Haryana, India
| | - Sankar Bhattacharyya
- Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Suprabhat Mukherjee
- Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| |
Collapse
|
48
|
Song J, Mo X, Liu X, Hu B, Zhang Z, Yu Z. Arginine Methylation Regulates Self-Assembly of Peptides. Macromol Rapid Commun 2023; 44:e2300308. [PMID: 37462116 DOI: 10.1002/marc.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Bio-inspired design of peptides represents one facile strategy for development of supramolecular monomers for self-assembly into well-defined nanostructures. Inspired by methylation of arginine during post-translational modification for manipulating protein functions, herein, the controllable self-assembly of peptides via rational incorporation of methylated arginine residues into bola-amphiphilic peptides is reported. A series of bola-amphiphilic peptides are designed and synthesized either containing natural arginine or methylated arginine and investigate the influence of arginine methylation on peptide assembly. This study finds that incorporation of symmetrically di-methylated arginine into oppositely charged hexapeptide hex-SDMAE leads to distinct assembling performance compare to natural peptide hex-RE. The findings demonstrate that the methylation of rationally designed peptide sequences allows for regulation of self-assembly of peptides, thus implying the great potential of arginine methylation in establishing controllable peptide assembling systems and creating in situ formulation of biomedical materials in the future.
Collapse
Affiliation(s)
- Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
49
|
Lan X, Zhong J, Huang R, Liu Y, Ma X, Li X, Zhao D, Qing G, Zhang Y, Liu L, Wang J, Ma X, Luo T, Guo W, Wang Y, Li LL, Su YX, Liang XJ. Conformation Dependent Architectures of Assembled Antimicrobial Peptides with Enhanced Antimicrobial Ability. Adv Healthc Mater 2023; 12:e2301688. [PMID: 37540835 DOI: 10.1002/adhm.202301688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Antimicrobial peptides (AMPs) are a developing class of natural and synthetic oligopeptides with host defense mechanisms against a broad spectrum of microorganisms. With in-depth research on the structural conformations of AMPs, synthesis or modification of peptides has shown great potential in effectively obtaining new therapeutic agents with improved physicochemical and biological properties. Notably, AMPs with self-assembled properties have gradually become a hot research topic for various biomedical applications. Compared to monomeric peptides, these peptides can exist in diverse forms (e.g., nanoparticles, nanorods, and nanofibers) and possess several advantages, such as high stability, good biocompatibility, and potent biological functions, after forming aggregates under specific conditions. In particular, the stability and antibacterial property of these AMPs can be modulated by rationally regulating the peptide sequences to promote self-assembly, leading to the reconstruction of molecular structure and spatial orientation while introducing some peptide fragments into the scaffolds. In this work, four self-assembled AMPs are developed, and the relationship between their chemical structures and antibacterial activity is explored extensively through different experiments. Importantly, the evaluation of antibacterial performance in both in vitro and in vivo studies has provided a general guide for using self-assembled AMPs in subsequent treatments for combating bacterial infections.
Collapse
Affiliation(s)
- Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Zhong
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Regina Huang
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuhan Liu
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing, 100012, China
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xuan Li
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Zhao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100069, China
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xiong Su
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|