1
|
Han S, Gilmartin M, Sheng W, Jin VX. Integrating rare variant genetics and brain transcriptome data implicates novel schizophrenia putative risk genes. Schizophr Res 2025; 276:205-213. [PMID: 39919691 DOI: 10.1016/j.schres.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
The etiology of schizophrenia is elusive, in part due to its polygenic nature. Genome-wide association studies (GWAS) have successfully identified hundreds of schizophrenia risk loci, that are pinpointed to over one hundred genes through fine mapping. Besides common variants with relatively small effect size from GWAS, rare variants or ultra rare variants also play a significant role in conferring the schizophrenia risk from SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) results. However, burden results from SCHEMA study indicate that more new risk genes remain hidden and to be discovered. To boost the power of identifying new risk genes, we integrated genetics from SCHEMA and transcriptome data from BrainSpan using a multi-omics integration tool, DAWN, through which we have identified 47 schizophrenia putative risk genes that include 19 new risk genes, in addition to nearly all SCHEMA risk genes with FDR < 5 %. GO functional enrichment reveals that 47 SCZ putative risk genes are significantly enriched in cell to cell signaling, cell communications, transporter, in line with the hypothesis of two hit schizophrenia model. SynGO analysis suggests 47 schizophrenia putative risk genes are enriched in pre-synapse, synapse and post-synapse, supporting the well established link between synapses and schizophrenia.
Collapse
Affiliation(s)
- Shengtong Han
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA.
| | - Marieke Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Wenhui Sheng
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Victor X Jin
- Data Science Institute and MCW Cancer Center, The Medical College of Wisconsin, Milwaukee, WI 53326, USA
| |
Collapse
|
2
|
Alemu R, Sharew NT, Arsano YY, Ahmed M, Tekola-Ayele F, Mersha TB, Amare AT. Multi-omics approaches for understanding gene-environment interactions in noncommunicable diseases: techniques, translation, and equity issues. Hum Genomics 2025; 19:8. [PMID: 39891174 PMCID: PMC11786457 DOI: 10.1186/s40246-025-00718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Non-communicable diseases (NCDs) such as cardiovascular diseases, chronic respiratory diseases, cancers, diabetes, and mental health disorders pose a significant global health challenge, accounting for the majority of fatalities and disability-adjusted life years worldwide. These diseases arise from the complex interactions between genetic, behavioral, and environmental factors, necessitating a thorough understanding of these dynamics to identify effective diagnostic strategies and interventions. Although recent advances in multi-omics technologies have greatly enhanced our ability to explore these interactions, several challenges remain. These challenges include the inherent complexity and heterogeneity of multi-omic datasets, limitations in analytical approaches, and severe underrepresentation of non-European genetic ancestries in most omics datasets, which restricts the generalizability of findings and exacerbates health disparities. This scoping review evaluates the global landscape of multi-omics data related to NCDs from 2000 to 2024, focusing on recent advancements in multi-omics data integration, translational applications, and equity considerations. We highlight the need for standardized protocols, harmonized data-sharing policies, and advanced approaches such as artificial intelligence/machine learning to integrate multi-omics data and study gene-environment interactions. We also explore challenges and opportunities in translating insights from gene-environment (GxE) research into precision medicine strategies. We underscore the potential of global multi-omics research in advancing our understanding of NCDs and enhancing patient outcomes across diverse and underserved populations, emphasizing the need for equity and fairness-centered research and strategic investments to build local capacities in underrepresented populations and regions.
Collapse
Affiliation(s)
- Robel Alemu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Anderson School of Management, University of California Los Angeles, Los Angeles, CA, USA.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| | - Nigussie T Sharew
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Yodit Y Arsano
- Alpert Medical School, Lifespan Health Systems, Brown University, WarrenProvidence, Rhode Island, USA
| | - Muktar Ahmed
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Azmeraw T Amare
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
3
|
Guo H, Xiao Y, Dong S, Yang J, Zhao P, Zhao T, Cai A, Tang L, Liu J, Wang H, Hua R, Liu R, Wei Y, Sun D, Liu Z, Xia M, He Y, Wu Y, Si T, Womer FY, Xu F, Tang Y, Wang J, Zhang W, Zhang X, Wang F. Bridging animal models and humans: neuroimaging as intermediate phenotypes linking genetic or stress factors to anhedonia. BMC Med 2025; 23:38. [PMID: 39849528 PMCID: PMC11755933 DOI: 10.1186/s12916-025-03850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intermediate phenotypes, such as characteristic neuroimaging patterns, offer unique insights into the genetic and stress-related underpinnings of neuropsychiatric disorders like depression. This study aimed to identify neuroimaging intermediate phenotypes associated with depression, bridging etiological factors to behavioral manifestations and connecting insights from animal models to diverse clinical populations. METHODS We analyzed datasets from both rodents and humans. The rodent studies included a genetic model (P11 knockout) and an environmental stress model (chronic unpredictable mild stress), while the human data comprised 748 participants from three cohorts. Using the amplitude of low-frequency fluctuations, we identified neuroimaging patterns in rodent models. We then applied a machine-learning approach to cluster neuroimaging subtypes of depression. To assess the genetic predispositions and stress-related changes associated with these subtypes, we analyzed genotype and metabolite data. Linear regression was employed to determine which neuroimaging features predicted core depression symptoms across species. RESULTS The genetic and environmental stress models exhibited distinct neuroimaging patterns in subcortical and sensorimotor regions. Consistent patterns emerged in two neuroimaging subtypes identified across three independent depressed cohorts. The subtype resembling P11 knockout demonstrated higher genetic susceptibility, with enriched expression of risk genes in brain tissues and abnormal metabolites linked to tryptophan metabolism. In contrast, the stress animal-like subtype did not show changes in genetic risk scores but exhibited enriched risk gene expression in somatic and endocrine tissues, along with mitochondrial dysfunction in the antioxidant stress system. Notably, these distinct subcortical-sensorimotor neuroimaging patterns predicted anhedonia, a core symptom of depression, in both rodent models and depressed subtypes. CONCLUSIONS This cross-species validation suggests that these neuroimaging patterns may serve as robust intermediate phenotypes, linking etiology to anhedonia and facilitating the translation of findings from animal models to humans with depression and other psychiatric disorders.
Collapse
Affiliation(s)
- Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Shuai Dong
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Changzhou Medical Center, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ruifang Hua
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Rongxun Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Dandan Sun
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, China
- Centerfor Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Wang
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Zhang Y, Cai M, Huang X, Zhang L, Wen L, Zhu Z, Gao J, Sheng Y. ELF1 serves as a potential biomarker for the disease activity and renal involvement in systemic lupus erythematosus. Sci Rep 2024; 14:26590. [PMID: 39496744 PMCID: PMC11535329 DOI: 10.1038/s41598-024-78593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, yet its underlying mechanisms remain unclear, and precise biomarkers are lacking. In this study, we employed Mendelian randomization and HEIDI tools to comprehensively analyze large-scale Genome-Wide Association Study (GWAS) and expression Quantitative Trait Loci (eQTL) data, leading to the identification of seven novel potential functional genes associated with SLE, including BLK, ELF1, STIM1, B3GALT6, APOLD1, INPP5B, and FHL3. Subsequent investigations revealed a significant downregulation of ELF1 gene expression in CD4+ T cells of SLE patients compared to healthy controls. Moreover, within various SLE subgroups, such as those with decreased serum complement C3 levels, positive urinary protein, new-onset skin rashes, and SLE Disease Activity Index (SLEDAI) scores ≥ 5, ELF1 expression displayed a consistent decreasing trend. Notably, ROC curve analysis highlighted the diagnostic potential of ELF1 expression in SLE (AUC = 0.9493), as well as its value in assessing disease activity (AUC = 0.6852) and renal involvement (AUC = 0.7363). In conclusion, this study underscores the potential of ELF1 as a SLE biomarker for diagnosis and evaluation, offering insights into the underlying mechanisms of SLE and paving the way for future therapeutic research.
Collapse
Affiliation(s)
- Yukun Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Dermatology, College of Medicine, Beilun Branch of the First Affiliated Hospital, Zhejiang University, No.1288, Lushan East Road, Ningbo, Zhejiang, 315800, China
| | - Minglong Cai
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230032, Anhui, China
| | - Xiaoyi Huang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yujun Sheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Department of Dermatology, China-Japan Friendship Hospital, Peking, China.
| |
Collapse
|
5
|
Tirelli M, Bonfiglio F, Cantalupo S, Montella A, Avitabile M, Maiorino T, Diskin SJ, Iolascon A, Capasso M. Integrative genomic analyses identify neuroblastoma risk genes involved in neuronal differentiation. Hum Genet 2024; 143:1293-1309. [PMID: 39192051 PMCID: PMC11522082 DOI: 10.1007/s00439-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Genome-Wide Association Studies (GWAS) have been decisive in elucidating the genetic predisposition of neuroblastoma (NB). The majority of genetic variants identified in GWAS are found in non-coding regions, suggesting that they can be causative of pathogenic dysregulations of gene expression. Nonetheless, pinpointing the potential causal genes within implicated genetic loci remains a major challenge. In this study, we integrated NB GWAS and expression Quantitative Trait Loci (eQTL) data from adrenal gland to identify candidate genes impacting NB susceptibility. We found that ZMYM1, CBL, GSKIP and WDR81 expression was dysregulated by NB predisposing variants. We further investigated the functional role of the identified genes through computational analysis of RNA sequencing (RNA-seq) data from single-cell and whole-tissue samples of NB, neural crest, and adrenal gland tissues, as well as through in vitro differentiation assays in NB cell cultures. Our results indicate that dysregulation of ZMYM1, CBL, GSKIP, WDR81 may lead to malignant transformation by affecting early and late stages of normal program of neuronal differentiation. Our findings enhance the understanding of how specific genes contribute to NB pathogenesis by highlighting their influence on neuronal differentiation and emphasizing the impact of genetic risk variants on the regulation of genes involved in critical biological processes.
Collapse
Affiliation(s)
- Matilde Tirelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Annalaura Montella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | | | - Teresa Maiorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 19104, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, USA
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
| |
Collapse
|
6
|
A. Zairol Azwan FA, Teo YY, Mohd Tahir NA, Saffian SM, Makmor-Bakry M, Mohamed Said MS. A systematic review of single nucleotide polymorphisms affecting allopurinol pharmacokinetics and serum uric acid level. Pharmacogenomics 2024; 25:479-494. [PMID: 39347581 PMCID: PMC11492661 DOI: 10.1080/14622416.2024.2403969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Aim: To summarize the effects of single nucleotide polymorphisms (SNPs) on the pharmacokinetics of allopurinol to control uric acid levels.Methods: A comprehensive search was conducted in PubMed, Web of Science and Scopus databases from inception to January 2024, includes 17 articles focusing on SNPs and pharmacokinetics of allopurinol and oxypurinol.Results: A total of 11 SNPs showed a significant association with pharmacokinetics of allopurinol and oxypurinol, as well as their potential clinical implications.Conclusion: SNPs in ATP-binding cassette super-family G member 2 (ABCG2), solute carrier family 2 member 9 (SLC2A9), solute carrier family 17 member 1 (SLC17A1), solute carrier family 22 member 12 (SLC22A12), solute carrier family 22 member 13 (SLC22A13) and PDZ domain containing 1 (PDZK1) genes were associated with allopurinol clearance, while SNPs in aldehyde oxidase 1 (AOX1) genes involved in metabolism of allopurinol. SNPs in gremlin 2, DAN family BMP antagonist (GREM2) gene impacted uric acid control, but the specific mechanism governing the expression of GREM2 remains unknown. Our study indicated that the identified SNPs show contradictory effects, reflecting inconsistencies and differences observed across various studies.
Collapse
Affiliation(s)
- Farah Aida A. Zairol Azwan
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Yi Ying Teo
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nor Asyikin Mohd Tahir
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Shamin Mohd Saffian
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Mohd Makmor-Bakry
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
- Faculty of Pharmacy, Universitas Airlangga, PQMM+9Q6, Gedung Nanizar Zaman Joenoes Kampus C UNAIR, Jl. Mulyorejo, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Mohd Shahrir Mohamed Said
- Department of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Kontou PI, Bagos PG. The goldmine of GWAS summary statistics: a systematic review of methods and tools. BioData Min 2024; 17:31. [PMID: 39238044 PMCID: PMC11375927 DOI: 10.1186/s13040-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of complex traits and diseases. GWAS summary statistics have become essential tools for various genetic analyses, including meta-analysis, fine-mapping, and risk prediction. However, the increasing number of GWAS summary statistics and the diversity of software tools available for their analysis can make it challenging for researchers to select the most appropriate tools for their specific needs. This systematic review aims to provide a comprehensive overview of the currently available software tools and databases for GWAS summary statistics analysis. We conducted a comprehensive literature search to identify relevant software tools and databases. We categorized the tools and databases by their functionality, including data management, quality control, single-trait analysis, and multiple-trait analysis. We also compared the tools and databases based on their features, limitations, and user-friendliness. Our review identified a total of 305 functioning software tools and databases dedicated to GWAS summary statistics, each with unique strengths and limitations. We provide descriptions of the key features of each tool and database, including their input/output formats, data types, and computational requirements. We also discuss the overall usability and applicability of each tool for different research scenarios. This comprehensive review will serve as a valuable resource for researchers who are interested in using GWAS summary statistics to investigate the genetic basis of complex traits and diseases. By providing a detailed overview of the available tools and databases, we aim to facilitate informed tool selection and maximize the effectiveness of GWAS summary statistics analysis.
Collapse
Affiliation(s)
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131, Lamia, Greece.
| |
Collapse
|
8
|
Renganaath K, Albert FW. Trans-eQTL hotspots shape complex traits by modulating cellular states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567054. [PMID: 38014174 PMCID: PMC10680915 DOI: 10.1101/2023.11.14.567054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Regulatory genetic variation shapes gene expression, providing an important mechanism connecting DNA variation and complex traits. The causal relationships between gene expression and complex traits remain poorly understood. Here, we integrated transcriptomes and 46 genetically complex growth traits in a large cross between two strains of the yeast Saccharomyces cerevisiae. We discovered thousands of genetic correlations between gene expression and growth, suggesting potential functional connections. Local regulatory variation was a minor source of these genetic correlations. Instead, genetic correlations tended to arise from multiple independent trans-acting regulatory loci. Trans-acting hotspots that affect the expression of numerous genes accounted for particularly large fractions of genetic growth variation and of genetic correlations between gene expression and growth. Genes with genetic correlations were enriched for similar biological processes across traits, but with heterogeneous direction of effect. Our results reveal how trans-acting regulatory hotspots shape complex traits by altering cellular states.
Collapse
Affiliation(s)
- Kaushik Renganaath
- Department of Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Shen S, Sobczyk MK, Paternoster L, Brown SJ. From GWASs toward Mechanistic Understanding with Case Studies in Dermatogenetics. J Invest Dermatol 2024; 144:1189-1199.e8. [PMID: 38782533 DOI: 10.1016/j.jid.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 05/25/2024]
Abstract
Many human skin diseases result from the complex interplay of genetic and environmental mechanisms that are largely unknown. GWASs have yielded insight into the genetic aspect of complex disease by highlighting regions of the genome or specific genetic variants associated with disease. Leveraging this information to identify causal genes and cell types will provide insight into fundamental biology, inform diagnostics, and aid drug discovery. However, the etiological mechanisms from genetic variant to disease are still unestablished in most cases. There now exists an unprecedented wealth of data and computational methods for variant interpretation in a functional context. It can be challenging to decide where to start owing to a lack of consensus on the best way to identify causal genetic mechanisms. This article highlights 3 key aspects of genetic variant interpretation: prioritizing causal genes, cell types, and pathways. We provide a practical overview of the main methods and datasets, giving examples from recent atopic dermatitis studies to provide a blueprint for variant interpretation. A collection of resources, including brief description and links to the packages and web tools, is provided for researchers looking to start in silico follow-up genetic analysis of associated genetic variants.
Collapse
Affiliation(s)
- Silvia Shen
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Institute for Evolution and Ecology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sara J Brown
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Department of Dermatology, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Zhang Y, Wang M, Li Z, Yang X, Li K, Xie A, Dong F, Wang S, Yan J, Liu J. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1133-1154. [PMID: 38568343 DOI: 10.1007/s11427-023-2522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 06/07/2024]
Abstract
Detecting genes that affect specific traits (such as human diseases and crop yields) is important for treating complex diseases and improving crop quality. A genome-wide association study (GWAS) provides new insights and directions for understanding complex traits by identifying important single nucleotide polymorphisms. Many GWAS summary statistics data related to various complex traits have been gathered recently. Studies have shown that GWAS risk loci and expression quantitative trait loci (eQTLs) often have a lot of overlaps, which makes gene expression gradually become an important intermediary to reveal the regulatory role of GWAS. In this review, we review three types of gene-trait association detection methods of integrating GWAS summary statistics and eQTLs data, namely colocalization methods, transcriptome-wide association study-oriented approaches, and Mendelian randomization-related methods. At the theoretical level, we discussed the differences, relationships, advantages, and disadvantages of various algorithms in the three kinds of gene-trait association detection methods. To further discuss the performance of various methods, we summarize the significant gene sets that influence high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride reported in 16 studies. We discuss the performance of various algorithms using the datasets of the four lipid traits. The advantages and limitations of various algorithms are analyzed based on experimental results, and we suggest directions for follow-up studies on detecting gene-trait associations.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenguo Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Dong
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shihan Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. Science 2024; 384:eadi5199. [PMID: 38781369 PMCID: PMC11365579 DOI: 10.1126/science.adi5199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Chicago, IL 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585576. [PMID: 38562822 PMCID: PMC10983939 DOI: 10.1101/2024.03.18.585576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Opthalmology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Inc., Chicago, IL, 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA, 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Michael Margolis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Manman Shi
- Tempus Labs, Inc., Chicago, IL, 60654, USA
| | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
13
|
Wu YS, Zheng WH, Liu TH, Sun Y, Xu YT, Shao LZ, Cai QY, Tang YQ. Joint-tissue integrative analysis identifies high-risk genes for Parkinson's disease. Front Neurosci 2024; 18:1309684. [PMID: 38576865 PMCID: PMC10991821 DOI: 10.3389/fnins.2024.1309684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
The loss of dopaminergic neurons in the substantia nigra and the abnormal accumulation of synuclein proteins and neurotransmitters in Lewy bodies constitute the primary symptoms of Parkinson's disease (PD). Besides environmental factors, scholars are in the early stages of comprehending the genetic factors involved in the pathogenic mechanism of PD. Although genome-wide association studies (GWAS) have unveiled numerous genetic variants associated with PD, precisely pinpointing the causal variants remains challenging due to strong linkage disequilibrium (LD) among them. Addressing this issue, expression quantitative trait locus (eQTL) cohorts were employed in a transcriptome-wide association study (TWAS) to infer the genetic correlation between gene expression and a particular trait. Utilizing the TWAS theory alongside the enhanced Joint-Tissue Imputation (JTI) technique and Mendelian Randomization (MR) framework (MR-JTI), we identified a total of 159 PD-associated genes by amalgamating LD score, GTEx eQTL data, and GWAS summary statistic data from a substantial cohort. Subsequently, Fisher's exact test was conducted on these PD-associated genes using 5,152 differentially expressed genes sourced from 12 PD-related datasets. Ultimately, 29 highly credible PD-associated genes, including CTX1B, SCNA, and ARSA, were uncovered. Furthermore, GO and KEGG enrichment analyses indicated that these genes primarily function in tissue synthesis, regulation of neuron projection development, vesicle organization and transportation, and lysosomal impact. The potential PD-associated genes identified in this study not only offer fresh insights into the disease's pathophysiology but also suggest potential biomarkers for early disease detection.
Collapse
Affiliation(s)
- Ya-Shi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wen-Han Zheng
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu-Ting Xu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li-Zhen Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qin-Yu Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ya Qin Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, Pasaniuc B, Gandal MJ. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet 2023; 55:2117-2128. [PMID: 38036788 PMCID: PMC10703692 DOI: 10.1038/s41588-023-01560-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Methods integrating genetics with transcriptomic reference panels prioritize risk genes and mechanisms at only a fraction of trait-associated genetic loci, due in part to an overreliance on total gene expression as a molecular outcome measure. This challenge is particularly relevant for the brain, in which extensive splicing generates multiple distinct transcript-isoforms per gene. Due to complex correlation structures, isoform-level modeling from cis-window variants requires methodological innovation. Here we introduce isoTWAS, a multivariate, stepwise framework integrating genetics, isoform-level expression and phenotypic associations. Compared to gene-level methods, isoTWAS improves both isoform and gene expression prediction, yielding more testable genes, and increased power for discovery of trait associations within genome-wide association study loci across 15 neuropsychiatric traits. We illustrate multiple isoTWAS associations undetectable at the gene-level, prioritizing isoforms of AKT3, CUL3 and HSPD1 in schizophrenia and PCLO with multiple disorders. Results highlight the importance of incorporating isoform-level resolution within integrative approaches to increase discovery of trait associations, especially for brain-relevant traits.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Daniel D Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Cindy Wen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Wang F, Yang X, Ren Z, Chen C, Liu C. Alternative splicing in mouse brains affected by psychological stress is enriched in the signaling, neural transmission and blood-brain barrier pathways. Mol Psychiatry 2023; 28:4707-4718. [PMID: 37217679 DOI: 10.1038/s41380-023-02103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Psychological stress increases the risk of major psychiatric disorders. Psychological stress on mice was reported to induce differential gene expression (DEG) in mice brain regions. Alternative splicing is a fundamental aspect of gene expression and has been associated with psychiatric disorders but has not been investigated in the stressed brain yet. This study investigated changes in gene expression and splicing under psychological stress, the related pathways, and possible relationship with psychiatric disorders. RNA-seq raw data of 164 mouse brain samples from 3 independent datasets with stressors including chronic social defeat stress (CSDS), early life stress (ELS), and two-hit stress of combined CSDS and ELS were collected. There were more changes in splicing than in gene expression in the ventral hippocampus and medial prefrontal cortex, but stress-induced changes of individual genes by differential splicing and differential expression could not be replicated. In contrast, pathway analyses produced robust findings: stress-induced differentially spliced genes (DSGs) were reproducibly enriched in neural transmission and blood-brain barrier systems, and DEGs were reproducibly enriched in stress response-related functions. The hub genes of DSG-related PPI networks were enriched in synaptic functions. The corresponding human homologs of stress-induced DSGs were robustly enriched in AD-related DSGs as well as BD and SCZ in GWAS. These results suggested that stress-induced DSGs from different datasets belong to the same biological system throughout the stress response process, resulting in consistent stress response effects.
Collapse
Affiliation(s)
- Feiran Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiuju Yang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zongyao Ren
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
16
|
Kertz NC, Banerjee P, Dyce PW, Diniz WJS. Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle-A Review. Animals (Basel) 2023; 13:3284. [PMID: 37894009 PMCID: PMC10603720 DOI: 10.3390/ani13203284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Female fertility is the foundation of the cow-calf industry, impacting both efficiency and profitability. Reproductive failure is the primary reason why beef cows are sold in the U.S. and the cause of an estimated annual gross loss of USD 2.8 billion. In this review, we discuss the status of the genomics, transcriptomics, and systems genomics approaches currently applied to female fertility and the tools available to cow-calf producers to maximize genetic progress. We highlight the opportunities and limitations associated with using genomic and transcriptomic approaches to discover genes and regulatory mechanisms related to beef fertility. Considering the complex nature of fertility, significant advances in precision breeding will rely on holistic, multidisciplinary approaches to further advance our ability to understand, predict, and improve reproductive performance. While these technologies have advanced our knowledge, the next step is to translate research findings from bench to on-farm applications.
Collapse
|
17
|
Zhang C, Li X, Zhao L, Guo W, Deng W, Wang Q, Hu X, Du X, Sham PC, Luo X, Li T. Brain transcriptome-wide association study implicates novel risk genes underlying schizophrenia risk. Psychol Med 2023; 53:6867-6877. [PMID: 37092861 DOI: 10.1017/s0033291723000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND To identify risk genes whose expression are regulated by the reported risk variants and to explore the potential regulatory mechanism in schizophrenia (SCZ). METHODS We systematically integrated three independent brain expression quantitative traits (eQTLs) (CommonMind, GTEx, and BrainSeq Phase 2, a total of 1039 individuals) and GWAS data (56 418 cases and 78 818 controls), with the use of transcriptome-wide association study (TWAS). Diffusion magnetic resonance imaging was utilized to quantify the integrity of white matter bundles and determine whether polygenic risk of novel genes linked to brain structure was present in patients with first-episode antipsychotic SCZ. RESULTS TWAS showed that eight risk genes (CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, PCDHA8, THOC7, and TYW5) reached transcriptome-wide significance (TWS) level. These findings were confirmed by an independent integrative approach (i.e. Sherlock). We further conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each locus. Gene expression analysis showed that several TWS genes (including CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, THOC7 and TYW5) were dysregulated in the dorsolateral prefrontal cortex of SCZ cases compared with controls. TWS genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and microglia. Finally, SCZ cases had a substantially greater TWS genes-based polygenic risk (PRS) compared to controls, and we showed that fractional anisotropy of the cingulum-hippocampus mediates the influence of TWS genes PRS on SCZ. CONCLUSIONS Our findings identified novel SCZ risk genes and highlighted the importance of the TWS genes in frontal-limbic dysfunctions in SCZ, indicating possible therapeutic targets.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, Soochow University's Affiliated Guangji Hospital, Suzhou, Jiangsu, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiongjian Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
18
|
Han S, DiBlasi E, Monson ET, Shabalin A, Ferris E, Chen D, Fraser A, Yu Z, Staley M, Callor WB, Christensen ED, Crockett DK, Li QS, Willour V, Bakian AV, Keeshin B, Docherty AR, Eilbeck K, Coon H. Whole-genome sequencing analysis of suicide deaths integrating brain-regulatory eQTLs data to identify risk loci and genes. Mol Psychiatry 2023; 28:3909-3919. [PMID: 37794117 PMCID: PMC10730410 DOI: 10.1038/s41380-023-02282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Recent large-scale genome-wide association studies (GWAS) have started to identify potential genetic risk loci associated with risk of suicide; however, a large portion of suicide-associated genetic factors affecting gene expression remain elusive. Dysregulated gene expression, not assessed by GWAS, may play a significant role in increasing the risk of suicide death. We performed the first comprehensive genomic association analysis prioritizing brain expression quantitative trait loci (eQTLs) within regulatory regions in suicide deaths from the Utah Suicide Genetic Risk Study (USGRS). 440,324 brain-regulatory eQTLs were obtained by integrating brain eQTLs, histone modification ChIP-seq, ATAC-seq, DNase-seq, and Hi-C results from publicly available data. Subsequent genomic analyses were conducted in whole-genome sequencing (WGS) data from 986 suicide deaths of non-Finnish European (NFE) ancestry and 415 ancestrally matched controls. Additional independent USGRS suicide deaths with genotyping array data (n = 4657) and controls from the Genome Aggregation Database were explored for WGS result replication. One significant eQTL locus, rs926308 (p = 3.24e-06), was identified. The rs926308-T is associated with lower expression of RFPL3S, a gene important for neocortex development and implicated in arousal. Gene-based analyses performed using Sherlock Bayesian statistical integrative analysis also detected 20 genes with expression changes that may contribute to suicide risk. From analyzing publicly available transcriptomic data, ten of these genes have previous evidence of differential expression in suicide death or in psychiatric disorders that may be associated with suicide, including schizophrenia and autism (ZNF501, ZNF502, CNN3, IGF1R, KLHL36, NBL1, PDCD6IP, SNX19, BCAP29, and ARSA). Electronic health records (EHR) data was further merged to evaluate if there were clinically relevant subsets of suicide deaths associated with genetic variants. In summary, our study identified one risk locus and ten genes associated with suicide risk via gene expression, providing new insight into possible genetic and molecular mechanisms leading to suicide.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Emily DiBlasi
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric T Monson
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey Shabalin
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elliott Ferris
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Danli Chen
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alison Fraser
- Pedigree & Population Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Zhe Yu
- Pedigree & Population Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Staley
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - W Brandon Callor
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - Erik D Christensen
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - David K Crockett
- Clinical Analytics, Intermountain Health, Salt Lake City, UT, USA
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Virginia Willour
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Amanda V Bakian
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brooks Keeshin
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Anna R Docherty
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Wu Y, Qi T, Wray NR, Visscher PM, Zeng J, Yang J. Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes. CELL GENOMICS 2023; 3:100344. [PMID: 37601976 PMCID: PMC10435383 DOI: 10.1016/j.xgen.2023.100344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 08/22/2023]
Abstract
Molecular quantitative trait loci (xQTLs) are often harnessed to prioritize genes or functional elements underpinning variant-trait associations identified from genome-wide association studies (GWASs). Here, we introduce OPERA, a method that jointly analyzes GWAS and multi-omics xQTL summary statistics to enhance the identification of molecular phenotypes associated with complex traits through shared causal variants. Applying OPERA to summary-level GWAS data for 50 complex traits (n = 20,833-766,345) and xQTL data from seven omics layers (n = 100-31,684) reveals that 50% of the GWAS signals are shared with at least one molecular phenotype. GWAS signals shared with multiple molecular phenotypes, such as those at the MSMB locus for prostate cancer, are particularly informative for understanding the genetic regulatory mechanisms underlying complex traits. Future studies with more molecular phenotypes, measured considering spatiotemporal effects in larger samples, are required to obtain a more saturated map linking molecular intermediates to GWAS signals.
Collapse
Affiliation(s)
- Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ting Qi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
20
|
Dong Z, Xu M, Sun X, Wang X. Mendelian randomization and transcriptomic analysis reveal an inverse causal relationship between Alzheimer's disease and cancer. J Transl Med 2023; 21:527. [PMID: 37542274 PMCID: PMC10403895 DOI: 10.1186/s12967-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and cancer are common age-related diseases, and epidemiological evidence suggests an inverse relationship between them. However, investigating the potential mechanism underlying their relationship remains insufficient. METHODS Based on genome-wide association summary statistics for 42,034 AD patients and 609,951 cancer patients from the GWAS Catalog using the two-sample Mendelian randomization (MR) method. Moreover, we utilized two-step MR to identify metabolites mediating between AD and cancer. Furthermore, we employed colocalization analysis to identify genes whose upregulation is a risk factor for AD and demonstrated the genes' upregulation to be a favorable prognostic factor for cancer by analyzing transcriptomic data for 33 TCGA cancer types. RESULTS Two-sample MR analysis revealed a significant causal influence for increased AD risk on reduced cancer risk. Two-step MR analysis identified very low-density lipoprotein (VLDL) as a key mediator of the negative cause-effect relationship between AD and cancer. Colocalization analysis uncovered PVRIG upregulation to be a risk factor for AD. Transcriptomic analysis showed that PVRIG expression had significant negative correlations with stemness scores, and positive correlations with antitumor immune responses and overall survival in pan-cancer and multiple cancer types. CONCLUSION AD may result in lower cancer risk. VLDL is a significant intermediate variable linking AD with cancer. PVRIG abundance is a risk factor for AD but a protective factor for cancer. This study demonstrates a causal influence for AD on cancer and provides potential molecular connections between both diseases.
Collapse
Affiliation(s)
- Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengli Xu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xu Sun
- Department of Pharmacy, Nanjing Luhe People's Hospital, Nanjing, 211500, China.
- Department of Pharmacy, Luhe Hospital Affiliated with Yangzhou University Medical College, Nanjing, 211500, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
21
|
Tan WX, Sim X, Khoo CM, Teo AKK. Prioritization of genes associated with type 2 diabetes mellitus for functional studies. Nat Rev Endocrinol 2023:10.1038/s41574-023-00836-1. [PMID: 37169822 DOI: 10.1038/s41574-023-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Existing therapies for type 2 diabetes mellitus (T2DM) show limited efficacy or have adverse effects. Numerous genetic variants associated with T2DM have been identified, but progress in translating these findings into potential drug targets has been limited. Here, we describe the tools and platforms available to identify effector genes from T2DM-associated coding and non-coding variants and prioritize them for functional studies. We discuss QSER1 and SLC12A8 as examples of genes that have been identified as possible T2DM candidate genes using these tools and platforms. We suggest further approaches, including the use of sequencing data with increased sample size and ethnic diversity, single-cell omics data for analyses, glycaemic trait associations to predict gene function and, potentially, human induced pluripotent stem cell 'village' cultures, to strengthen current gene functionalization workflows. Effective prioritization of T2DM-associated genes for experimental validation could expedite our understanding of the genetic mechanisms responsible for T2DM to facilitate the use of precision medicine in its treatment.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adrian K K Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Huang Y, Luo J, Zhang Y, Zhang T, Fei X, Chen L, Zhu Y, Li S, Zhou C, Xu K, Ma Y, Lin J, Zhou J. Identification of MKNK1 and TOP3A as ovarian endometriosis risk-associated genes using integrative genomic analyses and functional experiments. Comput Struct Biotechnol J 2023; 21:1510-1522. [PMID: 36851918 PMCID: PMC9957794 DOI: 10.1016/j.csbj.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
The risk of endometriosis (EM), which is a common complex gynaecological disease, is related to genetic predisposition. However, it is unclear how genetic variants confer the risk of EM. Here, via Sherlock integrative analysis, we combined large-scale genome-wide association studies (GWAS) summary statistics on EM (N = 245,494) with a blood-based eQTL dataset (N = 1490) to identify EM risk-related genes. For validation, we leveraged two independent eQTL datasets (N = 769) for integration with the GWAS data. Thus, we prioritised 14 genes, including GIMAP4, TOP3A, and NMNAT3, which showed significant association with susceptibility to EM. We also utilised two independent methods, Multi-marker Analysis of GenoMic Annotation and S-PrediXcan, to further validate the EM risk-associated genes. Moreover, protein-protein interaction network analysis showed the 14 genes were functionally connected. Functional enrichment analyses further demonstrated that these genes were significantly enriched in metabolic and immune-related pathways. Differential gene expression analysis showed that in peripheral blood samples from patients with ovarian EM, TOP3A, MKNK1, SIPA1L2, and NUCB1 were significantly upregulated, while HOXB2, GIMAP5, and MGMT were significantly downregulated compared with their expression levels in samples from the controls. Immunohistochemistry further confirmed the increased expression levels of MKNK1 and TOP3A in the ectopic and eutopic endometrium compared to normal endometrium, while HOBX2 was downregulated in the endometrium of women with ovarian EM. Finally, in ex vivo functional experiments, MKNK1 knockdown inhibited ectopic endometrial stromal cells (EESCs) migration and invasion. TOP3A knockdown inhibited EESCs proliferation, migration, and invasion, while promoting their apoptosis. Convergent lines of evidence suggested that MKNK1 and TOP3A are novel EM risk-related genes.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Yue Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Tao Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Xiangwei Fei
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Liqing Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Yingfan Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Songyue Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University 325027 Wenzhou, Zhejiang Province, PR China
| | - Jun Lin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| |
Collapse
|
23
|
Dang X, Liu J, Zhang Z, Luo XJ. Mendelian Randomization Study Using Dopaminergic Neuron-Specific eQTL Identifies Novel Risk Genes for Schizophrenia. Mol Neurobiol 2023; 60:1537-1546. [PMID: 36517655 DOI: 10.1007/s12035-022-03160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Multiple integrative studies have been performed to identify the potential target genes of the non-coding schizophrenia (SCZ) risk variants. However, all the integrative studies used expression quantitative trait loci (eQTL) data from bulk tissues. Considering the cell type-specific regulatory effect of many genetic variants, it is important to conduct integrative studies using cell type-specific eQTL data. Here, we conduct a Mendelian randomization (MR) study by integrating genome-wide associations of SCZ (74,776 cases and 101,023 controls) and eQTL data (N = 215) from dopaminergic neurons, which were differentiated from human-induced pluripotent stem cell (iPSC) lines. For eQTL from young post-mitotic dopaminergic neurons (differentiation of iPSC for 30 days, D30), we identified 34 genes whose genetically regulated expression in dopaminergic neurons may have a causal role in SCZ. Among which, ARL3 showed the most significant associations with SCZ. For eQTL from more mature dopaminergic neurons (D52), we identified 37 potential SCZ causal genes, and ARL3 and GNL3 showed the most significant associations. Only 12 genes showed significant associations with SCZ in both D30 and D52 eQTL datasets, indicating the time point-specific genetic regulatory effects in young post-mitotic dopaminergic neurons and more mature dopaminergic neurons. Comparing the results from dopaminergic neurons with bulk brain tissues prioritized 2 high-confidence risk genes, including DDHD2 and GALNT10. Our study identifies multiple risk genes whose genetically regulated expression in dopaminergic neurons may have a causal role in SCZ. Further mechanistic investigation will provide pivotal insights into SCZ pathophysiology.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhijun Zhang
- Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Xiong-Jian Luo
- Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
24
|
He D, Pan C, Zhao Y, Wei W, Qin X, Cai Q, Shi S, Chu X, Zhang N, Jia Y, Wen Y, Cheng B, Liu H, Feng R, Zhang F, Xu P. Exome-wide screening identifies novel rare risk variants for bone mineral density. Osteoporos Int 2023; 34:965-975. [PMID: 36849660 DOI: 10.1007/s00198-023-06710-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
UNLABELLED Bone mineral density (BMD) is an independent risk factor of osteoporosis-related fractures. We performed gene-based burden tests to assess the association between rare variants and BMD, and identified several BMD candidate genes. PURPOSE BMD is highly heritable and a major predictor of osteoporotic fractures, but its genetic basis remains unclear. We aimed to identify rare risk variants contributing to BMD. METHODS Utilizing the newly released UK Biobank 200,643 exome dataset, we conducted a gene-based exome-wide association study in males and females, respectively. First, 100,639 males and 117,338 females with BMD values were included in the polygenic risk scores (PRS) analysis. Among individuals with lower 30% PRS, cases were individuals with top 10% BMD, and individuals with bottom 10% BMD were the controls. Considering the effects of vitamin D (VD), individuals with the highest 30% VD concentration were selected for VD-BMD analysis. After quality control, 741 males and 697 females were included in the BMD analysis, and 717 males and 708 females were included in the VD-BMD analysis. The variants were annotated by ANNOVAR software, then BMD and VD-BMD qualified variants were imported into the SKAT R-package to perform gene-based burden tests, respectively. RESULTS The gene-based burden test of the exonic variants identified genome-wide candidate associations in ANKRD18A (P = 1.60 × 10-5, PBonferroni adjust = 2.11 × 10-3), C22orf31 (P = 3.49 × 10-4, PBonferroni adjust = 3.17 × 10-2), and SPATC1L (P = 1.09 × 10-5, PBonferroni adjust = 8.80 × 10-3). For VD-BMD analysis, three genes were associated with BMD, such as NIPAL1 (P = 1.06 × 10-3, PBonferroni adjust = 3.91 × 10-2). CONCLUSIONS Our study suggested that rare variants contribute to BMD, providing new sights for broadening the genetic structure of BMD.
Collapse
Affiliation(s)
- D He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - C Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Y Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - W Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - X Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Q Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - S Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - X Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - N Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Y Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Y Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - B Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - H Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - R Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - F Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - P Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
25
|
Sathyanarayanan A, Mueller TT, Ali Moni M, Schueler K, Baune BT, Lio P, Mehta D, Baune BT, Dierssen M, Ebert B, Fabbri C, Fusar-Poli P, Gennarelli M, Harmer C, Howes OD, Janzing JGE, Lio P, Maron E, Mehta D, Minelli A, Nonell L, Pisanu C, Potier MC, Rybakowski F, Serretti A, Squassina A, Stacey D, van Westrhenen R, Xicota L. Multi-omics data integration methods and their applications in psychiatric disorders. Eur Neuropsychopharmacol 2023; 69:26-46. [PMID: 36706689 DOI: 10.1016/j.euroneuro.2023.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023]
Abstract
To study mental illness and health, in the past researchers have often broken down their complexity into individual subsystems (e.g., genomics, transcriptomics, proteomics, clinical data) and explored the components independently. Technological advancements and decreasing costs of high throughput sequencing has led to an unprecedented increase in data generation. Furthermore, over the years it has become increasingly clear that these subsystems do not act in isolation but instead interact with each other to drive mental illness and health. Consequently, individual subsystems are now analysed jointly to promote a holistic understanding of the underlying biological complexity of health and disease. Complementing the increasing data availability, current research is geared towards developing novel methods that can efficiently combine the information rich multi-omics data to discover biologically meaningful biomarkers for diagnosis, treatment, and prognosis. However, clinical translation of the research is still challenging. In this review, we summarise conventional and state-of-the-art statistical and machine learning approaches for discovery of biomarker, diagnosis, as well as outcome and treatment response prediction through integrating multi-omics and clinical data. In addition, we describe the role of biological model systems and in silico multi-omics model designs in clinical translation of psychiatric research from bench to bedside. Finally, we discuss the current challenges and explore the application of multi-omics integration in future psychiatric research. The review provides a structured overview and latest updates in the field of multi-omics in psychiatry.
Collapse
Affiliation(s)
- Anita Sathyanarayanan
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland 4059, Australia
| | - Tamara T Mueller
- Institute for Artificial Intelligence and Informatics in Medicine, TU Munich, 80333 Munich, Germany
| | - Mohammad Ali Moni
- Artificial Intelligence and Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Katja Schueler
- Clinic for Psychosomatics, Hospital zum Heiligen Geist, Frankfurt am Main, Germany; Frankfurt Psychoanalytic Institute, Frankfurt am Main, Germany
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Germany; Department of Psychiatry, Melbourne Medical School, University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Pietro Lio
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland 4059, Australia.
| | | | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Germany; Department of Psychiatry, Melbourne Medical School, University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bjarke Ebert
- Medical Strategy & Communication, H. Lundbeck A/S, Valby, Denmark
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Intervention and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | - Pietro Lio
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Eduard Maron
- Department of Psychiatry, University of Tartu, Tartu, Estonia; Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, United Kingdom; Documental Ltd, Tallin, Estonia; West Tallinn Central Hospital, Tallinn, Estonia
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland 4059, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Lara Nonell
- MARGenomics, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Filip Rybakowski
- Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - David Stacey
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Roos van Westrhenen
- Parnassia Psychiatric Institute, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health and Sciences, Maastricht University, Maastricht, the Netherlands; Institute of Psychiatry, Psychology & Neuroscience (IoPPN) King's College London, United Kingdom
| | - Laura Xicota
- Paris Brain Institute ICM, Salpetriere Hospital, Paris, France
| |
Collapse
|
26
|
Liang M, An B, Deng T, Du L, Li K, Cao S, Du Y, Xu L, Zhang L, Gao X, Cao Y, Zhao Y, Li J, Gao H. Incorporating genome-wide and transcriptome-wide association studies to identify genetic elements of longissimus dorsi muscle in Huaxi cattle. Front Genet 2023; 13:982433. [PMID: 36685878 PMCID: PMC9852892 DOI: 10.3389/fgene.2022.982433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Locating the genetic variation of important livestock and poultry economic traits is essential for genetic improvement in breeding programs. Identifying the candidate genes for the productive ability of Huaxi cattle was one crucial element for practical breeding. Based on the genotype and phenotype data of 1,478 individuals and the RNA-seq data of 120 individuals contained in 1,478 individuals, we implemented genome-wide association studies (GWAS), transcriptome-wide association studies (TWAS), and Fisher's combined test (FCT) to identify the candidate genes for the carcass trait, the weight of longissimus dorsi muscle (LDM). The results indicated that GWAS, TWAS, and FCT identified seven candidate genes for LDM altogether: PENK was located by GWAS and FCT, PPAT was located by TWAS and FCT, and XKR4, MTMR3, FGFRL1, DHRS4, and LAP3 were only located by one of the methods. After functional analysis of these candidate genes and referring to the reported studies, we found that they were mainly functional in the progress of the development of the body and the growth of muscle cells. Combining advanced breeding techniques such as gene editing with our study will significantly accelerate the genetic improvement for the future breeding of Huaxi cattle.
Collapse
Affiliation(s)
- Mang Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingxing An
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Deng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keanning Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng Cao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueying Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Cao
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuming Zhao
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Huijiang Gao,
| |
Collapse
|
27
|
Qumsiyeh E, Showe L, Yousef M. GediNET for discovering gene associations across diseases using knowledge based machine learning approach. Sci Rep 2022; 12:19955. [PMID: 36402891 PMCID: PMC9675776 DOI: 10.1038/s41598-022-24421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
The most common approaches to discovering genes associated with specific diseases are based on machine learning and use a variety of feature selection techniques to identify significant genes that can serve as biomarkers for a given disease. More recently, the integration in this process of prior knowledge-based approaches has shown significant promise in the discovery of new biomarkers with potential translational applications. In this study, we developed a novel approach, GediNET, that integrates prior biological knowledge to gene Groups that are shown to be associated with a specific disease such as a cancer. The novelty of GediNET is that it then also allows the discovery of significant associations between that specific disease and other diseases. The initial step in this process involves the identification of gene Groups. The Groups are then subjected to a Scoring component to identify the top performing classification Groups. The top-ranked gene Groups are then used to train a Machine Learning Model. The process of Grouping, Scoring and Modelling (G-S-M) is used by GediNET to identify other diseases that are similarly associated with this signature. GediNET identifies these relationships through Disease-Disease Association (DDA) based machine learning. DDA explores novel associations between diseases and identifies relationships which could be used to further improve approaches to diagnosis, prognosis, and treatment. The GediNET KNIME workflow can be downloaded from: https://github.com/malikyousef/GediNET.git or https://kni.me/w/3kH1SQV_mMUsMTS .
Collapse
Affiliation(s)
- Emma Qumsiyeh
- Information Technology Engineering, Al-Quds University, Abu Dis, Palestine.
| | - Louise Showe
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, 13206, Zefat, Israel.
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel.
| |
Collapse
|
28
|
Bhattacharya A, Hirbo JB, Zhou D, Zhou W, Zheng J, Kanai M, Pasaniuc B, Gamazon ER, Cox NJ. Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative. CELL GENOMICS 2022; 2:100180. [PMID: 36341024 PMCID: PMC9631681 DOI: 10.1016/j.xgen.2022.100180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
The Global Biobank Meta-analysis Initiative (GBMI), through its diversity, provides a valuable opportunity to study population-wide and ancestry-specific genetic associations. However, with multiple ascertainment strategies and multi-ancestry study populations across biobanks, GBMI presents unique challenges in implementing statistical genetics methods. Transcriptome-wide association studies (TWASs) boost detection power for and provide biological context to genetic associations by integrating genetic variant-to-trait associations from genome-wide association studies (GWASs) with predictive models of gene expression. TWASs present unique challenges beyond GWASs, especially in a multi-biobank, meta-analytic setting. Here, we present the GBMI TWAS pipeline, outlining practical considerations for ancestry and tissue specificity, meta-analytic strategies, and open challenges at every step of the framework. We advise conducting ancestry-stratified TWASs using ancestry-specific expression models and meta-analyzing results using inverse-variance weighting, showing the least test statistic inflation. Our work provides a foundation for adding transcriptomic context to biobank-linked GWASs, allowing for ancestry-aware discovery to accelerate genomic medicine.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jibril B. Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - the Global Biobank Meta-analysis Initiative
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric R. Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nancy J. Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Pudjihartono M, Perry JK, Print C, O'Sullivan JM, Schierding W. Interpretation of the role of germline and somatic non-coding mutations in cancer: expression and chromatin conformation informed analysis. Clin Epigenetics 2022; 14:120. [PMID: 36171609 PMCID: PMC9520844 DOI: 10.1186/s13148-022-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There has been extensive scrutiny of cancer driving mutations within the exome (especially amino acid altering mutations) as these are more likely to have a clear impact on protein functions, and thus on cell biology. However, this has come at the neglect of systematic identification of regulatory (non-coding) variants, which have recently been identified as putative somatic drivers and key germline risk factors for cancer development. Comprehensive understanding of non-coding mutations requires understanding their role in the disruption of regulatory elements, which then disrupt key biological functions such as gene expression. MAIN BODY We describe how advancements in sequencing technologies have led to the identification of a large number of non-coding mutations with uncharacterized biological significance. We summarize the strategies that have been developed to interpret and prioritize the biological mechanisms impacted by non-coding mutations, focusing on recent annotation of cancer non-coding variants utilizing chromatin states, eQTLs, and chromatin conformation data. CONCLUSION We believe that a better understanding of how to apply different regulatory data types into the study of non-coding mutations will enhance the discovery of novel mechanisms driving cancer.
Collapse
Affiliation(s)
| | - Jo K Perry
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Cris Print
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
30
|
Feng Z, Ren X, Duren Z, Wang Y. Human Genetic Variants Associated with COVID-19 Severity are Enriched in Immune and Epithelium Regulatory Networks. PHENOMICS 2022; 2:389-403. [PMID: 35990388 PMCID: PMC9375061 DOI: 10.1007/s43657-022-00066-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhanying Feng
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049 China
| | - Xianwen Ren
- School of Life Sciences, Peking University, Beijing, 100871 China
| | - Zhana Duren
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646 USA
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 330106 China
| |
Collapse
|
31
|
Wang J, Li S, Li X, Liu J, Yang J, Li Y, Li W, Yang Y, Li J, Chen R, Li K, Huang D, Liu Y, Lv L, Li M, Xiao X, Luo XJ. Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating NMRAL1. Brain 2022; 145:2569-2585. [PMID: 35094059 PMCID: PMC9612800 DOI: 10.1093/brain/awac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2023] Open
Abstract
Recent genome-wide association studies have reported multiple schizophrenia risk loci, yet the functional variants and their roles in schizophrenia remain to be characterized. Here we identify a functional single nucleotide polymorphism (rs2270363: G>A) at the schizophrenia risk locus 16p13.3. rs2270363 lies in the E-box element of the promoter of NMRAL1 and disrupts binding of the basic helix-loop-helix leucine zipper family proteins, including USF1, MAX and MXI1. We validated the regulatory effects of rs2270363 using reporter gene assays and electrophoretic mobility shift assay. Besides, expression quantitative trait loci analysis showed that the risk allele (A) of rs2270363 was significantly associated with elevated NMRAL1 expression in the human brain. Transcription factors knockdown and CRISPR-Cas9-mediated editing further confirmed the regulatory effects of the genomic region containing rs2270363 on NMRAL1. Intriguingly, NMRAL1 was significantly downregulated in the brain of schizophrenia patients compared with healthy subjects, and knockdown of Nmral1 expression affected proliferation and differentiation of mouse neural stem cells, as well as genes and pathways associated with brain development and synaptic transmission. Of note, Nmral1 knockdown resulted in significant decrease of dendritic spine density, revealing the potential pathophysiological mechanisms of NMRAL1 in schizophrenia. Finally, we independently confirmed the association between rs2270363 and schizophrenia in the Chinese population and found that the risk allele of rs2270363 was the same in European and Chinese populations. These lines of evidence suggest that rs2270363 may confer schizophrenia risk by regulating NMRAL1, a gene whose expression dysregulation might be involved in the pathogenesis of schizophrenia by affecting neurodevelopment and synaptic plasticity.
Collapse
Affiliation(s)
- Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
32
|
Wainberg M, Merico D, Keller MC, Fauman EB, Tripathy SJ. Predicting causal genes from psychiatric genome-wide association studies using high-level etiological knowledge. Mol Psychiatry 2022; 27:3095-3106. [PMID: 35411039 DOI: 10.1038/s41380-022-01542-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies have discovered hundreds of genomic loci associated with psychiatric traits, but the causal genes underlying these associations are often unclear, a research gap that has hindered clinical translation. Here, we present a Psychiatric Omnilocus Prioritization Score (PsyOPS) derived from just three binary features encapsulating high-level assumptions about psychiatric disease etiology - namely, that causal psychiatric disease genes are likely to be mutationally constrained, be specifically expressed in the brain, and overlap with known neurodevelopmental disease genes. To our knowledge, PsyOPS is the first method specifically tailored to prioritizing causal genes at psychiatric GWAS loci. We show that, despite its extreme simplicity, PsyOPS achieves state-of-the-art performance at this task, comparable to a prior domain-agnostic approach relying on tens of thousands of features. Genes prioritized by PsyOPS are substantially more likely than other genes at the same loci to have convergent evidence of direct regulation by the GWAS variant according to both DNA looping assays and expression or splicing quantitative trait locus (QTL) maps. We provide examples of genes hundreds of kilobases away from the lead variant, like GABBR1 for schizophrenia, that are prioritized by all three of PsyOPS, DNA looping and QTLs. Our results underscore the power of incorporating high-level knowledge of trait etiology into causal gene prediction at GWAS loci, and comprise a resource for researchers interested in experimentally characterizing psychiatric gene candidates.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniele Merico
- Deep Genomics Inc, Toronto, ON, Canada.,The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON, Canada
| | - Matthew C Keller
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Yan S, Sha Q, Zhang S. Gene-Based Association Tests Using New Polygenic Risk Scores and Incorporating Gene Expression Data. Genes (Basel) 2022; 13:genes13071120. [PMID: 35885903 PMCID: PMC9318573 DOI: 10.3390/genes13071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, gene-based association studies have shown that integrating genome-wide association studies (GWAS) with expression quantitative trait locus (eQTL) data can boost statistical power and that the genetic liability of traits can be captured by polygenic risk scores (PRSs). In this paper, we propose a new gene-based statistical method that leverages gene-expression measurements and new PRSs to identify genes that are associated with phenotypes of interest. We used a generalized linear model to associate phenotypes with gene expression and PRSs and used a score-test statistic to test the association between phenotypes and genes. Our simulation studies show that the newly developed method has correct type I error rates and can boost statistical power compared with other methods that use either gene expression or PRS in association tests. A real data analysis figure based on UK Biobank data for asthma shows that the proposed method is applicable to GWAS.
Collapse
|
34
|
Wang Z, Wiggs JL, Aung T, Khawaja AP, Khor CC. The genetic basis for adult onset glaucoma: Recent advances and future directions. Prog Retin Eye Res 2022; 90:101066. [PMID: 35589495 DOI: 10.1016/j.preteyeres.2022.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Glaucoma, a diverse group of eye disorders that results in the degeneration of retinal ganglion cells, is the world's leading cause of irreversible blindness. Apart from age and ancestry, the major risk factor for glaucoma is increased intraocular pressure (IOP). In primary open-angle glaucoma (POAG), the anterior chamber angle is open but there is resistance to aqueous outflow. In primary angle-closure glaucoma (PACG), crowding of the anterior chamber angle due to anatomical alterations impede aqueous drainage through the angle. In exfoliation syndrome and exfoliation glaucoma, deposition of white flaky material throughout the anterior chamber directly interfere with aqueous outflow. Observational studies have established that there is a strong hereditable component for glaucoma onset and progression. Indeed, a succession of genome wide association studies (GWAS) that were centered upon single nucleotide polymorphisms (SNP) have yielded more than a hundred genetic markers associated with glaucoma risk. However, a shortcoming of GWAS studies is the difficulty in identifying the actual effector genes responsible for disease pathogenesis. Building on the foundation laid by GWAS studies, research groups have recently begun to perform whole exome-sequencing to evaluate the contribution of protein-changing, coding sequence genetic variants to glaucoma risk. The adoption of this technology in both large population-based studies as well as family studies are revealing the presence of novel, protein-changing genetic variants that could enrich our understanding of the pathogenesis of glaucoma. This review will cover recent advances in the genetics of primary open-angle glaucoma, primary angle-closure glaucoma and exfoliation glaucoma, which collectively make up the vast majority of all glaucoma cases in the world today. We will discuss how recent advances in research methodology have uncovered new risk genes, and how follow up biological investigations could be undertaken in order to define how the risk encoded by a genetic sequence variant comes into play in patients. We will also hypothesise how data arising from characterising these genetic variants could be utilized to predict glaucoma risk and the manner in which new therapeutic strategies might be informed.
Collapse
Affiliation(s)
- Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
35
|
Zhang C, Li X, Zhao L, Liang R, Deng W, Guo W, Wang Q, Hu X, Du X, Sham PC, Luo X, Li T. Comprehensive and integrative analyses identify TYW5 as a schizophrenia risk gene. BMC Med 2022; 20:169. [PMID: 35527273 PMCID: PMC9082878 DOI: 10.1186/s12916-022-02363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the causal genes at the risk loci and elucidating their roles in schizophrenia (SCZ) pathogenesis remain significant challenges. To explore risk variants associated with gene expression in the human brain and to identify genes whose expression change may contribute to the susceptibility of SCZ, here we report a comprehensive integrative study on SCZ. METHODS We systematically integrated the genetic associations from a large-scale SCZ GWAS (N = 56,418) and brain expression quantitative trait loci (eQTL) data (N = 175) using a Bayesian statistical framework (Sherlock) and Summary data-based Mendelian Randomization (SMR). We also measured brain structure of 86 first-episode antipsychotic-naive schizophrenia patients and 152 healthy controls with the structural MRI. RESULTS Both Sherlock (P = 3. 38 × 10-6) and SMR (P = 1. 90 × 10-8) analyses showed that TYW5 mRNA expression was significantly associated with risk of SCZ. Brain-based studies also identified a significant association between TYW5 protein abundance and SCZ. The single-nucleotide polymorphism rs203772 showed significant association with SCZ and the risk allele is associated with higher transcriptional level of TYW5 in the prefrontal cortex. We further found that TYW5 was significantly upregulated in the brain tissues of SCZ cases compared with controls. In addition, TYW5 expression was also significantly higher in neurons induced from pluripotent stem cells of schizophrenia cases compared with controls. Finally, combining analysis of genotyping and MRI data showed that rs203772 was significantly associated with gray matter volume of the right middle frontal gyrus and left precuneus. CONCLUSIONS We confirmed that TYW5 is a risk gene for SCZ. Our results provide useful information toward a better understanding of the genetic mechanism of TYW5 in risk of SCZ.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rong Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Xiongjian Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
He R, Cai H, Jiang Y, Liu R, Zhou Y, Qin Y, Yao C, Wang S, Hu Z. Integrative analysis prioritizes the relevant genes and risk factors for chronic venous disease. J Vasc Surg Venous Lymphat Disord 2022; 10:738-748.e5. [PMID: 35218958 DOI: 10.1016/j.jvsv.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic venous disease (CVD) refers to a range of symptoms resulting from long-term morphological and functional abnormalities of the venous system. However, the mechanism of CVD development remains largely unknown. Here we aim to provide more information on CVD pathogenesis, prevention strategies and therapy development through the integrative analysis of large-scale genetic data. METHODS Genetic data were obtained from publicly accessible databases. We utilized different approaches, including FUMA, DEPICT, Sherlock, SMR/HEIDIS, DEPICT and NetWAS to identify possible causal genes for CVD. Candidate genes were prioritized to further literature-based review. The differential expression of prioritized genes was validated by microarray from the Gene Expression Omnibus (GEO), a public genomics data repository" and Real-time quantitative PCR (qPCR) of varicose veins (VVs) specimens. The causal relationships between risk factors and CVD were assessed using the Two-sample Mendelian randomization (MR) approach. RESULTS We identified 46 lead single-nucleotide polymorphisms (SNPs) and 26 plausible causal genes for CVD. Microarray data indicated differential expression of possible causal genes in CVD when compared to controls. The expression levels of WDR92, RSPO3, LIMA, ABCB10, DNAJC7, C1S, CXCL1 were significantly down-regulated (P<0.05). PHLDA1 and SERPINE1 were significantly upregulated (P<0.05). Dysregulated expression of WDR92, RSPO3 and CASZ1 was also found in varicose vein specimens by qPCR. Two-sample MR suggested causative effects of BMI (OR, 1.008, 95%CI, 1.005-1.010), standing height (OR, 1.009, 95%CI, 1.007-1.011), college degree (OR, 0.983, 95%CI, 0.991-0.976), insulin (OR, 0.858, 95%CI, 0.794-0.928) and metformin (OR, 0.944, 95%CI, 0.904-0.985) on CVD. CONCLUSIONS Our study integrates genetic and gene expression data to make an effective risk gene prediction and etiological inferences for CVD. Prioritized candidate genes provide more insights into CVD pathogenesis, and the causative effects of risk factors on CVD that deserve further investigation.
Collapse
Affiliation(s)
- Rongzhou He
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Huoying Cai
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu Jiang
- Department of Ophthalmology, the First People's Hospital of Guangzhou City, Guangzhou, China; Zhongshan ophthalmic center, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhou
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuansen Qin
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zuojun Hu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| |
Collapse
|
37
|
Wang F, Panjwani N, Wang C, Sun L, Strug LJ. A flexible summary statistics-based colocalization method with application to the mucin cystic fibrosis lung disease modifier locus. Am J Hum Genet 2022; 109:253-269. [PMID: 35065708 PMCID: PMC8874229 DOI: 10.1016/j.ajhg.2021.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Mucus obstruction is a central feature in the cystic fibrosis (CF) airways. A genome-wide association study (GWAS) of lung disease by the CF Gene Modifier Consortium (CFGMC) identified a significant locus containing two mucin genes, MUC20 and MUC4. Expression quantitative trait locus (eQTL) analysis using human nasal epithelia (HNE) from 94 CF-affected Canadians in the CFGMC demonstrated MUC4 eQTLs that mirrored the lung association pattern in the region, suggesting that MUC4 expression may mediate CF lung disease. Complications arose, however, with colocalization testing using existing methods: the locus is complex and the associated SNPs span a 0.2 Mb region with high linkage disequilibrium (LD) and evidence of allelic heterogeneity. We previously developed the Simple Sum (SS), a powerful colocalization test in regions with allelic heterogeneity, but SS assumed eQTLs to be present to achieve type I error control. Here we propose a two-stage SS (SS2) colocalization test that avoids a priori eQTL assumptions, accounts for multiple hypothesis testing and the composite null hypothesis, and enables meta-analysis. We compare SS2 to published approaches through simulation and demonstrate type I error control for all settings with the greatest power in the presence of high LD and allelic heterogeneity. Applying SS2 to the MUC20/MUC4 CF lung disease locus with eQTLs from CF HNE revealed significant colocalization with MUC4 (p = 1.31 × 10-5) rather than with MUC20. The SS2 is a powerful method to inform the responsible gene(s) at a locus and guide future functional studies. SS2 has been implemented in the application LocusFocus.
Collapse
Affiliation(s)
- Fan Wang
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1Z5, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cheng Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1Z5, Canada; Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada.
| | - Lisa J Strug
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1Z5, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
38
|
Yuan K, Zeng T, Chen L. Interpreting Functional Impact of Genetic Variations by Network QTL for Genotype–Phenotype Association Study. Front Cell Dev Biol 2022; 9:720321. [PMID: 35155440 PMCID: PMC8826544 DOI: 10.3389/fcell.2021.720321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
An enormous challenge in the post-genome era is to annotate and resolve the consequences of genetic variation on diverse phenotypes. The genome-wide association study (GWAS) is a well-known method to identify potential genetic loci for complex traits from huge genetic variations, following which it is crucial to identify expression quantitative trait loci (eQTL). However, the conventional eQTL methods usually disregard the systematical role of single-nucleotide polymorphisms (SNPs) or genes, thereby overlooking many network-associated phenotypic determinates. Such a problem motivates us to recognize the network-based quantitative trait loci (QTL), i.e., network QTL (nQTL), which is to detect the cascade association as genotype → network → phenotype rather than conventional genotype → expression → phenotype in eQTL. Specifically, we develop the nQTL framework on the theory and approach of single-sample networks, which can identify not only network traits (e.g., the gene subnetwork associated with genotype) for analyzing complex biological processes but also network signatures (e.g., the interactive gene biomarker candidates screened from network traits) for characterizing targeted phenotype and corresponding subtypes. Our results show that the nQTL framework can efficiently capture associations between SNPs and network traits (i.e., edge traits) in various simulated data scenarios, compared with traditional eQTL methods. Furthermore, we have carried out nQTL analysis on diverse biological and biomedical datasets. Our analysis is effective in detecting network traits for various biological problems and can discover many network signatures for discriminating phenotypes, which can help interpret the influence of nQTL on disease subtyping, disease prognosis, drug response, and pathogen factor association. Particularly, in contrast to the conventional approaches, the nQTL framework could also identify many network traits from human bulk expression data, validated by matched single-cell RNA-seq data in an independent or unsupervised manner. All these results strongly support that nQTL and its detection framework can simultaneously explore the global genotype–network–phenotype associations and the underlying network traits or network signatures with functional impact and importance.
Collapse
Affiliation(s)
- Kai Yuan
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Guangzhou Laboratory, Guangzhou, China
- *Correspondence: Tao Zeng, ; Luonan Chen,
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Tao Zeng, ; Luonan Chen,
| |
Collapse
|
39
|
Orozco G. Fine mapping with epigenetic information and 3D structure. Semin Immunopathol 2022; 44:115-125. [PMID: 35022890 PMCID: PMC8837508 DOI: 10.1007/s00281-021-00906-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Since 2005, thousands of genome-wide association studies (GWAS) have been published, identifying hundreds of thousands of genetic variants that increase risk of complex traits such as autoimmune diseases. This wealth of data has the potential to improve patient care, through personalized medicine and the identification of novel drug targets. However, the potential of GWAS for clinical translation has not been fully achieved yet, due to the fact that the functional interpretation of risk variants and the identification of causal variants and genes are challenging. The past decade has seen the development of great advances that are facilitating the overcoming of these limitations, by utilizing a plethora of genomics and epigenomics tools to map and characterize regulatory elements and chromatin interactions, which can be used to fine map GWAS loci, and advance our understanding of the biological mechanisms that cause disease.
Collapse
Affiliation(s)
- Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9LJ, UK. .,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
40
|
Ding Q, Zhao W, Long J, Alsafar H, Zhou Q, Chen H. Cis-regulation of antisense noncoding RNA at the JAZF1 locus in type 2 diabetes. J Gene Med 2022; 24:e3407. [PMID: 34978128 DOI: 10.1002/jgm.3407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several genomic loci of type 2 diabetes (T2D) nominated in genome-wide association studies (GWASs) have been suggested to regulate metabolism in muscle. However, a large portion of the genetic risk and the underlying regulation remain unexplained. This study aimed to localize the potentially functional regions or genes at juxtaposed with another zinc finger protein 1 (JAZF1) locus and interpret their possible biological mechanisms in the muscle of T2D. METHODS AND RESULTS With a cross-population meta-analysis of 7 GWASs, we identified a linkage disequilibrium (LD) block within intron 1 of JAZF1 that was significantly associated with T2D (FDR < 0.05). The colocalization analysis showed a significant association between genetically determined expression of JAZF1 in skeletal muscle and T2D with a strong probability of colocalization (PP4=75.09%). This region also encodes the upstream regulatory region (URR) of the antisense noncoding RNA JAZF1-AS1. Expression-QTL (e-QTL) analysis detected a regulatory SNP within this LD block, rs864745, that is associated with the expression of JAZF1-AS1 and JAZF1. With in vitro cloning, we further reported the role of JAZF1-AS1 in cis-regulating JAZF1 by directly forming RNA double strands. Downregulation of JAZF1, caused by JAZF1-AS1 depletion, inhibited the glucose uptake and lipid oxidation in skeletal muscle. CONCLUSIONS This study proposes a strategy to identify a novel T2D gene at the reported locus and generated a model in which polymorphisms at JAZF1 influence T2D risk through antisense-mediated gene regulation.
Collapse
Affiliation(s)
- Qiuju Ding
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Weiwei Zhao
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huimei Chen
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Ngwa JS, Yanek LR, Kammers K, Kanchan K, Taub MA, Scharpf RB, Faraday N, Becker LC, Mathias RA, Ruczinski I. Secondary analyses for genome-wide association studies using expression quantitative trait loci. Genet Epidemiol 2022; 46:170-181. [PMID: 35312098 PMCID: PMC9086181 DOI: 10.1002/gepi.22448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
Abstract
Genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with complex traits; however, the identified SNPs account for a fraction of trait heritability, and identifying the functional elements through which genetic variants exert their effects remains a challenge. Recent evidence suggests that SNPs associated with complex traits are more likely to be expression quantitative trait loci (eQTL). Thus, incorporating eQTL information can potentially improve power to detect causal variants missed by traditional GWAS approaches. Using genomic, transcriptomic, and platelet phenotype data from the Genetic Study of Atherosclerosis Risk family-based study, we investigated the potential to detect novel genomic risk loci by incorporating information from eQTL in the relevant target tissues (i.e., platelets and megakaryocytes) using established statistical principles in a novel way. Permutation analyses were performed to obtain family-wise error rates for eQTL associations, substantially lowering the genome-wide significance threshold for SNP-phenotype associations. In addition to confirming the well known association between PEAR1 and platelet aggregation, our eQTL-focused approach identified a novel locus (rs1354034) and gene (ARHGEF3) not previously identified in a GWAS of platelet aggregation phenotypes. A colocalization analysis showed strong evidence for a functional role of this eQTL.
Collapse
Affiliation(s)
- Julius S. Ngwa
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Lisa R. Yanek
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kai Kammers
- Department of OncologyJohns Hopkins University, School of MedicineBaltimoreMarylandUSA
| | - Kanika Kanchan
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Margaret A. Taub
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Robert B. Scharpf
- Department of OncologyJohns Hopkins University, School of MedicineBaltimoreMarylandUSA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lewis C. Becker
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rasika A. Mathias
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ingo Ruczinski
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| |
Collapse
|
42
|
Rajabi F, Jabalameli N, Rezaei N. The Concept of Immunogenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:1-17. [DOI: 10.1007/978-3-030-92616-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Liu J, Li X, Luo XJ. Proteome-wide Association Study Provides Insights Into the Genetic Component of Protein Abundance in Psychiatric Disorders. Biol Psychiatry 2021; 90:781-789. [PMID: 34454697 DOI: 10.1016/j.biopsych.2021.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide association studies have identified multiple risk variants for psychiatric disorders. Nevertheless, how the risk variants confer risk of psychiatric disorders remains largely unknown. METHODS We performed proteome-wide association studies to identify genes whose cis-regulated protein abundance change in the human brain were associated with psychiatric disorders. RESULTS By integrating genome-wide associations of four common psychiatric disorders and two independent brain proteomes (n = 376 and n = 152, respectively) from the dorsolateral prefrontal cortex, we identified 61 genes (including 48 genes for schizophrenia, 12 genes for bipolar disorder, 5 genes for depression, and 2 genes for attention-deficit/hyperactivity disorder) whose genetically regulated protein abundance levels were associated with risk of psychiatric disorders. Comparison with transcriptome-wide association studies identified 18 overlapping genes that showed significant associations with psychiatric disorders at both proteome-wide and transcriptome-wide levels, suggesting that genetic risk variants likely confer risk of psychiatric disorders by regulating messenger RNA expression and protein abundance of these genes. CONCLUSIONS Our study not only provides new insights into the genetic component of protein abundance in psychiatric disorders but also highlights several high-confidence risk proteins (including CNNM2 and CTNND1) for schizophrenia and depression. These high-confidence risk proteins represent promising therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
44
|
Wu Y, Yu XL, Xiao X, Li M, Li Y. Joint-Tissue Integrative Analysis Identified Hundreds of Schizophrenia Risk Genes. Mol Neurobiol 2021; 59:107-116. [PMID: 34628600 DOI: 10.1007/s12035-021-02572-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Genome-wide association studies (GWAS) have identified a large number of schizophrenia risk variants, and most of them are mapped to noncoding regions. By leveraging multiple joint-tissue gene expression data and GWAS data, we herein performed a transcriptome-wide association study (TWAS) and Mendelian randomization (MR) analysis and identified 144 genes whose mRNA levels were related to genetic risk of schizophrenia. Most of these genes exhibited diametrically opposite trends of expression in prenatal and postnatal brain tissues, despite that their expression levels in dorsolateral prefrontal cortex (DLPFC) tissues did not significantly differ between schizophrenics and healthy controls. We then found significant enrichment of these genes in dopamine-related pathways that were repeatedly implicated in schizophrenia pathogenesis and in the action of antipsychotic drugs. Gene expression analysis using single cell RNA-sequencing (scRNA-seq) data of mid-gestation fetal brains further revealed enrichment of these genes in glutamatergic excitatory neurons and cycling progenitors. These lines of evidence, in consistency with previous findings, confirmed the polygenic nature of schizophrenia and highlighted involvement of early neurodevelopment aberrations in this disorder. Further investigations using advanced algorithms in both bulk brain tissues and in single cells and at different developmental stages are necessary to characterize transcriptomic features of schizophrenia pathogenesis along brain development.
Collapse
Affiliation(s)
- Yong Wu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiao-Lin Yu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
45
|
Rae J, Hackney J, Huang K, Keir M, Herman A. Identification of an IL-22-Dependent Gene Signature as a Pharmacodynamic Biomarker. Int J Mol Sci 2021; 22:8205. [PMID: 34360971 PMCID: PMC8347589 DOI: 10.3390/ijms22158205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Interleukin-22 (IL-22) plays a role in epithelial barrier function and repair, and may provide benefits in conditions like inflammatory bowel disease. However, limited human data are available to assess the clinical effect of IL-22 administration. This study used a human intestinal cell line to identify an IL-22-dependent gene signature that could serve as a pharmacodynamic biomarker for IL-22 therapy. The response to IL-22Fc (UTTR1147A, an Fc-stabilized version of IL-22) was assessed in HT-29 cells by microarray, and the selected responsive genes were confirmed by qPCR. HT-29 cells demonstrated dose-dependent increases in STAT3 phosphorylation and multiple gene expression changes in response to UTTR1147A. Genes were selected that were upregulated by UTTR1147A, but to a lesser extent by IL-6, which also signals via STAT3. IL-1R1 was highly upregulated by UTTR1147A, and differential gene expression patterns were observed in response to IL-22Fc in the presence of IL-1β. An IL-22-dependent gene signature was identified that could serve as a pharmacodynamic biomarker in intestinal biopsies to support the clinical development of an IL-22 therapeutic. The differential gene expression pattern in the presence of IL-1β suggests that an inflammatory cytokine milieu in the disease setting could influence the clinical responses to IL-22.
Collapse
Affiliation(s)
- Julie Rae
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Jason Hackney
- Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (J.H.); (K.H.)
| | - Kevin Huang
- Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (J.H.); (K.H.)
| | - Mary Keir
- OMNI Biomarker Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Ann Herman
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| |
Collapse
|
46
|
Thind AS, Monga I, Thakur PK, Kumari P, Dindhoria K, Krzak M, Ranson M, Ashford B. Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology. Brief Bioinform 2021; 22:6330938. [PMID: 34329375 DOI: 10.1093/bib/bbab259] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Significant innovations in next-generation sequencing techniques and bioinformatics tools have impacted our appreciation and understanding of RNA. Practical RNA sequencing (RNA-Seq) applications have evolved in conjunction with sequence technology and bioinformatic tools advances. In most projects, bulk RNA-Seq data is used to measure gene expression patterns, isoform expression, alternative splicing and single-nucleotide polymorphisms. However, RNA-Seq holds far more hidden biological information including details of copy number alteration, microbial contamination, transposable elements, cell type (deconvolution) and the presence of neoantigens. Recent novel and advanced bioinformatic algorithms developed the capacity to retrieve this information from bulk RNA-Seq data, thus broadening its scope. The focus of this review is to comprehend the emerging bulk RNA-Seq-based analyses, emphasizing less familiar and underused applications. In doing so, we highlight the power of bulk RNA-Seq in providing biological insights.
Collapse
Affiliation(s)
- Amarinder Singh Thind
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Isha Monga
- Columbia University, New York City, NY, USA
| | | | - Pallawi Kumari
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Kiran Dindhoria
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | - Marie Ranson
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bruce Ashford
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| |
Collapse
|
47
|
Drivas TG, Lucas A, Ritchie MD. eQTpLot: a user-friendly R package for the visualization of colocalization between eQTL and GWAS signals. BioData Min 2021; 14:32. [PMID: 34273980 PMCID: PMC8285863 DOI: 10.1186/s13040-021-00267-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/02/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genomic studies increasingly integrate expression quantitative trait loci (eQTL) information into their analysis pipelines, but few tools exist for the visualization of colocalization between eQTL and GWAS results. Those tools that do exist are limited in their analysis options, and do not integrate eQTL and GWAS information into a single figure panel, making the visualization of colocalization difficult. RESULTS To address this issue, we developed the intuitive and user-friendly R package eQTpLot. eQTpLot takes as input standard GWAS and cis-eQTL summary statistics, and optional pairwise LD information, to generate a series of plots visualizing colocalization, correlation, and enrichment between eQTL and GWAS signals for a given gene-trait pair. With eQTpLot, investigators can easily generate a series of customizable plots clearly illustrating, for a given gene-trait pair: 1) colocalization between GWAS and eQTL signals, 2) correlation between GWAS and eQTL p-values, 3) enrichment of eQTLs among trait-significant variants, 4) the LD landscape of the locus in question, and 5) the relationship between the direction of effect of eQTL signals and the direction of effect of colocalizing GWAS peaks. These clear and comprehensive plots provide a unique view of eQTL-GWAS colocalization, allowing for a more complete understanding of the interaction between gene expression and trait associations. CONCLUSIONS eQTpLot provides a unique, user-friendly, and intuitive means of visualizing eQTL and GWAS signal colocalization, incorporating novel features not found in other eQTL visualization software. We believe eQTpLot will prove a useful tool for investigators seeking a convenient and customizable visualization of eQTL and GWAS data colocalization. AVAILABILITY AND IMPLEMENTATION the eQTpLot R package and tutorial are available at https://github.com/RitchieLab/eQTpLot.
Collapse
Affiliation(s)
- Theodore G. Drivas
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
48
|
Wang F, Liu D, Zhuang Y, Feng B, Lu W, Yang J, Zhuang G. Mendelian randomization analysis identified genes potentially pleiotropically associated with periodontitis. Saudi J Biol Sci 2021; 28:4089-4095. [PMID: 34220266 PMCID: PMC8241609 DOI: 10.1016/j.sjbs.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To prioritize genes that were pleiotropically or potentially causally associated with periodontitis. METHODS We applied the summary data-based Mendelian randomization (SMR) method integrating genome-wide association study (GWAS) for periodontitis and expression quantitative trait loci (eQTL) data to identify genes that were pleiotropically associated with periodontitis. We performed separate SMR analysis using CAGE eQTL data and GTEx eQTL data. SMR analysis were done for participants of European and East Asian ancestries, separately. RESULTS We identified multiple genes showing pleiotropic association with periodontitis in participants of European ancestry and participants of East Asian ancestry. PDCD2 (corresponding probe: ILMN_1758915) was the top hit showing pleotropic association with periodontitis in the participants of European ancestry using CAGE eQTL data, and BX093763 (corresponding probe: ILMN_1899903) and AC104135.3 (corresponding probe: ENSG00000204792.2) were the top hits in the participants of East Asian ancestry using CAGE eQTL data and GTEx eQTL data, respectively. CONCLUSION We identified multiple genes that may be involved in the pathogenesis of periodontitis in participants of European ancestry and participants of East Asian ancestry. Our findings provided important leads to a better understanding of the mechanisms underlying periodontitis and revealed potential therapeutic targets for the effective treatment of periodontitis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yong Zhuang
- Department of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Feng
- Odette School of Business, University of Windsor, Windsor, ON, Canada
| | - Wenjin Lu
- Department of Mathematics, University College London, London, United Kingdom
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Guanghui Zhuang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
49
|
Ma Y, Huang Y, Zhao S, Yao Y, Zhang Y, Qu J, Wu N, Su J. Integrative genomics analysis reveals a 21q22.11 locus contributing risk to COVID-19. Hum Mol Genet 2021; 30:1247-1258. [PMID: 33949668 PMCID: PMC8136003 DOI: 10.1093/hmg/ddab125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
50
|
Tang H, He Z. Advances and challenges in quantitative delineation of the genetic architecture of complex traits. QUANTITATIVE BIOLOGY 2021; 9:168-184. [PMID: 35492964 PMCID: PMC9053444 DOI: 10.15302/j-qb-021-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Genome-wide association studies (GWAS) have been widely adopted in studies of human complex traits and diseases. Results This review surveys areas of active research: quantifying and partitioning trait heritability, fine mapping functional variants and integrative analysis, genetic risk prediction of phenotypes, and the analysis of sequencing studies that have identified millions of rare variants. Current challenges and opportunities are highlighted. Conclusion GWAS have fundamentally transformed the field of human complex trait genetics. Novel statistical and computational methods have expanded the scope of GWAS and have provided valuable insights on the genetic architecture underlying complex phenotypes.
Collapse
Affiliation(s)
- Hua Tang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|