1
|
Li W, Xu W. Genetic and phenotypic heterogeneity of tooth agenesis: An update including candidate genes. Arch Oral Biol 2025; 175:106270. [PMID: 40252478 DOI: 10.1016/j.archoralbio.2025.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE This study aims to further investigate the genetic etiology as well as the corresponding characteristics of tooth agenesis (TA). It focuses on expanding the gene spectrum and exploring genotype-phenotype correlations and potential candidate genes for TA. DESIGN The narrative review approach was conducted, providing a comprehensive perspective of tooth agenesis-related literature. RESULTS We describe the (candidate) causal genes of syndromic TA and nonsyndromic TA respectively. There is overlap between the gene spectrum of the two forms. Tooth phenotypes (either the number of missing teeth or the malformations) of syndromic form are more severe than that of nonsyndromic form. The phenomenon even exists among family members carried the same variant, highlighting the disorder's complexity and the causal genes' expression variability. Besides, the candidate genes, corresponding functional and case evidence are updated, which contributes to improve the diagnosis of TA. CONCLUSIONS TA is a group of complex disorder regulated by multiple genetic signaling pathways. We review the previously known and novel found genes/candidate genes related to TA, emphasizing the genetic and phenotypic heterogeneity. The enlarged spectrum is useful for further promoting the understanding of TA and early diagnosis. It is suggested that molecular diagnosis is particularly vital for early management and genetic counseling.
Collapse
Affiliation(s)
- Wantao Li
- Department of Stomatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Wenjing Xu
- Department of Orthodontics, Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China.
| |
Collapse
|
2
|
Breakey W, Fell M, Burge J, Davies A, Sainsbury D, Tanikawa D, Chong D. Van Der Woude in Unilateral Cleft Lip: Phenotypic Patterns and Surgical Adaptations. J Craniofac Surg 2025:00001665-990000000-02620. [PMID: 40208953 DOI: 10.1097/scs.0000000000011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Van der Woude syndrome is synonymous with a severe phenotypic expression of cleft lip and palate. Traditionally, the severity of unilateral cleft lip has been associated to the width of a cleft. The authors examine the presentation of the unilateral cleft lip in Van der Woude syndrome, with a focus on the lateral lip element. METHODS This is a retrospective, observational study of patients with a unilateral cleft lip and palate, a diagnosis of Van der Woude syndrome and preoperative clinical images treated at The Royal Children's Hospital, Melbourne, Australia; Royal Victoria Infirmary, Newcastle upon Tyne, UK; or Menino Jesus Municipal Hospital, São Paulo, Brazil. Patient images were classified into different levels of lateral element hypoplasia according to the Melbourne Classification. RESULTS Eight patients with Van der Woude syndrome and unilateral cleft lip and palate were identified across the 3 hospital sites. All 8 patients had left-sided unilateral cleft lip and palate and Melbourne Classification type 2 tissue hypoplasia, with shortened vertical lip and red vermillion height. CONCLUSIONS This cohort of children with unilateral cleft lip and palate in the setting of Van der Woude syndrome presented with a left-sided preponderance and type 2 hypoplasia of the lateral lip element. It is important to observe the presence of hypoplasia in the lateral lip element when attempting to balance any cleft lip repair. Technical nuances are presented, which may assist in improving appearance outcomes.
Collapse
Affiliation(s)
- Will Breakey
- Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Matthew Fell
- The Welsh Centre for Cleft Lip and Palate, Morriston Hospital, Swansea
| | - Jonathan Burge
- Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Amy Davies
- The Cleft Collective, University of Bristol, Bristol
| | - David Sainsbury
- Department of Plastic Surgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Daniela Tanikawa
- Department of Plastic Surgery, Menino Jesus Municipal Hospital, São Paulo, Brazil
| | - David Chong
- Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ho SS, Mills RE. Domain-specific embeddings uncover latent genetics knowledge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643817. [PMID: 40166296 PMCID: PMC11957060 DOI: 10.1101/2025.03.17.643817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The inundating rate of scientific publishing means every researcher will miss new discoveries from overwhelming saturation. To address this limitation, we employ natural language processing to overcome human limitations in reading, curation, and knowledge synthesis, with domain-specific applications to genetics and genomics. We construct a corpus of 3.5 million normalized genetics and genomics abstracts and implement both semantic and network-based embedding models. Our methods not only capture broad biological concepts and relationships but also predict complex phenomena such as gene expression. Through a rigorous temporal validation framework, we demonstrate that our embeddings successfully predict gene-disease associations, cancer driver genes, and experimentally-verified protein interactions years before their formal documentation in literature. Additionally, our embeddings successfully predict experimentally verified gene-gene interactions absent from the literature. These findings demonstrate that substantial undiscovered knowledge exists within the collective scientific literature and that computational approaches can accelerate biological discovery by identifying hidden connections across the fragmented landscape of scientific publishing.
Collapse
Affiliation(s)
- S. S. Ho
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - R. E. Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Adelizzi E, Rhea L, Mitvalsky C, Pek S, Doolittle B, Dunnwald M. The ectodermal loss of ARHGAP29 alters epithelial morphology and organization and disrupts murine palatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642653. [PMID: 40161602 PMCID: PMC11952475 DOI: 10.1101/2025.03.11.642653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Orofacial clefts, including cleft palate (CP), are among the most common types of birth defects. CP specifically, results from a failure of palatal shelf fusion during development. Previous studies have shown that mutations in RhoA GTPase Activating Protein 29 ( ARHGAP29) are linked to CP, yet the role and tissue-specific requirements for ARHGAP29 during palatogenesis remain unknown. Here, we use tissue-specific deletion of Arhgap29 in mice to provide the first direct evidence that ARHGAP29 is essential for proper palatal elevation and fusion. We demonstrate that ectodermal conditional loss of Arhgap29 induces a significant delay in the fusion of palatal shelves at embryonic (E) day 14.5 and an incomplete yet significantly penetrant cleft palate at E18.5 - neither of which are observed when Arhgap29 is lost later in development using K14-Cre. Phenotypic analyses of palatal shelves at E14.5 reveal a disorganized and thicker epithelium at the tip of the shelves. Loss of Arhgap29 increases palate epithelial cell area and upregulates alpha-smooth muscle actin and phospho-myosin regulatory light chain implicating cell morphology and contractility as drivers of CP. Summary statement This study in mice is the first direct evidence that ARHGAP29 is essential for proper palatal elevation and fusion. Loss of Arhgap29 alters oral epithelial morphology and upregulates contractility proteins.
Collapse
|
5
|
Robinson KR, Curtis SW, Paschall JE, Beaty TH, Butali A, Buxó CJ, Cutler DJ, Epstein MP, Hecht JT, Uribe LM, Shaw GM, Murray JC, Brand H, Weinberg SM, Marazita ML, Doheny KF, Leslie-Clarkson EJ. Distinguishing syndromic and nonsyndromic cleft palate through analysis of protein-altering de novo variants in 816 trios. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323233. [PMID: 40093200 PMCID: PMC11908282 DOI: 10.1101/2025.03.03.25323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
De novo variants (DNs) are sporadically occurring variants that most commonly arise in the germline and are present in offspring but absent in both parents. As they are not under selective pressure, they may be enriched for disease-causing alleles and have been implicated in multiple rare genetic disorders. Cleft palate (CP) is a common craniofacial congenital anomaly occurring in ~1 in 1700 live births. Genome-wide association studies for CP have found fewer than a dozen loci, while exome and targeted sequencing studies in family-based and case-control cohorts often lack statistical power to conclusively identify causal genes. Based on previous work by our group and others, deciphering the genetic architecture of CP and gene discovery efforts are complicated by the heterogeneous nature of the disorder. We aggregated sequence data for 816 case-parent trios with CP, representing all subtypes of CP and roughly evenly split between isolated and syndromic presentations. We hypothesized there would be a burden of DNs in CP probands and tested this hypothesis in the full cohort and various phenotypic subgroupings. We identified global enrichment of protein-altering DNs (1.36, p=2.39×10-22), and exome-wide significant (p<1.3×10-6) gene-specific enrichment for SATB2, MEIS2, COL2A1, ZC4H2, EFTUD2, KAT6B, and ANKRD11. We found a statistically significant higher enrichment of loss-of-function and missense DNs in syndromic (1.49, p=2.84×10-19) versus nonsyndromic probands (1.25, p=4.01×10-7) but no differences between CP subtypes. We also evaluated biological differences, identifying distinct enrichments across two single cell RNA sequencing datasets: mouse palate at the time of palate fusion and human embryos at post-conceptional weeks 3-5. Altogether, we show DNs are a contributor to CP risk, and that combined analysis can enhance our ability to find genetic associations that would otherwise be undetected.
Collapse
Affiliation(s)
- Kelsey R Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Justin E Paschall
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Azeez Butali
- Department of Oral Biology, Radiology, and Medicine, University of Iowa, Iowa City, IA
| | - Carmen J Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School University of Texas Health at Houston, Houston, TX
| | - Lina Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kimberly F Doheny
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
6
|
Mathiyalagan N, Johnson TK, Di Pastena Z, Fuller JN, Miles LB, Dworkin S. Loss of the epithelial transcription factor grhl3 leads to variably penetrant developmental phenotypes in zebrafish. Dev Dyn 2025. [PMID: 39976312 DOI: 10.1002/dvdy.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Environmental influence is critical for embryogenesis but is significantly under-appreciated under lab conditions, which are not typically designed to robustly test environmental variability. Here, we report environmental effects on the developmental phenotype of zebrafish lacking the transcription factor Grainyhead-like 3 (grhl3), a highly conserved gene that is pivotal in epithelial barrier formation, neurulation, craniofacial development, and convergence-extension. RESULTS We had previously reported that deletion of grhl3 led to embryonic lethality by 11 h post-fertilization (hpf); however, housing these grhl3-lines in a different aquatic facility led to substantial differences in phenotypic presentation in grhl3-nullizygous (grhl3-/-) embryos. We found that grhl3-/- embryos presented with three distinct phenotypes, characterized by significant reductions in body length, aberrant orofacial cavity formation and craniofacial morphogenesis and impaired intestinal barrier maintenance. CONCLUSIONS Our study describes a new model of partial phenotypic penetrance in genetically identical embryos. This may serve as a valuable model system in which to understand gene-environment interactions in developmental and epithelial homeostasis.
Collapse
Affiliation(s)
- Nishanthi Mathiyalagan
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), La Trobe University, Bundoora, Victoria, Australia
| | - Travis K Johnson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Zachary Di Pastena
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), La Trobe University, Bundoora, Victoria, Australia
| | - Jarrad N Fuller
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), La Trobe University, Bundoora, Victoria, Australia
| | - Lee B Miles
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sebastian Dworkin
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Robinson K, Singh SK, Walkup RB, Fawwal DV, Adeyemo WL, Beaty TH, Butali A, Buxó CJ, Chung WK, Cutler DJ, Epstein MP, Fashina A, Gasser B, Gowans LJJ, Hecht JT, Uribe LM, Scott DA, Shaw GM, Thomas MA, Weinberg SM, Brand H, Marazita ML, Lipinski RJ, Murray JC, Cornell RA, Leslie-Clarkson EJ. Rare variants in PRKCI cause Van der Woude syndrome and other features of peridermopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.17.25320742. [PMID: 39867391 PMCID: PMC11759255 DOI: 10.1101/2025.01.17.25320742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis. Both IRF6 and GRHL3 function in a transcriptional regulatory network governing differentiation of periderm, a single layer of epithelial cells that prevents pathological adhesions during palatogenesis. Disruption of this layer results in a spectrum of phenotypes ranging from lip pits and OFCs to severe pterygia and other congenital anomalies that can be incompatible with life. Understanding the mechanisms of peridermopathies is vital in improving health outcomes for affected individuals. We reasoned that genes encoding additional members of the periderm gene regulatory network, including kinases acting upstream of IRF6 (i.e., atypical protein kinase C family members, RIPK4, and CHUK), are candidates to harbor variants resulting in VWS. Consistent with this prediction, we identified 6 de novo variants (DNs) and 11 rare variants in PRKCI, an atypical protein kinase C, in 17 individuals with clinical features consistent with syndromic OFCs and peridermopathies. Of the identified DNs, 4 were identical p.(Asn383Ser) variants in unrelated individuals with syndromic OFCs, indicating a likely hotspot mutation. We also performed functional validation of 12 variants using the enveloping layer in zebrafish embryos, a structure analogous to the periderm. Three patient-specific alleles (p.Arg130His, p.(Asn383Ser), and p.Leu385Phe) were confirmed to be loss-of-function variants. In summary, we identified PRKCI as a novel causal gene for VWS and syndromic OFC with other features of peridermopathies.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Sunil K. Singh
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Walkup
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Azeez Butali
- Department of Oral Biology, Radiology, and Medicine, University of Iowa, Iowa City, IA, USA
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Azeez Fashina
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | | - Lord JJ Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School University of Texas Health at Houston, Houston, TX, USA
| | - Lina Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mary Ann Thomas
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
8
|
Rahimov F, Nieminen P, Kumari P, Juuri E, Nikopensius T, Paraiso K, German J, Karvanen A, Kals M, Elnahas AG, Karjalainen J, Kurki M, Palotie A, FinnGen, Estonian Biobank Research Team, Heliövaara A, Esko T, Jukarainen S, Palta P, Ganna A, Patni AP, Mar D, Bomsztyk K, Mathieu J, Ruohola-Baker H, Visel A, Fakhouri WD, Schutte BC, Cornell RA, Rice DP. High incidence and geographic distribution of cleft palate in Finland are associated with the IRF6 gene. Nat Commun 2024; 15:9568. [PMID: 39500877 PMCID: PMC11538390 DOI: 10.1038/s41467-024-53634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
In Finland, the frequency of isolated cleft palate (CP) is higher than that of isolated cleft lip with or without cleft palate (CL/P). This trend contrasts to that in other European countries but its genetic underpinnings are unknown. We conducted a genome-wide association study in the Finnish population and identified rs570516915, a single nucleotide polymorphism highly enriched in Finns, as strongly associated with CP (P = 5.25 × 10-34, OR = 8.65, 95% CI 6.11-12.25), but not with CL/P (P = 7.2 × 10-5), with genome-wide significance. The risk allele frequency of rs570516915 parallels the regional variation of CP prevalence in Finland, and the association was replicated in independent cohorts of CP cases from Finland (P = 8.82 × 10-28) and Estonia (P = 1.25 × 10-5). The risk allele of rs570516915 alters a conserved binding site for the transcription factor IRF6 within an enhancer (MCS-9.7) upstream of the IRF6 gene and diminishes the enhancer activity. Oral epithelial cells derived from CRISPR-Cas9 edited induced pluripotent stem cells demonstrate that the CP-associated allele of rs570516915 concomitantly decreases the binding of IRF6 and the expression level of IRF6, suggesting impaired IRF6 autoregulation as a molecular mechanism underlying the risk for CP.
Collapse
Affiliation(s)
- Fedik Rahimov
- Department of Human Genetics, Genomics Research Center, AbbVie Inc, North Chicago, IL, 60064, USA
| | - Pekka Nieminen
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Emma Juuri
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00029 HUS, Finland
| | - Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Kitt Paraiso
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
| | - Jakob German
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Antti Karvanen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Abdelrahman G Elnahas
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | | | - Arja Heliövaara
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00029 HUS, Finland
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Sakari Jukarainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Priit Palta
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Anjali P Patni
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Daniel Mar
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, CA, 95343, USA
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brian C Schutte
- Department of Microbiology, Genetics and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland.
| |
Collapse
|
9
|
Zhao H, Zhong W, Huang W, Ning G, Zhang J, Zhang M, Meng P, Zhang Y, Zhang Q, Zhu H, Maimaitili G, Ding Y, Li W, Liang W, Zhou Z, Wang Q, Chen F, Lin J. Whole-exome sequencing identifies ECPAS as a novel potentially pathogenic gene in multiple hereditary families with nonsyndromic orofacial cleft. Protein Cell 2024; 15:783-789. [PMID: 38695759 PMCID: PMC11443446 DOI: 10.1093/procel/pwae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Huaxiang Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenjie Zhong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 400016, China
| | - Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Guozhu Ning
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524023, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
| | - Mengqi Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Peiqi Meng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Qian Zhang
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hongping Zhu
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100191, China
| | - Gulibaha Maimaitili
- The Second Affiliated Hospital of Xinjiang Medical University and Xinjiang Key Laboratory of Neurological Disorder Research, Urumqi 830028, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710049, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
| | - Wei Liang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
| | - Zhibo Zhou
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100191, China
| | - Qiang Wang
- Innovation Centre of Ministry of Education for Development and Diseases, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Feng Chen
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100191, China
| |
Collapse
|
10
|
Kaushik N, Jaiswal A, Bhartiya P, Choi EH, Kaushik NK. TFCP2 as a therapeutic nexus: unveiling molecular signatures in cancer. Cancer Metastasis Rev 2024; 43:959-975. [PMID: 38451384 DOI: 10.1007/s10555-024-10175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Pradeep Bhartiya
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
11
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Seaberg A, Awotoye W, Qian F, Machado-Paula LA, Dunlay L, Butali A, Murray J, Moreno-Uribe L, Petrin AL. DNA Methylation Effects on Van der Woude Syndrome Phenotypic Variability. Cleft Palate Craniofac J 2024:10556656241269495. [PMID: 39109995 PMCID: PMC11802890 DOI: 10.1177/10556656241269495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE Van der Woude Syndrome (VWS) presents with combinations of lip pits (LP) and cleft lip and/or cleft palate (CL/P, CPO). VWS phenotypic heterogeneity even amongst relatives, suggests that epigenetic factors may act as modifiers. IRF6, causal for 70% of VWS cases, and TP63 interact in a regulatory loop coordinating epithelial proliferation and differentiation in palatogenesis. We hypothesize that differential DNA methylation within IRF6 and TP63 regulatory regions underlie VWS phenotypic discordance. METHODS DNA methylation of CpG sites in IRF6 and TP63 promoters and in an IRF6 enhancer element was compared amongst blood or saliva DNA samples of 78 unrelated cases. Analyses were done separately for blood and saliva, within each sex and in combination, and to address cleft type (CL/P ± LP vs. CPO ± LP) and phenotypic severity (any cleft + LP vs. any cleft only). RESULTS For cleft type, blood samples showed higher IRF6 and TP63 promoter methylation on males with CPO ± LP compared to CL/P ± LP and on individuals with CPO ± LP compared to those with CL/P ± LP, respectively. Saliva samples showed higher IRF6 enhancer methylation on individuals with CPO ± LP compared to CL/P ± LP and contrary to above, lower TP63 promoter methylation on CPO ± LP compared to CL/P ± LP. For phenotypic severity, blood samples showed no differences; however, saliva samples showed higher IRF6 promoter methylation in individuals with any cleft + LP compared to those without lip pits. CONCLUSION We observed differential methylation in IRF6 and TP63 regulatory regions associated with cleft type and phenotypic severity, indicating that epigenetic changes in IRF6 and TP63 can contribute to phenotypic heterogeneity in VWS.
Collapse
Affiliation(s)
- Amanda Seaberg
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Fang Qian
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Lindsey Dunlay
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jeff Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lina Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Aline L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Rahimov F, Nieminen P, Kumari P, Juuri E, Nikopensius T, Paraiso K, German J, Karvanen A, Kals M, Elnahas AG, Karjalainen J, Kurki M, Palotie A, FinnGen, Estonian Biobank Research Team, Heliövaara A, Esko T, Jukarainen S, Palta P, Ganna A, Patni AP, Mar D, Bomsztyk K, Mathieu J, Ruohola-Baker H, Visel A, Fakhouri WD, Schutte BC, Cornell RA, Rice DP. High incidence and geographic distribution of cleft palate cases in Finland are associated with a regulatory variant in IRF6. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310146. [PMID: 39040165 PMCID: PMC11261923 DOI: 10.1101/2024.07.09.24310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In Finland the frequency of isolated cleft palate (CP) is higher than that of isolated cleft lip with or without cleft palate (CL/P). This trend contrasts to that in other European countries but its genetic underpinnings are unknown. We performed a genome-wide association study for orofacial clefts, which include CL/P and CP, in the Finnish population. We identified rs570516915, a single nucleotide polymorphism that is highly enriched in Finns and Estonians, as being strongly associated with CP ( P = 5.25 × 10 -34 , OR = 8.65, 95% CI 6.11-12.25), but not with CL/P ( P = 7.2 × 10 -5 ), with genome-wide significance. The risk allele frequency of rs570516915 parallels the regional variation of CP prevalence in Finland, and the association was replicated in independent cohorts of CP cases from Finland ( P = 8.82 × 10 -28 ) and Estonia ( P = 1.25 × 10 -5 ). The risk allele of rs570516915 disrupts a conserved binding site for the transcription factor IRF6 within a previously characterized enhancer upstream of the IRF6 gene. Through reporter assay experiments we found that the risk allele of rs570516915 diminishes the enhancer activity. Oral epithelial cells derived from CRISPR-Cas9 edited induced pluripotent stem cells demonstrate that the CP-associated allele of rs570516915 concomitantly decreases the binding of IRF6 and the expression level of IRF6 , suggesting impaired IRF6 autoregulation as a molecular mechanism underlying the risk for CP.
Collapse
|
14
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Antiguas A, Dunnwald M. A novel noncanonical function for IRF6 in the recycling of E-cadherin. Mol Biol Cell 2024; 35:ar102. [PMID: 38809584 PMCID: PMC11244161 DOI: 10.1091/mbc.e23-11-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| |
Collapse
|
16
|
Yang CW, Yin B, Shi JY, Shi B, Jia ZL. Causal Variations at IRF6 Gene Identified in Van der Woude Syndrome Pedigrees. Cleft Palate Craniofac J 2024; 61:1134-1142. [PMID: 36866619 DOI: 10.1177/10556656231157575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The purpose of this study is to analyze the clinical characteristics of patients with Van der Woude syndrome (VWS) and to detect variations in each patient. Finally, the combination of genotype and phenotype can make a clear diagnosis of VWS patients with different phenotype penetrance. Five Chinese VWS pedigree were enrolled. Whole exome sequencing of the proband was performed, and the potential pathogenic variation was further verified by Sanger sequencing in the patient and their parents. The human mutant IRF6 coding sequence was generated from the human full-length IRF6 plasmid by site-directed mutagenesis and cloned into the GV658 vector, RT-qPCR and Western blot were used to detect the expression of IRF6. We found one de novo nonsense variation (p. Gln118Ter) and three novel missense variations (p. Gly301Glu, p. Gly267Ala, and p. Glu404Gly) co-segregated with VWS. RT-qPCR analysis revealed that p. Glu404Gly significantly reduced the expression level of IRF6 mRNA. Western blot of cell lysates confirmed that IRF6 p. Glu404Gly abundance levels were lower than those for IRF6 wild type. This discovery of the novel variation (IRF6 p. Glu404Gly) expands the spectrum of known variations in VWS in Chinese humans. Genetic results combined with clinical phenotypes and differential diagnosis points from other diseases can make a definitive diagnosis and provide genetic counseling for families.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Patel M, Ramamurthi A, Jones K, North P, Lin KYK. Rare Congenital Upper Lip Pit. J Craniofac Surg 2024:00001665-990000000-01706. [PMID: 38861357 DOI: 10.1097/scs.0000000000010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Congenital lip pits are characterized by sinuses or fistulas in the lips that can occur in isolation or as part of a genetic disorder. A 6-year-old girl with a right upper lip lesion present at birth presented with recurrent swelling and occasional erythema. Examination revealed a mildly swollen punctum at the right upper wet/dry vermillion with expressible serous drainage. There were no other phenotypic or cognitive concerns. The lesion was surgically excised using vertical wedge resection. The postoperative course showed well well-healed incision. The pathology report confirmed a lip pit. The family was referred to genetics for further evaluation. Van der Woude syndrome (VWS) is a genetic disorder associated with abnormal development of the paramedian lip. Most congenital lip pits are primarily found on the lower lips, with paramedian lip pits being the most common. Upper lateral lip pits with or without accompanying lip pits are considerably rarer. Though VWS is commonly associated with mutations in the interferon regulatory factor 6 or grainyhead-like protein 3 genes, ~25% of affected individuals lack an identified genetic etiology. A high index of suspicion for VWS is warranted if lip pits are present in the absence of other phenotypic abnormalities and should prompt genetic testing for interferon regulatory factor 6 and grainyhead-like protein 3 mutations. Multidisciplinary teams should consider patient self-esteem, quality of life, and potential family planning when deciding on surgical intervention for lip pits. Surgical management of pits should entail tissue-preserving techniques such as vertical wedge resection and inverted T-lip reduction to prevent whistle-lip deformity.
Collapse
Affiliation(s)
- Milan Patel
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee
| | - Aishu Ramamurthi
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee
| | - Kelly Jones
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin
| | - Paula North
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Kant Y K Lin
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
18
|
Zhao Z, Cui R, Chi H, Wan T, Ma D, Zhang J, Cai M. A novel IRF6 gene mutation impacting the regulation of TGFβ2-AS1 in the TGFβ pathway: A mechanism in the development of Van der Woude syndrome. Front Genet 2024; 15:1397410. [PMID: 38903762 PMCID: PMC11188484 DOI: 10.3389/fgene.2024.1397410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Several mutations in the IRF6 gene have been identified as a causative link to VWS. In this investigation, whole-exome sequencing (WES) and Sanger sequencing of a three-generation pedigree with an autosomal-dominant inheritance pattern affected by VWS identified a unique stop-gain mutation-c.748C>T:p.R250X-in the IRF6 gene that co-segregated exclusively with the disease phenotype. Immunofluorescence analysis revealed that the IRF6-p.R250X mutation predominantly shifted its localization from the nucleus to the cytoplasm. WES and protein interaction analyses were conducted to understand this mutation's role in the pathogenesis of VWS. Using LC-MS/MS, we found that this mutation led to a reduction in the binding of IRF6 to histone modification-associated proteins (NAA10, SNRPN, NAP1L1). Furthermore, RNA-seq results show that the mutation resulted in a downregulation of TGFβ2-AS1 expression. The findings highlight the mutation's influence on TGFβ2-AS1 and its subsequent effects on the phosphorylation of SMAD2/3, which are critical in maxillofacial development, particularly the palate. These insights contribute to a deeper understanding of VWS's molecular underpinnings and might inform future therapeutic strategies.
Collapse
Affiliation(s)
- Zhiyang Zhao
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Renjie Cui
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoshu Chi
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Teng Wan
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Cai
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Campbell DM, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584681. [PMID: 38617209 PMCID: PMC11014633 DOI: 10.1101/2024.03.12.584681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge MA, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA, USA
| | | | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Jean-Claude Twizere
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam Frankish
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| |
Collapse
|
20
|
de Vries ME, Carpinelli MR, Fuller JN, Sutton Y, Partridge DD, Auden A, Anderson PJ, Jane SM, Dworkin S. Grainyhead-like 2 interacts with noggin to regulate tissue fusion in mouse. Development 2024; 151:dev202420. [PMID: 38300806 PMCID: PMC10946436 DOI: 10.1242/dev.202420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Defective tissue fusion during mammalian embryogenesis results in congenital anomalies, such as exencephaly, spina bifida and cleft lip and/or palate. The highly conserved transcription factor grainyhead-like 2 (Grhl2) is a crucial regulator of tissue fusion, with mouse models lacking GRHL2 function presenting with a fully penetrant open cranial neural tube, facial and abdominal clefting (abdominoschisis), and an open posterior neuropore. Here, we show that GRHL2 interacts with the soluble morphogen protein and bone morphogenetic protein (BMP) inhibitor noggin (NOG) to impact tissue fusion during development. The maxillary prominence epithelium in embryos lacking Grhl2 shows substantial morphological abnormalities and significant upregulation of NOG expression, together with aberrantly distributed pSMAD5-positive cells within the neural crest cell-derived maxillary prominence mesenchyme, indicative of disrupted BMP signalling. Reducing this elevated NOG expression (by generating Grhl2-/-;Nog+/- embryos) results in delayed embryonic lethality, partial tissue fusion rescue, and restoration of tissue form within the craniofacial epithelia. These data suggest that aberrant epithelial maintenance, partially regulated by noggin-mediated regulation of BMP-SMAD pathways, may underpin tissue fusion defects in Grhl2-/- mice.
Collapse
Affiliation(s)
- Michael E. de Vries
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Marina R. Carpinelli
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yindi Sutton
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia
| | - Darren D. Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia
| | - Peter J. Anderson
- Australian Craniofacial Unit, Women and Children's Hospital, Adelaide, SA 5005, Australia
- Faculty of Health Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Stephen M. Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
21
|
Huang W, Zhang S, Lin J, Ding Y, Jiang N, Zhang J, Zhao H, Chen F. Rare loss-of-function variants in FLNB cause non-syndromic orofacial clefts. J Genet Genomics 2024; 51:222-229. [PMID: 37003352 DOI: 10.1016/j.jgg.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb-/- embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Shiying Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Nan Jiang
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Feng Chen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
22
|
Seaberg A, Awotoye W, Qian F, Dunlay L, Butali A, Murray J, Moreno-Uribe L, Petrin A. DNA methylation effects on Van der Woude Syndrome phenotypic variability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.04.23298094. [PMID: 37961322 PMCID: PMC10635279 DOI: 10.1101/2023.11.04.23298094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Van der Woude Syndrome (VWS) classically presents with combinations of lip pits (LP) and orofacial clefts, with marked phenotypic discordance even amongst individuals carrying the same mutation. Such discordance suggests a possible role for epigenetic factors as phenotypic modifiers. Both IRF6 , causal for 70% of VWS cases, and TP63 interact in a regulatory loop to coordinate epithelial proliferation and differentiation for palatogenesis. We hypothesize that differential DNA methylation (DNAm) in CpG sites within regulatory regions of IRF6 and TP63 are associated with VWS phenotypic discordance. METHODS We measured DNAm levels of CpG sites located in the promoter regions of IRF6 and TP63 and in an IRF6 enhancer element (MCS9.7) in 83 individuals with VWS grouped within 5 phenotypes for primary analysis: 1=CL+/-P+LP, 2=CL+/-P, 3=CP+LP, 4=CP, 5=LP and 2 phenotypes for secondary analysis: 1=any cleft and LP, 2= any cleft without LP. DNA samples were bisulfite converted and pyrosequenced with target-specific primers. Methylation levels were compared amongst phenotypes. RESULTS CpG sites in the IRF6 promoter showed statistically significant differences in methylation among phenotypic groups in both analyses (P<0.05). Individuals with any form of cleft (Groups 1-4) had significantly higher methylation levels than individuals with lip pits only (Group 5). In the secondary analysis, individuals in Group 1 (cleft+LP) had significantly higher methylation than Group 2 (cleft only). CONCLUSION Results indicated that hypermethylation of the IRF6 promoter is associated with more severe phenotypes (any cleft +/- lip pits); thus, possibly impacting an already genetically weakened IRF6 protein and leading to a more severe phenotype.
Collapse
|
23
|
Ghazali N, Rahman NA, Kannan TP, Ahmad A, Sulong S. Identification of copy neutral loss of heterozygosity on chromosomes 1p, 1q, and 6p among nonsyndromic cleft lip and/or without cleft palate with hypodontia. BMC Oral Health 2023; 23:945. [PMID: 38031027 PMCID: PMC10685534 DOI: 10.1186/s12903-023-03464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Nonsyndromic cleft lip and/or without cleft palate (NSCL/P) with or without hypodontia is a common developmental aberration in humans and animals. This study aimed to identify the loss of heterozygosity (LOH) involved in hypodontia and NSCL/P pathogenesis. METHODS This is a cross-sectional study that conducted genome-wide copy number analysis using CytoScan 750K array on salivary samples from Malay subjects with NSCL/P with or without hypodontia aged 7-13 years. To confirm the significant results, simple logistic regression was employed to conduct statistical data analysis using SPSS software. RESULTS The results indicated the most common recurrent copy neutral LOH (cnLOH) observed at 1p33-1p32.3, 1q32.2-1q42.13 and 6p12.1-6p11.1 loci in 8 (13%), 4 (7%), and 3 (5%) of the NSCL/P subjects, respectively. The cnLOHs at 1p33-1p32.3 (D1S197), 1q32.2-1q42.13 (D1S160), and 6p12.1-6p11.1 (D1S1661) were identified observed in NSCL/P and noncleft children using microsatellite analysis markers as a validation analysis. The regions affected by the cnLOHs at 1p33-1p32.3, 1q32.2-1q42.13, and 6p12.1-6p11.1 loci contained selected genes, namely FAF1, WNT3A and BMP5, respectively. There was a significant association between the D1S197 (1p33-32.3) markers containing the FAF1 gene among NSCL/P subjects with or without hypodontia compared with the noncleft subjects (p-value = 0.023). CONCLUSION The results supported the finding that the genetic aberration on 1p33-32.3 significantly contributed to the development of NSCL/P with or without hypodontia. These results have an exciting prospect in the promising field of individualized preventive oral health care.
Collapse
Affiliation(s)
- Norliana Ghazali
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Normastura Abd Rahman
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Thirumulu Ponnuraj Kannan
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Azlina Ahmad
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
24
|
Diaz Perez KK, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? Am J Med Genet A 2023; 191:2558-2570. [PMID: 37350193 PMCID: PMC10528230 DOI: 10.1002/ajmg.a.63336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Exome sequencing (ES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for ES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, SHROOM3, SMC3, TBX3, and TP63 in six families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, Texas, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Crane-Smith Z, De Castro SCP, Nikolopoulou E, Wolujewicz P, Smedley D, Lei Y, Mather E, Santos C, Hopkinson M, Pitsillides AA, Genomics England Research Consortium, Finnell RH, Ross ME, Copp AJ, Greene NDE. A non-coding insertional mutation of Grhl2 causes gene over-expression and multiple structural anomalies including cleft palate, spina bifida and encephalocele. Hum Mol Genet 2023; 32:2681-2692. [PMID: 37364051 PMCID: PMC10460492 DOI: 10.1093/hmg/ddad094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.
Collapse
Affiliation(s)
- Zoe Crane-Smith
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sandra C P De Castro
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Evanthia Nikolopoulou
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Wolujewicz
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Emma Mather
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chloe Santos
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - M Elisabeth Ross
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
26
|
Babai A, Irving M. Orofacial Clefts: Genetics of Cleft Lip and Palate. Genes (Basel) 2023; 14:1603. [PMID: 37628654 PMCID: PMC10454293 DOI: 10.3390/genes14081603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Orofacial clefting is considered one of the commonest birth defects worldwide. It presents as cleft lip only, isolated cleft palate or cleft lip and palate. The condition has a diverse genetic background influenced by gene-gene and gene-environment interaction, resulting in two main types, syndromic and nonsyndromic orofacial clefts. Orofacial clefts lead to significant physiological difficulties that affect feeding, speech and language development and other developmental aspects, which results in an increased social and financial burden on the affected individuals and their families. The management of cleft lip and palate is solely based on following a multidisciplinary team approach. In this narrative review article, we briefly summarize the different genetic causes of orofacial clefts and discuss some of the common syndromes and the approach to the management of orofacial clefts.
Collapse
Affiliation(s)
- Arwa Babai
- Department of Clinical Genetics, Guy’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK;
| | | |
Collapse
|
27
|
Won HJ, Kim JW, Won HS, Shin JO. Gene Regulatory Networks and Signaling Pathways in Palatogenesis and Cleft Palate: A Comprehensive Review. Cells 2023; 12:1954. [PMID: 37566033 PMCID: PMC10416829 DOI: 10.3390/cells12151954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Palatogenesis is a complex and intricate process involving the formation of the palate through various morphogenetic events highly dependent on the surrounding context. These events comprise outgrowth of palatal shelves from embryonic maxillary prominences, their elevation from a vertical to a horizontal position above the tongue, and their subsequent adhesion and fusion at the midline to separate oral and nasal cavities. Disruptions in any of these processes can result in cleft palate, a common congenital abnormality that significantly affects patient's quality of life, despite surgical intervention. Although many genes involved in palatogenesis have been identified through studies on genetically modified mice and human genetics, the precise roles of these genes and their products in signaling networks that regulate palatogenesis remain elusive. Recent investigations have revealed that palatal shelf growth, patterning, adhesion, and fusion are intricately regulated by numerous transcription factors and signaling pathways, including Sonic hedgehog (Shh), bone morphogenetic protein (Bmp), fibroblast growth factor (Fgf), transforming growth factor beta (Tgf-β), Wnt signaling, and others. These studies have also identified a significant number of genes that are essential for palate development. Integrated information from these studies offers novel insights into gene regulatory networks and dynamic cellular processes underlying palatal shelf elevation, contact, and fusion, deepening our understanding of palatogenesis, and facilitating the development of more efficacious treatments for cleft palate.
Collapse
Affiliation(s)
- Hyung-Jin Won
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- BIT Medical Convergence Graduate Program, Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Woo Kim
- Graduate School of Clinical Dentistry, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung-Sun Won
- Department of Anatomy, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
- Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea
| |
Collapse
|
28
|
Deng Z, Butt T, Arhatari BD, Darido C, Auden A, Swaroop D, Partridge DD, Haigh K, Nguyen T, Haigh JJ, Carpinelli MR, Jane SM. Dysregulation of Grainyhead-like 3 expression causes widespread developmental defects. Dev Dyn 2023; 252:647-667. [PMID: 36606449 PMCID: PMC10952483 DOI: 10.1002/dvdy.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gene encoding the transcription factor, Grainyhead-like 3 (Grhl3), plays critical roles in mammalian development and homeostasis. Grhl3-null embryos exhibit thoraco-lumbo-sacral spina bifida and soft-tissue syndactyly. Additional studies reveal that these embryos also exhibit an epidermal proliferation/differentiation imbalance. This manifests as skin barrier defects resulting in peri-natal lethality and defective wound repair. Despite these extensive analyses of Grhl3 loss-of-function models, the consequences of gain-of-function of this gene have been difficult to achieve. RESULTS In this study, we generated a novel mouse model that expresses Grhl3 from a transgene integrated in the Rosa26 locus on an endogenous Grhl3-null background. Expression of the transgene rescues both the neurulation and skin barrier defects of the knockout mice, allowing survival into adulthood. Despite this, the mice are not normal, exhibiting a range of phenotypes attributable to dysregulated Grhl3 expression. In mice homozygous for the transgene, we observe a severe Shaker-Waltzer phenotype associated with hearing impairment. Micro-CT scanning of the inner ear revealed profound structural alterations underlying these phenotypes. In addition, these mice exhibit other developmental anomalies including hair loss, digit defects, and epidermal dysmorphogenesis. CONCLUSION Taken together, these findings indicate that diverse developmental processes display low tolerance to dysregulation of Grhl3.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Tariq Butt
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Benedicta D. Arhatari
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and PhysicsLa Trobe UniversityBundooraVictoriaAustralia
- Australian Synchrotron, ANSTOClaytonVictoriaAustralia
| | - Charbel Darido
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Alana Auden
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Dijina Swaroop
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Darren D. Partridge
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Katharina Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Research Institute in Oncology and HematologyCancerCare ManitobaWinnipegManitobaCanada
| | - Thao Nguyen
- Australian Centre for Blood Diseases, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Research Institute in Oncology and HematologyCancerCare ManitobaWinnipegManitobaCanada
| | - Marina R. Carpinelli
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Stephen M. Jane
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
29
|
Slavec L, Geršak K, Eberlinc A, Hovnik T, Lovrečić L, Mlinarič-Raščan I, Karas Kuželički N. A Comprehensive Genetic Analysis of Slovenian Families with Multiple Cases of Orofacial Clefts Reveals Novel Variants in the Genes IRF6, GRHL3, and TBX22. Int J Mol Sci 2023; 24:ijms24054262. [PMID: 36901693 PMCID: PMC10002089 DOI: 10.3390/ijms24054262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Although the aetiology of non-syndromic orofacial clefts (nsOFCs) is usually multifactorial, syndromic OFCs (syOFCs) are often caused by single mutations in known genes. Some syndromes, e.g., Van der Woude syndrome (VWS1; VWS2) and X-linked cleft palate with or without ankyloglossia (CPX), show only minor clinical signs in addition to OFC and are sometimes difficult to differentiate from nsOFCs. We recruited 34 Slovenian multi-case families with apparent nsOFCs (isolated OFCs or OFCs with minor additional facial signs). First, we examined IRF6, GRHL3, and TBX22 by Sanger or whole exome sequencing to identify VWS and CPX families. Next, we examined 72 additional nsOFC genes in the remaining families. Variant validation and co-segregation analysis were performed for each identified variant using Sanger sequencing, real-time quantitative PCR and microarray-based comparative genomic hybridization. We identified six disease-causing variants (three novel) in IRF6, GRHL3, and TBX22 in 21% of families with apparent nsOFCs, suggesting that our sequencing approach is useful for distinguishing syOFCs from nsOFCs. The novel variants, a frameshift variant in exon 7 of IRF6, a splice-altering variant in GRHL3, and a deletion of the coding exons of TBX22, indicate VWS1, VWS2, and CPX, respectively. We also identified five rare variants in nsOFC genes in families without VWS or CPX, but they could not be conclusively linked to nsOFC.
Collapse
Affiliation(s)
- Lara Slavec
- Research Unit, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ksenija Geršak
- Research Unit, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Eberlinc
- Department of Maxillofacial and Oral Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Tinka Hovnik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Luca Lovrečić
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Karas Kuželički
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
30
|
Petrin AL, Zeng E, Thomas MA, Moretti-Ferreira D, Marazita ML, Xie XJ, Murray JC, Moreno-Uribe LM. DNA methylation differences in monozygotic twins with Van der Woude syndrome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120948. [PMID: 36936396 PMCID: PMC10019782 DOI: 10.3389/fdmed.2023.1120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.
Collapse
Affiliation(s)
- A. L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - E. Zeng
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - M. A. Thomas
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D. Moretti-Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M. L. Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - X. J. Xie
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - J. C. Murray
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - L. M. Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| |
Collapse
|
31
|
Perez KKD, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.01.23285340. [PMID: 36798250 PMCID: PMC9934724 DOI: 10.1101/2023.02.01.23285340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Whole-exome sequencing (WES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for WES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed whole-exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, KLF4, SHROOM3, SMC3, TP63 , and TBX3 in seven families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX 77030, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
32
|
Lansdon LA, Dickinson A, Arlis S, Liu H, Hlas A, Hahn A, Bonde G, Long A, Standley J, Tyryshkina A, Wehby G, Lee NR, Daack-Hirsch S, Mohlke K, Girirajan S, Darbro BW, Cornell RA, Houston DW, Murray JC, Manak JR. Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes. Am J Hum Genet 2023; 110:71-91. [PMID: 36493769 PMCID: PMC9892779 DOI: 10.1016/j.ajhg.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology, University of Missouri - Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | | - Sydney Arlis
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Arman Hlas
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Alyssa Hahn
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Abby Long
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | - George Wehby
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nanette R Lee
- Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | | | - Karen Mohlke
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | - Benjamin W Darbro
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Robert A Cornell
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas W Houston
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
33
|
Parisi L, Mockenhaupt C, Rihs S, Mansour F, Katsaros C, Degen M. Consistent downregulation of the cleft lip/palate-associated genes IRF6 and GRHL3 in carcinomas. Front Oncol 2022; 12:1023072. [PMID: 36457487 PMCID: PMC9706198 DOI: 10.3389/fonc.2022.1023072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) and Grainyhead Like Transcription Factor 3 (GRHL3) are transcription factors that orchestrate gene regulatory networks required for the balance between keratinocyte differentiation and proliferation. Absence of either protein results in the lack of a normal stratified epidermis with keratinocytes failing to stop proliferating and to terminally differentiate. Numerous pathological variants within IRF6 and GRHL3 have been identified in orofacial cleft-affected individuals and expression of the two transcription factors has been found to be often dysregulated in cancers. However, whether orofacial cleft-associated IRF6 and GRHL3 variants in patients might also affect their cancer risk later in life, is not clear yet. The fact that the role of IRF6 and GRHL3 in cancer remains controversial makes this question even more challenging. Some studies identified IRF6 and GRHL3 as oncogenes, while others could attribute tumor suppressive functions to them. Trying to solve this apparent conundrum, we herein aimed to characterize IRF6 and GRHL3 function in various types of carcinomas. We screened multiple cancer and normal cell lines for their expression, and subsequently proceeded with functional assays in cancer cell lines. Our data uncovered consistent downregulation of IRF6 and GRHL3 in all types of carcinomas analyzed. Reduced levels of IRF6 and GRHL3 were found to be associated with several tumorigenic properties, such as enhanced cell proliferation, epithelial mesenchymal transition, migration and reduced differentiation capacity. Based on our findings, IRF6 and GRHL3 can be considered as tumor suppressor genes in various carcinomas, which makes them potential common etiological factors for cancer and CLP in a fraction of CLP-affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Naicker T, Adeleke CC, Alade A, Mossey PA, Awotoye WA, Busch TD, Li M, Olotu J, Gowans LJJ, Aldous C, Butali A. Novel GRHL3 Variants in a South African Cohort With Cleft Lip and Palate. Cleft Palate Craniofac J 2022; 59:1125-1130. [PMID: 34459660 PMCID: PMC9790085 DOI: 10.1177/10556656211038453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The etiology of cleft palate (CP) is poorly understood compared with that of cleft lip with or without palate (CL ± P). Recently, variants in Grainyhead like transcription factor 3 (GRHL3) were reported to be associated with a risk for CP in European and some African populations including Nigeria, Ghana, and Ethiopia. In order to identify genetic variants that may further explain the etiology of CP, we sequenced GRHL3 in a South African population to determine if rare variants in GRHL3 are associated with the presence of syndromic or nonsyndromic CP. DESIGN We sequenced the exons of GRHL3 in 100 cases and where possible, we sequenced the parents of the individuals to determine the segregation pattern and presence of de novo variants. SETTING The cleft clinics from 2 public, tertiary hospitals in Durban, South Africa (SA), namely Inkosi Albert Luthuli Central Hospital and KwaZulu-Natal Children's Hospital. PATIENTS, PARTICIPANTS One hundred patients with CL ± P and their parents. INTERVENTIONS Saliva samples were collected. MAIN OUTCOME MEASURES To ascertain the genetic variants in the GRHL3 gene in patients with CL ± P in SA. RESULTS Five variants in GRHL3 were observed; 3 were novel and 2 were known variants. The novel variants were intronic variants (c.1062 + 77A>G and c.627 + 1G>A) and missense variant (p.Asp169Gly). CONCLUSIONS This study provides further evidence that variants in GRHL3 contribute to the risk of nonsyndromic CP in African populations, specifically, in the South African population.
Collapse
Affiliation(s)
- Thirona Naicker
- Department of Paediatrics, Clinical Genetics, 72753University of KwaZulu-Natal and Inkosi Albert Luthuli Central Hospital, Durban, South Africa
- Smile Train Partner
| | - Chinyere C Adeleke
- Department of Oral Pathology, Radiology and Medicine, 573932College of Dentistry, 50699The University of Iowa, Iowa City, IA, USA
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, 573932College of Dentistry, 50699The University of Iowa, Iowa City, IA, USA
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
- Smile Train Global Medical Advisory Board, USA
| | - Waheed A Awotoye
- Department of Oral Pathology, Radiology and Medicine, 573932College of Dentistry, 50699The University of Iowa, Iowa City, IA, USA
| | - Tamara D Busch
- Department of Oral Pathology, Radiology and Medicine, 573932College of Dentistry, 50699The University of Iowa, Iowa City, IA, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, 573932College of Dentistry, 50699The University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, 327041University of Port Harcourt, Rivers State, Nigeria
| | - Lord J J Gowans
- Department of Biochemistry and Biotechnology, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Colleen Aldous
- School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, 573932College of Dentistry, 50699The University of Iowa, Iowa City, IA, USA
- Smile Train Research and Innovation Advisory Council, USA
| |
Collapse
|
35
|
Ye Q, Bhojwani A, Hu JK. Understanding the development of oral epithelial organs through single cell transcriptomic analysis. Development 2022; 149:dev200539. [PMID: 35831953 PMCID: PMC9481975 DOI: 10.1242/dev.200539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/07/2022] [Indexed: 01/29/2023]
Abstract
During craniofacial development, the oral epithelium begins as a morphologically homogeneous tissue that gives rise to locally complex structures, including the teeth, salivary glands and taste buds. How the epithelium is initially patterned and specified to generate diverse cell types remains largely unknown. To elucidate the genetic programs that direct the formation of distinct oral epithelial populations, we mapped the transcriptional landscape of embryonic day 12 mouse mandibular epithelia at single cell resolution. Our analysis identified key transcription factors and gene regulatory networks that define different epithelial cell types. By examining the spatiotemporal patterning process along the oral-aboral axis, our results propose a model in which the dental field is progressively confined to its position by the formation of the aboral epithelium anteriorly and the non-dental oral epithelium posteriorly. Using our data, we also identified Ntrk2 as a proliferation driver in the forming incisor, contributing to its invagination. Together, our results provide a detailed transcriptional atlas of the embryonic mandibular epithelium, and unveil new genetic markers and regulators that are present during the specification of various oral epithelial structures.
Collapse
Affiliation(s)
- Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
37
|
Van Otterloo E, Milanda I, Pike H, Thompson JA, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. eLife 2022; 11:e70511. [PMID: 35333176 PMCID: PMC9038197 DOI: 10.7554/elife.70511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here, we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2ß, within the early embryonic ectoderm of the mouse leads to major alterations in the craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. We also determined that the mutant clefting phenotypes that correlated with reduced WNT signaling could be rescued by Wnt1 ligand overexpression in the ectoderm. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Periodontics, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isaac Milanda
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hamish Pike
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jamie A Thompson
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital ColoradoAuroraUnited States
| |
Collapse
|
38
|
Wang E, Guo Y, Gao S, Zhou Y, Liu B, Dissanayaka WL, Zheng Y, Zhou Q, Zhai J, Gao Z, Zhang B, Liu R, Zhang K. Long Non-Coding RNAs MALAT1 and NEAT1 in Non-syndromic Orofacial Clefts. Oral Dis 2022; 29:1668-1679. [PMID: 35255186 DOI: 10.1111/odi.14177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) are thought to play important roles in non-syndromic orofacial clefts (NSOFC). Clinical diagnosis was categorized as either non-syndromic cleft lip with or without cleft palate (NSCL/P), or non-syndromic cleft palate-only (NSCPO). Tissues excised from the trimmed wound edge were reserved as experimental samples; adjacent normal control was used as a positive control, and tissue from healthy individuals was used as a blank control. Target lncRNAs in the collected tissues were identified using microarrays and quantitative reverse transcription PCR (RT-qPCR). Immunohistochemical (IHC) staining and RT-qPCR were used to verify the target mRNAs. Pathway, gene ontology (GO) enrichment, and TargetScan predictions were employed to construct competing endogenous RNA networks (ceRNA networks) and explore their potential functions. RNA-Seq revealed 24 upregulated and 43 downregulated lncRNAs; MALAT1 and NEAT1 were screened and validated using RT-qPCR. Common NSOFC risk factors were positively correlated with MALAT1 and NEAT1 expression. Bioinformatics predicted four ceRNA networks; GO enrichment focused on their potential functions. RT-qPCR and IHC data were consistent with respect to expression levels of proteins and the mRNAs that encode them. As MALAT1 and NEAT1 are associated with the severity of NSOFC, they represent potential therapeutic targets and prognostic biomarkers.
Collapse
Affiliation(s)
- Errui Wang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yumeng Guo
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuting Gao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ying Zhou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Bin Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China.,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, 730000, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yayuan Zheng
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Qiaozhen Zhou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Junkai Zhai
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Zhengkun Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Baoping Zhang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China.,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, 730000, China.,Institute of Biomechanics and Medical Engineering, Lanzhou University, Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Ruimin Liu
- Gansu Province Hospital, Department of Oral and Maxillofacial Surgery, Lanzhou, 730000, China
| | - Kailiang Zhang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China.,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, 730000, China
| |
Collapse
|
39
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
40
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
41
|
Lace B, Pajusalu S, Livcane D, Grinfelde I, Akota I, Mauliņa I, Barkāne B, Stavusis J, Inashkina I. Monogenic Versus Multifactorial Inheritance in the Development of Isolated Cleft Palate: A Whole Genome Sequencing Study. Front Genet 2022; 13:828534. [PMID: 35281813 PMCID: PMC8907258 DOI: 10.3389/fgene.2022.828534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Craniofacial morphogenesis is highly complex, as is the anatomical region involved. Errors during this process, resulting in orofacial clefts, occur in more than 400 genetic syndromes. Some cases of cleft lip and/or palate (CLP) are caused by mutations in single genes; however, complex interactions between genetic and environmental factors are considered to be responsible for the majority of non-syndromic CLP development. The aim of the current study was to identify genetic risk factors in patients with isolated cleft palate (CP) by whole genome sequencing. Patients with isolated CP (n = 30) recruited from the Riga Cleft Lip and Palate Centre, Institute of Stomatology, Riga, were analyzed by whole genome sequencing. Pathogenic or likely pathogenic variants were discovered in genes associated with CP (TBX22, COL2A1, FBN1, PCGF2, and KMT2D) in five patients; hence, rare disease variants were identified in 17% of patients with non-syndromic isolated CP. Our results were relevant to routine genetic counselling practice and genetic testing recommendations. Based on our data, we propose that all newborns with orofacial clefts should be offered genetic testing, at least for a panel of known CLP genes. Only if the results are negative and there is no suggestive family history or additional clinical symptoms (which would support additional exome or genome-wide investigation), should multifactorial empiric recurrence risk prediction tools be applied for families.
Collapse
Affiliation(s)
- Baiba Lace
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- *Correspondence: Baiba Lace, , orcid.org/0000-0001-5371-6756
| | - Sander Pajusalu
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Diana Livcane
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ieva Grinfelde
- Cleft, Lip and Palate Center, Institute of Stomatology, Riga Stradins’University, Riga, Latvia
- Medical Genetics Clinic, Children’s Clinical University Hospital, Riga, Latvia
| | - Ilze Akota
- Cleft, Lip and Palate Center, Institute of Stomatology, Riga Stradins’University, Riga, Latvia
| | - Ieva Mauliņa
- Cleft, Lip and Palate Center, Institute of Stomatology, Riga Stradins’University, Riga, Latvia
| | - Biruta Barkāne
- Cleft, Lip and Palate Center, Institute of Stomatology, Riga Stradins’University, Riga, Latvia
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
42
|
Habicher J, Varshney GK, Waldmann L, Snitting D, Allalou A, Zhang H, Ghanem A, Öhman Mägi C, Dierker T, Kjellén L, Burgess SM, Ledin J. Chondroitin/dermatan sulfate glycosyltransferase genes are essential for craniofacial development. PLoS Genet 2022; 18:e1010067. [PMID: 35192612 PMCID: PMC8896900 DOI: 10.1371/journal.pgen.1010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults. However, csgalnact1a-/- fish develop distinct craniofacial defects while the chsy1-/- skeletal phenotype is milder and the remaining mutants display no gross morphological abnormalities. These results suggest a high redundancy for the CS/DS biosynthetic enzymes and to further reduce CS/DS biosynthesis we combined mutant alleles. The craniofacial phenotype is further enhanced in csgalnact1a-/-;chsy1-/- adults and csgalnact1a-/-;csgalnact2-/- larvae. While csgalnact1a-/-;csgalnact2-/- was the most affected allele combination in our study, CS/DS is still not completely abolished. Transcriptome analysis of chsy1-/-, csgalnact1a-/-and csgalnact1a-/-;csgalnact2-/- larvae revealed that the expression had changed in a similar way in the three mutant lines but no differential expression was found in any of fifty GAG biosynthesis enzymes identified. Thus, zebrafish larvae do not increase transcription of GAG biosynthesis genes as a consequence of decreased CS/DS biosynthesis. The new zebrafish lines develop phenotypes similar to clinical characteristics of several human congenital disorders making the mutants potentially useful to study disease mechanisms and treatment. The components of the extracellular matrix are crucial for interactions and communication between cells during animal development and disease progression. One major component of the extracellular matrix is chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, which support and modify cell functions and tissue homeostasis. The biosynthesis of CS/DS is complex and no genetic models have been developed to specifically reduce CS/DS in the zebrafish model organism. We have used CRISPR/Cas9 technology to knock out key CS/DS biosynthesis genes. We find that knocking out single genes rarely causes major effects on zebrafish morphology and viability, but by combining several knockout alleles we could observe malformations in the zebrafish craniofacial skeleton. In addition, one combination of alleles was embryonic lethal. Our findings describe the role of CS/DS in the development of the head skeleton and give insights in the regulation of genes involved in CS/DS biosynthesis. The zebrafish mutants generated in this study can be used as tools to further study human diseases caused by mutations in CS/DS biosynthesis enzymes.
Collapse
Affiliation(s)
- Judith Habicher
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- * E-mail: (JH); (JL)
| | - Gaurav K. Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Laura Waldmann
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Snitting
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Amin Allalou
- Department of Information Technology, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Hanqing Zhang
- Department of Immunology, Genetics and Pathology, Medical Genetics and Genomics, Uppsala University, Uppsala, Sweden
| | - Abdurrahman Ghanem
- Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman Mägi
- Department for Engineering Sciences, Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Tabea Dierker
- Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Johan Ledin
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (JH); (JL)
| |
Collapse
|
43
|
Huang W, He Q, Li M, Ding Y, Liang W, Li W, Lin J, Zhao H, Chen F. Two rare variants reveal the significance of Grainyhead‐like 3 Arginine 391 underlying non‐syndromic cleft palate only. Oral Dis 2022; 29:1632-1643. [PMID: 35189007 DOI: 10.1111/odi.14164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Non-syndromic cleft palate only (NSCPO) is one of the most common craniofacial birth defects with largely undetermined genetic etiology. It has been established that Grainyhead-like 3 (GRHL3) plays an essential role in the pathogenesis of NSCPO. This study aimed to identify and verify the first-reported GRHL3 variant underlying NSCPO among the Chinese cohort. METHODS We performed whole-exome sequencing (WES) on a Chinese NSCPO patient and identified a rare variant of GRHL3 (p.Arg391His). A validated deleterious variant p.Arg391Cys was introduced as a positive control. Zebrafish embryos injection, reporter assays, live-cell imaging, and RNA sequencing were conducted to test the pathogenicity of the variants. RESULTS Zebrafish embryos microinjection demonstrated that overexpression of the variants could disrupt the normal development of zebrafish embryos. Reporter assays showed that Arg391His disturbed transcriptional activity of GRHL3 and exerted a dominant-negative effect. Interestingly, Arg391His and Arg391Cys displayed distinct nuclear localization patterns from that of wild-type GRHL3 in live-cell imaging. Bulk RNA sequencing suggested that the two variants changed the pattern of gene expression. CONCLUSIONS In aggregate, this study identified and characterized a rare GRHL3 variant in NSCPO, revealing the critical role of Arginine 391 in GRHL3. Our findings will help facilitate understanding and genetic counseling of NSCPO.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Qing He
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi’an Jiaotong University Health Science Center 710061 Xi’an, Shaanxi China
| | - Mingzhao Li
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Yi Ding
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi’an Jiaotong University Health Science Center 710061 Xi’an, Shaanxi China
| | - Wei Liang
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Weiran Li
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Jiuxiang Lin
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi’an Jiaotong University 710004 Xi'an, Shaanxi China
- Department of Orthodontics College of Stomatology Xi’an Jiaotong University 710004 Xi’an, Shaanxi China
| | - Feng Chen
- Central laboratory Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| |
Collapse
|
44
|
Antiguas A, DeMali KA, Dunnwald M. IRF6 Regulates the Delivery of E-Cadherin to the Plasma Membrane. J Invest Dermatol 2022; 142:314-322. [PMID: 34310950 PMCID: PMC8784568 DOI: 10.1016/j.jid.2021.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
IRF6 is a transcription factor that is required for craniofacial development and epidermal morphogenesis. Specifically, Irf6-deficient mice lack the terminally differentiated epidermal layers, leading to an absence of barrier function. This phenotype also includes intraoral adhesions due to the absence of the oral periderm, leading to the mislocalization of E-cadherin and other cell‒cell adhesion proteins of the oral epithelium. However, the mechanisms by which IRF6 controls the localization of cell adhesion proteins are not understood. In this study, we show that in human and murine keratinocytes, loss of IRF6 leads to a breakdown of epidermal sheets after mechanical stress. This defect is due to a reduction of adhesion proteins at the plasma membrane. Dynamin inhibitors rescued the IRF6-dependent resistance of epidermal sheets to mechanical stress, but only inhibition of clathrin-mediated endocytosis rescued the localization of junctional proteins at the membrane. Our data show that E-cadherin recycling but not its endocytosis is affected by loss of IRF6. Overall, we demonstrate a role for IRF6 in the delivery of adhesion proteins to the cell membrane.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| | - Kris A. DeMali
- Department of Biochemistry and Dermatology, The University of Iowa, IA, 52242
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| |
Collapse
|
45
|
Williams RM, Lukoseviciute M, Sauka-Spengler T, Bronner ME. Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation. eLife 2022; 11:74464. [PMID: 35088714 PMCID: PMC8798042 DOI: 10.7554/elife.74464] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harboring neural crest and cranial placode progenitors. Here, we a generate single-cell atlas of the developing chick epiblast from late gastrulation through early neurulation stages to define transcriptional changes in the emerging ‘neural plate border’ as well as other regions of the epiblast. Focusing on the border territory, the results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridization. Developmental trajectory analysis infers that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined neural crest and placode lineages. The data also can be mined to reveal changes throughout the developing epiblast.
Collapse
Affiliation(s)
- Ruth M Williams
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, United States.,University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, United States
| |
Collapse
|
46
|
Slavec L, Karas Kuželički N, Locatelli I, Geršak K. Genetic markers for non-syndromic orofacial clefts in populations of European ancestry: a meta-analysis. Sci Rep 2022; 12:1214. [PMID: 35075162 PMCID: PMC8786890 DOI: 10.1038/s41598-021-02159-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
To date, the involvement of various genetic markers in the aetiopathogenesis of non-syndromic orofacial cleft (nsOFC) has been extensively studied. In the present study, we focused on studies performed on populations of European ancestry to systematically review the available literature to define relevant genetic risk factors for nsOFC. Eligible studies were obtained by searching Ovid Medline and Ovid Embase. We gathered the genetic markers from population-based case–control studies on nsOFC, and conducted meta-analysis on the repeatedly reported markers. Whenever possible, we performed stratified analysis based on different nsOFC phenotypes, using allelic, dominant, recessive and overdominant genetic models. Effect sizes were expressed as pooled odds ratios (ORs) with 95% confidence intervals (CIs), and p ≤ 0.05 were considered statistically significant. A total of 84 studies were eligible for this systematic review, with > 700 markers included. Of these, 43 studies were included in the meta-analysis. We analysed 47 genetic variants in 30 genes/loci, which resulted in 226 forest plots. There were statistically significant associations between at least one of the nsOFC phenotypes and 19 genetic variants in 13 genes/loci. These data suggest that IRF6, GRHL3, 8q24, VAX1, TGFA, FOXE1, ABCA4, NOG, GREM1, AXIN2, DVL2, WNT3A and WNT5A have high potential as biomarkers of nsOFC in populations of European descent. Although other meta-analyses that included European samples have been performed on a limited number of genetic variants, this study represents the first meta-analysis of all genetic markers that have been studied in connection with nsOFC in populations of European ancestry.
Collapse
Affiliation(s)
- Lara Slavec
- University Medical Centre Ljubljana, Division of Gynaecology and Obstetrics, Research Unit, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Nataša Karas Kuželički
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Igor Locatelli
- University of Ljubljana, Faculty of Pharmacy, Department of Social Pharmacy, Ljubljana, Slovenia
| | - Ksenija Geršak
- University Medical Centre Ljubljana, Division of Gynaecology and Obstetrics, Research Unit, Ljubljana, Slovenia. .,University of Ljubljana, Faculty of Medicine, Department of Gynaecology and Obstetrics, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models. Int J Mol Sci 2022; 23:ijms23020953. [PMID: 35055138 PMCID: PMC8779325 DOI: 10.3390/ijms23020953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.
Collapse
Affiliation(s)
- Anna Jaruga
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
| | - Jakub Ksiazkiewicz
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Krystian Kuzniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
48
|
Leslie EJ. Genetic models and approaches to study orofacial clefts. Oral Dis 2021; 28:1327-1338. [PMID: 34923716 DOI: 10.1111/odi.14109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Orofacial clefts (OFCs) are common craniofacial birth defects with heterogeneous phenotype and etiology. Geneticists have applied nearly every available method and technology to further our understanding of the genetic architectures of OFCs. OBJECTIVE This review describes the evidence for a genetic etiology in OFCs, statistical genetic approaches employed to identify genetic causes, and how the results have shaped our current understanding of the genetic architectures of syndromic and nonsyndromic OFCs. CONCLUSION There has been rapid progress towards elucidating the genetic architectures of OFCs due to the availability of large collections of DNA samples from cases, controls, and families with OFCs and the consistent adoption of new methodologies and novel statistical approaches as they are developed. Genetic studies have identified rare and common variants influencing risk of OFCs in both Mendelian and complex forms of OFCs, blurring the distinctions traditional categories used in genetic studies and clinical medicine.
Collapse
|
49
|
Liang W, Huang W, Sun B, Zhong W, Zhang Y, Zhang J, Zhou Z, Lin J, Chen F. A Novel PAX3 Variant in a Chinese Pedigree with Nonsyndromic Cleft Lip With or Without Palate. Genet Test Mol Biomarkers 2021; 25:749-756. [PMID: 34918979 DOI: 10.1089/gtmb.2021.0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives: Nonsyndromic cleft lip with or without palate (NSCL/P) is a common congenital orofacial defect, which is associated with severe disruption of orofacial development. The present study was designed to identify potential underlying gene variants in a Chinese pedigree with NSCL/P, in which the proband and the proband's father were affected. Methods: DNA was extracted from the participants' peripheral venous blood, and whole-exome sequencing was performed on the proband and the proband's parents. Results: After filtering, a paired box gene 3 (PAX3) missense variant (c.92C>G_p.Thr31Ser) was identified, which was verified by Sanger sequencing. This variant, which was not present in 113 unrelated healthy individuals or in a Chinese public database, may affect the transcription inhibition domain of the PAX3 protein. Conservation analysis and in silico predictions suggested that this variant may be evolutionarily conserved and potentially deleterious. In addition, it was reported that mice with PAX3 variants show cleft palates. Thus, the PAX3 missense variant (c.92C>G_p.Thr31Ser) is a candidate causative variant in this family. Conclusions: To the best of our knowledge, the present study is the first to report on a PAX3 variant in a pedigree with NSCL/P. The present study further suggests that PAX3 may be associated with CL/P etiology.
Collapse
Affiliation(s)
- Wei Liang
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Bohui Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Wenjie Zhong
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Zhibo Zhou
- Department of Oral and Maxillofacial Surgery, and Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Feng Chen
- Department of Central Laboratory, Peking University School and Hospital of Stomatology Beijing, P.R. China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| |
Collapse
|
50
|
Girousi E, Muerner L, Parisi L, Rihs S, von Gunten S, Katsaros C, Degen M. Lack of IRF6 Disrupts Human Epithelial Homeostasis by Altering Colony Morphology, Migration Pattern, and Differentiation Potential of Keratinocytes. Front Cell Dev Biol 2021; 9:718066. [PMID: 34660580 PMCID: PMC8514984 DOI: 10.3389/fcell.2021.718066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Variants within the gene encoding for the transcription factor Interferon Regulatory Factor 6 (IRF6) are associated with syndromic and non-syndromic Cleft Lip/Palate (CLP) cases. IRF6 plays a vital role in the regulation of the proliferation/differentiation balance in keratinocytes and is involved in wound healing and migration. Since a fraction of CLP patients undergoing corrective cleft surgery experience wound healing complications, IRF6 represents an interesting candidate gene linking the two processes. However, Irf6 function has been mainly studied in mice and knowledge on IRF6 in human cells remains sparse. Here, we aimed to elucidate the role of IRF6 in human postnatal skin- and oral mucosa-derived keratinocytes. To do so, we applied CRISPR/Cas9 to ablate IRF6 in two TERT-immortalized keratinocyte cultures, which we used as model cell lines. We show that IRF6 controls the appearance of single cells and colonies, with the latter being less cohesive in its absence. Consequently, IRF6 knockout keratinocytes often moved as single cells instead of a collective epithelial sheet migration but maintained their epithelial character. Lack of IRF6 triggered severe keratinocyte differentiation defects, which were already apparent in the stratum spinosum and extended to the stratum corneum in 3D organotypic skin cultures, while it did not alter their growth rate. Finally, proteomics revealed that most of the differentially expressed proteins in the absence of IRF6 could be associated with differentiation, cell-cell adhesion as well as immune response. Our data expand the knowledge on IRF6 in human postnatal keratinocytes, which will help to better understand IRF6-related pathologies.
Collapse
Affiliation(s)
- Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Lukas Muerner
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | | | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|