1
|
Bacci GM, Fortunato P, Cestaro S, Tiberi L, Dirupo E, Artuso R, Palazzo V, D'Esposito F, Gagliano C, Marziali E, Sodi A, Passerini I, Pelo E, Bargiacchi S, Caputo R. Genotype-phenotype relationship in RDH12 retinopathy: a perspective from a pediatric age group. Ophthalmic Genet 2025; 46:267-275. [PMID: 40043730 DOI: 10.1080/13816810.2025.2470199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Monocentric retrospective case series to describe clinical and molecular peculiarities in a series of pediatric patients in attempting a possible genotype-phenotype correlation. METHODS We included 13 pediatric patients from 7 unrelated families (ages 1-18) with biallelic pathogenic and likely pathogenic variants in RDH12 gene. For all our patients segregation analyses were performed in their parents and affected siblings. According to their cooperation, patients underwent a complete ophtalmic examination and imaging with full field standard electroretinography (ffERG), spectral domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF). RESULTS According to previous studies, we did not observe a conclusive genotype-phenotype correlation in our series, nevertheless we reported 2 new RDH12 likely pathogenic variants. Also, we report clinical data on pediatric patients, with the fundus imaging in the youngest child (2 yo) described in the literature in whom retinal dystrophic changes are already present. DISCUSSION This study includes a collection of genotypic and phenotypic data from children with RDH12-associated IRD. These findings will help further characterize RDH12-related retinopathy. Determining the time window of onset of dystrophic changes is critical to research the correct timing for administering possible therapies. More extensive and functional studies are needed in view of the opportunity of gene replacement therapy for RDH12 associated IRD.
Collapse
Affiliation(s)
| | - Pina Fortunato
- Pediatric Ophthalmology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Silvia Cestaro
- Department of Medicine and Surgical Specialties, Radiological Sciences and Public Health, School of Specialization in Ophtalmology, University of Brescia, Brescia, Italy
| | - Lucia Tiberi
- Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Elia Dirupo
- Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, School of Medicine, "Kore" University of Enna, Enna, Italy
- Eye Clinic, Catania University, Policlinico "Rodolico" - San Marco, Catania, Italy
| | - Elisa Marziali
- Pediatric Ophthalmology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Andrea Sodi
- Eye Clinic, Careggi Teaching Hospital, Florence, Italy
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Elisabetta Pelo
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Roberto Caputo
- Pediatric Ophthalmology, Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
2
|
Lucas MC, Keßler T, Scharf F, Steinke-Lange V, Klink B, Laner A, Holinski-Feder E. A series of reviews in familial cancer: genetic cancer risk in context variants of uncertain significance in MMR genes: which procedures should be followed? Fam Cancer 2025; 24:42. [PMID: 40317406 DOI: 10.1007/s10689-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Interpreting variants of uncertain significance (VUS) in mismatch repair (MMR) genes remains a major challenge in managing Lynch syndrome and other hereditary cancer syndromes. This review outlines recommended VUS classification procedures, encompassing foundational and specialized methodologies tailored for MMR genes by expert organizations, including InSiGHT and ClinGen's Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Key approaches include: (1) functional data, encompassing direct assays measuring MMR proficiency such as in vitro MMR assays, deep mutational scanning, and MMR cell-based assays, as well as techniques like methylation-tolerant assays, proteomic-based approaches, and RNA sequencing, all of which provide critical functional evidence supporting variant pathogenicity; (2) computational data/tools, including in silico meta-predictors and models, which contribute to robust VUS classification when integrated with experimental evidence; and (3) enhanced variant detection to identify the actual causal variant through whole-genome sequencing and long-read sequencing to detect pathogenic variants missed by traditional methods. These strategies improve diagnostic precision, support clinical decision-making for Lynch syndrome, and establish a flexible framework that can be applied to other OMIM-listed genes.
Collapse
Affiliation(s)
- Morghan C Lucas
- MGZ- Medical Genetics Center, Munich, Germany.
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany.
| | | | | | - Verena Steinke-Lange
- MGZ- Medical Genetics Center, Munich, Germany
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| | - Barbara Klink
- MGZ- Medical Genetics Center, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| | | | - Elke Holinski-Feder
- MGZ- Medical Genetics Center, Munich, Germany
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| |
Collapse
|
3
|
Weisz-Hubshman M, Burrage LC, Jangam SV, Rosenfeld JA, von Hardenberg S, Bergmann A, Richter MF, Rydzanicz M, Ploski R, Stembalska A, Chung WK, Hernan RR, Lim FY, Brunet T, Syrbe S, Keren B, Heide S, Murdock DR, Dai H, Xia F, Ketkar S, Dawson B, Narayanan V, Graves HK, Wangler MF, Bacino C, Lee B. De novo variants in RYBP are associated with a severe neurodevelopmental disorder and congenital anomalies. Genet Med 2025; 27:101369. [PMID: 39891528 DOI: 10.1016/j.gim.2025.101369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE Polycomb group proteins are key epigenetic transcriptional regulators. Multiple neurodevelopmental disorders are associated with pathogenic variants of the genes encoding Polycomb group proteins. RYBP is a core component of the noncanonical Polycomb Repressor Complex 1; however, its role in disease is unclear. METHODS Functional consequences of RYBP variants were assessed using in vitro cellular and in vivo Drosophila melanogaster studies. RESULTS We described 7 individuals with heterozygous de novo variants of RYBP and their clinical findings, including severe developmental delay, dysmorphisms, and multiple congenital anomalies. We showed that all single-nucleotide variants in RYBP localize to the N-terminal domain of the gene, which encodes the zinc-finger domain and ubiquitin-binding moiety. In vitro studies have demonstrated that the RYBP c.132C>G p.(Cys44Trp) variant causes reduced protein expression but does not affect the binding of YY1, RING1B, or ubiquitin. In vivo overexpression studies in Drosophila melanogaster showed a dramatic functional difference between human RYBP and its variant forms, affecting the C44 amino acid residue. DNA methylation studies suggested a possible episignature associated with RYBP-related disorder. CONCLUSION Heterozygous de novo variants in RYBP are associated with an identifiable syndromic neurodevelopmental disorder with multiple congenital anomalies.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX.
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Anke Bergmann
- Department of Human Genetics, Hannover Medical University, Hannover, Germany
| | | | | | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Stembalska
- Department and Institute of Genetics, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Foong Y Lim
- Department of Pediatrics, Columbia University, New York, NY
| | - Theresa Brunet
- Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany; Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Steffen Syrbe
- Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Epileptology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Boris Keren
- Department of Genetics, Assistance Publique - Hôpitaux de Paris, University Hôpital Pitié-Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Genetics, Assistance Publique - Hôpitaux de Paris, University Hôpital Pitié-Salpêtrière, Paris, France
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics, Houston, TX
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics, Houston, TX
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vinodh Narayanan
- Arizona Pediatric Neurology and Neurogenetics Associates, Phoenix, AZ
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX.
| |
Collapse
|
4
|
Quiroz V, Zubair U, Schierbaum L, Tam A, Battaglia N, Rong J, Agianda HAP, Alecu JE, Yang K, Ebrahimi‐Fakhari D. Heterozygous variants in AP4S1 are not associated with a neurological phenotype. Ann Clin Transl Neurol 2025; 12:851-854. [PMID: 39865903 PMCID: PMC12040498 DOI: 10.1002/acn3.52302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Biallelic loss-of-function variants in AP4S1 cause childhood-onset hereditary spastic paraplegia. A recent report suggested that heterozygous AP4S1 variants lead to a syndrome of lower limb spasticity and dysregulation of sphincter function. We critically evaluate this claim against clinical observations in 28 heterozygous carriers of the same AP4S1 variant (NM_007077.3: c.289C>T, p.Arg97Ter). In these 14 males and 14 females (mean age: 37.6 ± 4.9 years [SD], range: 30-50 years), we ascertain no increased prevalence of neurological manifestations. Alternative causes should be considered when evaluating patients with heterozygous AP4S1 variants and neurological symptoms, as misattribution of pathogenicity can impact clinical care and genetic counseling.
Collapse
Affiliation(s)
- Vicente Quiroz
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Umar Zubair
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Luca Schierbaum
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Amy Tam
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nicole Battaglia
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Joshua Rong
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Habibah A. P. Agianda
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Julian E. Alecu
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kathryn Yang
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Darius Ebrahimi‐Fakhari
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Calame DG, Wong JH, Panda P, Nguyen DT, Leong NCP, Sangermano R, Patankar SG, Abdel-Hamid MS, AlAbdi L, Safwat S, Flannery KP, Dardas Z, Fatih JM, Murali C, Kannan V, Lotze TE, Herman I, Ammouri F, Rezich B, Efthymiou S, Alavi S, Murphy D, Firoozfar Z, Nasab ME, Bahreini A, Ghasemi M, Haridy NA, Goldouzi HR, Eghbal F, Karimiani EG, Begtrup A, Elloumi H, Srinivasan VM, Gowda VK, Du H, Jhangiani SN, Coban-Akdemir Z, Marafi D, Rodan L, Isikay S, Rosenfeld JA, Ramanathan S, Staton M, Oberg KC, Clark RD, Wenman C, Loughlin S, Saad R, Ashraf T, Male A, Tadros S, Boostani R, Abdel-Salam GMH, Zaki M, Mardi A, Hashemi-Gorji F, Abdalla E, Manzini MC, Pehlivan D, Posey JE, Gibbs RA, Houlden H, Alkuraya FS, Bujakowska K, Maroofian R, Lupski JR, Nguyen LN. Biallelic variation in the choline and ethanolamine transporter FLVCR1 underlies a severe developmental disorder spectrum. Genet Med 2025; 27:101273. [PMID: 39306721 DOI: 10.1016/j.gim.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE FLVCR1 encodes a solute carrier protein implicated in heme, choline, and ethanolamine transport. Although Flvcr1-/- mice exhibit skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia (DBA), biallelic FLVCR1 variants in humans have previously only been linked to childhood or adult-onset ataxia, sensory neuropathy, and retinitis pigmentosa. METHODS We identified individuals with undiagnosed neurodevelopmental disorders and biallelic FLVCR1 variants through international data sharing and characterized the functional consequences of their FLVCR1 variants. RESULTS We ascertained 30 patients from 23 unrelated families with biallelic FLVCR1 variants and characterized a novel FLVCR1-related phenotype: severe developmental disorders with profound developmental delay, microcephaly (z-score -2.5 to -10.5), brain malformations, epilepsy, spasticity, and premature death. Brain malformations ranged from mild brain volume reduction to hydranencephaly. Severely affected patients share traits, including macrocytic anemia and skeletal malformations, with Flvcr1-/- mice and DBA. FLVCR1 variants significantly reduce choline and ethanolamine transport and/or disrupt mRNA splicing. CONCLUSION These data demonstrate a broad FLVCR1-related phenotypic spectrum ranging from severe multiorgan developmental disorders resembling DBA to adult-onset neurodegeneration. Our study expands our understanding of Mendelian choline and ethanolamine disorders and illustrates the importance of anticipating a wide phenotypic spectrum for known disease genes and incorporating model organism data into genome analysis to maximize genetic testing yield.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.
| | - Jovi Huixin Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puravi Panda
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dat Tuan Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nancy C P Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Sohil G Patankar
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sylvia Safwat
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt; Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ
| | - Kyle P Flannery
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Chaya Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Varun Kannan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Timothy E Lotze
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Boys Town National Research Hospital, Boys Town, NE
| | - Farah Ammouri
- Boys Town National Research Hospital, Boys Town, NE; The University of Kansas Health System, Westwood, KS
| | - Brianna Rezich
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | | | - Mahya Ebrahimi Nasab
- Meybod Genetic Research Center, Yazd, Iran; Yazd Welfare Organization, Yazd, Iran
| | - Amir Bahreini
- KaryoGen, Isfahan, Iran; Department of Human Genetics, University of Pittsburgh, PA
| | - Majid Ghasemi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nourelhoda A Haridy
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hamid Reza Goldouzi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Eghbal
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | | | | | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Sedat Isikay
- Gaziantep Islam Science and Technology University, Medical Faculty, Department of Pediatric Neurology, Gaziantep, Turkey
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Subhadra Ramanathan
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Michael Staton
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA
| | - Robin D Clark
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Catharina Wenman
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sam Loughlin
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ramy Saad
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Tazeen Ashraf
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alison Male
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Shereen Tadros
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Genetics and Genomic Medicine Department, University College London, United Kingdom
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ali Mardi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kinga Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - James R Lupski
- Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX.
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Ridgeway AR, Shortall C, Finnegan LK, Long R, Matthews E, Dockery A, Kopčić E, Whelan L, Kirk C, Silvestri G, Turner J, Keegan DJ, Millington-Ward S, Chadderton N, Duignan E, Kenna PF, Farrar GJ. Novel Splice-Altering Variants in the CHM and CACNA1F Genes Causative of X-Linked Choroideremia and Cone Dystrophy. Genes (Basel) 2024; 16:25. [PMID: 39858572 PMCID: PMC11764614 DOI: 10.3390/genes16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, CHM NM_000390.4:c.941-11T>G and CACNA1F NM_005183.4:c.2576+4_2576+5del implicated in choroideremia and cone dystrophy (COD), respectively, resulting in significant visual loss. METHODS Next-generation sequencing was employed to identify the candidate variants in CHM and CACNA1F, which were confirmed using Sanger sequencing. Cascade analysis was undertaken when additional family members were available. Functional analysis was conducted by cloning genomic regions of interest into gateway expression vectors, creating variant and wildtype midigenes, which were subsequently transfected into HEK293 cells. RNA was harvested and amplified by RT-PCR to investigate the splicing profile for each variant compared to the wildtype. Novel variants were reclassified according to ACMG/AMP and ClinGen SVI guidelines. RESULTS Midigene functional analysis confirmed that both variants disrupted splicing. The CHM NM_000390.4:c.941-11T>G variant caused exon 8 skipping, leading to a frameshift and the CACNA1F NM_005183.4:c.2576+4_2576+5del variant caused a multimodal splice defect leading to an in-frame insertion of seven amino acids and a frameshift. With this evidence, the former was upgraded to likely pathogenic and the latter to a hot VUS. CONCLUSIONS This study adds to the mutational spectrum of splicing defects implicated in retinal degenerations by identifying and characterising two novel variants in CHM and CACNA1F. Our results highlight the importance of conducting functional analysis to investigate the consequences of intronic splice-altering variants and the significance of reclassifying VUS to confirm a genetic diagnosis.
Collapse
Affiliation(s)
- Anna R. Ridgeway
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Ciara Shortall
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Laura K. Finnegan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Róisín Long
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Evan Matthews
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Adrian Dockery
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin 7, D07 K201 Dublin, Ireland
| | - Ella Kopčić
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Laura Whelan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Claire Kirk
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast BT12 6BA, UK; (C.K.); (G.S.)
| | - Giuliana Silvestri
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast BT12 6BA, UK; (C.K.); (G.S.)
| | - Jacqueline Turner
- Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 K201 Dublin, Ireland; (J.T.); (D.J.K.)
| | - David J. Keegan
- Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 K201 Dublin, Ireland; (J.T.); (D.J.K.)
| | - Sophia Millington-Ward
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Naomi Chadderton
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| | - Emma Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, D02 XK51 Dublin, Ireland;
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, D02 XK51 Dublin, Ireland
| | - Paul F. Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, D02 XK51 Dublin, Ireland;
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, D02 XK51 Dublin, Ireland
| | - G. Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland; (A.R.R.); (L.K.F.); (R.L.); (E.M.); (A.D.); (E.K.); (L.W.); (S.M.-W.); (N.C.); (P.F.K.)
| |
Collapse
|
7
|
Dawood M, Heavner B, Wheeler MM, Ungar RA, LoTempio J, Wiel L, Berger S, Bernstein JA, Chong JX, Délot EC, Eichler EE, Gibbs RA, Lupski JR, Shojaie A, Talkowski ME, Wagner AH, Wei CL, Wellington C, Wheeler MT, Carvalho CMB, Gifford CA, May S, Miller DE, Rehm HL, Sedlazeck FJ, Vilain E, O'Donnell-Luria A, Posey JE, Chadwick LH, Bamshad MJ, Montgomery SB. GREGoR: Accelerating Genomics for Rare Diseases. ARXIV 2024:arXiv:2412.14338v1. [PMID: 39764392 PMCID: PMC11702807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Rare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis. The Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium was initiated to study thousands of challenging rare disease cases and families and apply, standardize, and evaluate emerging genomics technologies and analytics to accelerate their adoption in clinical practice. Further, all data generated, currently representing ~7500 individuals from ~3000 families, is rapidly made available to researchers worldwide via the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) to catalyze global efforts to develop approaches for genetic diagnoses in rare diseases (https://gregorconsortium.org/data). The majority of these families have undergone prior clinical genetic testing but remained unsolved, with most being exome-negative. Here, we describe the collaborative research framework, datasets, and discoveries comprising GREGoR that will provide foundational resources and substrates for the future of rare disease genomics.
Collapse
Affiliation(s)
- Moez Dawood
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ben Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Marsha M Wheeler
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Rachel A Ungar
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Center for Biomedical Ethics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan LoTempio
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Laurens Wiel
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Seth Berger
- Division of Genetics and Metabolism, Children's National Rare Disease Institute, Washington, DC, USA
- Center for Genetic Medicine Research, Children's National Rare Disease Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica X Chong
- Department of Pediatrics, Dvision of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Emmanuèle C Délot
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Evan E Eichler
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Alex H Wagner
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chia-Lin Wei
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christopher Wellington
- Office of Genomic Data Science, National Human Genome Research Institute, Bethesda, MD, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Casey A Gifford
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susanne May
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Anne O'Donnell-Luria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lisa H Chadwick
- Division of Genome Sciences, National Human Genome Research Institute, Bethesda, MD, USA
| | - Michael J Bamshad
- Department of Pediatrics, Dvision of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Stephen B Montgomery
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Akalın A, Özalkak Ş, Yıldırım R, Karakaya AA, Kolbaşı B, Durmuşalioğlu EA, Kökali F, Ürel-Demir G, Öz V, Ünal E, Atik T, Şimşek-Kiper PÖ, Elcioglu NH. Clinical and molecular spectrum along with genotype-phenotype correlation of 25 patients diagnosed with 3 M syndrome: a study from Turkey. Eur J Pediatr 2024; 184:68. [PMID: 39643721 DOI: 10.1007/s00431-024-05855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024]
Abstract
3 M syndrome is a well-known autosomal recessive skeletal genetic disorder caused by biallelic pathogenic variants in the CUL7, OBSL1, and CCDC8 genes. Affected individuals exhibit profound pre- and postnatal growth retardation, distinctive facial features with normal intelligence. This study aims to provide insight into the comprehensive evaluation of clinical, laboratory, and radiological findings, expand the mutational spectrum of the disease, and establish a genotype-phenotype correlation in the present cases. A total of 25 patients from 19 unrelated families were included in the study. Genetic etiology was determined in probands through the utilization of Sanger sequencing and/or targeted gene panel analysis. The clinical, laboratory, and genetic features of all patients at admission and during follow-up were documented. Genotype-phenotype correlation was carried out in the CUL7 and OBSL1 groups. The genetic etiology was established in all patients (n = 25/25, 100%). We identified 15 distinct variants in CUL7, OBSL1, and CCDC8 genes, with eleven being novel. CUL7 variants were present in 13 patients (n = 13/25, 52%), while OBSL1 variants were found in 11 patients (n = 11/25, 44%). No notable distinctions were found in mean birth weight, height, and standard deviation scores between the CUL7 and OBSL1 mutation groups (p > 0.05). Patients with CUL7 variants exhibited significantly lower height standard deviation scores both at admission and at the last examination, as well as lower weight standard deviation scores at the last examination, compared to those with OBSL1 variants (p < 0.05). CONCLUSION To date, genotype-phenotype correlations have been identified in a limited number of studies. Further research involving larger cohorts is necessary to solidify these correlations. WHAT IS KNOWN • 3M syndrome is a well-known skeletal dysplasia caused by biallelic pathogenic variants in CUL7, OBSL1, and CCDC8 genes. • Despite genetic heterogeneity, clinical, and radiologic features show homogeneity in affected individuals. WHAT IS NEW • Genotype-phenotype correlations have been established in limited studies. • The CUL7 group exhibited significantly lower height SDS at both admission and the final evaluation and lower weight SDS at the final examination compared to the OBSL1 group. • The frequency of variants in the OBSL1 gene among Turkish patients exceeds the rates reported in the literature. • Gradenigo syndrome is being reported for the first time in a patient with 3M syndrome.
Collapse
Affiliation(s)
- Akçahan Akalın
- Department of Pediatric Genetics, Diyarbakir Children's Hospital, Diyarbakır, Turkey.
- Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Şervan Özalkak
- Department of Pediatric Endocrinology, Diyarbakir Children's Hospital, Diyarbakır, Turkey
| | - Ruken Yıldırım
- Department of Pediatric Endocrinology, Diyarbakir Children's Hospital, Diyarbakır, Turkey
| | - Amine Aktar Karakaya
- Department of Pediatric Endocrinology, Diyarbakir Children's Hospital, Diyarbakır, Turkey
| | - Barış Kolbaşı
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Enise Avcı Durmuşalioğlu
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | - Funda Kökali
- Department of Pediatric Genetics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Gizem Ürel-Demir
- Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Veysel Öz
- Department of Pediatric Neurology, Diyarbakir Children's Hospital, Diyarbakır, Turkey
| | - Edip Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | | | - Nursel H Elcioglu
- Department of Pediatric Genetics, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Department of Pediatric Genetics, Eastern Mediterranean University Medical School, Famagusta, Turkey
| |
Collapse
|
9
|
Dawood M, Fayer S, Pendyala S, Post M, Kalra D, Patterson K, Venner E, Muffley LA, Fowler DM, Rubin AF, Posey JE, Plon SE, Lupski JR, Gibbs RA, Starita LM, Robles-Espinoza CD, Coyote-Maestas W, Gallego Romero I. Using multiplexed functional data to reduce variant classification inequities in underrepresented populations. Genome Med 2024; 16:143. [PMID: 39627863 PMCID: PMC11616159 DOI: 10.1186/s13073-024-01392-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style functional data may help resolve variant classification disparities between populations, especially for Variants of Uncertain Significance (VUS). METHODS We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from All of Us and the Genome Aggregation Database. Then, we incorporated clinically calibrated MAVE data into the Clinical Genome Resource's Variant Curation Expert Panel rules to automate VUS reclassification for BRCA1, TP53, and PTEN. RESULTS Using two orthogonal statistical approaches, we show a higher prevalence (p ≤ 5.95e - 06) of VUS in individuals of non-European-like genetic ancestry across all medical specialties assessed in all three databases. Further, in the non-European-like genetic ancestry group, higher rates of Benign or Likely Benign and variants with no clinical designation (p ≤ 2.5e - 05) were found across many medical specialties, whereas Pathogenic or Likely Pathogenic assignments were increased in individuals of European-like genetic ancestry (p ≤ 2.5e - 05). Using MAVE data, we reclassified VUS in individuals of non-European-like genetic ancestry at a significantly higher rate in comparison to reclassified VUS from European-like genetic ancestry (p = 9.1e - 03) effectively compensating for the VUS disparity. Further, essential code analysis showed equitable impact of MAVE evidence codes but inequitable impact of allele frequency (p = 7.47e - 06) and computational predictor (p = 6.92e - 05) evidence codes for individuals of non-European-like genetic ancestry. CONCLUSIONS Generation of saturation-style MAVE data should be a priority to reduce VUS disparities and produce equitable training data for future computational predictors.
Collapse
Affiliation(s)
- Moez Dawood
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Shawn Fayer
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sriram Pendyala
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Mason Post
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eric Venner
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lara A Muffley
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Douglas M Fowler
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alan F Rubin
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sharon E Plon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre El Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico
- CASM, Wellcome Sanger Institute, Hinxton, UK
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, USA.
| | - Irene Gallego Romero
- Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, 3065, Australia.
- School of BioSciences and Melbourne Integrative Genomics, The University of Melbourne, Royal Parade, Parkville, 3010, Australia.
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia.
| |
Collapse
|
10
|
Vasilyeva T, Kadyshev V, Khalanskaya O, Kuznetsova S, Ionova S, Marakhonov A, Zinchenko R. Clinical and Molecular Findings in Patients with Knobloch Syndrome 1: Case Series Report. Genes (Basel) 2024; 15:1295. [PMID: 39457419 PMCID: PMC11506921 DOI: 10.3390/genes15101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Knobloch syndrome 1 (KS) is an autosomal recessive inherited ocular syndrome characterized by a combination of high myopia, vitreoretinal degeneration, and occipital encephalocele. KS is caused by biallelic pathogenic variants in the COL18A1 gene. Diagnosing KS can be challenging due to its clinical heterogeneity and the rarity of the syndrome. METHODS We conducted comprehensive clinical and instrumental ophthalmological examinations, whole-exome sequencing, Sanger sequencing, and segregation analysis to evaluate affected families. RESULTS Two patients presenting with high myopia, low visual acuity, chorioretinal atrophy, and occipital skin/skull defects were diagnosed with Knobloch syndrome 1 (KS). In Case 1, a 14-year-old boy, the COL18A1 variants identified were c.2673dup and c.3523_3524del in a compound heterozygous state. Case 2 involved a 3-year-old girl, the c.1637_1638dup and c.3523_3524del variants were identified in a compound heterozygous state. In Case 3, a retrospectively observed boy of 3 y.o. with KS, the variants c.929-2A>G and c.3523_3524del were defined earlier. CONCLUSIONS We confirmed KS molecularly in two novel families. Additionally, in Case 3 of a retrospectively analyzed third family and in both novel cases, one of the biallelic causative variants was the same known 2bp deletion in exon 40 of the collagen XVIII gene. Cases 1 and 3 were characterized by connective tissue dysplasia features and a pathognomonic Knobloch triad. No neurological manifestations and no trends in the genotype-phenotype relationship were found. The heterogeneity of phenotype in the case series is likely to be the result of further factors and/or genetic background.
Collapse
Affiliation(s)
- Tatyana Vasilyeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.K.); (S.K.); (S.I.); (A.M.); (R.Z.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. Genet Med 2024; 26:101199. [PMID: 38944749 PMCID: PMC11456385 DOI: 10.1016/j.gim.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing, the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare diseases. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery, which should, in turn, increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks such as Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, and researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA.
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Orange, CA
| | - Daniel G Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX
| | | | | | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
12
|
Sebastiano MR, Hadano S, Cesca F, Ermondi G. Preclinical alternative drug discovery programs for monogenic rare diseases. Should small molecules or gene therapy be used? The case of hereditary spastic paraplegias. Drug Discov Today 2024; 29:104138. [PMID: 39154774 DOI: 10.1016/j.drudis.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Patients diagnosed with rare diseases and their and families search desperately to organize drug discovery campaigns. Alternative models that differ from default paradigms offer real opportunities. There are, however, no clear guidelines for the development of such models, which reduces success rates and raises costs. We address the main challenges in making the discovery of new preclinical treatments more accessible, using rare hereditary paraplegia as a paradigmatic case. First, we discuss the necessary expertise, and the patients' clinical and genetic data. Then, we revisit gene therapy, de novo drug development, and drug repurposing, discussing their applicability. Moreover, we explore a pool of recommended in silico tools for pathogenic variant and protein structure prediction, virtual screening, and experimental validation methods, discussing their strengths and weaknesses. Finally, we focus on successful case applications.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy.
| |
Collapse
|
13
|
Susgun S, Demirel M, Yalcin Cakmakli G, Salman B, Oguz KK, Elibol B, Ugur Iseri SA, Yapici Z. Targeted resequencing reveals high-level mosaicism for a novel frameshift variant in WDR45 associated with beta-propeller protein-associated neurodegeneration. Int J Neurosci 2024; 134:1040-1045. [PMID: 37099669 DOI: 10.1080/00207454.2023.2208279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Beta-propeller protein-associated neurodegeneration (BPAN) is a rare X-linked dominant neurodegenerative disease, which is characterized by iron accumulation in the basal ganglia. BPAN is associated with pathogenic variation in WDR45, which has been reported almost exclusively in females most probably due to male lethality in the hemizygous state. METHODS Whole exome sequencing (WES) and targeted deep sequencing were performed for a male with a clinical diagnosis of BPAN at the age of 37. RESULTS The novel frameshift variant in WDR45 detected by WES was further analyzed with targeted resequencing to detect a mosaic variant with a level of 85.5% in the blood sample of the proband. DISCUSSION Although the main role of WDR45 remains elusive, recent studies show that WDR45 may contribute to neurodegeneration through defects in autophagy, iron storage and ferritin metabolism, mitochondria organization, and endoplasmic reticulum homeostasis. The extend of spatiotemporal haploinsufficiency of WDR45 frameshifting variants caused by mosaicism in males may lead to variable clinical severity, which may be hard to elaborate clinically. Promising genetic analysis strategies using targeted deep sequencing may help determine the clinical outcome of somatic mosaicism in neurological disorders including BPAN. Additionally, we suggest that deep sequencing should be conducted in cerebrospinal fluid samples to provide more reliable results in terms of reflecting the mosaicism level in the brain for future studies.
Collapse
Affiliation(s)
- Seda Susgun
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mert Demirel
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gul Yalcin Cakmakli
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Baris Salman
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Kader K Oguz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bulent Elibol
- Department of Neurology, Institute of Neurological Sciences and Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Sibel Aylin Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Zuhal Yapici
- Department of Neurology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Ashaat EA, Esmaiel NN, El-Saiedi SA, Ashaat NA, Hussen DF, Ramadan A, Al Kersh MA, AbdelHakim NS, Said I, Metwally AM, Fayez A. Biallelic TYR and TKFC variants in Egyptian patients with OCA1 and new expanded TKFC features. BMC Genomics 2024; 25:844. [PMID: 39251934 PMCID: PMC11382379 DOI: 10.1186/s12864-024-10705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Oculocutaneous albinism type1 (OCA1) is caused by the TYR gene's homozygous and compound heterozygous variants. TKFC gene variants cause triokinase & FMN cyclase deficiency syndrome with variable multisystemic disorders. OBJECTIVES To determine the potential disease-causing variants in two deceased patients presenting atypical OCA1 features by demonstrating three generations for a single family. The two deceased neonates had severe skeletal abnormalities and fatal hypertrophic cardiomyopathy. We also explored the potential mechanisms for the causative relationship between TKFC and multisystem disorders. PATIENTS AND METHODS Due to the new emerging symptoms that weren't reported before with the TYR gene, the following methods were performed: Sanger sequencing for the TYR gene, followed by whole exome sequencing, co-segregation, and computational analyses. RESULTS Extensive parental consanguinity was found, and consequently an autosomal recessive mode of inheritance was prioritized. Upon performing sequencing and segregation data, the following has been confirmed: positive co-segregation of nonsense homozygous NM_000372.5:c.346C > T p.(Arg116*) variant in TYR gene and multisystem disease-missense homozygous NM_015533.4:c.598G > A p.(Val200Ile) variant in TKFC gene in the two affected index patients who deceased due to hypertrophic cardiomyopathy. Using computational analysis, we found that c.598G > A p.(Val200Ile) pathogenicity has led to the failure of L2-K1 active site closure due to the potential differential fluctuation between valine and isoleucine residues. Subsequently, disruption of endogenous DHA phosphorylation was found. Two potential mechanisms exploring the causative relationship between TKFC gene and multisystem disorders have been suggested. CONCLUSIONS This study presented a first family with the co-existence of biallelic variants in TYR and TKFC genes associating severe skeletal abnormalities and lethal hypertrophic cardiomyopathy. Neither of these genes would have been pursued in the standard genetic counseling. Such discovery is paving the way for more efficient genetic counseling. Comparing TKFC results with literature data showed that our relevant expanded TKFC variant is the 3rd worldwide.
Collapse
Affiliation(s)
- Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Nora N Esmaiel
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | | | - Dalia Farouk Hussen
- Human Cytogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Abeer Ramadan
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | | | - Ibrahim Said
- Fetal Medicine Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ammal M Metwally
- Community Medicine Research Department/Medical Research and Clinical Studies Institute, National Research Centre (Affiliation ID: 60014618), Cairo, Egypt.
| | - Alaaeldin Fayez
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
15
|
Tresbach RH, Sperb-Ludwig F, Ligabue-Braun R, Bitencourt FHD, Tonon T, Souza CFMD, Poswar FDO, Leite MEDQ, Amorim T, Porta G, Seda Neto J, Miura IK, Steiner CE, Martins AM, Pessoa ALS, Ribeiro EM, Schwartz IVD. Maple syrup urine disease diagnosis in Brazilian patients by massive parallel sequencing. Mol Genet Metab 2024; 143:108569. [PMID: 39270351 DOI: 10.1016/j.ymgme.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.
Collapse
Affiliation(s)
- Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Fernanda Hendges de Bitencourt
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tássia Tonon
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano de Oliveira Poswar
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Efigênia de Queiroz Leite
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Tatiana Amorim
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Gilda Porta
- Pedro de Alcântara Children's Institute - Hospital das Clínicas, Medical School, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - João Seda Neto
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Irene Kazumi Miura
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Carlos Eduardo Steiner
- Department of Translational Medicine, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Maria Martins
- Reference Center for Inborn Errors of Metabolism, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, CE, Brazil; Department of Pediatrics, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | | | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; InRaras, National Institute of Rare Diseases, Brazil
| |
Collapse
|
16
|
Basu B, Karwatka M, China B, McKibbin M, Khan K, Inglehearn CF, Ladbury JE, Johnson CA. Glycogen myophosphorylase loss causes increased dependence on glucose in iPSC-derived retinal pigment epithelium. J Biol Chem 2024; 300:107569. [PMID: 39009342 PMCID: PMC11342771 DOI: 10.1016/j.jbc.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell line and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic WT controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate was increased. Oxygen consumption rate in response to physiological levels of lactate was significantly greater in WT than PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.
Collapse
Affiliation(s)
- Basudha Basu
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Magdalena Karwatka
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Becky China
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Department of Ophthalmology, St James's University Hospital, Leeds, UK
| | - Kamron Khan
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
17
|
Smail C, Montgomery SB. RNA Sequencing in Disease Diagnosis. Annu Rev Genomics Hum Genet 2024; 25:353-367. [PMID: 38360541 DOI: 10.1146/annurev-genom-021623-121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA sequencing (RNA-seq) enables the accurate measurement of multiple transcriptomic phenotypes for modeling the impacts of disease variants. Advances in technologies, experimental protocols, and analysis strategies are rapidly expanding the application of RNA-seq to identify disease biomarkers, tissue- and cell-type-specific impacts, and the spatial localization of disease-associated mechanisms. Ongoing international efforts to construct biobank-scale transcriptomic repositories with matched genomic data across diverse population groups are further increasing the utility of RNA-seq approaches by providing large-scale normative reference resources. The availability of these resources, combined with improved computational analysis pipelines, has enabled the detection of aberrant transcriptomic phenotypes underlying rare diseases. Further expansion of these resources, across both somatic and developmental tissues, is expected to soon provide unprecedented insights to resolve disease origin, mechanism of action, and causal gene contributions, suggesting the continued high utility of RNA-seq in disease diagnosis.
Collapse
Affiliation(s)
- Craig Smail
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA;
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Department of Genetics, and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
18
|
Kim IB, Kim MH, Jung S, Kim WK, Lee J, Ju YS, Webster MJ, Kim S, Kim JH, Kim HJ, Kim J, Kim S, Lee JH. Low-level brain somatic mutations in exonic regions are collectively implicated in autism with germline mutations in autism risk genes. Exp Mol Med 2024; 56:1750-1762. [PMID: 39085355 PMCID: PMC11372092 DOI: 10.1038/s12276-024-01284-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 08/02/2024] Open
Abstract
Low-level somatic mutations in the human brain are implicated in various neurological disorders. The contribution of low-level brain somatic mutations to autism spectrum disorder (ASD), however, remains poorly understood. Here, we performed high-depth exome sequencing with an average read depth of 559.3x in 181 cortical, cerebellar, and peripheral tissue samples to identify brain somatic single nucleotide variants (SNVs) in 24 ASD subjects and 31 controls. We detected ~2.4 brain somatic SNVs per exome per single brain region, with a variant allele frequency (VAF) as low as 0.3%. The mutational profiles, including the number, signature, and type, were not significantly different between the ASD patients and controls. Intriguingly, when considering genes with low-level brain somatic SNVs and ASD risk genes with damaging germline SNVs together, the merged set of genes carrying either somatic or germline SNVs in ASD patients was significantly involved in ASD-associated pathophysiology, including dendrite spine morphogenesis (p = 0.025), mental retardation (p = 0.012), and intrauterine growth retardation (p = 0.012). Additionally, the merged gene set showed ASD-associated spatiotemporal expression in the early and mid-fetal cortex, striatum, and thalamus (all p < 0.05). Patients with damaging mutations in the merged gene set had a greater ASD risk than did controls (odds ratio = 3.92, p = 0.025, 95% confidence interval = 1.12-14.79). The findings of this study suggest that brain somatic SNVs and germline SNVs may collectively contribute to ASD-associated pathophysiology.
Collapse
Affiliation(s)
- Il Bin Kim
- Department of Psychiatry, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, 06135, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Myeong-Heui Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Saehoon Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Woo Kyeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Junehawk Lee
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Maree J Webster
- Stanley Medical Research Institute, Laboratory of Brain Research, 9800 Medical Center Drive, Suite C-050, Rockville, MD, 20850, USA
| | - Sanghyeon Kim
- Stanley Medical Research Institute, Laboratory of Brain Research, 9800 Medical Center Drive, Suite C-050, Rockville, MD, 20850, USA
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- SoVarGen, SoVarGen, Inc., Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
20
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579012. [PMID: 38370830 PMCID: PMC10871197 DOI: 10.1101/2024.02.05.579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Seth I. Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, 200 South Manchester Ave. St 206E, Orange, CA, 92868, USA
| | - Daniel G. Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Megan H. Hawley
- Clinical Operations, Invitae, 485F US-1 Suite 110, Iselin, NJ, 08830, USA
| | - E. Andres Rivera-Munoz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza T605, Houston, TX, 77030, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | | | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA, 98195, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Almannai M, Marafi D, Zaki MS, Maroofian R, Efthymiou S, Saadi NW, Filimban B, Dafsari HS, Rahman F, Maqbool S, Faqeih E, Al Mutairi F, Alsharhan H, Abdelaty O, Bin-Hasan S, Duan R, Noureldeen MM, Alqattan A, Houlden H, Hunter JV, Posey JE, Lupski JR, El-Hattab AW. Expanding the phenotype of PPP1R21-related neurodevelopmental disorder. Clin Genet 2024; 105:620-629. [PMID: 38356149 PMCID: PMC11065596 DOI: 10.1111/cge.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine department (GPM), King
Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical
City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah
International Medical Research Center, Ministry of National Guard Health Affairs,
King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard
Health Affairs, Riyadh, Saudi Arabia
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, College of Medicine, Kuwait
University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome
Research Institute National Research Centre, Cairo, Egypt
- Genetics Department, Armed Forces College of Medicine
(AFCM), Cairo, Egypt
| | - Reza Maroofian
- Department of Neuromuscular disorders, UCL Queen Square
Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular disorders, UCL Queen Square
Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nebal Waill Saadi
- College of Medicine, University of Baghdad, Pediatric
Neurology, Children Welfare Teaching Hospital, Baghdad, Iraq
| | - Bilal Filimban
- Section of Medical Genetics, Children’s Hospital,
King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Center for Rare Diseases,
Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne,
Germany
- Randall Centre for Cell and Molecular Biophysics,
Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London,
United Kingdom
- Max-Planck-Institute for Biology of Ageing, Cologne,
Germany
- Cologne Excellence Cluster on Cellular Stress Responses
in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Fatima Rahman
- Department of Developmental - Behavioral Pediatrics,
University of Child Health Sciences & The Children’s Hospital, Lahore,
Pakistan
| | - Shazia Maqbool
- Department of Developmental - Behavioral Pediatrics,
University of Child Health Sciences & The Children’s Hospital, Lahore,
Pakistan
| | - Eissa Faqeih
- Section of Medical Genetics, Children’s Hospital,
King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics and Precision Medicine department (GPM), King
Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical
City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah
International Medical Research Center, Ministry of National Guard Health Affairs,
King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard
Health Affairs, Riyadh, Saudi Arabia
| | - Hind Alsharhan
- Department of Pediatrics, College of Medicine, Kuwait
University, P.O. Box 24923, 13110 Safat, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry
of Health, Sabah Al-Nasser, 92426, Kuwait
- Kuwait Medical Genetics Center, Ministry of Health,
Sulaibikhat, 80901, Kuwait
- Department of Genetic Medicine, Johns Hopkins University
School of Medicine, Baltimore, MD, USA
| | - Omar Abdelaty
- Department of Pediatrics, Farwaniya Hospital, Ministry
of Health, Sabah Al-Nasser, 92426, Kuwait
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniya Hospital, Ministry
of Health, Sabah Al-Nasser, 92426, Kuwait
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas, 77030, USA
| | - Mahmoud M. Noureldeen
- Department of Pediatrics, Faculty of Medicine, Beni-Suef
University, Beni-Suef, Egypt
| | - Alaa Alqattan
- Department of Pediatrics, Farwaniya Hospital, Ministry
of Health, Sabah Al-Nasser, 92426, Kuwait
| | - Henry Houlden
- Department of Neuromuscular disorders, UCL Queen Square
Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jill V Hunter
- Texas Children Hospital, Houston, Texas, 77030,
USA
- Department of Radiology, Baylor College of Medicine,
Houston, Texas, 77030
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas, 77030, USA
- Texas Children Hospital, Houston, Texas, 77030,
USA
- Human Genome Sequencing Center, Baylor College of
Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine,
Houston, Texas, 77030, USA
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine,
University of Sharjah, Sharjah, United Arab Emirates
- Genetics Clinics, University Hospital Sharjah, Sharjah,
United Arab Emirates
| |
Collapse
|
22
|
Wen H, Li Q, Mei S, Cai J, Huang X, Zhao J. A novel frameshift mutation in the NHS gene causes Nance-Horan syndrome in a Chinese family. Gene 2024; 907:148268. [PMID: 38350513 DOI: 10.1016/j.gene.2024.148268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Huaming Wen
- Department of Ophthalmology, Chang'an Hospital of Dongguan, Dongguan 538240, Guangdong, China
| | - Qianwen Li
- Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, The Affiliated Shenzhen stomatology Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
| | - Jiamin Cai
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
| | - Xiaosheng Huang
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China.
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzen 518020, Guangdong, China.
| |
Collapse
|
23
|
Cetica V, Pisano T, Lesca G, Marafi D, Licchetta L, Riccardi F, Mei D, Chung HYB, Bayat A, Balasubramanian M, Lowenstein DH, Endzinienė M, Alotaibi M, Villeneuve N, Jacobs J, Isidor B, Solazzi R, den Hollander NS, Marjanovic D, Rougeot-Jung C, Jung J, Lesieur-Sebellin M, Accogli A, Salpietro V, Saadi NW, Panagiotakaki E, Foiadelli T, Redon S, Tsai MH, Bisulli F, Hammer TB, Lupski JR, Parrini E, Guerrini R. Clinical and molecular characterization of patients with YWHAG-related epilepsy. Epilepsia 2024; 65:1439-1450. [PMID: 38491959 DOI: 10.1111/epi.17939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.
Collapse
Affiliation(s)
- Valentina Cetica
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Tiziana Pisano
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gaetan Lesca
- Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Lyon, France
- Department of Genetics, University Hospitals of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Laura Licchetta
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, Istituto delle Scienze Neurologiche di Bologna, full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Florence Riccardi
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille Medical Genetics, Marseille, France
- Centre Hospitalier Intercommunal Toulon - La Seyne sur Mer (CHITS), Hôpital Ste Musse, Service de Génétique Médicale, Toulon, France
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Hon-Yin B Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Allan Bayat
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Meena Balasubramanian
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Sheffield Clinical Genetics Service, Sheffield Children's National Health Service (NHS) Foundation Trust, Sheffield, UK
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, California, USA
| | - Milda Endzinienė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Nathalie Villeneuve
- Depatment of Pediatric Neurology, Assistance Publique-Hopitaux de Marseille (AP-HM), Hôpital de la Timone Enfants, Marseille, France
| | - Julia Jacobs
- Alberta Children's Research Institute, Hodgekiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- Université de Nantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), l'Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Julien Jung
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, University Paris Cité, Paris, France
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Nebal W Saadi
- College of Medicine, University of Baghdad, Baghdad, Iraq
- Children Welfare Teaching Hospital, Baghdad, Iraq
| | - Eleni Panagiotakaki
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Thomas Foiadelli
- Clinica Pediatrica, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sylvia Redon
- Service de Génétique Médicale, Centre Hospitalier et Universitaire de Brest, Brest, France
- Université de Brest, Institut National de la Santé et de la Recherche Médicale (INSERM), Etablissement Français du Sang, UMR 1078, Brest, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Brest, France
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Francesca Bisulli
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, Istituto delle Scienze Neurologiche di Bologna, full member of the European Reference Network EpiCARE, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Trine B Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| |
Collapse
|
24
|
Beaumont RN, Hawkes G, Gunning AC, Wright CF. Clustering of predicted loss-of-function variants in genes linked with monogenic disease can explain incomplete penetrance. Genome Med 2024; 16:64. [PMID: 38671509 PMCID: PMC11046769 DOI: 10.1186/s13073-024-01333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genetic variants that severely alter protein products (e.g. nonsense, frameshift) are often associated with disease. For some genes, these predicted loss-of-function variants (pLoFs) are observed throughout the gene, whilst in others, they occur only at specific locations. We hypothesised that, for genes linked with monogenic diseases that display incomplete penetrance, pLoF variants present in apparently unaffected individuals may be limited to regions where pLoFs are tolerated. To test this, we investigated whether pLoF location could explain instances of incomplete penetrance of variants expected to be pathogenic for Mendelian conditions. METHODS We used exome sequence data in 454,773 individuals in the UK Biobank (UKB) to investigate the locations of pLoFs in a population cohort. We counted numbers of unique pLoF, missense, and synonymous variants in UKB in each quintile of the coding sequence (CDS) of all protein-coding genes and clustered the variants using Gaussian mixture models. We limited the analyses to genes with ≥ 5 variants of each type (16,473 genes). We compared the locations of pLoFs in UKB with all theoretically possible pLoFs in a transcript, and pathogenic pLoFs from ClinVar, and performed simulations to estimate the false-positive rate of non-uniformly distributed variants. RESULTS For most genes, all variant classes fell into clusters representing broadly uniform variant distributions, but genes in which haploinsufficiency causes developmental disorders were less likely to have uniform pLoF distribution than other genes (P < 2.2 × 10-6). We identified a number of genes, including ARID1B and GATA6, where pLoF variants in the first quarter of the CDS were rescued by the presence of an alternative translation start site and should not be reported as pathogenic. For other genes, such as ODC1, pLoFs were located approximately uniformly across the gene, but pathogenic pLoFs were clustered only at the end, consistent with a gain-of-function disease mechanism. CONCLUSIONS Our results suggest the potential benefits of localised constraint metrics and that the location of pLoF variants should be considered when interpreting variants.
Collapse
Affiliation(s)
- Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Adam C Gunning
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
25
|
Schijven D, Soheili-Nezhad S, Fisher SE, Francks C. Exome-wide analysis implicates rare protein-altering variants in human handedness. Nat Commun 2024; 15:2632. [PMID: 38565598 PMCID: PMC10987538 DOI: 10.1038/s41467-024-46277-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sourena Soheili-Nezhad
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Bergamasco MI, Vanyai HK, Garnham AL, Geoghegan ND, Vogel AP, Eccles S, Rogers KL, Smyth GK, Blewitt ME, Hannan AJ, Thomas T, Voss AK. Increasing histone acetylation improves sociability and restores learning and memory in KAT6B-haploinsufficient mice. J Clin Invest 2024; 134:e167672. [PMID: 38557491 PMCID: PMC10977983 DOI: 10.1172/jci167672] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.
Collapse
Affiliation(s)
- Maria I. Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Hannah K. Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Niall D. Geoghegan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Adam P. Vogel
- Centre for Neurosciences of Speech, University of Melbourne, Parkville, Victoria, Australia
- Redenlab Inc., Melbourne, Australia
| | - Samantha Eccles
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Kelly L. Rogers
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Marnie E. Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Anne K. Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| |
Collapse
|
27
|
Eising E, Vino A, Mabie HL, Campbell TF, Shriberg LD, Fisher SE. Genome Sequencing of Idiopathic Speech Delay. Hum Mutat 2024; 2024:9692863. [PMID: 40225914 PMCID: PMC11918988 DOI: 10.1155/2024/9692863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 04/15/2025]
Abstract
Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.
Collapse
Affiliation(s)
- Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Heather L. Mabie
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas F. Campbell
- School of Behavioral and Brain Sciences, Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, USA
| | | | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
28
|
Schließleder G, Kalitzeos A, Kasilian M, Singh N, Wang Z, Hu Z, Großpötzl M, Sadda S, Wedrich A, Michaelides M, Strauss RW. Deep phenotyping of PROM1-associated retinal degeneration. Br J Ophthalmol 2024; 108:558-565. [PMID: 37080590 DOI: 10.1136/bjo-2022-322036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND/AIMS The purpose of this study was to investigate retinal structure in detail of subjects with autosomal-dominant (AD) and autosomal-recessive (AR) PROM1-associated retinal degeneration (PROM1-RD), study design: institutional, cross-sectional study. METHODS Four eyes from four subjects (three with AD and one with AR) PROM1-RD were investigated by ophthalmic examination including best-corrected visual acuity (BCVA) and multimodal retinal imaging: fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT) and adaptive optics scanning light ophthalmoscopy. Quantitative assessment of atrophic lesions determined by FAF, thickness of individual retinal layers and cone photoreceptor quantification was performed. RESULTS BCVA ranged from 20/16 to 20/200. Initial pathological changes included the presence of hyperautofluorescent spots on FAF imaging, while later stages demonstrated discrete areas of atrophy. In all patients, thinning of the outer retinal layers on SD-OCT with varying degrees of atrophy could be detected depending on disease-causing variants and age. Cone density was quantified both in central and/or at different eccentricities from the fovea. Longitudinal assessments were possible in two patients. CONCLUSIONS PROM1-RD comprises a wide range of clinical phenotypes. Depending on the stage of disease, the cone mosaic in PROM1-RD is relatively preserved and can potentially be targeted by cone-directed interventions.
Collapse
Affiliation(s)
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Melissa Kasilian
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Navjit Singh
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Ziyuan Wang
- School of Engineering, University of California, Los Angeles, California, USA
- Doheny Image Analysis Laboratory, Doheny Eye Institute, Los Angeles, California, USA
| | - Zhihong Hu
- School of Engineering, University of California, Los Angeles, California, USA
- Doheny Image Analysis Laboratory, Doheny Eye Institute, Los Angeles, California, USA
| | - Manuel Großpötzl
- Department of Ophthalmology, Medical University Graz, Graz, Styria, Austria
| | - SriniVas Sadda
- Doheny Image Reading Center, David Geffen School of Medicine at University of California Los Angeles, Pasadena, California, USA
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University Graz, Graz, Styria, Austria
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Rupert W Strauss
- Department of Ophthalmology, Medical University Graz, Graz, Styria, Austria
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Department of Ophthalmology, Kepler University Hospital University Clinic for Ophthalmology and Optometry, Linz, Austria
- Institute of Molecular and Clinical Ophthalmology Basel (IoB), Basel, Switzerland
| |
Collapse
|
29
|
Esteve-Garcia A, Cobos E, Sau C, Padró-Miquel A, Català-Mora J, Barberán-Martínez P, Millán JM, García-García G, Aguilera C. Deciphering complexity: TULP1 variants linked to an atypical retinal dystrophy phenotype. Front Genet 2024; 15:1352063. [PMID: 38450199 PMCID: PMC10915255 DOI: 10.3389/fgene.2024.1352063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: TULP1 exemplifies the remarkable clinical and genetic heterogeneity observed in inherited retinal dystrophies. Our research describes the clinical and molecular characteristics of a patient manifesting an atypical retinal dystrophy pattern, marked by the identification of both a previously unreported and a rarely encountered TULP1 variant. Methods: Whole-exome sequencing was performed to identify potential causative variants. The pathogenicity of the identified TULP1 variants was evaluated through in silico predictors and a minigene splice assay, specifically designed to assess the effect of the unreported TULP1 variant. Results: We identified two TULP1 gene variants in a patient exhibiting unusual and symmetrical alterations in both retinas, characterized by an increase in autofluorescence along the distribution of retinal vessels. These variants included a known rare missense variant, c.1376T>C, and a novel splice site variant, c.822G>T. For the latter variant (c.822G>T), we conducted a minigene splice assay that demonstrated the incorporation of a premature stop codon. This finding suggests a likely activation of the nonsense-mediated mRNA decay mechanism, ultimately resulting in the absence of protein production from this allele. Segregation analysis confirmed that these variants were in trans. Discussion: Our data support that individuals with biallelic TULP1 variants may present with a unique pattern of macular degeneration and periarteriolar vascular pigmentation. This study highlights the importance of further clinical and molecular characterization of TULP1 variants to elucidate genotype-phenotype correlations in the context of inherited retinal dystrophies.
Collapse
Affiliation(s)
- Anna Esteve-Garcia
- Department of Clinical Genetics, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Estefania Cobos
- Department of Ophthalmology, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Sau
- Department of Clinical Genetics, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ariadna Padró-Miquel
- Genetics Laboratory, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jaume Català-Mora
- Department of Ophthalmology, SJD Barcelona Children’s Hospital, Barcelona, Spain
| | - Pilar Barberán-Martínez
- Molecular, Cellular, and Genomic Biomedicine Group, Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, Valencia, Spain
| | - José M. Millán
- Molecular, Cellular, and Genomic Biomedicine Group, Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, Valencia, Spain
- Center for Rare Diseases (CIBERER), Madrid, Spain
- University and Polytechnic La Fe Hospital of Valencia, Valencia, Spain
| | - Gema García-García
- Molecular, Cellular, and Genomic Biomedicine Group, Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, Valencia, Spain
- Center for Rare Diseases (CIBERER), Madrid, Spain
| | - Cinthia Aguilera
- Genetics Laboratory, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
30
|
Coban-Akdemir Z, Song X, Ceballos FC, Pehlivan D, Karaca E, Bayram Y, Mitani T, Gambin T, Bozkurt-Yozgatli T, Jhangiani SN, Muzny DM, Lewis RA, Liu P, Boerwinkle E, Hamosh A, Gibbs RA, Sutton VR, Sobreira N, Carvalho CM, Shaw CA, Posey JE, Valle D, Lupski JR. The impact of the Turkish population variome on the genomic architecture of rare disease traits. GENETICS IN MEDICINE OPEN 2024; 2:101830. [PMID: 39669594 PMCID: PMC11613692 DOI: 10.1016/j.gimo.2024.101830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 12/14/2024]
Abstract
Purpose The variome of the Turkish (TK) population, a population with a considerable history of admixture and consanguinity, has not been deeply investigated for insights on the genomic architecture of disease. Methods We generated and analyzed a database of variants derived from exome sequencing data of 773 TK unrelated, clinically affected individuals with various suspected Mendelian disease traits and 643 unaffected relatives. Results Using uniform manifold approximation and projection, we showed that the TK genomes are more similar to those of Europeans and consist of 2 main subpopulations: clusters 1 and 2 (N = 235 and 1181, respectively), which differ in admixture proportion and variome (https://turkishvariomedb.shinyapps.io/tvdb/). Furthermore, the higher inbreeding coefficient values observed in the TK affected compared with unaffected individuals correlated with a larger median span of long-sized (>2.64 Mb) runs of homozygosity (ROH) regions (P value = 2.09e-18). We show that long-sized ROHs are more likely to be formed on recently configured haplotypes enriched for rare homozygous deleterious variants in the TK affected compared with TK unaffected individuals (P value = 3.35e-11). Analysis of genotype-phenotype correlations reveals that genes with rare homozygous deleterious variants in long-sized ROHs provide the most comprehensive set of molecular diagnoses for the observed disease traits with a systematic quantitative analysis of Human Phenotype Ontology terms. Conclusion Our findings support the notion that novel rare variants on newly configured haplotypes arising within the recent past generations of a family or clan contribute significantly to recessive disease traits in the TK population.
Collapse
Affiliation(s)
- Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor University Medical Center, Dallas, TX
- Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Tugce Bozkurt-Yozgatli
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pacific Northwest Research Institute, Seattle, WA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Baylor Genetics, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| |
Collapse
|
31
|
Calame DG, Wong JH, Panda P, Nguyen DT, Leong NC, Sangermano R, Patankar SG, Abdel-Hamid M, AlAbdi L, Safwat S, Flannery KP, Dardas Z, Fatih JM, Murali C, Kannan V, Lotze TE, Herman I, Ammouri F, Rezich B, Efthymiou S, Alavi S, Murphy D, Firoozfar Z, Nasab ME, Bahreini A, Ghasemi M, Haridy NA, Goldouzi HR, Eghbal F, Karimiani EG, Srinivasan VM, Gowda VK, Du H, Jhangiani SN, Coban-Akdemir Z, Marafi D, Rodan L, Isikay S, Rosenfeld JA, Ramanathan S, Staton M, Kerby C. Oberg, Clark RD, Wenman C, Loughlin S, Saad R, Ashraf T, Male A, Tadros S, Boostani R, Abdel-Salam GM, Zaki M, Abdalla E, Manzini MC, Pehlivan D, Posey JE, Gibbs RA, Houlden H, Alkuraya FS, Bujakowska K, Maroofian R, Lupski JR, Nguyen LN. Biallelic variation in the choline and ethanolamine transporter FLVCR1 underlies a pleiotropic disease spectrum from adult neurodegeneration to severe developmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302464. [PMID: 38405817 PMCID: PMC10888986 DOI: 10.1101/2024.02.09.24302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.
Collapse
Affiliation(s)
- Daniel G. Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jovi Huixin Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Puravi Panda
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Dat Tuan Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Nancy C.P. Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Sohil G. Patankar
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Mohamed Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sylvia Safwat
- Department of Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kyle P. Flannery
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, NY, USA
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chaya Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Varun Kannan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Timothy E. Lotze
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Boys Town National Research Hospital, Boys Town, NE, USA
| | - Farah Ammouri
- Boys Town National Research Hospital, Boys Town, NE, USA
- The University of Kansas Health System, Westwood, KS, USA
| | - Brianna Rezich
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular diseases, UCL Institute of Neurology, WC1N 3BG, London, UK
| | - Shahryar Alavi
- Department of Neuromuscular diseases, UCL Institute of Neurology, WC1N 3BG, London, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | | | | | - Amir Bahreini
- KaryoGen, Isfahan, Iran
- Department of Human Genetics, University of Pittsburgh, PA, USA
| | - Majid Ghasemi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamid Reza Goldouzi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Eghbal
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace London, London, UK
| | | | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | - Lance Rodan
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sedat Isikay
- Gaziantep Islam Science and Technology University, Medical Faculty, Department of Pediatric Neurology, Gaziantep, Turkey
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Subhadra Ramanathan
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael Staton
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kerby C. Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Robin D. Clark
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Catharina Wenman
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3BH, UK
| | - Sam Loughlin
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3BH, UK
| | - Ramy Saad
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tazeen Ashraf
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alison Male
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Shereen Tadros
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghada M.H. Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ebtesam Abdalla
- Department of Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M. Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, NY, USA
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Henry Houlden
- Department of Neuromuscular diseases, UCL Institute of Neurology, WC1N 3BG, London, UK
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kinga Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Reza Maroofian
- Department of Neuromuscular diseases, UCL Institute of Neurology, WC1N 3BG, London, UK
| | - James R. Lupski
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Long Nam Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| |
Collapse
|
32
|
Wayhelova M, Vallova V, Broz P, Mikulasova A, Smetana J, Dynkova Filkova H, Machackova D, Handzusova K, Gaillyova R, Kuglik P. Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders. Orphanet J Rare Dis 2024; 19:41. [PMID: 38321498 PMCID: PMC10845791 DOI: 10.1186/s13023-024-03056-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) and/or associated multiple congenital abnormalities (MCAs) represent a genetically heterogeneous group of conditions with an adverse prognosis for the quality of intellectual and social abilities and common daily functioning. The rapid development of exome sequencing (ES) techniques, together with trio-based analysis, nowadays leads to up to 50% diagnostic yield. Therefore, it is considered as the state-of-the-art approach in these diagnoses. RESULTS In our study, we present the results of ES in a cohort of 85 families with 90 children with severe NDDs and MCAs. The interconnection of the in-house bioinformatic pipeline and a unique algorithm for variant prioritization resulted in a diagnostic yield of up to 48.9% (44/90), including rare and novel causative variants (41/90) and intragenic copy-number variations (CNVs) (3/90). Of the total number of 47 causative variants, 53.2% (25/47) were novel, highlighting the clinical benefit of ES for unexplained NDDs. Moreover, trio-based ES was verified as a reliable tool for the detection of rare CNVs, ranging from intragenic exon deletions (GRIN2A, ZC4H2 genes) to a 6-Mb duplication. The functional analysis using PANTHER Gene Ontology confirmed the involvement of genes with causative variants in a wide spectrum of developmental processes and molecular pathways, which form essential structural and functional components of the central nervous system. CONCLUSION Taken together, we present one of the first ES studies of this scale from the central European region. Based on the high diagnostic yield for paediatric NDDs in this study, 48.9%, we confirm trio-based ES as an effective and reliable first-tier diagnostic test in the genetic evaluation of children with NDDs.
Collapse
Affiliation(s)
- Marketa Wayhelova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic.
| | - Vladimira Vallova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Petr Broz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Jan Smetana
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Dynkova Filkova
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Dominika Machackova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristina Handzusova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Petr Kuglik
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
33
|
Gouiza I, Hechmi M, Zioudi A, Dallali H, Kheriji N, Charif M, Le Mao M, Galai S, Kraoua L, Ben Youssef-Turki I, Kraoua I, Lenaers G, Kefi R. Expanding the genetic spectrum of mitochondrial diseases in Tunisia: novel variants revealed by whole-exome sequencing. Front Genet 2024; 14:1259826. [PMID: 38283147 PMCID: PMC10811255 DOI: 10.3389/fgene.2023.1259826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Inherited mitochondrial diseases are the most common group of metabolic disorders caused by a defect in oxidative phosphorylation. They are characterized by a wide clinical and genetic spectrum and can manifest at any age. In this study, we established novel phenotype-genotype correlations between the clinical and molecular features of a cohort of Tunisian patients with mitochondrial diseases. Materials and methods: Whole-exome sequencing was performed on five Tunisian patients with suspected mitochondrial diseases. Then, a combination of filtering and bioinformatics prediction tools was utilized to assess the pathogenicity of genetic variations. Sanger sequencing was subsequently performed to confirm the presence of potential deleterious variants in the patients and verify their segregation within families. Structural modeling was conducted to study the effect of novel variants on the protein structure. Results: We identified two novel homozygous variants in NDUFAF5 (c.827G>C; p.Arg276Pro) and FASTKD2 (c.496_497del; p.Leu166GlufsTer2) associated with a severe clinical form of Leigh and Leigh-like syndromes, respectively. Our results further disclosed two variants unreported in North Africa, in GFM2 (c.569G>A; p.Arg190Gln) and FOXRED1 (c.1261G>A; p.Val421Met) genes, and we described the first case of fumaric aciduria in a Tunisian patient harboring the c.1358T>C; p.Leu453Pro FH variant. Conclusion: Our study expands the mutational and phenotypic spectrum of mitochondrial diseases in Tunisia and highlights the importance of next-generation sequencing to decipher the pathomolecular mechanisms responsible for these disorders in an admixed population.
Collapse
Affiliation(s)
- Ismail Gouiza
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Abir Zioudi
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Morgane Le Mao
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
| | - Said Galai
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Department of Clinical Biology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Lilia Kraoua
- Tunis El Manar University, Tunis, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ilhem Ben Youssef-Turki
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Ichraf Kraoua
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Guy Lenaers
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
- Department of Neurology, CHU d’Angers, Angers, France
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
34
|
Torene RI, Guillen Sacoto MJ, Millan F, Zhang Z, McGee S, Oetjens M, Heise E, Chong K, Sidlow R, O'Grady L, Sahai I, Martin CL, Ledbetter DH, Myers SM, Mitchell KJ, Retterer K. Systematic analysis of variants escaping nonsense-mediated decay uncovers candidate Mendelian diseases. Am J Hum Genet 2024; 111:70-81. [PMID: 38091987 PMCID: PMC10806863 DOI: 10.1016/j.ajhg.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew Oetjens
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | | | | | | | - Christa L Martin
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - David H Ledbetter
- University of Florida, College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Scott M Myers
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA; Geisinger, Danville, PA, USA.
| |
Collapse
|
35
|
Navarro-Quiles C, Lup SD, Muñoz-Nortes T, Candela H, Micol JL. The genetic and molecular basis of haploinsufficiency in flowering plants. TRENDS IN PLANT SCIENCE 2024; 29:72-85. [PMID: 37633803 DOI: 10.1016/j.tplants.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
In diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections. Despite this underrepresentation, haploinsufficient loci have intriguing implications for studies of genome evolution, gene dosage, stability of protein complexes, genetic redundancy, and gene expression. Here we review examples of haploinsufficiency in flowering plants and describe the underlying molecular mechanisms and evolutionary forces driving haploinsufficiency. Finally, we discuss the masking of haploinsufficiency by genetic redundancy, a widespread phenomenon among angiosperms.
Collapse
Affiliation(s)
- Carla Navarro-Quiles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
36
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
37
|
Basgalupp SP, Altmann V, Vairo FPE, Schwartz IVD, Siebert M. GBA1 variants in Brazilian Gaucher disease patients. Mol Genet Metab Rep 2023; 37:101006. [PMID: 38053927 PMCID: PMC10694776 DOI: 10.1016/j.ymgmr.2023.101006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/07/2023] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal disorder caused by pathogenic variants in GBA1 which result in the deficient activity of glucocerebrosidase (GCase). There are few data on the genetic characterization of Brazilian GD patients. This study aimed at characterizing the genotype of 72 unrelated Brazilian GD patients (type I = 63, type II = 4, type III = 5; male = 31). Forty patients were from South Brazil (SB), and 32 were from other regions of Brazil (Others). The exons and exon/intron junctions of GBA1 were analyzed by Sanger sequencing in 8 patients, or by massive parallel sequencing followed by Sanger of exons 9 and 10 in 64 patients. In total, 31 pathogenic variants were identified. The most frequent allele found was N370S (p.(Asn409Ser)) (41.0%), and the most frequent genotype was N370S/RecNciI p.[Asn409Ser];[Leu483Pro;Ala495Pro;Val499=](23.6%). Three variants (N370S - in exon 9, and RecNciI and L444P (p.(Leu483Pro), in exon 10) correspond to 76.3% of total alleles in SB and 59.4% in Others. Two novel variants were described: c.326del(p.(Gln109Argfs*9)) and c.690G>A (p.(?)). Although sequencing all the exons of GBA1 is the gold-standard method for the genetic analysis of GD patients, a step analysis can be proposed for Brazilian patients, starting with analysis of exons 9 and 10. The N370S allele is the most frequently associated with GD in Brazil.
Collapse
Affiliation(s)
- Suelen Porto Basgalupp
- Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Vivian Altmann
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Filippo Pinto e Vairo
- Department of Clinical Genomics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ida Vanessa Doederlein Schwartz
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marina Siebert
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Postgraduate Program in Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| |
Collapse
|
38
|
Tu KJ, Diplas BH, Regal JA, Waitkus MS, Pirozzi CJ, Reitman ZJ. Mining cancer genomes for change-of-metabolic-function mutations. Commun Biol 2023; 6:1143. [PMID: 37950065 PMCID: PMC10638295 DOI: 10.1038/s42003-023-05475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Enzymes with novel functions are needed to enable new organic synthesis techniques. Drawing inspiration from gain-of-function cancer mutations that functionally alter proteins and affect cellular metabolism, we developed METIS (Mutated Enzymes from Tumors In silico Screen). METIS identifies metabolism-altering cancer mutations using mutation recurrence rates and protein structure. We used METIS to screen 298,517 cancer mutations and identify 48 candidate mutations, including those previously identified to alter enzymatic function. Unbiased metabolomic profiling of cells exogenously expressing a candidate mutant (OGDHLp.A400T) supports an altered phenotype that boosts in vitro production of xanthosine, a pharmacologically useful chemical that is currently produced using unsustainable, water-intensive methods. We then applied METIS to 49 million cancer mutations, yielding a refined set of candidates that may impart novel enzymatic functions or contribute to tumor progression. Thus, METIS can be used to identify and catalog potentially-useful cancer mutations for green chemistry and therapeutic applications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | | | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
39
|
DeGorter MK, Goddard PC, Karakoc E, Kundu S, Yan SM, Nachun D, Abell N, Aguirre M, Carstensen T, Chen Z, Durrant M, Dwaracherla VR, Feng K, Gloudemans MJ, Hunter N, Moorthy MPS, Pomilla C, Rodrigues KB, Smith CJ, Smith KS, Ungar RA, Balliu B, Fellay J, Flicek P, McLaren PJ, Henn B, McCoy RC, Sugden L, Kundaje A, Sandhu MS, Gurdasani D, Montgomery SB. Transcriptomics and chromatin accessibility in multiple African population samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.564839. [PMID: 37986808 PMCID: PMC10659267 DOI: 10.1101/2023.11.04.564839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mapping the functional human genome and impact of genetic variants is often limited to European-descendent population samples. To aid in overcoming this limitation, we measured gene expression using RNA sequencing in lymphoblastoid cell lines (LCLs) from 599 individuals from six African populations to identify novel transcripts including those not represented in the hg38 reference genome. We used whole genomes from the 1000 Genomes Project and 164 Maasai individuals to identify 8,881 expression and 6,949 splicing quantitative trait loci (eQTLs/sQTLs), and 2,611 structural variants associated with gene expression (SV-eQTLs). We further profiled chromatin accessibility using ATAC-Seq in a subset of 100 representative individuals, to identity chromatin accessibility quantitative trait loci (caQTLs) and allele-specific chromatin accessibility, and provide predictions for the functional effect of 78.9 million variants on chromatin accessibility. Using this map of eQTLs and caQTLs we fine-mapped GWAS signals for a range of complex diseases. Combined, this work expands global functional genomic data to identify novel transcripts, functional elements and variants, understand population genetic history of molecular quantitative trait loci, and further resolve the genetic basis of multiple human traits and disease.
Collapse
Affiliation(s)
| | - Page C Goddard
- Department of Genetics, Stanford University, Stanford, CA
| | - Emre Karakoc
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford CA
| | | | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA
| | - Nathan Abell
- Department of Genetics, Stanford University, Stanford, CA
| | - Matthew Aguirre
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Tommy Carstensen
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ziwei Chen
- Department of Computer Science, Stanford University, Stanford CA
| | | | | | - Karen Feng
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | | | - Naiomi Hunter
- Department of Genetics, Stanford University, Stanford, CA
| | | | - Cristina Pomilla
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, CA
| | - Rachel A Ungar
- Department of Genetics, Stanford University, Stanford, CA
| | - Brunilda Balliu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland and Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Flicek
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Paul J McLaren
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Canada and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Brenna Henn
- Department of Anthropology, University of California Davis, Davis CA and Genome Center, University of California Davis, Davis CA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore
| | - Lauren Sugden
- Department of Mathematics and Computer Science, Dusquesne University, Pittsburgh, PA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA
- Department of Computer Science, Stanford University, Stanford CA
| | | | - Deepti Gurdasani
- William Harvey Research Institute, Queen Mary University of London, London, UK; Kirby Institute, University of New South Wales, Australia; School of Medicine, University of Western Australia, Australia
| | | |
Collapse
|
40
|
Pacelli C, Rossi A, Milella M, Colombo T, Le Pera L. RNA-Based Strategies for Cancer Therapy: In Silico Design and Evaluation of ASOs for Targeted Exon Skipping. Int J Mol Sci 2023; 24:14862. [PMID: 37834310 PMCID: PMC10573945 DOI: 10.3390/ijms241914862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Precision medicine in oncology has made significant progress in recent years by approving drugs that target specific genetic mutations. However, many cancer driver genes remain challenging to pharmacologically target ("undruggable"). To tackle this issue, RNA-based methods like antisense oligonucleotides (ASOs) that induce targeted exon skipping (ES) could provide a promising alternative. In this work, a comprehensive computational procedure is presented, focused on the development of ES-based cancer treatments. The procedure aims to produce specific protein variants, including inactive oncogenes and partially restored tumor suppressors. This novel computational procedure encompasses target-exon selection, in silico prediction of ES products, and identification of the best candidate ASOs for further experimental validation. The method was effectively employed on extensively mutated cancer genes, prioritized according to their suitability for ES-based interventions. Notable genes, such as NRAS and VHL, exhibited potential for this therapeutic approach, as specific target exons were identified and optimal ASO sequences were devised to induce their skipping. To the best of our knowledge, this is the first computational procedure that encompasses all necessary steps for designing ASO sequences tailored for targeted ES, contributing with a versatile and innovative approach to addressing the challenges posed by undruggable cancer driver genes and beyond.
Collapse
Affiliation(s)
- Chiara Pacelli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alice Rossi
- Section of Oncology, Department of Medicine, University of Verona-School of Medicine and Verona University Hospital Trust, 37134 Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona-School of Medicine and Verona University Hospital Trust, 37134 Verona, Italy
| | - Teresa Colombo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy
| | - Loredana Le Pera
- Core Facilities, Italian National Institute of Health (ISS), 00161 Rome, Italy
| |
Collapse
|
41
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Dhindsa RS, Burren OS, Sun BB, Prins BP, Matelska D, Wheeler E, Mitchell J, Oerton E, Hristova VA, Smith KR, Carss K, Wasilewski S, Harper AR, Paul DS, Fabre MA, Runz H, Viollet C, Challis B, Platt A, Vitsios D, Ashley EA, Whelan CD, Pangalos MN, Wang Q, Petrovski S. Rare variant associations with plasma protein levels in the UK Biobank. Nature 2023; 622:339-347. [PMID: 37794183 PMCID: PMC10567546 DOI: 10.1038/s41586-023-06547-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/15/2023] [Indexed: 10/06/2023]
Abstract
Integrating human genomics and proteomics can help elucidate disease mechanisms, identify clinical biomarkers and discover drug targets1-4. Because previous proteogenomic studies have focused on common variation via genome-wide association studies, the contribution of rare variants to the plasma proteome remains largely unknown. Here we identify associations between rare protein-coding variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank individuals. Our variant-level exome-wide association study identified 5,433 rare genotype-protein associations, of which 81% were undetected in a previous genome-wide association study of the same cohort5. We then looked at aggregate signals using gene-level collapsing analysis, which revealed 1,962 gene-protein associations. Of the 691 gene-level signals from protein-truncating variants, 99.4% were associated with decreased protein levels. STAB1 and STAB2, encoding scavenger receptors involved in plasma protein clearance, emerged as pleiotropic loci, with 77 and 41 protein associations, respectively. We demonstrate the utility of our publicly accessible resource through several applications. These include detailing an allelic series in NLRC4, identifying potential biomarkers for a fatty liver disease-associated variant in HSD17B13 and bolstering phenome-wide association studies by integrating protein quantitative trait loci with protein-truncating variants in collapsing analyses. Finally, we uncover distinct proteomic consequences of clonal haematopoiesis (CH), including an association between TET2-CH and increased FLT3 levels. Our results highlight a considerable role for rare variation in plasma protein abundance and the value of proteogenomics in therapeutic discovery.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, US.
| | - Oliver S Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin B Sun
- Translational Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Bram P Prins
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dorota Matelska
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eleanor Wheeler
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Erin Oerton
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ventzislava A Hristova
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, US
| | - Katherine R Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sebastian Wasilewski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew R Harper
- Clinical Development, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Margarete A Fabre
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Heiko Runz
- Translational Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Coralie Viollet
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin Challis
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Adam Platt
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Euan A Ashley
- Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | | | | | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, US
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Klonowski J, Liang Q, Coban-Akdemir Z, Lo C, Kostka D. aenmd: annotating escape from nonsense-mediated decay for transcripts with protein-truncating variants. Bioinformatics 2023; 39:btad556. [PMID: 37688563 PMCID: PMC10534055 DOI: 10.1093/bioinformatics/btad556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
SUMMARY DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce transcript degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these variants that could exert DN/GOF effects via NMD escape. AVAILABILITY AND IMPLEMENTATION aenmd is implemented in the R programming language. Code is available on GitHub as an R-package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).
Collapse
Affiliation(s)
- Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Qianqian Liang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Zeynep Coban-Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, United States
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
- Department of Computational & Systems Biology and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260,United States
| |
Collapse
|
44
|
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, Kurolap A, Henig NZ, Fatih JM, Herman I, Du H, Mitani T, Becker L, Rathkolb B, Gerlini R, Seisenberger C, Marschall S, Hunter JV, Gerard A, Heidlebaugh A, Challman T, Spillmann RC, Jhangiani SN, Coban-Akdemir Z, Lalani S, Liu L, Revah-Politi A, Iglesias A, Guzman E, Baugh E, Boddaert N, Rondeau S, Ormieres C, Barcia G, Tan QKG, Thiffault I, Pastinen T, Sheikh K, Biliciler S, Mei D, Melani F, Shashi V, Yaron Y, Steele M, Wakeling E, Østergaard E, Nazaryan-Petersen L, Millan F, Santiago-Sim T, Thevenon J, Bruel AL, Thauvin-Robinet C, Popp D, Platzer K, Gawlinski P, Wiszniewski W, Marafi D, Pehlivan D, Posey JE, Gibbs RA, Gailus-Durner V, Guerrini R, Fuchs H, Hrabě de Angelis M, Hölter SM, Cheung HH, Gu S, Lupski JR. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet 2023; 110:1394-1413. [PMID: 37467750 PMCID: PMC10432148 DOI: 10.1016/j.ajhg.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tianyu Guo
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chen Wang
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lillian Garrett
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Alina Kurolap
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Zunz Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Boys Town National Research Hospital, Boys Town, NE, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lore Becker
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Amanda Gerard
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Thomas Challman
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Seema Lalani
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lingxiao Liu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin Guzman
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, 75015 Paris, France
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Clothide Ormieres
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Queenie K G Tan
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA; University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Kazim Sheikh
- Department of Neurology, UT Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Suur Biliciler
- Department of Neurology, UT Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Federico Melani
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Vandana Shashi
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Yuval Yaron
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Steele
- Lifetime Neurodevelopmental Care, San Francisco, CA, USA
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, Dijon Bourgogne University Hospital, Dijon, France
| | - Denny Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pawel Gawlinski
- Institute of Mother and Child, Kasprzaka 17a, 02-211 Warsaw, Poland
| | - Wojciech Wiszniewski
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road L103, Portland, OR, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Technische Universität München, Freising-Weihenstephan, Germany
| | - Hoi-Hung Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China; Kunming Institute of Zoology Chinese Academy of Sciences, the Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China.
| | - James R Lupski
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
45
|
Niggl E, Bouman A, Briere LC, Hoogenboezem RM, Wallaard I, Park J, Admard J, Wilke M, Harris-Mostert EDRO, Elgersma M, Bain J, Balasubramanian M, Banka S, Benke PJ, Bertrand M, Blesson AE, Clayton-Smith J, Ellingford JM, Gillentine MA, Goodloe DH, Haack TB, Jain M, Krantz I, Luu SM, McPheron M, Muss CL, Raible SE, Robin NH, Spiller M, Starling S, Sweetser DA, Thiffault I, Vetrini F, Witt D, Woods E, Zhou D, Elgersma Y, van Esbroeck ACM. HNRNPC haploinsufficiency affects alternative splicing of intellectual disability-associated genes and causes a neurodevelopmental disorder. Am J Hum Genet 2023; 110:1414-1435. [PMID: 37541189 PMCID: PMC10432175 DOI: 10.1016/j.ajhg.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eva Niggl
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands.
| | - Lauren C Briere
- Center for Genomic Medicine and Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Ilse Wallaard
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Emilio D R O Harris-Mostert
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Minetta Elgersma
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Jennifer Bain
- Department of Neurology Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, S5 7AU Sheffield, UK; Department of Oncology & Metabolism, University of Sheffield, S5 7AU Sheffield, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Paul J Benke
- Division of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL 33021, USA
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Alyssa E Blesson
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Jamie M Ellingford
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | | | - Dana H Goodloe
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Mahim Jain
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ian Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon M Luu
- Waisman Center, University of Wisconsin Hospitals and Clinics, Madison, WI 53704, USA; Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Molly McPheron
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Candace L Muss
- Nemours / AI DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Sarah E Raible
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Susan Starling
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO 64108, USA; School of Medicine, University of Missouri- Kansas City, Kansas City, MO 64108, USA
| | - David A Sweetser
- Center for Genomic Medicine and Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Thiffault
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO 64108, USA; Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA; Undiagnosed Rare Disease Clinic (URDC), Indiana University, Indianapolis, IN 46202, USA
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Emily Woods
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, S5 7AU Sheffield, UK
| | - Dihong Zhou
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO 64108, USA; School of Medicine, University of Missouri- Kansas City, Kansas City, MO 64108, USA
| | - Ype Elgersma
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands.
| | - Annelot C M van Esbroeck
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
46
|
Ye T, Zhang J, Wang J, Lan S, Zeng T, Wang H, He X, Li BM, Deng W, Liao WP, Liu XR. Variants in BSN gene associated with epilepsy with favourable outcome. J Med Genet 2023; 60:776-783. [PMID: 36600631 PMCID: PMC10439262 DOI: 10.1136/jmg-2022-108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND BSN gene encodes Bassoon, an essential protein to assemble the cytomatrix at the active zone of neurotransmitter release. This study aims to explore the relationship between BSN variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 313 cases (trios) with epilepsies of unknown causes. Additional cases with BSN variants were collected from China Epilepsy Gene V.1.0 Matching Platform. The Clinical Validity Framework of ClinGen was used to evaluate the relationship between BSN variants and epilepsy. RESULTS Four pairs of compound heterozygous variants and one cosegregating heterozygous missense variant in BSN were identified in five unrelated families. These variants presented statistically higher frequency in the case cohort than in controls. Additional two de novo heterozygous nonsense variants and one cosegregating heterozygous missense variant were identified in three unrelated cases from the gene matching platform, which were not present in the Genome Aggregation Database. The missense variants tended to be located in C-terminus, including the two monoallelic missense variants. Protein modelling showed that at least one missense variant in each pair of compound heterozygous variants had hydrogen bond alterations. Clinically, two cases were diagnosed as idiopathic generalised epilepsy, two as focal epilepsy and the remaining four as epilepsy with febrile seizures plus. Seven out of eight probands showed infancy or childhood-onset epilepsy. Eight out of 10 affected individuals had a history of febrile convulsions. All the cases were seizure-free. The cases with monoallelic variants achieved seizure-free without treatment or under monotherapy, while cases with biallelic missense variants mostly required combined therapy. The evidence from ClinGen Framework suggested an association between BSN variants and epilepsy. CONCLUSION The BSN gene was potentially a novel candidate gene for epilepsy. The phenotypical severity was associated with the genotypes and the molecular subregional effects of the variants.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Childrens Hospital, Wuhan, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
47
|
Song Z, Zhang G, Huang S, Liu Y, Li G, Zhou X, Sun J, Gao P, Chen Y, Huang X, Liu J, Wang X. PE-STOP: A versatile tool for installing nonsense substitutions amenable for precise reversion. J Biol Chem 2023; 299:104942. [PMID: 37343700 PMCID: PMC10365944 DOI: 10.1016/j.jbc.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
The rapid advances in genome editing technologies have revolutionized the study of gene functions in cell or animal models. The recent generation of double-stranded DNA cleavage-independent base editors has been suitably adapted for interrogation of protein-coding genes on the basis of introducing premature stop codons or disabling the start codons. However, such versions of stop/start codon-oriented genetic tools still present limitations on their versatility, base-level precision, and target specificity. Here, we exploit a newly developed prime editor (PE) that differs from base editors by its adoption of a reverse transcriptase activity, which enables incorporation of various types of precise edits templated by a specialized prime editing guide RNA. Based on such a versatile platform, we established a prime editing-empowered method (PE-STOP) for installation of nonsense substitutions, providing a complementary approach to the present gene-targeting tools. PE-STOP is bioinformatically predicted to feature substantially expanded coverage in the genome space. In practice, PE-STOP introduces stop codons with good efficiencies in human embryonic kidney 293T and N2a cells (with medians of 29% [ten sites] and 25% [four sites] editing efficiencies, respectively), while exhibiting minimal off-target effects and high on-target precision. Furthermore, given the fact that PE installs prime editing guide RNA-templated mutations, we introduce a unique strategy for precise genetic rescue of PE-STOP-dependent nonsense mutation via the same PE platform. Altogether, the present work demonstrates a versatile and specific tool for gene inactivation and for functional interrogation of nonsense mutations.
Collapse
Affiliation(s)
- Ziguo Song
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiquan Zhang
- Zhejiang Lab, Hangzhou, Zhejiang, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianhui Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayuan Sun
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China.
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
48
|
Udupa P, Shrikondawar AN, Nayak SS, Shah H, Ranjan A, Girisha KM, Bhavani GS, Ghosh DK. Deep intronic mutation in CRTAP results in unstable isoforms of the protein to induce type I collagen aggregation in a lethal type of osteogenesis imperfecta type VII. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166741. [PMID: 37146916 PMCID: PMC7616376 DOI: 10.1016/j.bbadis.2023.166741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Genetic mutations are involved in Mendelian disorders. Unbuffered intronic mutations in gene variants can generate aberrant splice sites in mutant transcripts, resulting in mutant isoforms of proteins with modulated expression, stability, and function in diseased cells. Here, we identify a deep intronic variant, c.794_1403A>G, in CRTAP by genome sequencing of a male fetus with osteogenesis imperfecta (OI) type VII. The mutation introduces cryptic splice sites in intron-3 of CRTAP, resulting in two mature mutant transcripts with cryptic exons. While transcript-1 translates to a truncated isoform (277 amino acids) with thirteen C-terminal non-wild-type amino acids, transcript-2 translates to a wild-type protein sequence, except that this isoform contains an in-frame fusion of non-wild-type twenty-five amino acids in a tetratricopeptide repeat sequence. Both mutant isoforms of CRTAP are unstable due to the presence of a unique 'GWxxI' degron, which finally leads to loss of proline hydroxylation and aggregation of type I collagen. Although type I collagen aggregates undergo autophagy, the overall proteotoxicity resulted in death of the proband cells by senescence. In summary, we present a genetic disease pathomechanism by linking a novel deep intronic mutation in CRTAP to unstable mutant isoforms of the protein in lethal OI type VII.
Collapse
Affiliation(s)
- Prajna Udupa
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Hitesh Shah
- Department of Pediatric Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
49
|
Wojcik MH, Srivastava S, Agrawal PB, Balci TB, Callewaert B, Calvo PL, Carli D, Caudle M, Colaiacovo S, Cross L, Demetriou K, Drazba K, Dutra-Clarke M, Edwards M, Genetti CA, Grange DK, Hickey SE, Isidor B, Küry S, Lachman HM, Lavillaureix A, Lyons MJ, Marcelis C, Marco EJ, Martinez-Agosto JA, Nowak C, Pizzol A, Planes M, Prijoles EJ, Riberi E, Rush ET, Russell BE, Sachdev R, Schmalz B, Shears D, Stevenson DA, Wilson K, Jansen S, deVries BB, Curry CJ. Jansen-de Vries syndrome: Expansion of the PPM1D clinical and phenotypic spectrum in 34 families. Am J Med Genet A 2023; 191:1900-1910. [PMID: 37183572 PMCID: PMC10330231 DOI: 10.1002/ajmg.a.63226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.
Collapse
Affiliation(s)
- Monica H Wojcik
- Division of Newborn Medicine, Department of Pediatrics and Harvard Medical School Boston Children’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics and Harvard Medical School, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj B Agrawal
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL, USA
| | - Tugce B Balci
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Pediatrics Department, Ghent University Hospital, Ghent, Belgium
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Michelle Caudle
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Samantha Colaiacovo
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Laura Cross
- Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO, USA
| | - Kalliope Demetriou
- Centre for Clinical Genetics, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Katy Drazba
- Greenwood Genetic Center, Greenwood, SC, USA
| | - Marina Dutra-Clarke
- Division of Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthew Edwards
- Paediatrics, School of Medicine, Western Sydney University, Hunter Genetics, Newcastle, NSW, Australia
| | - Casie A Genetti
- Division of Genetics and Genomics, Department of Pediatrics and Harvard Medical School, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Division of Genetic & Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Bertrand Isidor
- Department of Medical Genetics, Nantes Hospital, Nantes, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Herbert M Lachman
- Departments of Behavioral Science, Medicine, and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alinoe Lavillaureix
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, CHU Rennes, Hôpital Sud, Rennes, France
| | | | - Carlo Marcelis
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elysa J Marco
- Cortica Healthcare, Marin Center, San Rafael, CA, USA
| | - Julian A Martinez-Agosto
- Division of Genetics, Department of Pediatrics, Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA USA
| | - Catherine Nowak
- Division of Genetics and Genomics, Department of Pediatrics and Harvard Medical School, Boston Children’s Hospital, Boston, MA, USA
| | - Antonio Pizzol
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Marc Planes
- Service de Génétique Clinique, University Hospital Morvan, Brest, France
| | | | - Evelise Riberi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Eric T Rush
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO; Division of Genetics, Children’s Mercy Kansas City, Kansas City, MO; Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, MO, USA
| | - Bianca E Russell
- Division of Genetics, Department of Pediatrics, Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA USA
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children’s Hospital, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| | - Betsy Schmalz
- Department of Pediatrics, The Ohio State University College of Medicine, Division of Genetic & Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B.A. deVries
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco/ Fresno, Fresno, California, USA
| |
Collapse
|
50
|
Mo A, Paz‐Ebstein E, Yanovsky‐Dagan S, Lai A, Mor‐Shaked H, Gilboa T, Yang E, Shao DD, Walsh CA, Harel T. A recurrent de novo variant in NUSAP1 escapes nonsense-mediated decay and leads to microcephaly, epilepsy, and developmental delay. Clin Genet 2023; 104:73-80. [PMID: 37005340 PMCID: PMC10236379 DOI: 10.1111/cge.14335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
NUSAP1 encodes a cell cycle-dependent protein with key roles in mitotic progression, spindle formation, and microtubule stability. Both over- and under-expression of NUSAP1 lead to dysregulation of mitosis and impaired cell proliferation. Through exome sequencing and Matchmaker Exchange, we identified two unrelated individuals with the same recurrent, de novo heterozygous variant (NM_016359.5 c.1209C > A; p.(Tyr403Ter)) in NUSAP1. Both individuals had microcephaly, severe developmental delay, brain abnormalities, and seizures. The gene is predicted to be tolerant of heterozygous loss-of-function mutations, and we show that the mutant transcript escapes nonsense mediated decay, suggesting that the mechanism is likely dominant-negative or toxic gain of function. Single-cell RNA-sequencing of an affected individual's post-mortem brain tissue indicated that the NUSAP1 mutant brain contains all main cell lineages, and that the microcephaly could not be attributed to loss of a specific cell type. We hypothesize that pathogenic variants in NUSAP1 lead to microcephaly possibly by an underlying defect in neural progenitor cells.
Collapse
Affiliation(s)
- Alisa Mo
- Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Emuna Paz‐Ebstein
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | | | - Abbe Lai
- Division of Genetics and Genomics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
| | - Hagar Mor‐Shaked
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Tal Gilboa
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Pediatric Neurology UnitHadassah Medical CenterJerusalemIsrael
| | - Edward Yang
- Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Diane D. Shao
- Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMassachusettsUSA
| | - Tamar Harel
- Department of GeneticsHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|