1
|
Ge H, Di G, Song P, Han W, Chen P, Wang Y. Role of vitamin A on the ocular surface. Exp Eye Res 2025; 250:110179. [PMID: 39581361 DOI: 10.1016/j.exer.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Vitamin A is an essential fat-soluble vitamin that cannot be endogenously synthesized by the human body. Retinoic acid (RA) is the biologically active form of vitamin A. Utilizing both nuclear and non-nuclear receptor-mediated pathways, RA plays a crucial role in regulating various biological processes, including apoptosis, differentiation, and anti-inflammatory properties within the cornea and conjunctiva. In addition, RA has been demonstrated to exert a significant influence on anti-tumor mechanisms. Disruption of RA signaling can result in corneal defects, anophthalmia, and microphthalmia. However, the beneficial effects of RA are only observed when it is administered at appropriate dosages, and higher doses have an adverse impact. Ocular abnormalities are often early indicators of a vitamin A deficiency. The lacrimal gland secretes vitamin A onto the ocular surface, where it is metabolized into RA via two sequential steps. This article provides a comprehensive overview of how vitamin A is transformed and transported from the intestine to the ocular surface, ultimately contributing to the maintenance of the normal physiological function of the ocular surface.
Collapse
Affiliation(s)
- Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China.
| |
Collapse
|
2
|
Li HY, Jiang CM, Liu RY, Zou CC. Report of one case with de novo mutation in TLK2 and literature review. BMC Pediatr 2024; 24:732. [PMID: 39538191 PMCID: PMC11559194 DOI: 10.1186/s12887-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
TLK2 variants were identified as the cause for several neurodevelopmental disorders by impacting brain development. The incidence of mutation in TLK2 is low, which has common clinical features with other rare diseases. Herein, we reported a 5-year-old boy with TLK2 heterozygous mutation who presented distinctive facial features, gastrointestinal diseases, short stature, language delay, autism spectrum disorder, heart diseases, abnormal genitourinary system and skeletal abnormality. Moreover, we reviewed previous reported patients and our case in order to investigate more information on genotype-phenotype correlation and identify significant clinical characteristics for better diagnosis.
Collapse
Affiliation(s)
- Han-Yue Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Ruo-Yan Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
4
|
Sun S, Liu Y, Sun J, Zan B, Cui Y, Jin A, Xu H, Huang X, Zhu Y, Yang Y, Gao X, Lu T, Wang X, Liu J, Mei L, Shen L, Dai Q, Jiang L. Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice. Bone Res 2024; 12:61. [PMID: 39419968 PMCID: PMC11487257 DOI: 10.1038/s41413-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024] Open
Abstract
Osteopetrosis is an inherited metabolic disease, characterized by increased bone density and narrow marrow cavity. Patients with severe osteopetrosis exhibit abnormal bone brittleness, anemia, and infection complications, which commonly cause death within the first decade of life. Pathologically, osteopetrosis impairs not only the skeletal system, but also the hemopoietic and immune systems during development, while the underlying osteoimmunological mechanisms remain unclear. Osteoclastic mutations are regarded as the major causes of osteopetrosis, while osteoclast non-autonomous theories have been proposed in recent years with unclear underlying mechanisms. Retinoic acid (RA), the metabolite of Vitamin A, is an essential requirement for skeletal and hematopoietic development, through the activation of retinoic acid signaling. RA can relieve osteopetrosis symptoms in some animal models, while its effect on bone health is still controversial and the underlying mechanisms remain unclear. In this study, we constructed an osteoblast-specific inhibitory retinoic acid signaling mouse model and surprisingly found it mimicked the symptoms of osteopetrosis found in clinical cases: dwarfism, increased imperfectly-formed trabecular bone deposition with a reduced marrow cavity, thin cortical bone with a brittle skeleton, and hematopoietic and immune dysfunction. Micro-CT, the three-point bending test, and histological analysis drew a landscape of poor bone quality. Single-cell RNA sequencing (scRNA-seq) of the femur and RNA-seq of osteoblasts uncovered an atlas of pathological skeletal metabolism dysfunction in the mutant mice showing that osteogenesis was impaired in a cell-autonomous manner and osteoclastogenesis was impaired via osteoblast-osteoclast crosstalk. Moreover, scRNA-seq of bone marrow and flow cytometry of peripheral blood, spleen, and bone marrow uncovered pathology in the hematopoietic and immune systems in the mutant mice, mimicking human osteopetrosis. Results showed that hematopoietic progenitors and B lymphocyte differentiation were affected and the osteoblast-dominated cell crosstalk was impaired, which may result from transcriptional impairment of the ligands Pdgfd and Sema4d. In summary, we uncovered previously unreported pathogenesis of osteopetrosis-like disorder in mice with skeletal, hematopoietic, and immune system dysfunction, which was induced by the inhibition of retinoic acid signaling in osteoblasts, and sheds new insights into a potential treatment for osteopetrosis.
Collapse
Affiliation(s)
- Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiping Sun
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxin Zan
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Cui
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinggang Dai
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Stomatology, Zhang Zhiyuan Academician Work Station, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China.
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
5
|
Weller K, Westra D, Peters NCJ, Wilke M, Van Opstal D, Feenstra I, van Drongelen J, Eggink AJ, Diderich KEM, DeKoninck PLJ. Exome sequencing in fetuses with congenital diaphragmatic hernia in a nationwide cohort. Prenat Diagn 2024; 44:1288-1295. [PMID: 38862387 DOI: 10.1002/pd.6622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To evaluate the diagnostic yield of exome sequencing (ES) in fetuses and neonates with prenatally detected congenital diaphragmatic hernia (CDH) and normal copy number variant (CNV) analysis. METHODS We conducted a retrospective cohort study of prenatally diagnosed CDH cases seen between 2019 and 2022. All cases who underwent prenatal or postnatal genetic testing were reviewed. The results from the ES analysis that identified pathogenic or likely pathogenic single nucleotide variants are described. RESULTS In total, 133 fetuses with CDH were seen, of whom 98 (74%) had an isolated CDH and 35 (26%) had a complex CDH (associated structural anomalies) on prenatal examination. ES was performed in 68 cases, and eight pathogenic or likely pathogenic variants were found, accounting for a 12% diagnostic yield (10% [5/50] in isolated cases and 17% [3/18] in complex CDH). CONCLUSIONS In 12% of fetuses and neonates with CDH and normal CNV analysis results, pathogenic or likely pathogenic variants were identified with ES. These data indicate that there is a substantial diagnostic yield when offering ES in prenatally detected CDH, both in complex and isolated cases.
Collapse
Affiliation(s)
- Katinka Weller
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dineke Westra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina C J Peters
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris van Drongelen
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Philip L J DeKoninck
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Liu S, Yu L. Role of genetics and the environment in the etiology of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000884. [PMID: 39183805 PMCID: PMC11340715 DOI: 10.1136/wjps-2024-000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by failure of diaphragm closure during embryonic development, leading to pulmonary hypoplasia and pulmonary hypertension, which contribute significantly to morbidity and mortality. The occurrence of CDH and pulmonary hypoplasia is theorized to result from both abnormalities in signaling pathways of smooth muscle cells in pleuroperitoneal folds and mechanical compression by abdominal organs within the chest cavity on the developing lungs. Although, the precise etiology of diaphragm maldevelopment in CDH is not fully understood, it is believed that interplay between genes and the environment contributes to its onset. Approximately 30% of patients with CDH possess chromosomal or single gene defects and these patients tend to have inferior outcomes compared with those without genetic associations. At present, approximately 150 gene variants have been linked to the occurrence of CDH. The variable expression of the CDH phenotype in the presence of a recognized genetic predisposition can be explained by an environmental effect on gene penetrance and expression. The retinoic acid pathway is thought to play an essential role in the interactions of genes and environment in CDH. However, apart from the gradually maturing retinol hypothesis, there is limited evidence implicating other environmental factors in CDH occurrence. This review aims to describe the pathogenesis of CDH by summarizing the genetic defects and potential environmental influences on CDH development.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Cardiac & Thoracic Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lan Yu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
AlAbdi L, Rahbeeni Z, Maddirevula S, Helaby R, Abdulwahab F, Khan AO, Riley LG, Alhashem A, Chassaing N, Jamieson RV, Alkuraya FS. A founder variant expands the phenotype of WNT7B-related PDAC syndrome. Clin Genet 2024; 106:66-71. [PMID: 38417950 DOI: 10.1111/cge.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia, and Cardiac defects (PDAC) syndrome is a genetically heterogeneous multiple congenital malformation syndrome. Although pathogenic variants in RARB and STRA6 are established causes of PDAC, many PDAC cases remain unsolved at the molecular level. Recently, we proposed biallelic WNT7B variants as a novel etiology based on several families with typical features of PDAC syndrome albeit with variable expressivity. Here, we report three patients from two families that share a novel founder variant in WNT7B (c.739C > T; Arg247Trp). The phenotypic expression of this variant ranges from typical PDAC features to isolated genitourinary anomalies. Similar to previously reported PDAC-associated WNT7B variants, this variant was found to significantly impair WNT7B signaling activity further corroborating its proposed pathogenicity. This report adds further evidence to WNT7B-related PDAC and expands its variable expressivity.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, New South Wales, Australia
- Specialty of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Amal Alhashem
- Division of Clinical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Genetic and Metabolic, Sehha Virtual Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
- Department of Medical Genetics, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, University of Sydney; The Children's Hospital at Westmead, Sydney Children's Hospitals Network; and Save Sight Institute, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Clinical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Rivas JFG, Clugston RD. The etiology of congenital diaphragmatic hernia: the retinoid hypothesis 20 years later. Pediatr Res 2024; 95:912-921. [PMID: 37990078 PMCID: PMC10920205 DOI: 10.1038/s41390-023-02905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect and a major cause of neonatal respiratory distress. Impacting ~2-3 in 10,000 births, CDH is associated with a high mortality rate, and long-term morbidity in survivors. Despite the significant impact of CDH, its etiology remains incompletely understood. In 2003, Greer et al. proposed the Retinoid Hypothesis, stating that the underlying cause of abnormal diaphragm development in CDH was related to altered retinoid signaling. In this review, we provide a comprehensive update to the Retinoid Hypothesis, discussing work published in support of this hypothesis from the past 20 years. This includes reviewing teratogenic and genetic models of CDH, lessons from the human genetics of CDH and epidemiological studies, as well as current gaps in the literature and important areas for future research. The Retinoid Hypothesis is one of the leading hypotheses to explain the etiology of CDH, as we continue to better understand the role of retinoid signaling in diaphragm development, we hope that this information can be used to improve CDH outcomes. IMPACT: This review provides a comprehensive update on the Retinoid Hypothesis, which links abnormal retinoic acid signaling to the etiology of congenital diaphragmatic hernia. The Retinoid Hypothesis was formulated in 2003. Twenty years later, we extensively review the literature in support of this hypothesis from both animal models and humans.
Collapse
Affiliation(s)
- Juan F Garcia Rivas
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, Edmonton, AB, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Replogle MR, Thompson S, Reis LM, Semina EV. A De Novo Noncoding RARB Variant Associated with Complex Microphthalmia Alters a Putative Regulatory Element. Hum Mutat 2024; 2024:6619280. [PMID: 39450403 PMCID: PMC11501074 DOI: 10.1155/2024/6619280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Retinoic acid receptor beta (RARB) is a transcriptional regulator crucial for coordinating retinoic acid- (RA-) mediated morphogenic movements, cell growth, and differentiation during eye development. Loss- or gain-of-function RARB coding variants have been associated with microphthalmia, coloboma, and anterior segment defects. We identified a de novo variant c.157+1895G>A located within a conserved region (CR1) in the first intron of RARB in an individual with complex microphthalmia and significant global developmental delay. Based on the phenotypic overlap, we further investigated the possible effects of the variant on mRNA splicing and/or transcriptional regulation through in silico and functional studies. In silico analysis identified the possibility of alternative splicing, suggested by one out of three (HSF, SpliceAI, and MaxEntScan) splicing prediction programs, and a strong indication of regulatory function based on publicly available DNase hypersensitivity, histone modification, chromatin folding, and ChIP-seq data sets. Consistent with the predictions of SpliceAI and MaxEntScan, in vitro minigene assays showed no effect on RARB mRNA splicing. Evaluation of CR1 for a regulatory role using luciferase reporter assays in human lens epithelial cells demonstrated a significant increase in the activity of the RARB promoter in the presence of wild-type CR1. This activity was further significantly increased in the presence of CR1 carrying the c.157+1895G>A variant, suggesting that the variant may promote RARB overexpression in human cells. Induction of RARB overexpression in human lens epithelial cells resulted in increased cell proliferation and elevated expression of FOXC1, a known downstream target of RA signaling and a transcription factor whose down- and upregulation is associated with ocular phenotypes overlapping the RARB spectrum. These results support a regulatory role for the CR1 element and suggest that the de novo c.157+1895G>A variant affecting this region may alter the proper regulation of RARB and, as a result, its downstream genes, possibly leading to abnormal development.
Collapse
Affiliation(s)
- Maria R. Replogle
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samuel Thompson
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linda M. Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena V. Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Plaisancié J, Martinovic J, Chesneau B, Whalen S, Rodriguez D, Audebert-Bellanger S, Marzin P, Grotto S, Perthus I, Holt RJ, Bax DA, Ragge N, Chassaing N. Clinical, genetic and biochemical signatures of RBP4-related ocular malformations. J Med Genet 2023; 61:84-92. [PMID: 37586836 DOI: 10.1136/jmg-2023-109331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The retinoic acid (RA) pathway plays a crucial role in both eye morphogenesis and the visual cycle. Individuals with monoallelic and biallelic pathogenic variants in retinol-binding protein 4 (RBP4), encoding a serum retinol-specific transporter, display variable ocular phenotypes. Although few families have been reported worldwide, recessive inherited variants appear to be associated with retinal degeneration, while individuals with dominantly inherited variants manifest ocular development anomalies, mainly microphthalmia, anophthalmia and coloboma (MAC). METHODS We report here seven new families (13 patients) with isolated and syndromic MAC harbouring heterozygous RBP4 variants, of whom we performed biochemical analyses. RESULTS For the first time, malformations that overlap the clinical spectrum of vitamin A deficiency are reported, providing a link with other RA disorders. Our data support two distinct phenotypes, depending on the nature and mode of inheritance of the variants: dominantly inherited, almost exclusively missense, associated with ocular malformations, in contrast to recessive, mainly truncating, associated with retinal degeneration. Moreover, we also confirm the skewed inheritance and impact of maternal RBP4 genotypes on phenotypical expression in dominant forms, suggesting that maternal RBP4 genetic status and content of diet during pregnancy may modify MAC occurrence and severity. Furthermore, we demonstrate that retinol-binding protein blood dosage in patients could provide a biological signature crucial for classifying RBP4 variants. Finally, we propose a novel hypothesis to explain the mechanisms underlying the observed genotype-phenotype correlations in RBP4 mutational spectrum. CONCLUSION Dominant missense variants in RBP4 are associated with MAC of incomplete penetrance with maternal inheritance through a likely dominant-negative mechanism.
Collapse
Affiliation(s)
- Julie Plaisancié
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Unité ToNIC Inserm 1214, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Jelena Martinovic
- Département de Génétique, Unité de Fœtopathologie, Hopital Necker-Enfants Malades, Paris, France
| | - Bertrand Chesneau
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Sandra Whalen
- Genetique Medicale, Hopital Armand-Trousseau, Paris, France
| | - Diana Rodriguez
- Département de Génétique, Hôpitaux Universitaires Paris Ile-de-France Ouest, Paris, France
| | | | - Pauline Marzin
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Necker-Enfants Malades Hospitals, Paris, France
| | - Sarah Grotto
- Maternité Port-Royal, FHU PREMA, Hôpital Cochin, Paris, France
| | - Isabelle Perthus
- Centre d'Etude des Malformations Congénitales en Auvergne, Génétique Médicale, CHU Estaing, Clermont-Ferrand, France
| | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nicolas Chassaing
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| |
Collapse
|
11
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Caron V, Chassaing N, Ragge N, Boschann F, Ngu AMH, Meloche E, Chorfi S, Lakhani SA, Ji W, Steiner L, Marcadier J, Jansen PR, van de Pol LA, van Hagen JM, Russi AS, Le Guyader G, Nordenskjöld M, Nordgren A, Anderlid BM, Plaisancié J, Stoltenburg C, Horn D, Drenckhahn A, Hamdan FF, Lefebvre M, Attie-Bitach T, Forey P, Smirnov V, Ernould F, Jacquemont ML, Grotto S, Alcantud A, Coret A, Ferrer-Avargues R, Srivastava S, Vincent-Delorme C, Romoser S, Safina N, Saade D, Lupski JR, Calame DG, Geneviève D, Chatron N, Schluth-Bolard C, Myers KA, Dobyns WB, Calvas P, Salmon C, Holt R, Elmslie F, Allaire M, Prigozhin DM, Tremblay A, Michaud JL. Clinical and functional heterogeneity associated with the disruption of retinoic acid receptor beta. Genet Med 2023; 25:100856. [PMID: 37092537 PMCID: PMC10757562 DOI: 10.1016/j.gim.2023.100856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.
Collapse
Affiliation(s)
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom
| | - Felix Boschann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Genetics and Human Genetics, Berlin, Germany
| | | | | | - Sarah Chorfi
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Saquib A Lakhani
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Weizhen Ji
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | - Julien Marcadier
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, AB, Canada
| | - Philip R Jansen
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laura A van de Pol
- Department of Pediatric Neurology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Corinna Stoltenburg
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Genetics and Human Genetics, Berlin, Germany
| | - Anne Drenckhahn
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | | | - Tania Attie-Bitach
- Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants malade, Paris, France
| | - Peggy Forey
- Centre Hospitalier d'Angoulême, Angoulême, France
| | - Vasily Smirnov
- Exploration de la Vision et Neuro-Ophtalmologie, Hôpital Roger-Salengro, CHU de Lille, Lille, France
| | - Françoise Ernould
- Service d'ophtalmologie, Hôpital Claude Huriez, CHU de Lille, Lille, France
| | | | - Sarah Grotto
- Unité de Génétique Clinique, Hôpital Robert Debré, Paris, France
| | | | - Alicia Coret
- Servicio de Pediatría, Hospital de Sagunto, Valencia, Spain
| | | | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA
| | | | - Shelby Romoser
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Nicole Safina
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Dimah Saade
- Division of Child Neurology, Stead Family Department of Pediatrics, Department of Neurology, UI Carver College of Medicine, Iowa City, IA
| | - James R Lupski
- Department of Pediatrics and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Daniel G Calame
- Department of Pediatrics and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David Geneviève
- Université Montpellier, INSERM U1183, Génétique clinique, CHU de Montpellier, Montpellier, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Lyon, France; Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - William B Dobyns
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Caroline Salmon
- Children's & Adolescent Services, Royal Surrey County Hospital, Guildford, Surrey, United Kingdom
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Frances Elmslie
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marc Allaire
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Daniil M Prigozhin
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - André Tremblay
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Obstetrics & Gynecology, Université de Montréal, Montréal, QC, Canada; Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada; Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Trieschmann G, Wilhelm C, Berweck S, Zech M. De novo retinoic acid receptor beta (RARB) variant associated with microphthalmia and dystonia. Eur J Med Genet 2023; 66:104802. [PMID: 37321544 DOI: 10.1016/j.ejmg.2023.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Definition of the individual genotypes that cause a Mendelian phenotype is of great importance both to clinical diagnostics and disease characterization. Heterozygous de novo gain-of-function missense variants in RARB are associated with syndromic microphthalmia 12 (MCOPS12), a developmental disorder characterized by eye malformations and variable involvement of other organs. A subset of patients were described with poorly delineated movement disorders. Additionally, RARB bi-allelic loss-of-function variants, inherited from asymptomatic heterozygous carrier parents, have been found in a recessive family with four MCOPS12-affected members. PATIENT/METHODS We used trio whole-exome sequencing to explore the molecular basis of disease in an individual with congenital eye abnormality and movement disorder. All patients with reported RARB variants were reviewed. RESULTS We report on identification of a heterozygous de novo RARB nonsense variant in a girl with microphthalmia and progressive generalized dystonia. Public database entries indicate that the de novo variant is recurrently present in clinically affected subjects but a literature report has not yet been available. CONCLUSIONS We provide the first detailed evidence for a role of dominant RARB truncating alterations in congenital eye-brain disease, expanding the spectrum of MCOPS12-associated mutations. Considered together with the published family with bi-allelic variants, the data suggest manifestation and non-manifestation of disease in relation to almost identical RARB loss-of-function variations, an apparent paradox that is seen in a growing number of human genetic conditions associated with both recessive and dominant inheritance patterns.
Collapse
Affiliation(s)
- Gesa Trieschmann
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | | | - Steffen Berweck
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany; LMU Hospital, Department of Pediatrics-Dr. von Hauner Childrens's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
14
|
Seese SE, Muheisen S, Gath N, Gross JM, Semina EV. Identification of HSPA8 as an interacting partner of MAB21L2 and an important factor in eye development. Dev Dyn 2023; 252:510-526. [PMID: 36576422 PMCID: PMC10947772 DOI: 10.1002/dvdy.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pathogenic variants in human MAB21L2 result in microphthalmia, anophthalmia, and coloboma. The exact molecular function of MAB21L2 is currently unknown. We conducted a series of yeast two-hybrid (Y2H) experiments to determine protein interactomes of normal human and zebrafish MAB21L2/mab21l2 as well as human disease-associated variant MAB21L2-p.(Arg51Gly) using human adult retina and zebrafish embryo libraries. RESULTS These screens identified klhl31, tnpo1, TNPO2/tnpo2, KLC2/klc2, and SPTBN1/sptbn1 as co-factors of MAB21L2/mab21l2. Several factors, including hspa8 and hspa5, were found to interact with MAB21L2-p.Arg51Gly but not wild-type MAB21L2/mab21l2 in Y2H screens. Further analyses via 1-by-1 Y2H assays, co-immunoprecipitation, and mass spectrometry revealed that both normal and variant MAB21L2 interact with HSPA5 and HSPA8. In situ hybridization detected co-expression of hspa5 and hspa8 with mab21l2 during eye development in zebrafish. Examination of zebrafish mutant hspa8hi138Tg identified reduced hspa8 expression associated with severe ocular developmental defects, including small eye, coloboma, and anterior segment dysgenesis. To investigate the effects of hspa8 deficiency on the mab21l2Arg51_Phe52del allele, corresponding zebrafish double mutants were generated and found to be more severely affected than single mutant lines. CONCLUSION This study identifies heat shock proteins as interacting partners of MAB21L2/mab21l2 and suggests a role for this interaction in vertebrate eye development.
Collapse
Affiliation(s)
- Sarah E. Seese
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa Muheisen
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Natalie Gath
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M. Gross
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elena V. Semina
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
- Children’s Research Institute, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Bouasker S, Patel N, Greenlees R, Wellesley D, Fares Taie L, Almontashiri NA, Baptista J, Alghamdi MA, Boissel S, Martinovic J, Prokudin I, Holden S, Mudhar HS, Riley LG, Nassif C, Attie-Bitach T, Miguet M, Delous M, Ernest S, Plaisancié J, Calvas P, Rozet JM, Khan AO, Hamdan FF, Jamieson RV, Alkuraya FS, Michaud JL, Chassaing N. Bi-allelic variants in WNT7B disrupt the development of multiple organs in humans. J Med Genet 2023; 60:294-300. [PMID: 35790350 DOI: 10.1136/jmedgenet-2022-108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia and Cardiac defects delineate the PDAC syndrome. We aim to identify the cause of PDAC syndrome in patients who do not carry pathogenic variants in RARB and STRA6, which have been previously associated with this disorder. METHODS We sequenced the exome of patients with unexplained PDAC syndrome and performed functional validation of candidate variants. RESULTS We identified bi-allelic variants in WNT7B in fetuses with PDAC syndrome from two unrelated families. In one family, the fetus was homozygous for the c.292C>T (p.(Arg98*)) variant whereas the fetuses from the other family were compound heterozygous for the variants c.225C>G (p.(Tyr75*)) and c.562G>A (p.(Gly188Ser)). Finally, a molecular autopsy by proxy in a consanguineous couple that lost two babies due to lung hypoplasia revealed that both parents carry the p.(Arg98*) variant. Using a WNT signalling canonical luciferase assay, we demonstrated that the identified variants are deleterious. In addition, we found that wnt7bb mutant zebrafish display a defect of the swimbladder, an air-filled organ that is a structural homolog of the mammalian lung, suggesting that the function of WNT7B has been conserved during evolution for the development of these structures. CONCLUSION Our findings indicate that defective WNT7B function underlies a form of lung hypoplasia that is associated with the PDAC syndrome, and provide evidence for involvement of the WNT-β-catenin pathway in human lung, tracheal, ocular, cardiac, and renal development.
Collapse
Affiliation(s)
- Samir Bouasker
- Research Center, University Hospital Centre Sainte-Justine, Montreal H3T 1C5, Québec, Canada
| | - Nisha Patel
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rebecca Greenlees
- Eye Genetics Research Unit, Children's Medical Research Institute, University of Sydney; The Children's Hospital at Westmead, Sydney Children's Hospitals Network; and Save Sight Institute, Sydney, New South Wales, Australia
| | - Diana Wellesley
- Wessex Clinical Genetic Service, University Hospital Southampton, Southampton, UK
| | - Lucas Fares Taie
- Laboratory Genetics in Ophthalmology, INSERM UMR1163, Imagine Institute for Genetic Diseases, Université Paris Descartes-Sorbonne, Paris, Île-de-France, France
| | - Naif A Almontashiri
- Center for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Al Madinah, Saudi Arabia.,Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Julia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Malak Ali Alghamdi
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Boissel
- Research Center, University Hospital Centre Sainte-Justine, Montreal H3T 1C5, Québec, Canada
| | - Jelena Martinovic
- Unit of Fetal Pathology, APHP Hopital Antoine-Beclere, Clamart, Île-de-France, France
| | - Ivan Prokudin
- Eye Genetics Research Unit, Children's Medical Research Institute, University of Sydney; The Children's Hospital at Westmead, Sydney Children's Hospitals Network; and Save Sight Institute, Sydney, New South Wales, Australia
| | - Samantha Holden
- Department of Cellular Pathology, University Hospital Southampton, Southampton, UK
| | - Hardeep-Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Dept of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
| | - Lisa G Riley
- Rare Diseases Functional Genomics Laboratory, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Specialty of Paediatrics and Child Health, Faculty of Medicine and Health, University of Sydney, Sidney, New South Wales, Australia
| | - Christina Nassif
- Research Center, University Hospital Centre Sainte-Justine, Montreal H3T 1C5, Québec, Canada
| | - Tania Attie-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute for Genetic Diseases, Paris, Île-de-France, France
| | - Marguerite Miguet
- Research Center, University Hospital Centre Sainte-Justine, Montreal H3T 1C5, Québec, Canada
| | - Marion Delous
- Equipe GENDEV, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, Université Lyon 1, Université St Etienne, Lyon, Auvergne-Rhône-Alpes, France
| | - Sylvain Ernest
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute for Genetic Diseases, Paris, Île-de-France, France
| | - Julie Plaisancié
- Department of Medical Genetics, Purpan University Hospital, Toulouse, Midi-Pyrénées, France.,Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, Purpan University Hospital, Toulouse, Midi-Pyrénées, France.,INSERM U1214, ToNIC, Université Toulouse III, Toulouse, France
| | - Patrick Calvas
- Department of Medical Genetics, Purpan University Hospital, Toulouse, Midi-Pyrénées, France.,Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
| | - Jean-Michel Rozet
- Laboratory Genetics in Ophthalmology, INSERM UMR1163, Imagine Institute for Genetic Diseases, Université Paris Descartes-Sorbonne, Paris, Île-de-France, France
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, Abu Dhabi, UAE
| | - Fadi F Hamdan
- Research Center, University Hospital Centre Sainte-Justine, Montreal H3T 1C5, Québec, Canada
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, University of Sydney; The Children's Hospital at Westmead, Sydney Children's Hospitals Network; and Save Sight Institute, Sydney, New South Wales, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Jacques L Michaud
- Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal H3T 1J4, Québec, Canada .,Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal, Québec, Canada
| | - Nicolas Chassaing
- Department of Medical Genetics, Purpan University Hospital, Toulouse, Midi-Pyrénées, France .,Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
| |
Collapse
|
16
|
Boisson M, Cordier AG, Martinovic J, Receveur A, Mouka A, Diot R, Egoroff C, Esnault G, Drévillon L, Benachi A, Tachdjian G, Tosca L. Copy number variations analysis in a cohort of 47 fetuses and newborns with congenital diaphragmatic hernia. Prenat Diagn 2022; 42:1627-1635. [PMID: 36403094 PMCID: PMC10100393 DOI: 10.1002/pd.6268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and lung hypoplasia, is a common and severe birth defect that affects around 1 in 4000 live births. However, the etiology of most cases of CDH remains unclear. The aim of this study was to perform a retrospective analysis of copy number variations (CNVs) using a high-resolution array comparative genomic hybridization (array-CGH) in a cohort of fetuses and newborns with CDH. METHODS Forty seven fetuses and newborns with either isolated or syndromic CDH were analyzed by oligonucleotide-based array-CGH Agilent 180K technique. RESULTS A mean of 10.2 CNVs was detected by proband with a total number of 480 CNVs identified based on five categories: benign, likely benign, of uncertain signification, likely pathogenic, and pathogenic. Diagnostic performance was estimated at 19.15% (i.e., likely pathogenic and pathogenic CNVs) for both CDH types. We identified 11 potential candidate genes: COL25A1, DSEL, EYA1, FLNA, MECOM, NRXN1, RARB, SPATA13, TJP2, XIRP2, and ZFPM2. CONCLUSION We suggest that COL25A1, DSEL, EYA1, FLNA, MECOM, NRXN1, RARB, SPATA13, TJP2, XIRP2, and ZFPM2 genes may be related to CDH occurrence. Thus, this study provides a possibility for new methods of a positive diagnosis.
Collapse
Affiliation(s)
- Marie Boisson
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Anne-Gael Cordier
- Service de Gynécologie Obstétrique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France.,Centre de Référence Maladie Rare Hernie de Coupole Diaphragmatique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Jelena Martinovic
- Unité de Fœtopathologie, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Aline Receveur
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Aurélie Mouka
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
| | - Romain Diot
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Catherine Egoroff
- Unité de Fœtopathologie, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Geoffroy Esnault
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Loïc Drévillon
- Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Alexandra Benachi
- Service de Gynécologie Obstétrique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France.,Centre de Référence Maladie Rare Hernie de Coupole Diaphragmatique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Gérard Tachdjian
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
| | - Lucie Tosca
- Service d'Histologie, Embryologie et Cytogénomique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Hasbullah JS, Scott EN, Bhavsar AP, Gunaretnam EP, Miao F, Soliman H, Carleton BC, Ross CJD. All-trans retinoic acid (ATRA) regulates key genes in the RARG-TOP2B pathway and reduces anthracycline-induced cardiotoxicity. PLoS One 2022; 17:e0276541. [PMID: 36331922 PMCID: PMC9635745 DOI: 10.1371/journal.pone.0276541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
The effectiveness of anthracycline chemotherapeutics (e.g., doxorubicin) is limited by anthracycline-induced cardiotoxicity (ACT). A nonsynonymous variant (S427L) in the retinoic acid receptor-γ (RARG) gene has been associated with ACT. This variant causes reduced RARG activity, which is hypothesized to lead to increased susceptibility to ACT through reduced activation of the retinoic acid pathway. This study explored the effects of activating the retinoic acid pathway using a RAR-agonist, all-trans retinoic acid (ATRA), in human cardiomyocytes and mice treated with doxorubicin. In human cardiomyocytes, ATRA induced the gene expression of RARs (RARG, RARB) and repressed the expression of topoisomerase II enzyme genes (TOP2A, TOP2B), which encode for the molecular targets of anthracyclines and repressed downstream ACT response genes. Importantly, ATRA enhanced cell survival of human cardiomyocytes exposed to doxorubicin. The protective effect of ATRA was also observed in a mouse model (B6C3F1/J) of ACT, in which ATRA treatment improved heart function compared to doxorubicin-only treated mice. Histological analyses of the heart also indicated that ATRA treatment reduced the pathology associated with ACT. These findings provide additional evidence for the retinoic acid pathway's role in ACT and suggest that the RAR activator ATRA can modulate this pathway to reduce ACT.
Collapse
Affiliation(s)
- Jafar S. Hasbullah
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erandika P. Gunaretnam
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fudan Miao
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J. D. Ross
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
19
|
Hardcastle A, Berry AM, Campbell IM, Zhao X, Liu P, Gerard AE, Rosenfeld JA, Sisoudiya SD, Hernandez-Garcia A, Loddo S, Di Tommaso S, Novelli A, Dentici ML, Capolino R, Digilio MC, Graziani L, Rustad CF, Neas K, Ferrero GB, Brusco A, Di Gregorio E, Wellesley D, Beneteau C, Joubert M, Van Den Bogaert K, Boogaerts A, McMullan DJ, Dean J, Giuffrida MG, Bernardini L, Varghese V, Shannon NL, Harrison RE, Lam WWK, McKee S, Turnpenny PD, Cole T, Morton J, Eason J, Jones MC, Hall R, Wright M, Horridge K, Shaw CA, Chung WK, Scott DA. Identifying phenotypic expansions for congenital diaphragmatic hernia plus (CDH+) using DECIPHER data. Am J Med Genet A 2022; 188:2958-2968. [PMID: 35904974 PMCID: PMC9474674 DOI: 10.1002/ajmg.a.62919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 01/31/2023]
Abstract
Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.
Collapse
Affiliation(s)
- Amy Hardcastle
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Aliska M. Berry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ian M. Campbell
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Amanda E. Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Saumya D. Sisoudiya
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Sara Loddo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Di Tommaso
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria L. Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria C. Digilio
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ludovico Graziani
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Medical Genetics Unit, Tor Vergata Hospital, Rome, Italy
| | - Cecilie F. Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Giovanni B. Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Città della Salute e della Scienza University Hospital, Torino, Italy
| | | | - Diana Wellesley
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, Hampshire, UK
- University Hospital Southampton, Southampton, Hampshire, UK
| | - Claire Beneteau
- Nantes Université, CHU de Nantes, UF 9321 de Fœtopathologie et Génétique, Nantes, France
| | - Madeleine Joubert
- Nantes Université, CHU de Nantes, UF 9321 de Fœtopathologie et Génétique, Nantes, France
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven–KU Leuven, Leuven, Belgium
| | - Anneleen Boogaerts
- Center for Human Genetics, University Hospitals Leuven–KU Leuven, Leuven, Belgium
| | - Dominic J. McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, UK
| | - John Dean
- Clinical Genetics Service, Ashgrove House, NHS Grampian, Aberdeen, UK
| | - Maria G. Giuffrida
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Nora L Shannon
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rachel E. Harrison
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Wayne W. K. Lam
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, Scotland
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Peter D. Turnpenny
- Clinical Genetics Department, Royal Devon and Exeter Hospital, Exeter, UK
| | - Trevor Cole
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, UK
| | - Jenny Morton
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, UK
| | - Jacqueline Eason
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Marilyn C. Jones
- University of California, San Diego and Rady Children’s Hospital, San Diego, CA, USA
| | - Rebecca Hall
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Wright
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Karen Horridge
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Verma S, Chakraborti S, Singh OP, Pande V, Dixit R, Pandey AV, Pandey KC. Recognition of fold- and function-specific sites in the ligand-binding domain of the thyroid hormone receptor-like family. Front Endocrinol (Lausanne) 2022; 13:981090. [PMID: 36246927 PMCID: PMC9559826 DOI: 10.3389/fendo.2022.981090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The thyroid hormone receptor-like (THR-like) family is the largest transcription factors family belonging to the nuclear receptor superfamily, which directly binds to DNA and regulates the gene expression and thereby controls various metabolic processes in a ligand-dependent manner. The THR-like family contains receptors THRs, RARs, VDR, PPARs, RORs, Rev-erbs, CAR, PXR, LXRs, and others. THR-like receptors are involved in many aspects of human health, including development, metabolism and homeostasis. Therefore, it is considered an important therapeutic target for various diseases such as osteoporosis, rickets, diabetes, etc. METHODS In this study, we have performed an extensive sequence and structure analysis of the ligand-binding domain (LBD) of the THR-like family spanning multiple taxa. We have use different computational tools (information-theoretic measures; relative entropy) to predict the key residues responsible for fold and functional specificity in the LBD of the THR-like family. The MSA of THR-like LBDs was further used as input in conservation studies and phylogenetic clustering studies. RESULTS Phylogenetic analysis of the LBD domain of THR-like proteins resulted in the clustering of eight subfamilies based on their sequence homology. The conservation analysis by relative entropy (RE) revealed that structurally important residues are conserved throughout the LBDs in the THR-like family. The multi-harmony conservation analysis further predicted specificity in determining residues in LBDs of THR-like subfamilies. Finally, fold and functional specificity determining residues (residues critical for ligand, DBD and coregulators binding) were mapped on the three-dimensional structure of thyroid hormone receptor protein. We then compiled a list of natural mutations in THR-like LBDs and mapped them along with fold and function-specific mutations. Some of the mutations were found to have a link with severe diseases like hypothyroidism, rickets, obesity, lipodystrophy, epilepsy, etc. CONCLUSION Our study identifies fold and function-specific residues in THR-like LBDs. We believe that this study will be useful in exploring the role of these residues in the binding of different drugs, ligands, and protein-protein interaction among partner proteins. So this study might be helpful in the rational design of either ligands or receptors.
Collapse
Affiliation(s)
- Sonia Verma
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital, Bern, Switzerland
- Translational Hormone Research Cluster, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Om P. Singh
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Kumaun University, Nainital, Uttrakhand, India
| | - Rajnikant Dixit
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital, Bern, Switzerland
- Translational Hormone Research Cluster, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Kailash C. Pandey
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
21
|
Temple SEL, Ho G, Bennetts B, Boggs K, Vidic N, Mowat D, Christodoulou J, Schultz A, Gayagay T, Roscioli T, Zhu Y, Lunke S, Armstrong D, Harrison J, Kapur N, McDonald T, Selvadurai H, Tai A, Stark Z, Jaffe A. The role of exome sequencing in childhood interstitial or diffuse lung disease. Orphanet J Rare Dis 2022; 17:350. [PMID: 36085161 PMCID: PMC9463757 DOI: 10.1186/s13023-022-02508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children's interstitial and diffuse lung disease (chILD) is a complex heterogeneous group of lung disorders. Gene panel approaches have a reported diagnostic yield of ~ 12%. No data currently exist using trio exome sequencing as the standard diagnostic modality. We assessed the diagnostic utility of using trio exome sequencing in chILD. We prospectively enrolled children meeting specified clinical criteria between 2016 and 2020 from 16 Australian hospitals. Exome sequencing was performed with analysis of an initial gene panel followed by trio exome analysis. A subset of critically ill infants underwent ultra-rapid trio exome sequencing as first-line test. RESULTS 36 patients [median (range) age 0.34 years (0.02-11.46); 11F] were recruited from multiple States and Territories. Five patients had clinically significant likely pathogenic/pathogenic variants (RARB, RPL15, CTCF, RFXANK, TBX4) and one patient had a variant of uncertain significance (VIP) suspected to contribute to their clinical phenotype, with VIP being a novel gene candidate. CONCLUSIONS Trio exomes (6/36; 16.7%) had a better diagnostic rate than gene panel (1/36; 2.8%), due to the ability to consider a broader range of underlying conditions. However, the aetiology of chILD in most cases remained undetermined, likely reflecting the interplay between low penetrant genetic and environmental factors.
Collapse
Affiliation(s)
- Suzanna E L Temple
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia. .,School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.
| | - Gladys Ho
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bruce Bennetts
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kirsten Boggs
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.,Department of Clinical Genetics, Children's Hospital Westmead, Sydney, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, NSW, Australia
| | - Nada Vidic
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.,Australian Genomics Health Alliance, Melbourne, VIC, Australia
| | - David Mowat
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, NSW, Australia
| | - John Christodoulou
- Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia.,Australian Genomics Health Alliance, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - André Schultz
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia.,Department of Respiratory Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Division of Paediatrics, Faculty of Medicine, University of Western Australia, Perth, Australia
| | - Thet Gayagay
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Tony Roscioli
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, NSW, Australia.,Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Ying Zhu
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Sebastian Lunke
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David Armstrong
- Department of Paediatrics, Monash University, Clayton Rd, Clayton, VIC, Australia.,Department of Respiratory and Sleep Medicine, Monash Children's Hospital, Clayton Rd, Clayton, VIC, Australia
| | - Joanne Harrison
- University of Melbourne, Melbourne, VIC, Australia.,Department of Respiratory and Sleep Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Nitin Kapur
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Hiran Selvadurai
- Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia.,Children's Hospital Westmead, Sydney, NSW, Australia
| | - Andrew Tai
- Paediatric Respiratory and Sleep Department, Women's and Children's Hospital, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Zornitza Stark
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.,Department Respiratory and Sleep Medicine, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
22
|
Baker EK, Ulm EA, Belonis A, Brightman DS, Hallinan BE, Leslie ND, Miethke AG, Vawter-Lee M, Wu Y, Pena LDM. Clinically available testing options resulting in diagnosis in post-exome clinic at one medical center. Front Genet 2022; 13:887698. [PMID: 35937981 PMCID: PMC9355124 DOI: 10.3389/fgene.2022.887698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Exome sequencing (ES) became clinically available in 2011 and promised an agnostic, unbiased next-generation sequencing (NGS) platform for patients with symptoms believed to have a genetic etiology. The diagnostic yield of ES has been estimated to be between 25–40% and may be higher in specific clinical scenarios. Those who remain undiagnosed may have no molecular findings of interest on ES, variants of uncertain significance in genes that are linked to human disease, or variants of uncertain significance in candidate genes that are not definitively tied to human disease. Recent evidence suggests that a post-exome evaluation consisting of clinical re-phenotyping, functional studies of candidate variants in known genes, and variant reevaluation can lead to a diagnosis in 5–15% of additional cases. In this brief research study, we present our experience on post-exome evaluations in a cohort of patients who are believed to have a genetic etiology for their symptoms. We have reached a full or partial diagnosis in approximately 18% (6/33) of cases that have completed evaluations to date. We accomplished this by utilizing NGS-based methods that are available on a clinical basis. A sample of these cases highlights the utility of ES reanalysis with updated phenotyping allowing for the discovery of new genes, re-adjudication of known variants, incorporating updated phenotypic information, utilizing functional testing such as targeted RNA sequencing, and deploying other NGS-based testing methods such as gene panels and genome sequencing to reach a diagnosis.
Collapse
Affiliation(s)
- Elizabeth K. Baker
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth A. Ulm
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alyce Belonis
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Diana S. Brightman
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Barbara E. Hallinan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Nancy D. Leslie
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexander G. Miethke
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Marissa Vawter-Lee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yaning Wu
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Loren D. M. Pena
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Loren D. M. Pena,
| |
Collapse
|
23
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
24
|
Sabri Bens M, Dassamiour S, Hambaba L, Akram Mela M, Sami R, M. Al-Mush AA, Benajiba N, Al Masoudi LM. In silico Investigation and BSA Denaturation Inhibitory Activity of Ethyl Acetate and N-butanol Extracts of Centaurea tougourensis Boiss. and Reut. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1296.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Scott DA, Gofin Y, Berry AM, Adams AD. Underlying genetic etiologies of congenital diaphragmatic hernia. Prenat Diagn 2022; 42:373-386. [PMID: 35037267 PMCID: PMC8924940 DOI: 10.1002/pd.6099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is often detectable prenatally. Advances in genetic testing have made it possible to obtain a molecular diagnosis in many fetuses with CDH. Here, we review the aneuploidies, copy number variants (CNVs), and single genes that have been clearly associated with CDH. We suggest that array-based CNV analysis, with or without a chromosome analysis, is the optimal test for identifying chromosomal abnormalities and CNVs in fetuses with CDH. To identify causative sequence variants, whole exome sequencing (WES) is the most comprehensive strategy currently available. Whole genome sequencing (WGS) with CNV analysis has the potential to become the most efficient and effective means of identifying an underlying diagnosis but is not yet routinely available for prenatal diagnosis. We describe how to overcome and address the diagnostic and clinical uncertainty that may remain after genetic testing, and review how a molecular diagnosis may impact recurrence risk estimations, mortality rates, and the availability and outcomes of fetal therapy. We conclude that after the prenatal detection of CDH, patients should be counseled about the possible genetic causes of the CDH, and the genetic testing modalities available to them, in accordance with generally accepted guidelines for pretest counseling in the prenatal setting.
Collapse
Affiliation(s)
- Daryl A. Scott
- Texas Children’s Hospital, Houston, TX, 77030,
USA,Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA,Department of Molecular Physiology and Biophysics, Baylor
College of Medicine, Houston, TX, 77030, USA,Correspondence: Daryl A. Scott, R813, One Baylor
Plaza. BCM225, Houston, TX 77030, USA, Phone: +1 713-203-7242,
| | - Yoel Gofin
- Texas Children’s Hospital, Houston, TX, 77030,
USA,Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA
| | - Aliska M. Berry
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA
| | - April D. Adams
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA,Department of Obstetrics and Gynecology, Division of
Maternal Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes. Am Heart J 2022; 244:1-13. [PMID: 34670123 DOI: 10.1016/j.ahj.2021.10.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.
Collapse
|
27
|
Selzer EB, Blain D, Hufnagel RB, Lupo PJ, Mitchell LE, Brooks BP. Review of Evidence for Environmental Causes of Uveal Coloboma. Surv Ophthalmol 2021; 67:1031-1047. [PMID: 34979194 DOI: 10.1016/j.survophthal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Uveal coloboma is a condition defined by missing ocular tissues and is a significant cause of childhood blindness. It occurs from a failure of the optic fissure to close during embryonic development,and may lead to missing parts of the iris, ciliary body, retina, choroid, and optic nerve. Because there is no treatment for coloboma, efforts have focused on prevention. While several genetic causes of coloboma have been identified, little definitive research exists regarding the environmental causes of this condition. We review the current literature on environmental factors associated with coloboma in an effort to guide future research and preventative counseling related to this condition.
Collapse
Affiliation(s)
- Evan B Selzer
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
28
|
Bendixen C, Brosens E, Chung WK. Genetic Diagnostic Strategies and Counseling for Families Affected by Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:472-481. [PMID: 34911129 DOI: 10.1055/s-0041-1740337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Department of General, Visceral, Vascular and Thoracic Surgery, Unit of Pediatric Surgery, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wendy Kay Chung
- Department of Medicine, Columbia University Irving Medical Center, New York, United States.,Department of Pediatrics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
29
|
Geiculescu I, Saxonhouse MA, Demmer L, Sutsko R, Cosper G, Jones JE. Matthew-Wood Syndrome in Monochorionic, Diamnionic Twins. J Pediatr Genet 2021. [DOI: 10.1055/s-0041-1739386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractMatthew-Wood syndrome represents a rare genetic disorder characterized by diaphragmatic defects, pulmonary hypoplasia, micro- or anophthalmia, and cardiac defects. Most cases are lethal with very few infants living beyond a few years of life. Siblings with this diagnosis have been reported but never twins. In this article, we provided a review and discussion of this syndrome following its presentation in monochorionic, diamnionic twin females.
Collapse
Affiliation(s)
- Irina Geiculescu
- Department of Pediatrics, Levine Children's Hospital, Atrium Healthcare, Charlotte, North Carolina, United States
| | - Matthew A. Saxonhouse
- Division of Neonatology, Levine Children's Hospital, Atrium Healthcare, Charlotte, North Carolina, United States
| | - Laurie Demmer
- Division of Genetics, Levine Children's Hospital, Atrium Healthcare, Charlotte, North Carolina, United States
| | - Ronald Sutsko
- Division of Neonatology, Levine Children's Hospital, Atrium Healthcare, Charlotte, North Carolina, United States
| | - Graham Cosper
- Department of Surgery, Atrium Healthcare, Charlotte, North Carolina, United States
| | - James E. Jones
- Division of Neonatology, Levine Children's Hospital, Atrium Healthcare, Charlotte, North Carolina, United States
| |
Collapse
|
30
|
Tang XH, Gambardella J, Jankauskas S, Wang X, Santulli G, Gudas LJ, Levi R. A Retinoic Acid Receptor β 2 Agonist Improves Cardiac Function in a Heart Failure Model. J Pharmacol Exp Ther 2021; 379:182-190. [PMID: 34389654 PMCID: PMC8626778 DOI: 10.1124/jpet.121.000806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that the selective retinoic acid receptor (RAR) β 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. We hypothesized that by decreasing oxidative stress and consequent fibrogenesis, AC261066 could attenuate the development of contractile dysfunction in post-ischemic heart failure (HF). We tested this hypothesis in vivo using an established murine model of myocardial infarction (MI), obtained by permanent occlusion of the left anterior descending coronary artery. Treating mice with AC261066 in drinking water significantly attenuated the post-MI deterioration of echocardiographic indices of cardiac function, diminished remodeling, and reduced oxidative stress, as evidenced by a decrease in malondialdehyde level and p38 mitogen-activated protein kinase expression in cardiomyocytes. The effects of AC261066 were also associated with a decrease in interstitial fibrosis, as shown by a marked reduction in collagen deposition and α-smooth muscle actin expression. In cardiac murine fibroblasts subjected to hypoxia, AC261066 reversed hypoxia-induced decreases in superoxide dismutase 2 and angiopoietin-like 4 transcriptional levels as well as the increase in NADPH oxidase 2 mRNA, demonstrating that the post-MI cardioprotective effects of AC261066 are associated with an action at the fibroblast level. Thus, AC261066 alleviates post-MI cardiac dysfunction by modulating a set of genes involved in the oxidant/antioxidant balance. These AC261066 responsive genes diminish interstitial fibrogenesis and remodeling. Since MI is a recognized major cause of HF, our data identify RARβ 2 as a potential pharmacological target in the treatment of HF. SIGNIFICANCE STATEMENT: A previous report showed that the selective retinoic acid receptor (RAR) β 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. This study shows that AC261066 attenuates the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure (HF) by modulating a set of genes involved in oxidant/antioxidant balance. Since myocardial infarction is a recognized major cause of HF, these data identify RARβ 2 as a potential pharmacological target in the treatment of HF.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Jessica Gambardella
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Stanislovas Jankauskas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Xujun Wang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Gaetano Santulli
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| |
Collapse
|
31
|
Bendixen C, Reutter H. The Role of De Novo Variants in Patients with Congenital Diaphragmatic Hernia. Genes (Basel) 2021; 12:genes12091405. [PMID: 34573387 PMCID: PMC8466043 DOI: 10.3390/genes12091405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
The genetic etiology of congenital diaphragmatic hernia (CDH), a common and severe birth defect, is still incompletely understood. Chromosomal aneuploidies, copy number variations (CNVs), and variants in a large panel of CDH-associated genes, both de novo and inherited, have been described. Due to impaired reproductive fitness, especially of syndromic CDH patients, and still significant mortality rates, the contribution of de novo variants to the genetic background of CDH is assumed to be high. This assumption is supported by the relatively low recurrence rate among siblings. Advantages in high-throughput genome-wide genotyping and sequencing methods have recently facilitated the detection of de novo variants in CDH. This review gives an overview of the known de novo disease-causing variants in CDH patients.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Unit of Paediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence:
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany;
- Division of Neonatology and Paediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
32
|
Saini A, Almasarweh S, Acosta S, Jayakar P, Janvier M, Wong TC, Salyakina D, Sasaki J. Syndromic Microphthalmia 9: Role of rapid genome sequencing and novel mutations in STRA6 gene. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22126353. [PMID: 34198563 PMCID: PMC8231903 DOI: 10.3390/ijms22126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Collapse
Affiliation(s)
- Giulia Cannata
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
- Correspondence: ; Tel.: +39-0521-7047
| |
Collapse
|
34
|
Yu Q, Biswas S, Ma G, Zhao P, Li B, Li J. Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. eLife 2021; 10:e67315. [PMID: 34085926 PMCID: PMC8192125 DOI: 10.7554/elife.67315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of the transparent cornea affect millions of people worldwide. However, how to maintain and/or regenerate this organ remains unclear. Here, we show that Rela (encoding a canonical NF-κB subunit) ablation in K14+ corneal epithelial stem cells not only disrupts corneal regeneration but also results in age-dependent epithelial deterioration, which triggers aberrant wound-healing processes including stromal remodeling, neovascularization, epithelial metaplasia, and plaque formation at the central cornea. These anomalies are largely recapitulated in normal mice that age naturally. Mechanistically, Rela deletion suppresses expression of Aldh1a1, an enzyme required for retinoic acid synthesis from vitamin A. Retinoic acid administration blocks development of ocular anomalies in Krt14-Cre; Relaf/f mice and naturally aged mice. Moreover, epithelial metaplasia and plaque formation are preventable by inhibition of angiogenesis. This study thus uncovers the major mechanisms governing corneal maintenance, regeneration, and aging and identifies the NF-κB-retinoic acid pathway as a therapeutic target for corneal disorders.
Collapse
MESH Headings
- Age Factors
- Aldehyde Dehydrogenase 1 Family/genetics
- Aldehyde Dehydrogenase 1 Family/metabolism
- Animals
- Burns, Chemical/drug therapy
- Burns, Chemical/etiology
- Burns, Chemical/metabolism
- Burns, Chemical/pathology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cellular Senescence/drug effects
- Corneal Neovascularization/metabolism
- Corneal Neovascularization/pathology
- Corneal Neovascularization/prevention & control
- Corneal Stroma/drug effects
- Corneal Stroma/metabolism
- Corneal Stroma/pathology
- Disease Models, Animal
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/pathology
- Eye Burns/chemically induced
- Eye Burns/drug therapy
- Eye Burns/metabolism
- Eye Burns/pathology
- Mice, Knockout
- Regeneration/drug effects
- Retinal Dehydrogenase/genetics
- Retinal Dehydrogenase/metabolism
- Signal Transduction
- Stem Cells/drug effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Tretinoin/pharmacology
- Mice
Collapse
Affiliation(s)
- Qian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Soma Biswas
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
35
|
Brosens E, Peters NCJ, van Weelden KS, Bendixen C, Brouwer RWW, Sleutels F, Bruggenwirth HT, van Ijcken WFJ, Veenma DCM, Otter SCMCD, Wijnen RMH, Eggink AJ, van Dooren MF, Reutter HM, Rottier RJ, Schnater JM, Tibboel D, de Klein A. Unraveling the Genetics of Congenital Diaphragmatic Hernia: An Ongoing Challenge. Front Pediatr 2021; 9:800915. [PMID: 35186825 PMCID: PMC8852845 DOI: 10.3389/fped.2021.800915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the diaphragm has not developed properly. It may occur either as an isolated anomaly or with additional anomalies. It is thought to be a multifactorial disease in which genetic factors could either substantially contribute to or directly result in the developmental defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number Variations (CNVs) impacting specific genes and loci develop CDH typically in the form of a monogenetic syndrome. These patients often have other associated anatomical malformations. In patients without a known monogenetic syndrome, an increased genetic burden of de novo coding variants contributes to disease development. In early years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes are commonly analyzed with next generation sequencing (NGS) based approaches. While more potential pathogenic variants are being detected, analysis of the data presents a bottleneck-largely due to the lack of full appreciation of the functional consequence and/or relevance of the detected variant. The exact heritability of CDH is still unknown. Damaging de novo alterations are associated with the more severe and complex phenotypes and worse clinical outcome. Phenotypic, genetic-and likely mechanistic-variability hampers individual patient diagnosis, short and long-term morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical follow-up at regular intervals and detailed registries are needed to find associations between long-term morbidity, genetic alterations, and clinical parameters. Since CDH is a relatively rare disorder with only a few recurrent changes large cohorts of patients are needed to identify genetic associations. Retrospective whole genome sequencing of historical patient cohorts using will yield valuable data from which today's patients and parents will profit Trio whole genome sequencing has an excellent potential for future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis and predict clinical prognosis. In this review, we explore the pitfalls and challenges in the analysis and interpretation of genetic information, present what is currently known and what still needs further study, and propose strategies to reap the benefits of genetic screening.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nina C J Peters
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Kim S van Weelden
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Charlotte Bendixen
- Unit of Pediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, Bonn, Germany
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Danielle C M Veenma
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Suzan C M Cochius-Den Otter
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Alex J Eggink
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko Martin Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - J Marco Schnater
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
36
|
Aubert-Mucca M, Pernin-Grandjean J, Marchasson S, Gaston V, Habib C, Meunier I, Sigaudy S, Kaplan J, Roche O, Denis D, Bitoun P, Haye D, Verloes A, Calvas P, Chassaing N, Plaisancié J. Confirmation of FZD5 implication in a cohort of 50 patients with ocular coloboma. Eur J Hum Genet 2020; 29:131-140. [PMID: 32737437 DOI: 10.1038/s41431-020-0695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022] Open
Abstract
Defects in optic fissure closure can lead to congenital ocular coloboma. This ocular malformation, often associated with microphthalmia, is described in various clinical forms with different inheritance patterns and genetic heterogeneity. In recent times, the identification of an increased number of genes involved in numerous cellular functions has led to a better understanding in optic fissure closure mechanisms. Nevertheless, most of these genes are also involved in wider eye growth defects such as micro-anophthalmia, questioning the mechanisms controlling both extension and severity of optic fissure closure defects. However, some genes, such as FZD5, have only been so far identified in isolated coloboma. Thus, to estimate the frequency of implication of different ocular genes, we screened a cohort of 50 patients affected by ocular coloboma by using targeted sequencing of 119 genes involved in ocular development. This analysis revealed seven heterozygous (likely) pathogenic variants in RARB, MAB21L2, RBP4, TFAP2A, and FZD5. Surprisingly, three out of the seven variants detected herein were novel disease-causing variants in FZD5 identified in three unrelated families with dominant inheritance. Although molecular diagnosis rate remains relatively low in patients with ocular coloboma (14% (7/50) in this work), these results, however, highlight the importance of genetic screening, especially of FZD5, in such patients. Indeed, in our series, FZD5 variants represent half of the genetic causes, constituting 6% (3/50) of the patients who benefited from a molecular diagnosis. Our findings support the involvement of FZD5 in ocular coloboma and provide clues for screening this gene during current diagnostic procedures.
Collapse
Affiliation(s)
- Marion Aubert-Mucca
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | | | | | - Veronique Gaston
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Christophe Habib
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Isabelle Meunier
- Centre de Référence des Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, Institut de Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, AP-HM, CHU Timone Enfants, Marseille, France
| | - Josseline Kaplan
- Laboratoire de Génétique Ophtalmologique, INSERM U1163 Institut Imagine, Paris, France
| | - Olivier Roche
- Département d'Ophtalmologie, IHU Necker-Enfants-Malades, Université Paris-Descartes, Paris, France
| | - Danièle Denis
- Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Marseille, France
| | - Pierre Bitoun
- Département d'Ophtalmologie, SIDVA 91, Juvisy-sur-Orge, France
| | - Damien Haye
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France.,INSERM U1056, UDEAR, Equipe 4, Université Toulouse III, Toulouse, France.,Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France.,INSERM U1056, UDEAR, Equipe 4, Université Toulouse III, Toulouse, France.,Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France. .,INSERM U1056, UDEAR, Equipe 4, Université Toulouse III, Toulouse, France. .,Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France.
| |
Collapse
|
37
|
Eintracht J, Corton M, FitzPatrick D, Moosajee M. CUGC for syndromic microphthalmia including next-generation sequencing-based approaches. Eur J Hum Genet 2020; 28:679-690. [PMID: 31896778 PMCID: PMC7171178 DOI: 10.1038/s41431-019-0565-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Marta Corton
- Department of Genetics, IIS-University Hospital Fundación Jiménez Díaz-CIBERER, Madrid, Spain
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
38
|
Harding P, Brooks BP, FitzPatrick D, Moosajee M. Anophthalmia including next-generation sequencing-based approaches. Eur J Hum Genet 2020; 28:388-398. [PMID: 31358957 PMCID: PMC7029013 DOI: 10.1038/s41431-019-0479-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/06/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Name of the disease (synonyms) See Table 1, Column 1-"Name of disease" and Column 2-"Alternative names". OMIM# of the disease See Table 1, Column 3-"OMIM# of the disease". Name of the analysed genes or DNA/chromosome segments and OMIM# of the gene(s) Core genes (irrespective of being tested by Sanger sequencing or next-generation sequencing): See Table 1, Column 4-"Cytogenetic location", Column 5-"Associated gene(s)" and Column 6-"OMIM# of associated gene(s)". Additional genes (if tested by next-generation sequencing, including Whole exome/genome sequencing and panel sequencing): See Table 2, Column 1-"Gene", Column 2-"Alternative names", Column 3-"OMIM# of gene" and Column 4-"Cytogenetic location". Review of the analytical and clinical validity as well as of the clinical utility of DNA-based testing for mutations in the gene(s) in diagnostic, predictive and prenatal settings, and for risk assessment in relatives.
Collapse
Affiliation(s)
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, MD, USA
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
39
|
George A, Cogliati T, Brooks BP. Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Exp Eye Res 2020; 193:107940. [PMID: 32032630 DOI: 10.1016/j.exer.2020.107940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Optic fissure closure defects result in uveal coloboma, a potentially blinding condition affecting between 0.5 and 2.6 per 10,000 births that may cause up to 10% of childhood blindness. Uveal coloboma is on a phenotypic continuum with microphthalmia (small eye) and anophthalmia (primordial/no ocular tissue), the so-called MAC spectrum. This review gives a brief overview of the developmental biology behind coloboma and its clinical presentation/spectrum. Special attention will be given to two prominent, syndromic forms of coloboma, namely, CHARGE (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies/deafness) and COACH (Cerebellar vermis hypoplasia, Oligophrenia, Ataxia, Coloboma, and Hepatic fibrosis) syndromes. Approaches employed to identify genes involved in optic fissure closure in animal models and recent advances in live imaging of zebrafish eye development are also discussed.
Collapse
Affiliation(s)
- Aman George
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Tiziana Cogliati
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA.
| |
Collapse
|
40
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that is associated with significant morbidity and mortality, especially when associated with additional congenital anomalies. Both environmental and genetic factors are thought to contribute to CDH. The genetic contributions to CDH are highly heterogeneous and incompletely defined. No one genetic cause accounts for more than 1-2% of CDH cases. In this review, we summarize the known genetic causes of CDH from chromosomal anomalies to individual genes. Both de novo and inherited variants contribute to CDH. Genes causing CDH are increasingly identified from animal models and from genomic strategies including exome and genome sequencing in humans. CDH genes are often transcription factors, genes involved in cell migration or the components of extracellular matrix. We provide clinical genetic testing strategies in the clinical evaluation that can identify a genetic cause in up to ∼30% of patients with non-isolated CDH and can be useful to refine prognosis, identify associated medical and neurodevelopmental issues to address, and inform family planning options.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Rebecca R. Hernan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
41
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
42
|
Kalaskar VK, Alur RP, Li LK, Thomas JW, Sergeev YV, Blain D, Hufnagel RB, Cogliati T, Brooks BP. High-throughput custom capture sequencing identifies novel mutations in coloboma-associated genes: Mutation in DNA-binding domain of retinoic acid receptor beta affects nuclear localization causing ocular coloboma. Hum Mutat 2019; 41:678-695. [PMID: 31816153 PMCID: PMC7027867 DOI: 10.1002/humu.23954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022]
Abstract
Uveal coloboma is a potentially blinding congenital ocular malformation caused by the failure of optic fissure closure during the fifth week of human gestation. We performed custom capture high‐throughput screening of 38 known coloboma‐associated genes in 66 families. Suspected causative novel variants were identified in TFAP2A and CHD7, as well as two previously reported variants of uncertain significance in RARB and BMP7. The variant in RARB, unlike previously reported disease mutations in the ligand‐binding domain, was a missense change in the highly conserved DNA‐binding domain predicted to affect the protein's DNA‐binding ability. In vitro studies revealed lower steady‐state protein levels, reduced transcriptional activity, and incomplete nuclear localization of the mutant RARB protein compared with wild‐type. Zebrafish studies showed that human RARB messenger RNA partially reduced the ocular phenotype caused by morpholino knockdown of rarga gene, a zebrafish homolog of human RARB. Our study indicates that sequence alterations in known coloboma genes account for a small percentage of coloboma cases and that mutations in the RARB DNA‐binding domain could result in human disease.
Collapse
Affiliation(s)
- Vijay K Kalaskar
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Ramakrishna P Alur
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - LeeAnn K Li
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - James W Thomas
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Yuri V Sergeev
- Protein Biochemistry and Molecular Modeling Group, OGVFB, NEI, NIH, Bethesda, Maryland
| | - Delphine Blain
- Ophthalmic Clinical Genetics Section, OGVFB, NEI, NIH, Bethesda, Maryland
| | - Robert B Hufnagel
- Medical Genetics and Ophthalmic Genomics Unit, OGVFB, NEI, NIH, Bethesda, Maryland
| | - Tiziana Cogliati
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Brian P Brooks
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland.,Ophthalmic Clinical Genetics Section, OGVFB, NEI, NIH, Bethesda, Maryland
| |
Collapse
|
43
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
45
|
Jakubiuk-Tomaszuk A, Murcia Pienkowski V, Zietkiewicz S, Rydzanicz M, Kosińska J, Stawiński P, Szumiński M, Płoski R. Syndromic chorioretinal coloboma associated with heterozygous de novo RARA mutation affecting an amino acid critical for retinoic acid interaction. Clin Genet 2019; 96:371-375. [PMID: 31343737 DOI: 10.1111/cge.13611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/21/2019] [Indexed: 11/26/2022]
Abstract
Retinoid acid receptors (RAR) are transcription factors that bind retinoic acid (RA), a metabolite of vitamin A. RARs are composed of three subunits encoded by RARA, RARB and RARG. In humans, RARB defects cause syndromic microphthalmia. So far, no germline pathogenic variants have been identified in RARA or RARG. We describe a girl with a de novo mutation NM_000964 c.826C > T (p.Arg276Trp) in RARA with symptoms overlapping those described in RARB patients (coloboma, muscular hypotonia, dilated pulmonary artery, ectopic kidney). RARA Arg276 residue is functionally important, as it was previously shown that its substitution for Ala or Gln causes a 50- or 21-fold impairment of RA binding, respectively. Moreover, in leukemic cells, the p.Arg611Trp mutation in a chimeric PML/RARA gene (corresponding to the RARA p.Arg276Trp detected in our patient) conferred resistance to therapy by decreasing binding of all-trans RA. The functional effect of RARA p.Arg276Trp was further confirmed by in silico modeling which showed that binding of RA by the Trp276 variant was similarly defective as in the deleterious model Ala276 mutant. We propose that RARA p.Arg276Trp causes the disease by affecting RA interaction with the RARA receptor.
Collapse
Affiliation(s)
- Anna Jakubiuk-Tomaszuk
- Department of Pediatric Neurology and Rehabilitation, Medical University of Bialystok, Bialystok, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Szymon Zietkiewicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | | | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Michał Szumiński
- Department of Pediatric Ophthalmology, Medical University of Bialystok, Bialystok, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138:937-955. [DOI: 10.1007/s00439-019-02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
|
47
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
48
|
Nobile S, Pisaneschi E, Novelli A, Carnielli VP. A rare mutation of retinoic acid receptor-β associated with lethal neonatal Matthew-Wood syndrome. Clin Dysmorphol 2019; 28:74-77. [PMID: 30480585 DOI: 10.1097/mcd.0000000000000251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stefano Nobile
- Division of Neonatology, Salesi Children's Hospital, Ancona
| | - Elisa Pisaneschi
- Medical Genetics Lab, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Lab, Bambino Gesù Pediatric Hospital, Rome, Italy
| | | |
Collapse
|
49
|
Andijani AA, Shajira ES, Abushaheen A, Al-Matary A. Microphthalmia Syndrome 9: Case Report of a Newborn Baby with Pulmonary Hypoplasia, Diaphragmatic Eventration, Microphthalmia, Cardiac Defect and Severe Primary Pulmonary Hypertension. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:354-360. [PMID: 30880327 PMCID: PMC6434610 DOI: 10.12659/ajcr.912873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patient: Male, 1 Final Diagnosis: PDAC Symptoms: Respiratory failure Medication: — Clinical Procedure: — Specialty: Pediatrics and Neonatology
Collapse
Affiliation(s)
- Abdurahman A Andijani
- Neonatal Intensive Care Unit, King Fahad Medical City, Children Specialized Hospital, Riyadh, Saudi Arabia
| | - Eman S Shajira
- Department of Pediatrics, Bahrain Defense Force Hospital, Riffa, Bahrain
| | | | - Abdulrahman Al-Matary
- Neonatal Intensive Care Unit, King Fahad Medical City, Children Specialized Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Foster KJ, Zhang SQ, Braddock SR, Torti E, Chikarmane R, Sotelo-Avila C, Greenspon J. Retinoic acid receptor beta variant-related colonic hypoganglionosis. Am J Med Genet A 2019; 179:817-821. [PMID: 30790422 DOI: 10.1002/ajmg.a.61078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/22/2023]
Abstract
Retinoic acid receptor beta (RARB) variants are heavily linked to pathologies of neural crest cell migration. The purpose of this report is to present a 23-month-old male with the previously described R387C RARB gain-of-function variant whose gastrointestinal issues and long-term constipation lead to the discovery of colonic hypoganglionosis. This case further delineates the pattern of malformation associated with RARB variants. The findings are also consistent with the known etiology of aganglionic colon due to failed neural crest cell migration.
Collapse
Affiliation(s)
- Katharine J Foster
- Department of Surgery, Division of Pediatrics Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Stephanie Q Zhang
- Department of Surgery, Division of Pediatrics Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Stephen R Braddock
- Department of Pediatrics, Division of Medical Genetics, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Erin Torti
- Department of Pediatrics, Division of Medical Genetics, Saint Louis University School of Medicine, Saint Louis, Missouri
| | | | - Cirilo Sotelo-Avila
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Jose Greenspon
- Department of Surgery, Division of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri
| |
Collapse
|