1
|
Jiang H. Prostate Cancer Bone Metastasis: Molecular Mechanisms of Tumor and Bone Microenvironment. Cancer Manag Res 2025; 17:219-237. [PMID: 39912095 PMCID: PMC11796448 DOI: 10.2147/cmar.s495169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Prostate cancer is prevalent among men aged 65 and older. Bone metastasis occurs in up to 90% of advanced prostate cancer patients, metastatic prostate cancer is generally considered a non-curative condition which can impact quality of life. The tumor microenvironment, comprising diverse cellular and non-cellular elements, interacts with prostate cancer cells to affect tumor growth and bone metastasis. Within the bone microenvironment, different cell types, including osteoblasts, osteoclasts, adipocytes, endothelial cells, hematopoietic stem cells, and immune cells, engage with tumor cells. Some cells alter tumor behavior, while others are impacted or overpowered by tumor cells, leading to different phases of tumor cell movement, dormancy, latency, resistance to treatment, and advancement to visible bone metastasis. This review summarizes recent research on the tumor microenvironment and bone microenvironment in prostate cancer bone metastasis, exploring underlying mechanisms and the potential value of targeting these environments for treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| |
Collapse
|
2
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
3
|
Said R, Hernández-Losa J, Haro RSLD, Moline T, Zouari S, Blel A, Rammeh S, Derouiche A, Ouerhani S. Epithelial-mesenchymal transition dysregulation in prostate cancer: Insights from molecular unraveling and epidemiological analyses in Tunisia, North Africa. Ann Hum Genet 2024. [PMID: 38661458 DOI: 10.1111/ahg.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION The progression of prostate cancer (PCa) has been linked worldwide, including in African populations, to the dysregulation of the epithelial-mesenchymal transition (EMT). METHODS To clarify the connection among EMT markers, clinicopathological parameters, and epidemiological factors, we analyzed 35 PCa specimens from patients in Tunisia, a country in North Africa, arranged by stages. We also carried out extensive molecular and epidemiological analyses. RESULTS Significant dysregulation of EMT genes was found, with an overexpression of ZEB-1, Twist, Snail-1, and Vimentin (p < 0.05) and underexpression of E-cadherin and β-catenin (p < 0.05). Positive correlations were observed between transcription factors and the mesenchymal marker Vimentin (p < 0.001, r = 0.574; p = 0.029, r = 0.411; and p < 0.001; r = 0.506) according to Spearman correlation analyses, whereas negative correlations were found between epithelial markers (E-cadherin, β-catenin) and Vimentin (p < 0.05; r < 0). Higher PSA, Gleason scores, and metastasis were all correlated with the dysregulation of EMT (p < 0.05). Notably, there was a positive correlation between higher consumption of tobacco (≥20 Packets per year) and Vimentin expression (p < 0.001, r = 0.854), suggesting a relationship between smoking and EMT activation in the Tunisian population. Moreover, Twist showed a positive correlation with diabetes (p < 0.001, r = 0.385), whereas no significant correlations were found between EMT markers and comorbidities such as hypertension and coronary insufficiency. These results demonstrate the intricate connection between molecular changes, epidemiological factors, and disease progression, and they emphasize the crucial role that EMT plays in promoting PCa aggressiveness in African populations, particularly in Tunisia. CONCLUSION In summary, understanding these correlations could help develop focused treatment plans and enhance patient outcomes for PCa management in African settings.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology-University of Carthage, Tunis, Tunisia
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Javier Hernández-Losa
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Somoza Lopez de Haro
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Teresa Moline
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology-University of Carthage, Tunis, Tunisia
| |
Collapse
|
4
|
Marr KD, Gard JMC, Harryman WL, Keeswood EJ, Paxson AI, Wolgemuth C, Knudsen BS, Nagle RB, Hazlehurst L, Sorbellini M, Cress AE. Biophysical phenotype mixtures reveal advantages for tumor muscle invasion in vivo. Biophys J 2023; 122:4194-4206. [PMID: 37766428 PMCID: PMC10645557 DOI: 10.1016/j.bpj.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Bladder, colon, gastric, prostate, and uterine cancers originate in organs surrounded by laminin-coated smooth muscle. In human prostate cancer, tumors that are organ confined, without extracapsular extension through muscle, have an overall cancer survival rate of up to 97% compared with 32% for metastatic disease. Our previous work modeling extracapsular extension reported the blocking of tumor invasion by mutation of a laminin-binding integrin called α6β1. Expression of the α6AA mutant resulted in a biophysical switch from cell-ECM (extracellular matrix) to cell-cell adhesion with drug sensitivity properties and an inability to invade muscle. Here we used different admixtures of α6AA and α6WT cells to test the cell heterogeneity requirements for muscle invasion. Time-lapse video microscopy revealed that tumor mixtures self-assembled into invasive networks in vitro, whereas α6AA cells assembled only as cohesive clusters. Invasion of α6AA cells into and through live muscle occurred using a 1:1 mixture of α6AA and α6WT cells. Electric cell-substrate impedance sensing measurements revealed that compared with α6AA cells, invasion-competent α6WT cells were 2.5-fold faster at closing a cell-ECM or cell-cell wound, respectively. Cell-ECM rebuilding kinetics show that an increased response occurred in mixtures since the response was eightfold greater compared with populations containing only one cell type. A synthetic cell adhesion cyclic peptide called MTI-101 completely blocked electric cell-substrate impedance sensing cell-ECM wound recovery that persisted in vitro up to 20 h after the wound. Treatment of tumor-bearing animals with 10 mg/kg MTI-101 weekly resulted in a fourfold decrease of muscle invasion by tumor and a decrease of the depth of invasion into muscle comparable to the α6AA cells. Taken together, these data suggest that mixed biophysical phenotypes of tumor cells within a population can provide functional advantages for tumor invasion into and through muscle that can be potentially inhibited by a synthetic cell adhesion molecule.
Collapse
Affiliation(s)
- Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona; Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Elijah J Keeswood
- University of Arizona Cancer Center, Tucson, Arizona; Partnership for Native American Cancer Prevention, University of Arizona, Tucson, Arizona
| | - Allan I Paxson
- Partnership for Native American Cancer Prevention, University of Arizona, Tucson, Arizona
| | | | - Beatrice S Knudsen
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, Arizona
| | - Lori Hazlehurst
- Associate Director of Basic Research, Co-Leader Alexander B. Osborn Hematopoietic Malignancy and Transplantation, West Virginia University, Morgantown, West Virginia
| | | | - Anne E Cress
- University of Arizona Cancer Center, Tucson, Arizona; Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
5
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
6
|
Yu GH, Gong XF, Peng YY, Qian J. Anti-silencing function 1B knockdown suppresses the malignant phenotype of colorectal cancer by inactivating the phosphatidylinositol 3-kinase/AKT pathway. World J Gastrointest Oncol 2022; 14:2353-2366. [PMID: 36568946 PMCID: PMC9782623 DOI: 10.4251/wjgo.v14.i12.2353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mounting studies have highlighted the pivotal influence of anti-silencing function 1B (ASF1B) on the malignancy of cancers.
AIM To explore the influence and mechanism of ASF1B in colorectal cancer (CRC).
METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect mRNA expression of ASF1B. Immunohistochemical staining was performed to detect protein expression of ASF1B and Ki67 in tumor tissues. Western blot analysis was used to determine levels of ASF1B and proliferation/epithelial mesenchymal transition (EMT)/stemness-related proteins. In addition, the proliferation of CRC cells was assessed using Cell Counting Kit-8 and 5-Ethynyl-2’-Deoxyuridine assays. The migration and invasion of CRC cells were evaluated using transwell assays. Stemness of CRC cells was tested using the sphere formation assay. To construct a xenograft tumor model, HCT116 cells were introduced into mouse flanks via subcutaneous injection.
RESULTS ASF1B expression was markedly increased in CRC tissues and cells, and it was inversely correlated with overall survival of CRC patients and was positively associated with the tumor node metastasis (TNM) stage of CRC patients. Silencing of ASF1B suppressed proliferation, migration, invasion, stemness and EMT of CRC cells as well as tumorigenesis of xenograft mice. Furthermore, protein levels of P-phosphatidylinositol 3-kinase (p-PI3K) and p-AKT were decreased after silencing of ASF1B in CRC cells. The inhibitory effects of ASF1B knockdown on cell proliferation, stemness and EMT were partly abolished by PI3K activator in CRC cells.
CONCLUSION Silencing of ASF1B inactivated the PI3K/AKT pathway to suppress CRC malignancy in vitro.
Collapse
Affiliation(s)
- Gen-Hua Yu
- Department of Radiation Oncology, Zhebei Mingzhou Hospital, Huzhou 313000, Zhejiang Province, China
| | - Xu-Feng Gong
- Department of Radiation Oncology, Zhebei Mingzhou Hospital, Huzhou 313000, Zhejiang Province, China
| | - Ying-Ying Peng
- Department of Radiation Oncology, Zhebei Mingzhou Hospital, Huzhou 313000, Zhejiang Province, China
| | - Jun Qian
- Department of Colorectal Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, Zhejiang Province, China
| |
Collapse
|
7
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
8
|
Cardoso HJ, Figueira MI, Carvalho TM, Serra CD, Vaz CV, Madureira PA, Socorro S. Androgens and low density lipoprotein-cholesterol interplay in modulating prostate cancer cell fate and metabolism. Pathol Res Pract 2022; 240:154181. [PMID: 36327818 DOI: 10.1016/j.prp.2022.154181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022]
|
9
|
Castellón EA, Indo S, Contreras HR. Cancer Stemness/Epithelial-Mesenchymal Transition Axis Influences Metastasis and Castration Resistance in Prostate Cancer: Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms232314917. [PMID: 36499245 PMCID: PMC9736174 DOI: 10.3390/ijms232314917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Enrique A. Castellón
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| | | | - Héctor R. Contreras
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| |
Collapse
|
10
|
Wolf I, Gratzke C, Wolf P. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol 2022; 12:935715. [PMID: 35875084 PMCID: PMC9304860 DOI: 10.3389/fonc.2022.935715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Philipp Wolf,
| |
Collapse
|
11
|
E-Cadherin Signaling in Salivary Gland Development and Autoimmunity. J Clin Med 2022; 11:jcm11082241. [PMID: 35456333 PMCID: PMC9031707 DOI: 10.3390/jcm11082241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
E-cadherin, the major epithelial cadherin, is located in regions of cell–cell contact known as adherens junctions. E-cadherin contributes to the maintenance of the epithelial integrity through homophylic interaction; the cytoplasmic tail of E-cadherin directly binds catenins, forming a dynamic complex that regulates several intracellular signal transduction pathways, including epithelial-to-mesenchymal transition (EMT). Recent progress uncovered a novel and critical role for this adhesion molecule in salivary gland (SG) development and in SG diseases. We summarize the structure and regulation of the E-cadherin gene and transcript in view of the role of this remarkable protein in SG morphogenesis, focusing, in the second part of the review, on altered E-cadherin expression in EMT-mediated SG autoimmunity.
Collapse
|
12
|
Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, Ravoori MK, Kundra V, Broom BM, Corn PG, Troncoso P, Gueron G, Logothethis CJ, Navone NM. Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer. Eur Urol Oncol 2022; 5:164-175. [PMID: 34774481 PMCID: PMC11924198 DOI: 10.1016/j.euo.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.
Collapse
Affiliation(s)
- Estefania Labanca
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jun Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leah D Guerra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan A Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher J Logothethis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, Koutouan E, Pineda N, Pham H, Kang SG, Kim HT, Pineda G, Lennon KM, Cacalano NA, Jamieson CHM, Kane CJ, Kulidjian AA, Gaasterland T, Jamieson CAM. Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids. Int J Mol Sci 2022; 23:ijms23063203. [PMID: 35328625 PMCID: PMC8952299 DOI: 10.3390/ijms23063203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.
Collapse
MESH Headings
- Androgens/pharmacology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Benzamides/pharmacology
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Male
- Mice
- Nitriles/pharmacology
- Organoids/metabolism
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transplantation, Heterologous
- Virus Internalization
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Theresa R. Mendoza
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Danielle N. Burner
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Michelle T. Muldong
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Christina C. N. Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Catalina Arreola-Villanueva
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Abril Zuniga
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Olga Greenburg
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - William Y. Zhu
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Jamillah Murtadha
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Evodie Koutouan
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Naomi Pineda
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Hao Pham
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Sung-Gu Kang
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Gabriel Pineda
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Kathleen M. Lennon
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Nicholas A. Cacalano
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Catriona H. M. Jamieson
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Christopher J. Kane
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | | | - Terry Gaasterland
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina A. M. Jamieson
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Correspondence: ; Tel.: +1-858-534-2921
| |
Collapse
|
14
|
Kaur P, Mohamed NE, Archer M, Figueiro MG, Kyprianou N. Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Front Oncol 2022; 12:759153. [PMID: 35356228 PMCID: PMC8959649 DOI: 10.3389/fonc.2022.759153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The circadian system is an innate clock mechanism that governs biological processes on a near 24-hour cycle. Circadian rhythm disruption (i.e., misalignment of circadian rhythms), which results from the lack of synchrony between the master circadian clock located in the suprachiasmatic nuclei (SCN) and the environment (i.e., exposure to day light) or the master clock and the peripheral clocks, has been associated with increased risk of and unfavorable cancer outcomes. Growing evidence supports the link between circadian disruption and increased prevalence and mortality of genitourinary cancers (GU) including prostate, bladder, and renal cancer. The circadian system also plays an essential role on the timely implementation of chronopharmacological treatments, such as melatonin and chronotherapy, to reduce tumor progression, improve therapeutic response and reduce negative therapy side effects. The potential benefits of the manipulating circadian rhythms in the clinical setting of GU cancer detection and treatment remain to be exploited. In this review, we discuss the current evidence on the influence of circadian rhythms on (disease) cancer development and hope to elucidate the unmet clinical need of defining the extensive involvement of the circadian system in predicting risk for GU cancer development and alleviating the burden of implementing anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Kaur
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| |
Collapse
|
15
|
Ye Z, Izadi A, Gurkoff GG, Rickerl K, Sharp F, Ander B, Bauer SZ, Lui A, Lyeth BG, Liu D. Combined Inhibition of Fyn and c-Src Protects Hippocampal Neurons and Improves Spatial Memory via ROCK after Traumatic Brain Injury. J Neurotrauma 2022; 39:520-529. [PMID: 35109711 PMCID: PMC8978569 DOI: 10.1089/neu.2021.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our previous studies demonstrated that TBI and ventricular administration of thrombin caused hippocampal neuron loss and cognitive dysfunction via activation of Src family kinases (SFKs). Based on SFK localization in brain, we hypothesized SFK subtypes Fyn and c-Src as well as SFK downstream molecule Rho-associated protein kinase (ROCK) contribute to cell death and cognitive dysfunction after TBI. We administered nanoparticle wrapped siRNA-Fyn and siRNA-c-Src, or ROCK inhibitor Y-27632 to adult rats subjected to moderate lateral fluid percussion (LFP) induced TBI. Spatial memory function was assessed from 12 to 16 days, and NeuN stained hippocampal neurons were assessed 16 days after TBI. The combination of siRNA-Fyn and siRNA-c-Src, but neither alone, prevented hippocampal neuron loss and spatial memory deficits after TBI. The ROCK inhibitor Y-27632 also prevented hippocampal neuronal loss and spatial memory deficits after TBI. The data suggest that the combined actions of three kinases (Fyn, c-Src, ROCK) mediate hippocampal neuronal cell death and spatial memory deficits produced by LFP-TBI, and that inhibiting this pathway prevents the TBI-induced cell death and memory deficits.
Collapse
Affiliation(s)
- Zhouheng Ye
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Ali Izadi
- University of California, Davis, Neurological Surgery, 1515 Newton Ct, Room 502, Davis, California, United States, 95618;
| | - Gene Gabriel Gurkoff
- University of California, Davis, Neurological Surgery, 1515 Newton Ct, Room 502, Davis, California, United States, 95618;
| | - Kaitlin Rickerl
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Frank Sharp
- University of California Davis, MIND Institute, Davis, United States;
| | - Bradley Ander
- University of California at Davis Medical Center, Department of Neurology and the M.I.N.D. Institute, Sacramento, California, United States;
| | - Sawyer Z Bauer
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Austin Lui
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Bruce G Lyeth
- U.C. Davis, Neurological Surgery, One Shields Ave, Davis, California, United States, 95616;
| | - DaZhi Liu
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| |
Collapse
|
16
|
Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration. Biophys J 2022; 121:44-60. [PMID: 34890578 PMCID: PMC8758422 DOI: 10.1016/j.bpj.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.
Collapse
|
17
|
Mahmoud N, Dawood M, Huang Q, Ng JPL, Ren F, Wong VKW, Efferth T. Nimbolide inhibits 2D and 3D prostate cancer cells migration, affects microtubules and angiogenesis and suppresses B-RAF/p.ERK-mediated in vivo tumor growth. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153826. [PMID: 34775358 DOI: 10.1016/j.phymed.2021.153826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most prominent malignancy among men worldwide. PCa cells have a high tendency to metastasize to various distant organs, and this activity is the main cause of PCa mortality. Nimbolide is a promising phytochemical constituent of neem Azadirachta indica (Meliaceae). Previous studies showed that nimbolide exhibited potent anticancer activity however, its role against PCa tumorigenesis has not been fully elucidated. PURPOSE Our work aims to explore the role of nimbolide in regulating the essential tumor-associated processes involved in the metastatic cascade in PCa cells. STUDY DESIGN Cytotoxicity assay, wound healing and spheroid invasion assays, western blotting, immunofluorescence, tube-formation assay, in vivo and immunohistochemistry. METHODS The cytotoxicity of nimbolide towards PCa cell lines was assessed by resazurin assays. The cell mobility and migration of nimbolide-treated DU145 cells were determined by wound healing and spheroid invasion assays. Tubulin network was visualized using U2OS cells and DU145 cells. The effect of nimbolide on E-cadherin, β-catenin, acetylated α-tubulin and HDAC6 protein expressions levels were measured by Western blot. The potentiality of nimbolide to inhibit angiogenesis was revealed by HUVEC tube-formation assay. Nimbolide antitumor effect was studied in a syngeneic model of murine prostate cancer. RESULTS The current study indicated that nimbolide negatively affected the migratory and invasive capacity of DU145 prostate cancer cells in 2D and three-dimensional (3D) spheroid cultures. Interestingly, nimbolide induced downregulation of E-cadherin without any influence on the expression level of β-catenin. Additionally, we demonstrated that nimbolide influenced the microtubule network which was supported by the upregulation of acetylated α-tubulin and the reduction in HDAC6 protein. Moreover, the inhibitory effect of nimbolide on angiogenesis was clearly observed in HUVEC tube formation assay. In vivo experiments revealed the significant suppression of PCa growth and targeting of the B-RAF/p.ERK signaling pathway by nimbolide. CONCLUSION Our results showed that nimbolide inhibited 2D and 3D prostate cancer cells migration and downregulated E-cadherin protein expression, a marker for metastatic chemoresistance and tumor recurrence. Nimbolide stabilized the microtubules, combated angiogenesis and suppressed B.RAF/ERK-mediated in vivo tumor growth. Nimbolide may be considered as potential therapeutic agent for metastatic and advanced PCa patients and merits further investigations.
Collapse
Affiliation(s)
- Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany; Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Qi Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fang Ren
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent K W Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
18
|
Pollan SG, Teng PC, Jan YJ, Livingstone J, Huang C, Kim M, Mariscal J, Rodriguez M, Chen JF, You S, DiVizio D, Boutros PC, Chan KS, Rasorenova O, Cress A, Spassov D, Moasser M, Posadas EM, Freedland SJ, Freeman MR, Zheng JJ, Knudsen BS. Loss of CDCP1 triggers FAK activation in detached prostate cancer cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:350-366. [PMID: 34541033 PMCID: PMC8446766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
A major metastasis suppressing mechanism is the rapid apoptotic death of cancer cells upon detachment from extracellular matrix, a process called anoikis. Focal adhesion kinase (PTK2/FAK) is a key enzyme involved in evasion of anoikis. We show that loss of the Cub-domain containing protein-1 (CDCP1), paradoxically stimulates FAK activation in the detached state of prostate cancer cells. In CDCP1low DU145 and PC3 prostate cancer cells, detachment-activation of FAK occurs through local production of PI(4,5)P2. PI(4,5)P2 is generated by the PIP5K1c-201 splicing isoform of PIP5K1c, which contains a unique SRC phosphorylation site. In the detached state, reduced expression of CDCP1 and an alternative CDCP1-independent SRC activation mechanism triggers PIP5K1c-pY644 phosphorylation by SRC. This causes a switch of Talin binding from β1-integrin to PIP5K1c-pY644 and leads to activation of PIP5K1c-FAK. Reduced CDCP1 expression also inactivates CDK5, a negative regulator of PIP5K1c. Furthermore, immersion of prostate cancer cells in 10% human plasma or fetal bovine serum is required for activation of PIP5K1c-FAK. The PIP5K1c induced detachment-activation of FAK in preclinical models sensitizes CDCP1low prostate cancer cells to FAK inhibitors. In patients, CDCP1High versus CDCP1low circulating tumor cells differ in expression of AR-v7, ONECUT2 and HOXB13 oncogenes and TMPRSS2 and display intra-patient heterogeneity of FAK-pY397 expression. Taken together, CDCP1low and CDCP1high detached prostate cancer cells activate distinct cytoplasmic kinase complexes and targetable transcription factors, which has important therapeutic implications.
Collapse
Affiliation(s)
- Sara G Pollan
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Pai-Chi Teng
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Yu Jen Jan
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Julie Livingstone
- Department of Informatics and Biocomputing, Ontario Institute for Cancer ResearchToronto, ON M5G 1L7, Canada
| | - Cai Huang
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky789 South Limestone St, Lexington, KY 40536, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Javier Mariscal
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Maria Rodriguez
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jie-Fu Chen
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Dolores DiVizio
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Paul C Boutros
- Department of Human Genetics and Urology, Jonsson Comprehensive Cancer Centre, University of CaliforniaLos Angeles, CA, USA
| | - Keith Syson Chan
- Department of Pathology, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Olga Rasorenova
- Department of Molecular Biology and Biochemistry, University of California IrvineIrvine, CA 92697, USA
| | - Anne Cress
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine1501 N, Campbell Avenue, Tucson, AZ 85724, USA
| | - Danislav Spassov
- Department of Medicine, University of California San FranciscoSan Francisco, CA 94143, USA
| | - Mark Moasser
- Department of Medicine, University of California San FranciscoSan Francisco, CA 94143, USA
| | - Edwin M Posadas
- Department of Medicine, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jie J Zheng
- Department of Cell & Developmental Biology, University of California Los AngelesCHS BH-973B, Los Angeles, CA 90095, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Pathology, University of UtahSalt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Parol-Kulczyk M, Gzil A, Maciejewska J, Bodnar M, Grzanka D. Clinicopathological significance of the EMT-related proteins and their interrelationships in prostate cancer. An immunohistochemical study. PLoS One 2021; 16:e0253112. [PMID: 34157052 PMCID: PMC8219170 DOI: 10.1371/journal.pone.0253112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/29/2021] [Indexed: 11/19/2022] Open
Abstract
The chronic inflammation influences a microenvironment, where as a result of losing control over tissue homeostatic mechanisms, the carcinogenesis process may be induced. Inflammatory response cells can secrete a number of factors that support both initiation and progression of cancer and also they may consequently induct an epithelial-mesenchymal transition (EMT), the process responsible for development of distant metastasis. Macrophage migration inhibitory factor (MIF) acts as a pro-inflammatory cytokine that is considered as a link between chronic inflammation and tumor development. MIF can function as a modulator of important cancer-related genes expression, as well as an activator of signaling pathways that promotes the development of prostate cancer. The study was performed on FFPE tissues resected from patients who underwent radical prostatectomy. To investigate the relationship of studied proteins with involvement in tumor progression and initiation of epithelial-to-mesenchymal transition (EMT) process, we selected clinicopathological parameters related to tumor progression. Immunohistochemical analyses of MIF, SOX-4, β-catenin and E-cadherin were performed on TMA slides. We found a statistically significant correlation of overall β-catenin expression with the both lymph node metastasis (p<0.001) and presence of angioinvasion (p = 0.012). Membrane β-catenin expression was associated with distant metastasis (p = 0.021). In turn, nuclear MIF was correlated with lymph node metastasis (p = 0.003). The positive protein-protein correlations have been shown between the total β-catenin protein expression level with level of nuclear SOX-4 protein expression (r = 0.27; p<0.05) as well as negative correlation of β-catenin expression with level of nuclear MIF protein expression (r = -0.23; p<0.05). Our results seem promising and strongly highlight the potential role of MIF in development of nodal metastases as well as may confirm an involvement of β-catenin in disease spread in case of prostate cancer.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Maciejewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
20
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
21
|
Hasan MF, Ganapathy K, Sun J, Khatib A, Andl T, Soulakova JN, Coppola D, Zhang W, Chakrabarti R. LncRNA PAINT is associated with aggressive prostate cancer and dysregulation of cancer hallmark genes. Int J Cancer 2021; 149:10.1002/ijc.33569. [PMID: 33729568 PMCID: PMC9211384 DOI: 10.1002/ijc.33569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) play regulatory role in cellular processes and their aberrant expression may drive cancer progression. Here we report the function of a lncRNA PAINT (prostate cancer associated intergenic noncoding transcript) in promoting prostate cancer (PCa) progression. Upregulation of PAINT was noted in advanced stage and metastatic PCa. Inhibition of PAINT decreased cell proliferation, S-phase progression, increased expression of apoptotic markers, and improved sensitivity to docetaxel and Aurora kinase inhibitor VX-680. Inhibition of PAINT decreased cell migration and reduced expression of Slug and Vimentin. Ectopic expression of PAINT suppressed E-cadherin, increased S-phase progression and cell migration. PAINT expression in PCa cells induced larger colony formation, increased tumor growth and higher expression of mesenchymal markers. Transcriptome analysis followed by qRT-PCR validation showed differentially expressed genes involved in epithelial mesenchymal transition (EMT), apoptosis and drug resistance in PAINT-expressing cells. Our study establishes an oncogenic function of PAINT in PCa.
Collapse
Affiliation(s)
- Md Faqrul Hasan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, Florida
| | - Ayman Khatib
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Julia N. Soulakova
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Domenico Coppola
- Moffitt Cancer Center, Tampa, Florida
- Florida Digestive Health Specialists, Bradenton, Florida
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, Florida
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| |
Collapse
|
22
|
Pereira-Veiga T, González-Conde M, León-Mateos L, Piñeiro-Cid R, Abuín C, Muinelo-Romay L, Martínez-Fernández M, Brea Iglesias J, García González J, Anido U, Aguín-Losada S, Cebey V, Costa C, López-López R. Longitudinal CTCs gene expression analysis on metastatic castration-resistant prostate cancer patients treated with docetaxel reveals new potential prognosis markers. Clin Exp Metastasis 2021; 38:239-251. [PMID: 33635497 PMCID: PMC7987626 DOI: 10.1007/s10585-021-10075-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
CTCs have extensively been used for the monitoring and characterization of metastatic prostate cancer, but their application in the clinic is still very scarce. Besides, the resistance mechanisms linked to prostate cancer treatment remain unclear. Liquid biopsies represent the most promising alternative due to the complexity of biopsying bone metastasis and the duration of the disease. We performed a prospective longitudinal study in CTCs from 20 castration-resistant prostate cancer patients treated with docetaxel. For that, we used CellSearch® technology and a custom gene expression panel with qRT-PCR using a CTCs negative enrichment approach. We found that CTCs showed a hybrid phenotype during the disease, where epithelial features were associated with the presence of ≥ 5 CTCs/7.5 mL of blood, while high relative expression of the gene MYCL was observed preferentially in the set of samples with < 5 CTCs/7.5 mL of blood. At baseline, patients whose CTCs had stem or hybrid features showed a later progression. After 1 cycle of docetaxel, high relative expression of ZEB1 indicated worse outcome, while KRT19 and KLK3 high expression could predisposed the patients to a worse prognosis at clinical progression. In the present work we describe biomarkers with clinical relevance for the prediction of early response or resistance in castration-resistant prostate cancer patients. Besides, we question the utility of targeted isolated CTCs and the use of a limited number of markers to define the CTCs population.
Collapse
Affiliation(s)
- Thais Pereira-Veiga
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Luis León-Mateos
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Roberto Piñeiro-Cid
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Mónica Martínez-Fernández
- Genomes and Disease Lab. CIMUS, Universidade de Santiago de Compostela (USC), Avda. Barcelona 31, 15706, Santiago de Compostela, Spain
| | - Jenifer Brea Iglesias
- Genomes and Disease Lab. CIMUS, Universidade de Santiago de Compostela (USC), Avda. Barcelona 31, 15706, Santiago de Compostela, Spain
| | - Jorge García González
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Urbano Anido
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Santiago Aguín-Losada
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Víctor Cebey
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.,Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Altschuler J, Stockert JA, Kyprianou N. Non-Coding RNAs Set a New Phenotypic Frontier in Prostate Cancer Metastasis and Resistance. Int J Mol Sci 2021; 22:ijms22042100. [PMID: 33672595 PMCID: PMC7924036 DOI: 10.3390/ijms22042100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) mortality remains a significant public health problem, as advanced disease has poor survivability due to the development of resistance in response to both standard and novel therapeutic interventions. Therapeutic resistance is a multifaceted problem involving the interplay of a number of biological mechanisms including genetic, signaling, and phenotypic alterations, compounded by the contributions of a tumor microenvironment that supports tumor growth, invasiveness, and metastasis. The androgen receptor (AR) is a primary regulator of prostate cell growth, response and maintenance, and the target of most standard PCa therapies designed to inhibit AR from interacting with androgens, its native ligands. As such, AR remains the main driver of therapeutic response in patients with metastatic castration-resistant prostate cancer (mCRPC). While androgen deprivation therapy (ADT), in combination with microtubule-targeting taxane chemotherapy, offers survival benefits in patients with mCRPC, therapeutic resistance invariably develops, leading to lethal disease. Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes and also to the development of biomarker signatures of predictive value. The interconversions between epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) navigate the prostate tumor therapeutic response, and provide a novel targeting platform in overcoming therapeutic resistance. Both microRNA (miRNA)- and long non-coding RNA (lncRNA)-mediated mechanisms have been associated with epigenetic changes in prostate cancer. This review discusses the current evidence-based knowledge of the role of the phenotypic transitions and novel molecular determinants (non-coding RNAs) as contributors to the emergence of therapeutic resistance and metastasis and their integrated predictive value in prostate cancer progression to advanced disease.
Collapse
Affiliation(s)
- Joshua Altschuler
- Department of Urology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.A.); (J.A.S.)
| | - Jennifer A. Stockert
- Department of Urology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.A.); (J.A.S.)
| | - Natasha Kyprianou
- Department of Urology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.A.); (J.A.S.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
24
|
Altamura C, Greco MR, Carratù MR, Cardone RA, Desaphy JF. Emerging Roles for Ion Channels in Ovarian Cancer: Pathomechanisms and Pharmacological Treatment. Cancers (Basel) 2021; 13:668. [PMID: 33562306 PMCID: PMC7914442 DOI: 10.3390/cancers13040668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Maria Raffaella Greco
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| |
Collapse
|
25
|
Voss G, Haflidadóttir BS, Järemo H, Persson M, Catela Ivkovic T, Wikström P, Ceder Y. Regulation of cell-cell adhesion in prostate cancer cells by microRNA-96 through upregulation of E-Cadherin and EpCAM. Carcinogenesis 2021; 41:865-874. [PMID: 31738404 PMCID: PMC7359773 DOI: 10.1093/carcin/bgz191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell–cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell–cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell–cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.
Collapse
Affiliation(s)
- Gjendine Voss
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Helena Järemo
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Tina Catela Ivkovic
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Thomas PB, Jeffery P, Gahete MD, Whiteside E, Walpole C, Maugham M, Jovanovic L, Gunter J, Williams E, Nelson C, Herington A, Luque RM, Veedu R, Chopin LK, Seim I. The long non-coding RNA GHSROS reprograms prostate cancer cell lines toward a more aggressive phenotype. PeerJ 2021; 9:e10280. [PMID: 33585078 PMCID: PMC7860111 DOI: 10.7717/peerj.10280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/09/2020] [Indexed: 12/27/2022] Open
Abstract
It is now appreciated that long non-coding RNAs (lncRNAs) are important players in orchestrating cancer progression. In this study we characterized GHSROS, a human lncRNA gene on the opposite DNA strand (antisense) to the ghrelin receptor gene, in prostate cancer. The lncRNA was upregulated by prostate tumors from different clinical datasets. Transcriptome data revealed that GHSROS alters the expression of cancer-associated genes. Functional analyses in vitro showed that GHSROS mediates tumor growth, migration and survival, and resistance to the cytotoxic drug docetaxel. Increased cellular proliferation of GHSROS-overexpressing PC3, DU145, and LNCaP prostate cancer cell lines in vitro was recapitulated in a subcutaneous xenograft model. Conversely, in vitro antisense oligonucleotide inhibition of the lncRNA reciprocally regulated cell growth and migration, and gene expression. Notably, GHSROS modulates the expression of PPP2R2C, the loss of which may drive androgen receptor pathway-independent prostate tumor progression in a subset of prostate cancers. Collectively, our findings suggest that GHSROS can reprogram prostate cancer cells toward a more aggressive phenotype and that this lncRNA may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Patrick B. Thomas
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Penny Jeffery
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Manuel D. Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Cordoba, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Eliza Whiteside
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Carina Walpole
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michelle Maugham
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jennifer Gunter
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Elizabeth Williams
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adrian Herington
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raul M. Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Cordoba, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Rakesh Veedu
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Lisa K. Chopin
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
27
|
The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment. J Xenobiot 2021; 11:16-32. [PMID: 33535458 PMCID: PMC7931005 DOI: 10.3390/jox11010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is one of the most common cancers diagnosed in men in the United States and the second leading cause of cancer-related deaths worldwide. Since over 60% of prostate cancer cases occur in men over 65 years of age, and this population will increase steadily in the coming years, prostate cancer will be a major cancer-related burden in the foreseeable future. Accumulating data from more recent research suggest that the tumor microenvironment (TME) plays a previously unrecognized role in every stage of cancer development, including initiation, proliferation, and metastasis. Prostate cancer is not only diagnosed in the late stages of life, but also progresses relatively slowly. This makes prostate cancer an ideal model system for exploring the potential of natural products as cancer prevention and/or treatment reagents because they usually act relatively slowly compared to most synthetic drugs. Resveratrol (RSV) is a naturally occurring stilbenoid and possesses strong anti-cancer properties with few adverse effects. Accumulating data from both in vitro and in vivo experiments indicate that RSV can interfere with prostate cancer initiation and progression by targeting the TME. Therefore, this review is aimed to summarize the recent advancement in RSV-inhibited prostate cancer initiation, proliferation, and metastasis as well as the underlying molecular mechanisms, with particular emphasis on the effect of RSV on TME. This will not only better our understanding of prostate cancer TMEs, but also pave the way for the development of RSV as a potential reagent for prostate cancer prevention and/or therapy.
Collapse
|
28
|
Wang F, Sun G, Peng C, Chen J, Quan J, Wu C, Lian X, Tang W, Xiang D. ZEB1 promotes colorectal cancer cell invasion and disease progression by enhanced LOXL2 transcription. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:9-23. [PMID: 33532019 PMCID: PMC7847496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/11/2020] [Indexed: 06/12/2023]
Abstract
Disease progression after curative surgery is still the main challenge for colorectal cancer (CRC). Identifying biomarkers and precise mechanisms in CRC disease progression is necessary for therapeutic improvement. As a transcription factor, ZEB1 promotes malignancy, but the precise mechanism by which ZEB1-dependent transcriptional regulation remains largely undefined. In this study, the transcriptional regulation of lysyl oxidase-like 2 (LOXL2) by ZEB1 in CRC was investigated. Our data show that ZEB1 enhanced LOXL2 transcription through direct binding to its promoter. The gain of function assays of ZEB1 showed increased cell proliferation, migration, and invasion. The inhibition of LOXL2 impaired the invasion and migratory ability of CRC cells, but had no effect on cell proliferation in vitro and in vivo. Immunohistochemical staining of tumor tissues indicated that elevated ZEB1/LOXL2 expression was significantly associated with lymph node metastasis and TNM stage. More importantly, elevated ZEB1/LOXL2 expression was an independent prognostic factor in CRC patients. These findings provide a molecular basis for the promotion of an invasive cancer phenotype by ZEB1-LOXL2 overexpression. Our results identify ZEB1/LOXL2 as a prognostic biomarker and potential therapeutic target against progression of CRC.
Collapse
Affiliation(s)
- Fan Wang
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Guiyin Sun
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Chunfang Peng
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Jiangyan Chen
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Jin Quan
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Chunrong Wu
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Xiaojuan Lian
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Weijun Tang
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Debing Xiang
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| |
Collapse
|
29
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
30
|
Singh SK, Sinha S, Padhan J, Jangde N, Ray R, Rai V. MYH9 suppresses melanoma tumorigenesis, metastasis and regulates tumor microenvironment. Med Oncol 2020; 37:88. [PMID: 32902730 DOI: 10.1007/s12032-020-01413-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Non-muscle myosin IIA heavy chain (MYH9) has been implicated in many physiological and pathological functions including cell adhesion, polarity, motility to cancer. However, its role in melanoma remains unexplored. The aim of our study was to evaluate the role of MYH9 in melanoma tumor development and metastasis and further to find out the potential underlying mechanisms. In this study, we evaluated the in vitro migratory and invasive properties and in vivo tumor development and metastasis in C57BL/6 mice by silencing MYH9 in B16F10 melanoma cells. Knocking down MYH9 enhanced migration and invasiveness of B16F10 cells in vitro. Furthermore, MYH9 silencing accelerated tumor growth and metastasis in melanoma subcutaneous and intravenous mouse models. Next, oncogenes analysis revealed epithelial-mesenchymal transition and Erk signaling pathway are being regulated with MYH9 expression. Finally, MYH9 silencing in B16F10 cells modulates the tumor microenvironment by manipulating the leukocytes and macrophages infiltration in tumors. These findings established the opposing role of MYH9 as a tumor suppressor in melanoma suggesting specific MYH9 based approaches in therapeutics.
Collapse
Affiliation(s)
- Satyendra Kumar Singh
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Sunita Sinha
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jyotirmayee Padhan
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| |
Collapse
|
31
|
Sommariva M, Gagliano N. E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT. Cells 2020; 9:E1040. [PMID: 32331358 PMCID: PMC7226001 DOI: 10.3390/cells9041040] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.
Collapse
Affiliation(s)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
32
|
Park S, Song CS, Lin CL, Jiang S, Osmulski PA, Wang CM, Marck BT, Matsumoto AM, Morrissey C, Gaczynska ME, Chen Y, Mostaghel EA, Chatterjee B. Inhibitory Interplay of SULT2B1b Sulfotransferase with AKR1C3 Aldo-keto Reductase in Prostate Cancer. Endocrinology 2020; 161:bqz042. [PMID: 31894239 PMCID: PMC7341717 DOI: 10.1210/endocr/bqz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
SULT2B1b (SULT2B) is a prostate-expressed hydroxysteroid sulfotransferase, which may regulate intracrine androgen homeostasis by mediating 3β-sulfation of dehydroepiandrosterone (DHEA), the precursor for 5α-dihydrotestosterone (DHT) biosynthesis. The aldo-keto reductase (AKR)1C3 regulates androgen receptor (AR) activity in castration-resistant prostate cancer (CRPC) by promoting tumor tissue androgen biosynthesis from adrenal DHEA and also by functioning as an AR-selective coactivator. Herein we report that SULT2B-depleted CRPC cells, arising from stable RNA interference or gene knockout (KO), are markedly upregulated for AKR1C3, activated for ERK1/2 survival signal, and induced for epithelial-to-mesenchymal (EMT)-like changes. EMT was evident from increased mesenchymal proteins and elevated EMT-inducing transcription factors SNAI1 and TWIST1 in immunoblot and single-cell mass cytometry analyses. SULT2B KO cells showed greater motility and invasion in vitro; growth escalation in xenograft study; and enhanced metastatic potential predicted on the basis of decreased cell stiffness and adhesion revealed from atomic force microscopy analysis. While AR and androgen levels were unchanged, AR activity was elevated, since PSA and FKBP5 mRNA induction by DHT-activated AR was several-fold higher in SULT2B-silenced cells. AKR1C3 silencing prevented ERK1/2 activation and SNAI1 induction in SULT2B-depleted cells. SULT2B was undetectable in nearly all CRPC metastases from 50 autopsy cases. Primary tumors showed variable and Gleason score (GS)-independent SULT2B levels. CRPC metastases lacking SULT2B expressed AKR1C3. Since AKR1C3 is frequently elevated in advanced prostate cancer, the inhibitory influence of SULT2B on AKR1C3 upregulation, ERK1/2 activation, EMT-like induction, and on cell motility and invasiveness may be clinically significant. Pathways regulating the inhibitory SULT2B-AKR1C3 axis may inform new avenue(s) for targeting SULT2B-deficient prostate cancer.
Collapse
Affiliation(s)
- Sulgi Park
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Microbiology & Immunology, Pusan National University School of Medicine, South Korea
- South Texas Veterans Health Care System, San Antonio, Texas
| | - Chung-Seog Song
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
- South Texas Veterans Health Care System, San Antonio, Texas
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Shoulei Jiang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
- South Texas Veterans Health Care System, San Antonio, Texas
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Brett T Marck
- Geriatric Research, Education & Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Alvin M Matsumoto
- Geriatric Research, Education & Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Yidong Chen
- Department of Epidemiology & Biostatistics, University of Texas Health San Antonio, San Antonio, Texas
- Greehy Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Elahe A Mostaghel
- Geriatric Research, Education & Clinical Center, VA Puget Sound Health Care System, Seattle, WA
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Bandana Chatterjee
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
- South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
33
|
Fonseca-Alves CE, Kobayashi PE, Leis-Filho AF, Lainetti PDF, Grieco V, Kuasne H, Rogatto SR, Laufer-Amorim R. E-Cadherin Downregulation is Mediated by Promoter Methylation in Canine Prostate Cancer. Front Genet 2019; 10:1242. [PMID: 31850082 PMCID: PMC6895247 DOI: 10.3389/fgene.2019.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is a transmembrane glycoprotein responsible for cell-to-cell adhesion, and its loss has been associated with metastasis development. Although E-cadherin downregulation was previously reported in canine prostate cancer (PC), the mechanism involved in this process is unclear. It is well established that dogs, besides humans, spontaneously develop PC with high frequency; therefore, canine PC is an interesting model to study human PC. In human PC, CDH1 methylation has been associated with E-cadherin downregulation. However, no previous studies have described the methylation pattern of CDH1 promoter in canine PC. Herein, we evaluated the E-cadherin protein and gene expression in canine PC compared to normal tissues. DNA methylation pattern was investigated as a regulatory mechanism of CDH1 silencing. Our cohort is composed of 20 normal prostates, 20 proliferative inflammatory atrophy (PIA) lesions, 20 PC, and 11 metastases from 60 dogs. The E-cadherin protein expression was assessed by immunohistochemistry and western blotting and gene expression by qPCR. Bisulfite- pyrosequencing assay was performed to investigate the CDH1 promoter methylation pattern. Membranous E-cadherin expression was observed in all prostatic tissues. A higher number of E-cadherin negative cells was detected more frequently in PC compared to normal and PIA samples. High-grade PC showed a diffuse membranous positive immunostaining. Furthermore, PC patients with a higher number of E-cadherin negative cells presented shorter survival time and higher Gleason scores. Western blotting and qPCR assays confirmed the immunohistochemical results, showing lower E-cadherin protein and gene expression levels in PC compared to normal samples. We identified CDH1 promoter hypermethylation in PIA and PC samples. An in vitro assay with two canine prostate cancer cells (PC1 and PC2 cell lines) was performed to confirm the methylation as a regulatory mechanism of E-cadherin expression. PC1 cell line presented CDH1 hypermethylation and after 5-Aza-dC treatment, a decreased CDH1 methylation and increased gene expression levels were observed. Positive E-cadherin cells were massively found in metastases (mean of 90.6%). In conclusion, low levels of E-cadherin protein, gene downregulation and CDH1 hypermethylation was detected in canine PC. However, in metastatic foci occur E-cadherin re-expression confirming its relevance in these processes.
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Paulista University—UNIP, Bauru, Brazil
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Valeria Grieco
- Department of Veterinary Medicine, Università degli studi di Milano, Milan, Italy
| | - Hellen Kuasne
- International Center for Research (CIPE), AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Renee Laufer-Amorim
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| |
Collapse
|
34
|
Grau Ribes A, De Decker Y, Rongy L. Connecting gene expression to cellular movement: A transport model for cell migration. Phys Rev E 2019; 100:032412. [PMID: 31639952 DOI: 10.1103/physreve.100.032412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The adhesion properties and the mobility of biological cells play key roles in the propagation of cancer. These properties are expected to depend on intracellular processes and on the concentrations of chemicals inside the cell. While most existing reaction-diffusion models for cell migration consider that cell mobility and proliferation rate are constant or depend on an external diffusing species, they do not include the gene expression dynamics taking place in moving cells that affect cellular transport. In this work, we propose a multiscale model where mobility and proliferation depend explicitly on the cell's internal state. We focus more specifically on the case of cellular mobility in epithelial tissues. Wound-healing experiments have demonstrated that the loss of a key protein, E-cadherin, results in a significant increase in both mobility and invasiveness of epithelial cells, with dramatic consequences on cancer progression. We can reproduce the results of these experiments under various genetic conditions with a single set of parameters.
Collapse
Affiliation(s)
- Alexis Grau Ribes
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Yannick De Decker
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
35
|
Wu L, Ling ZH, Wang H, Wang XY, Gui J. Upregulation of SCNN1A Promotes Cell Proliferation, Migration, and Predicts Poor Prognosis in Ovarian Cancer Through Regulating Epithelial-Mesenchymal Transformation. Cancer Biother Radiopharm 2019; 34:642-649. [PMID: 31549859 DOI: 10.1089/cbr.2019.2824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: There is little knowledge about the biological roles and clinical significance of SCNN1A in ovarian cancer. Thus, the objective of this study was to investigate the biological functions and prognosis value of SCNN1A in ovarian cancer to further seek a potential therapeutic target for patients with ovarian cancer. Materials and Methods: First, the expression level of SCNN1A in ovarian cancer samples obtained from ONCOMINE database was determined, and its expression in cell lines was also investigated. Moreover, correlation analysis was performed to determine the relationship between SCNN1A expression and prognosis in ovarian cancer patients according to the data obtained from GEPIA database and Kaplan-Meier plotter website. The biological roles of SCNN1A on cell growth, migration, and invasion were then examined by knockdown of SCNN1A in ovarian cancer cell line SK-OV-3. Ultimately, Western blotting analysis was carried out to investigate the expression of epithelial-mesenchymal transformation markers (including E-cadherin, N-cadherin, Vimentin, and Snail) after silencing SCNN1A. Results: Based on the ONCOMINE-related data and cell lines, SCNN1A was observed to be overexpressed in ovarian cancer samples and cell lines. Survival analysis showed that high expression of SCNN1A was associated with poor overall survival and progression-free survival in ovarian cancer patients. In addition, SCNN1A silence remarkably blocked SK-OV-3 cell growth ability, migration, and invasion potential. Western blotting results showed that SCNN1A silence led to an increase in E-cadherin, whereas a decrease in N-cadherin, Vimentin, and Snail in SK-OV-3 cells. Increased E-cadherin and decreased N-cadherin, Vimentin, as well as Snail inhibited cell invasion of ovarian cancer. Conclusions: SCNN1A might exert crucial roles in cell growth and invasion and migration in ovarian cancer, and might be a potential indicator for prognosis and a therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Lan Wu
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, P.R. China.,Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Zhong-Hui Ling
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, P.R. China.,Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Huan Wang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, P.R. China.,Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xin-Yan Wang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, P.R. China.,Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Jing Gui
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, P.R. China.,Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
36
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
37
|
Quach ND, Kaur SP, Eggert MW, Ingram L, Ghosh D, Sheth S, Nagy T, Dawson MR, Arnold RD, Cummings BS. Paradoxical Role of Glypican-1 in Prostate Cancer Cell and Tumor Growth. Sci Rep 2019; 9:11478. [PMID: 31391540 PMCID: PMC6685992 DOI: 10.1038/s41598-019-47874-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that glypican-1 (GPC-1) is a biomarker for prostate cancer, but there are few studies elucidating the role of GPC-1 in prostate cancer progression. We observed high expression of GPC-1 in more aggressive prostate cancer cell lines such as PC-3 and DU-145. While inhibition of GPC-1 expression in PC-3 cells decreased cell growth and migration in vitro, it surprisingly increased cell proliferation and migration in DU-145 cells, suggesting that the role of GPC-1 is cell type-dependent. Further, GPC-1 inhibition increased PC-3 tumor size in NCr nude mice xenografts. We hypothesized that the discrepancy between the in vitro and in vivo data is mediated by stromal cells in the tumor microenvironment. Thus, we tested the effect of tumor conditioned media (TCM) on gene expression in human mesenchymal stem cells and fibroblasts. Treatment of stromal cells with TCM from PC-3 cells transfected with GPC-1 shRNA increased the expression of migration markers, endocrine/paracrine biomolecules, and extracellular matrix components. Additionally, the decreased cell growth in GPC-1 knockdown PC-3 cells was rescued by coculturing with stromal cells. These data demonstrate the paradoxical role that GPC-1 plays in prostate cancer cell growth by interacting with stromal cells and through ECM remodeling and endocrine/paracrine signaling.
Collapse
Affiliation(s)
- Nhat D Quach
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Sukhneeraj Pal Kaur
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Matthew W Eggert
- Department of Drug Discovery & Development, Auburn University, Auburn, AL, USA
| | - Lishann Ingram
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Sheela Sheth
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Robert D Arnold
- Department of Drug Discovery & Development, Auburn University, Auburn, AL, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA. .,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
38
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
39
|
Lv D, Song X, Huang B, Yu YZ, Shu F, Wang C, Chen H, Zhang HB, Zhao S. HMGB1 Promotes Prostate Cancer Development and Metastasis by Interacting with Brahma-Related Gene 1 and Activating the Akt Signaling Pathway. Am J Cancer Res 2019; 9:5166-5182. [PMID: 31410208 PMCID: PMC6691575 DOI: 10.7150/thno.33972] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background and Aim: We have previously shown that high-mobility group box 1 (HMGB1) is an independent biomarker for shortened survival of prostate cancer (PCa) patients. However, the specific role of HMGB1 in tumor development and progression remains largely unknown. In this study, we investigated the molecular mechanisms of HMGB1 in PCa tumorigenesis. Methods: Gain-of-function and loss-of-function experiments were used to determine the biological functions of HMGB1 both in vitro and in vivo. Bioinformatic analysis, immunoprecipitation, and immunofluorescence assays were applied to discern and examine the relationship between HMGB1 and its potential targets. Specimens from 64 patients with PCa were analyzed for the expression of HMGB1 and its relationship with Brahma-related gene 1 (BRG1) was examined by immunohistochemistry. Results: The results demonstrated that ectopic expression of HMGB1 facilitated growth and metastasis of PCa by enhancing Akt signaling pathway and promoting epithelial-mesenchymal transition (EMT), while silencing of HMGB1 showed the opposite effects. Mechanistically, HMGB1 exerted these functions through its interaction with BRG1 which may augment BRG1 function and activate the Akt signaling pathway thereby promoting EMT. Importantly, both HMGB1 and BRG1 expression was markedly increased in human PCa tissues. Conclusions: Taken together, these findings indicate that upregulation of HMGB1 promotes PCa development via activation of Akt and accelerates metastasis through regulating BRG1-mediated EMT. HMGB1 could be used as a novel potential target for the treatment of PCa.
Collapse
|
40
|
Contribution of Epithelial Plasticity to Therapy Resistance. J Clin Med 2019; 8:jcm8050676. [PMID: 31091749 PMCID: PMC6571660 DOI: 10.3390/jcm8050676] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.
Collapse
|
41
|
Chang HY, Chen SY, Wu CH, Lu CC, Yen GC. Glycyrrhizin Attenuates the Process of Epithelial-to-Mesenchymal Transition by Modulating HMGB1 Initiated Novel Signaling Pathway in Prostate Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3323-3332. [PMID: 30832473 DOI: 10.1021/acs.jafc.9b00251] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High mobility group box 1 (HMGB1) is upregulated in nearly every tumor type. Importantly, clinical evidence also proposed that HMGB1 is particularly increased in metastatic prostate cancer patients. Besides, a growing number of studies highlighted that HMGB1 could be a successful therapeutic target for prostate cancer patients. Glycyrrhizin is a novel pharmacological inhibitor of HMGB1 that may repress prostate cancer metastasis. This research was aimed to investigate the effect of glycyrrhizin on inhibition of HMGB1-induced epithelial-to-mesenchymal transition (EMT), a key step of tumor metastasis, in prostate cancer cells. In this study, HMGB1 knock-downed DU145 prostate cancer cells were used. Silencing the HMGB1 gene expression triggered a change of cell morphology to a more epithelial-like shape, which was accompanied by a reduction of Cdc42/GSK-3β/Snail and induction of E-cadherin levels estimated by immunoblotting. Furthermore, HMGB1 facilitated cell migration and invasion via downstream signaling, whereas HMGB1 targeting by 10 mM ethyl pyruvate effectively inhibited EMT characteristics. Interestingly, cell migration capacity induced by HMGB1 in DU145 cells was abolished in a dose-dependent effect of 25-200 μM glycyrrhizin treatment. In conclusion, glycyrrhizin successfully inhibited HMGB1-induced EMT phenomenon, which suggested that glycyrrhizin may serves as a therapeutic agent for metastatic prostate cancer.
Collapse
Affiliation(s)
| | | | - Chi-Hao Wu
- Department of Human Development and Family Studies , National Taiwan Normal University , 162, Section 1, Heping East Road , Taipei City 106 , Taiwan
| | - Chi-Cheng Lu
- Department of Sport Performance , National Taiwan University of Sport , 16, Sec. 1, Shuang-Shih Road , Taichung City 40404 , Taiwan
| | | |
Collapse
|
42
|
The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers (Basel) 2019; 11:cancers11040434. [PMID: 30934773 PMCID: PMC6521153 DOI: 10.3390/cancers11040434] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.
Collapse
|
43
|
Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells 2019; 8:cells8020143. [PMID: 30754655 PMCID: PMC6406374 DOI: 10.3390/cells8020143] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) cell cultures allow the mimic of functions of living tissues and provide key information encoded in tissue architecture. Considered the pivotal role of epithelial-to-mesenchymal transition (EMT) in carcinoma progression, including prostate cancer (PCa), we aimed at investigating the effect of the 3D arrangement on the expression of some key markers of EMT in cultured human prostate cancer (PCa) cells, to better understand PCa cell behavior. PC3 and DU145 PCa cells were cultured in RPMI cell culture medium either in 2D-monolayers or in 3D-spheroids. The main EMT markers E-cadherin, N-cadherin, α-smooth muscle actin (αSMA), vimentin, Snail, Slug, Twist and Zeb1 were evaluated by confocal microscopy, real-time PCR and Western blot. Confocal microscopy revealed that E-cadherin was similarly expressed at the cell boundaries on the plasma membrane of PCa cells grown in 2D-monolayers, as well as in 3D-spheroids, but resulted up-regulated in 3D-spheroids, compared to 2D-monolayers, at the mRNA and protein level. Moreover, markers of the mesenchymal phenotype were expressed at very low levels in 3D-spheroids, suggesting important differences in the phenotype of PCa cells grown in 3D-spheroids or in 2D-monolayers. Considered as a whole, our findings contribute to a clarification of the role of EMT in PCa and confirm that a 3D cell culture model could provide deeper insight into the understanding of the biology of PCa.
Collapse
|
44
|
Qin Y, Yu J, Zhang M, Qin F, Lan X. ZEB1 promotes tumorigenesis and metastasis in hepatocellular carcinoma by regulating the expression of vimentin. Mol Med Rep 2019; 19:2297-2306. [PMID: 30664206 DOI: 10.3892/mmr.2019.9866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and its prognosis remains poor. Epithelial‑to‑mesenchymal transition (EMT)‑induced markers have emerged as key regulators of tumor development and progression in HCC. The aim of the present study was to investigate the role of zinc finger E‑box‑binding homeobox 1 (ZEB1) in the tumorigenesis of HCC and to elucidate the mechanism underlying the correlation between ZEB1 and vimentin (VIM). The expression levels of ZEB1 and VIM were assessed by immunohistochemistry, western blotting and reverse transcription‑quantitative polymerase chain reaction analysis in HCC tissues and cell lines. The biological significance of ZEB1 was examined by downregulating the expression of ZEB1 in Huh‑7 cells. A luciferase reporter assay was used to investigate the association between ZEB1 and VIM. The expression levels of ZEB1 and VIM were higher in tumor tissues compared with those in adjacent normal tissues, and they were significantly associated with a poor prognosis in patients with HCC, whereas ZEB1 silencing led to the attenuation of HCC cell proliferation, invasion and migration. Furthermore, it was observed that ZEB1 was able to bind to a certain site in the VIM promoter and regulate the transcriptional activity of VIM. Therefore, the present study demonstrated that ZEB1 is a potential biomarker of the tumorigenesis and progression of HCC, and it may regulate transcription of the VIM gene.
Collapse
Affiliation(s)
- Yue Qin
- Department of Physical Examination, Division of Traditional Chinese Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Jingxi Yu
- Division of Financial Analysis, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Ming Zhang
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Faxiang Qin
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Xiong Lan
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
45
|
Wells A, Clark A, Bradshaw A, Ma B, Edington H. The great escape: How metastases of melanoma, and other carcinomas, avoid elimination. Exp Biol Med (Maywood) 2019; 243:1245-1255. [PMID: 30764707 DOI: 10.1177/1535370218820287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Cancers kill mainly because metastatic disease is resistant to systemic therapies. It was hoped that newer targeted and immunomodulatory interventions could overcome these issues. However, recent findings point to a generalized resistance to elimination imparted by both cancer-intrinsic and -extrinsic changes to provide survival advantages to the disseminated tumor cells. Here, we present a novel conceptual framework for the microenvironmental inputs and changes that contribute to this generalized therapeutic resistance. In addition we address the issues of experimental systems in terms of studying this phenomenon with their advantages and limitations. This is meant to spur studies into this critical aspect of tumor progression that directly leads to cancer mortality.
Collapse
Affiliation(s)
- Alan Wells
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,5 Hillman Cancer Centers of UPMC, Pittsburgh, PA 15232, USA
| | - Amanda Clark
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew Bradshaw
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Bo Ma
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,5 Hillman Cancer Centers of UPMC, Pittsburgh, PA 15232, USA
| | - Howard Edington
- 6 Department of Surgery, Allegheny Health Network, Pittsburgh, PA 15224, USA
| |
Collapse
|
46
|
Analysis of regulator of G-protein signalling 2 (RGS2) expression and function during prostate cancer progression. Sci Rep 2018; 8:17259. [PMID: 30467386 PMCID: PMC6250724 DOI: 10.1038/s41598-018-35332-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer (PC) represents the second highest cancer-related mortality among men and the call for biomarkers for early discrimination between aggressive and indolent forms is essential. Downregulation of Regulator of G-protein signaling 2 (RGS2) has been shown in PC, however the underlying mechanism has not been described. Aberrant RGS2 expression has also been reported for other carcinomas in association to both positive and negative prognosis. In this study, we assessed RGS2 expression during PC progression in terms of regulation and impact on tumour phenotype and evaluated its prognostic value. Our experimental data suggest that the RGS2 downregulation seen in early PC is caused by hypoxia. In line with the common indolent phenotype of a primary PC, knockdown of RGS2 induced epithelial features and impaired metastatic properties. However, increased STAT3, TWIST1 and decreased E-cadherin expression suggest priming for EMT. Additionally, improved tumour cell survival and increased BCL-2 expression linked decreased RGS2 levels to fundamental tumour advantages. In contrast, high RGS2 levels in advanced PC were correlated to poor patient survival and a positive metastatic status. This study describes novel roles for RGS2 during PC progression and suggests a prognostic potential discriminating between indolent and metastatic forms of PC.
Collapse
|
47
|
Jin H, Jin X, Chai W, Yin Z, Li Y, Dong F, Wang W. Long non-coding RNA MIAT competitively binds miR-150-5p to regulate ZEB1 expression in osteosarcoma. Oncol Lett 2018; 17:1229-1236. [PMID: 30655889 DOI: 10.3892/ol.2018.9671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 06/19/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), are significant in a number of biological stages and illnesses. The myocardial infarction associated transcript (MIAT) serves a function in numerous types of illness and physiological and pathological processes, including paranoid schizophrenia, diabetic retinopathy, myocardial infarction and neuroendocrine prostate cancer. However, the function of the lncRNA MIAT in the development of osteosarcoma is unknown. It has been identified that during the development of osteosarcoma, MIAT is upregulated in tumor tissues compared to adjacent non-tumor tissues. The spreading and proliferation of osteosarcoma cells was reduced by MIAT knockdown. These findings indicate that MIAT functions by competing with critical RNAs to target miR-150-5p and activate zinc finger E-box binding homeobox 1 to modulate the function of osteosarcoma cells. Together, the present findings may contribute to the understanding of the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Hao Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Xin Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Weiguang Chai
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Zhiqiang Yin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Yang Li
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Feng Dong
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Wenbo Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| |
Collapse
|
48
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
49
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
50
|
Zhu Z, Xu L, Wan Y, Zhou J, Fu D, Chao H, Bao K, Zeng T. Inhibition of E-cadherin expression by lnc-RNA H19 to facilitate bladder cancer metastasis. Cancer Biomark 2018; 22:275-281. [PMID: 29614625 DOI: 10.3233/cbm-170998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zunwei Zhu
- Department of Urological Surgery, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Lieyu Xu
- Department of Urological Surgery, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Yong Wan
- Department of Pathology, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Jie Zhou
- Department of Urological Surgery, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Donghui Fu
- Department of Urological Surgery, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Haichao Chao
- Department of Urological Surgery, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Kunwang Bao
- Department of CT, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| | - Tao Zeng
- Department of Urological Surgery, The People’s Hospital of Jiangxi, Nanchang 330006, Jiangxi, China
| |
Collapse
|