1
|
Ahvati H, Roudi R, Sobhani N, Safari F. CD47 as a potent target in cancer immunotherapy: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189294. [PMID: 40057140 DOI: 10.1016/j.bbcan.2025.189294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Cancer is the second-highest cause of death worldwide. Accordingly, finding new cancer treatments is of great interest to researchers. The current platforms to fight cancer such as chemotherapy, radiotherapy, and surgery are limited in efficacy, especially in the metastatic setting. In this war against cancer, the immune system is a powerful ally, but tumor cells often outsmart it through alternative pathways. Cluster of differentiation 47 (CD47), a protein that normally prevents healthy cells from being attacked by immune cells, is often overexpressed on cancer cells. This makes CD47 a prime target for immunotherapy. Blocking of CD47 has the potential to unleash the immune system's cell populations-such as myeloid cells, macrophages, and T cells-to allow the immune system to discover and destroy cancer cells more successfully. In this review, we aimed to provide the latest information and findings about the roles of CD47 in the regulation of various cellular pathways and, thus, the importance of CD47 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
2
|
Kuo C, Giannikou K, Wang N, Warren M, Goodspeed A, Shillingford N, Hayashi M, Raredon MSB, Amatruda JF. Tumor-associated stroma shapes the spatial tumor immune microenvironment of primary Ewing sarcomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635996. [PMID: 39975230 PMCID: PMC11838416 DOI: 10.1101/2025.01.31.635996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
To date, few studies have detailed the tumor microenvironment (TME) of Ewing sarcoma (EwS). The TME has a vital role in cancer survival and progression with implications in drug resistance and immune escape. By performing spatially resolved transcriptomic analysis of primary treatment-naïve EwS samples, we discovered greater stromal enrichment in localized EwS tumors compared to metastatic EwS tumors. Through spatial ligand-receptor analysis, we show that the stromal enriched regions harbor unique extracellular matrix related cytokines, immune recruitment and proinflammatory microenvironmental signals, implying EwS stroma may play an anti-tumorigenic role by acting as an immune recruitment center. All EwS tumors expressed pro-tumorigenic MIF-CD74 immune signaling, suggesting a potential immune-evasive mechanism and immunotherapy target. Our findings provide insight into tumor cell/stromal cell interactions in EwS and serve as a valuable resource for further investigations in the tumor immune microenvironment of EwS.
Collapse
Affiliation(s)
- Christopher Kuo
- Cancer and Blood Disease Institute, Division of Hematology-Oncology, Children's Hospital Los Angeles
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Krinio Giannikou
- Cancer and Blood Disease Institute, Division of Hematology-Oncology, Children's Hospital Los Angeles
| | - Nuoya Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Andrew Goodspeed
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nick Shillingford
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Micha Sam Brickman Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT
| | - James F Amatruda
- Cancer and Blood Disease Institute, Division of Hematology-Oncology, Children's Hospital Los Angeles
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Hwang S, Park J, Koo SY, Lee SY, Jo Y, Ryu D, Go H, Lee CW. The ubiquitin ligase Pellino1 targets STAT3 to regulate macrophage-mediated inflammation and tumor development. Nat Commun 2025; 16:1256. [PMID: 39893188 PMCID: PMC11787384 DOI: 10.1038/s41467-025-56440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Receptor-mediated signaling could be modulated by ubiquitination of pathway intermediates, but the role of such modification in the pathogenesis of inflammation and inflammation-related cancer is lesser known. The ubiquitin ligase Pellino1 has been shown to modulate immune signals by enabling various immune cells to respond to their receptor signals effectively. Here, we show that Pellino1 levels are elevated in patients with colitis, patients with colitis-associated colon cancer (CAC), and murine models of these conditions. In a monocyte-specific Pellino1 knock-out mouse model, we find reduced macrophage migration and activation, leading to attenuated development of colitis and CAC in male mice. Mechanistically, Pellino1 targets STAT3 for lysine 63-mediated ubiquitination, resulting in pathogenic activation of STAT3 signaling. Taken together, our findings reveal a macrophage-specific ubiquitination signaling axis in colitis and CAC development and suggest that Pellino1 is a potential candidate for treating chronic inflammation and inflammation-related cancer.
Collapse
Affiliation(s)
- Soeun Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Junhee Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Si-Yeon Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Heounjeong Go
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.
- Research Institute, Curogen Technology, Suwon, 16419, South Korea.
| |
Collapse
|
4
|
Friedman-DeLuca M, Karagiannis GS, Condeelis JS, Oktay MH, Entenberg D. Macrophages in tumor cell migration and metastasis. Front Immunol 2024; 15:1494462. [PMID: 39555068 PMCID: PMC11563815 DOI: 10.3389/fimmu.2024.1494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression. In brief, TAMs induce epithelial-mesenchymal transition (EMT) in tumor cells, giving them a migratory phenotype. They promote extracellular matrix (ECM) remodeling, allowing tumor cells to migrate more easily. TAMs also provide chemotactic signals that promote tumor cell directional migration towards blood vessels, and then participate in the signaling cascade at the blood vessel that allows tumor cells to intravasate and disseminate throughout the body. Furthermore, while chemotherapy can repolarize TAMs to induce an anti-tumor response, these cytotoxic drugs can also lead to macrophage-mediated tumor relapse and metastasis. Patient response to chemotherapy may be dependent on patient-specific factors such as diet, obesity, and race, as these factors have been shown to alter macrophage phenotype and affect cancer-related outcomes. More research on how chemotherapy and patient-specific factors impact TAMs and cancer progression is needed to refine treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - George S. Karagiannis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
5
|
Luo W, Hoang H, Zhu H, Miller K, Mo X, Eguchi S, Tian M, Liao Y, Ayello J, Rosenblum JM, Marcondes M, Currier M, Mardis E, Cripe T, Lee D, Cairo MS. Circumventing resistance within the Ewing sarcoma microenvironment by combinatorial innate immunotherapy. J Immunother Cancer 2024; 12:e009726. [PMID: 39266215 PMCID: PMC11404285 DOI: 10.1136/jitc-2024-009726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, New York, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Shiori Eguchi
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Mark Currier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
| | - Elaine Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Timothy Cripe
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Dean Lee
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Departments of Pathology, Immunology and Microbiology, Medicine, Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
6
|
Luo W, Hoang H, Miller KE, Zhu H, Xu S, Mo X, Garfinkle EAR, Costello H, Wijeratne S, Chemnitz W, Gandhi R, Liao Y, Ayello J, Gardenswartz A, Rosenblum JM, Cassady KA, Mardis ER, Lee DA, Cripe TP, Cairo MS. Combinatorial macrophage induced innate immunotherapy against Ewing sarcoma: Turning "Two Keys" simultaneously. J Exp Clin Cancer Res 2024; 43:193. [PMID: 38992659 PMCID: PMC11238356 DOI: 10.1186/s13046-024-03093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Katherine E Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Serena Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Heather Costello
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Wiebke Chemnitz
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | - Yanling Liao
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Aliza Gardenswartz
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Kevin A Cassady
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | - Dean A Lee
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Timothy P Cripe
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Medicine, New York Medical College, Valhalla, NY, USA.
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
7
|
O'Neill AF, Nguyen EM, Maldonado ED, Chang MR, Sun J, Zhu Q, Marasco WA. Anti-CD99 Antibody Therapy Triggers Macrophage-Dependent Ewing Cell Death In Vitro and Myeloid Cell Recruitment In Vivo. Antibodies (Basel) 2024; 13:24. [PMID: 38534214 DOI: 10.3390/antib13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Ewing sarcoma is a rare tumor of the bone or soft tissues characterized by diffuse membranous staining for CD99. As this tumor remains incurable in the metastatic, relapsed, and refractory settings, we explored the downstream immune implications of targeting CD99. METHODS We discovered a human anti-CD99 antibody (NOA2) by phagemid panning and investigated NOA2 immune cell-mediated cytotoxicity in vitro and in vivo focusing on the myeloid cell compartment, given that M2 macrophages are present in human tumors and associated with a poor prognosis. RESULTS NOA2 is capable of inducing immune effector cell-mediated Ewing death in vitro via engagement of macrophages. Mice with metastatic Ewing tumors, treated with NOA2, experience tumor growth arrest and an associated increase in intratumoral macrophages. Further, incubation of macrophages and Ewing cells with NOA2, in conjunction with anti-PILRα antibody blockade in vitro, results in the reactivation of previously dormant macrophages possibly due to interrupted binding of Ewing CD99 to macrophage PILRα. CONCLUSIONS These studies are the first to demonstrate the role of human immune effector cells in anti-CD99-mediated Ewing tumor death. We propose that the engagement of CD99 by NOA2 results in the recruitment of intratumoral macrophages. In addition, interruption of the CD99:PILRα checkpoint axis may be a relevant therapeutic approach to activate tumor-associated macrophages.
Collapse
Affiliation(s)
- Allison F O'Neill
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber and Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | - Evelyn M Nguyen
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Evelyn D Maldonado
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew R Chang
- Department of Cancer Immunology and Virology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
8
|
Manara MC, Manferdini C, Cristalli C, Carrabotta M, Santi S, De Feo A, Caldoni G, Pasello M, Landuzzi L, Lollini PL, Salamanna F, Dominici S, Fiori V, Magnani M, Lisignoli G, Scotlandi K. Engagement of CD99 Activates Distinct Programs in Ewing Sarcoma and Macrophages. Cancer Immunol Res 2024; 12:247-260. [PMID: 38051221 PMCID: PMC10835215 DOI: 10.1158/2326-6066.cir-23-0440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Ewing sarcoma (EWS) is the second most common pediatric bone tumor. The EWS tumor microenvironment is largely recognized as immune-cold, with macrophages being the most abundant immune cells and their presence associated with worse patient prognosis. Expression of CD99 is a hallmark of EWS cells, and its targeting induces inhibition of EWS tumor growth through a poorly understood mechanism. In this study, we analyzed CD99 expression and functions on macrophages and investigated whether the concomitant targeting of CD99 on both tumor and macrophages could explain the inhibitory effect of this approach against EWS. Targeting CD99 on EWS cells downregulated expression of the "don't eat-me" CD47 molecule but increased levels of the "eat-me" phosphatidyl serine and calreticulin molecules on the outer leaflet of the tumor cell membrane, triggering phagocytosis and digestion of EWS cells by macrophages. In addition, CD99 ligation induced reprogramming of undifferentiated M0 macrophages and M2-like macrophages toward the inflammatory M1-like phenotype. These events resulted in the inhibition of EWS tumor growth. Thus, this study reveals what we believe to be a previously unrecognized function of CD99, which engenders a virtuous circle that delivers intrinsic cell death signals to EWS cells, favors tumor cell phagocytosis by macrophages, and promotes the expression of various molecules and cytokines, which are pro-inflammatory and usually associated with tumor regression. This raises the possibility that CD99 may be involved in boosting the antitumor activity of macrophages.
Collapse
Affiliation(s)
- Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Manferdini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Caldoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Gina Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
9
|
Khaled ML, Ren Y, Kundalia R, Alhaddad H, Chen Z, Wallace GC, Evernden B, Ospina OE, Hall M, Liu M, Darville LN, Izumi V, Chen YA, Pilon-Thomas S, Stewart PA, Koomen JM, Corallo SA, Jain MD, Robinson TJ, Locke FL, Forsyth PA, Smalley I. Branched-chain keto acids promote an immune-suppressive and neurodegenerative microenvironment in leptomeningeal disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572239. [PMID: 38187773 PMCID: PMC10769272 DOI: 10.1101/2023.12.18.572239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Leptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD. The BCKA accumulation was found to be a pan-cancer occurrence, evident in lymphoma, breast cancer, and melanoma LMD patients. Functionally, BCKA disrupted the viability and function of endogenous T lymphocytes, chimeric antigen receptor (CAR) T cells, neurons, and meningeal cells. Treatment of LMD mice with BCKA-reducing sodium phenylbutyrate significantly improved neurological function, survival outcomes, and efficacy of anti-CD19 CAR T cell therapy. This is the first report of BCKA accumulation in LMD and provides preclinical evidence that targeting these toxic metabolites improves outcomes.
Collapse
Affiliation(s)
- Mariam Lotfy Khaled
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Yuan Ren
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Ronak Kundalia
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Hasan Alhaddad
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Gerald C. Wallace
- Department of Hematology/Oncology, Georgia Cancer Center at Medical College of Georgia, Augusta, GA, USA
| | - Brittany Evernden
- Department of Neuro Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Oscar E. Ospina
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - MacLean Hall
- Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Min Liu
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Lancia N.F. Darville
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Victoria Izumi
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Y. Ann Chen
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - John M. Koomen
- The Proteomics and Metabolomics Core, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Salvatore A. Corallo
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Timothy J. Robinson
- Therapeutic Radiology, Smilow Cancer Hospital at Yale New Haven, 35 Park Street, New Haven, CT, USA
| | - Fredrick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Peter A. Forsyth
- Department of Neuro Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- The Department of Metabolism and Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
10
|
Kuo C, Amatruda JF. Seed Becoming Soil: A New Paradigm of the Ewing Sarcoma Tumor Microenvironment. Clin Cancer Res 2023; 29:5002-5004. [PMID: 37796143 PMCID: PMC10873080 DOI: 10.1158/1078-0432.ccr-23-2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Cells in the tumor microenvironment, including cancer-associated fibroblasts (CAF), contribute to tumor growth and immune evasion. A recent study of Ewing sarcoma identified "CAF-like" tumor cells that mimic the protumorigenic features of CAFs. These findings highlight the role of cell plasticity in tumor growth. See related article by Wrenn et al., p. 5140.
Collapse
Affiliation(s)
- Christopher Kuo
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
11
|
Visser LL, Bleijs M, Margaritis T, van de Wetering M, Holstege FCP, Clevers H. Ewing Sarcoma Single-cell Transcriptome Analysis Reveals Functionally Impaired Antigen-presenting Cells. CANCER RESEARCH COMMUNICATIONS 2023; 3:2158-2169. [PMID: 37823774 PMCID: PMC10595530 DOI: 10.1158/2767-9764.crc-23-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Novel therapeutic strategies are urgently needed for patients with high-risk Ewing sarcoma and for the reduction of severe side effects for all patients. Immunotherapy may fill this need, but its successful application has been hampered by a lack of knowledge on the composition and function of the Ewing sarcoma immune microenvironment. Here, we explore the immune microenvironment of Ewing sarcoma, by single-cell RNA sequencing of 18 Ewing sarcoma primary tissue samples. Ewing sarcoma is infiltrated by natural killer, T, and B cells, dendritic cells, and immunosuppressive macrophages. Ewing sarcoma-associated T cells show various degrees of dysfunction. The antigen-presenting cells found in Ewing sarcoma lack costimulatory gene expression, implying functional impairment. Interaction analysis reveals a clear role for Ewing sarcoma tumor cells in turning the Ewing sarcoma immune microenvironment into an immunosuppressive niche. These results provide novel insights into the functional state of immune cells in the Ewing sarcoma tumor microenvironment and suggest mechanisms by which Ewing sarcoma tumor cells interact with, and shape, the immune microenvironment. SIGNIFICANCE This study is the first presenting a detailed analysis of the Ewing sarcoma microenvironment using single-cell RNA sequencing. We provide novel insight into the functional state of immune cells and suggests mechanisms by which Ewing tumor cells interact with, and shape, their immune microenvironment. These insights provide help in understanding the failures and successes of immunotherapy in Ewing sarcoma and may guide novel targeted (immuno) therapeutic approaches.
Collapse
Affiliation(s)
- Lindy L. Visser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Margit Bleijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Frank C. P. Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre, Utrecht, the Netherlands
| |
Collapse
|
12
|
Luo W, Hoang H, Liao Y, Pan J, Ayello J, Cairo MS. A humanized orthotopic mouse model for preclinical evaluation of immunotherapy in Ewing sarcoma. Front Immunol 2023; 14:1277987. [PMID: 37868989 PMCID: PMC10587429 DOI: 10.3389/fimmu.2023.1277987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The advent of novel cancer immunotherapy approaches is revolutionizing the treatment for cancer. Current small animal models for most cancers are syngeneic or genetically engineered mouse models or xenograft models based on immunodeficient mouse strains. These models have been limited in evaluating immunotherapy regimens due to the lack of functional human immune system. Development of animal models for bone cancer faces another challenge in the accessibility of tumor engraftment sites. Here, we describe a protocol to develop an orthotopic humanized mouse model for a bone and soft tissue sarcoma, Ewing sarcoma, by transplanting fresh human cord blood CD34+ hematopoietic stem cells into young NSG-SGM3 mice combined with subsequent Ewing sarcoma patient derived cell engraftment in the tibia of the humanized mice. We demonstrated early and robust reconstitution of human CD45+ leukocytes including T cells, B cells, natural killer cells and monocytes. Ewing sarcoma xenograft tumors successfully orthotopically engrafted in the humanized mice with minimal invasive procedures. We validated the translational utility of this orthotopic humanized model by evaluating the safety and efficacy of an immunotherapy antibody, magrolimab. Treatment with magrolimab induces CD47 blockade resulting in significantly decreased primary tumor growth, decreased lung metastasis and prolonged animal survival in the established humanized model. Furthermore, the humanized model recapitulated the dose dependent toxicity associated with the CD47 blockade as observed in patients in clinical trials. In conclusion, this orthotopic humanized mouse model of Ewing sarcoma represents an improved platform for evaluating immunotherapy in bone and soft tissue sarcoma, such as Ewing sarcoma. With careful design and optimization, this model is generalizable for other bone malignancies.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, United States
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
13
|
Vick LV, Canter RJ, Monjazeb AM, Murphy WJ. Multifaceted effects of obesity on cancer immunotherapies: Bridging preclinical models and clinical data. Semin Cancer Biol 2023; 95:88-102. [PMID: 37499846 PMCID: PMC10836337 DOI: 10.1016/j.semcancer.2023.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Obesity, defined by excessive body fat, is a highly complex condition affecting numerous physiological processes, such as metabolism, proliferation, and cellular homeostasis. These multifaceted effects impact cells and tissues throughout the host, including immune cells as well as cancer biology. Because of the multifaceted nature of obesity, common parameters used to define it (such as body mass index in humans) can be problematic, and more nuanced methods are needed to characterize the pleiotropic metabolic effects of obesity. Obesity is well-accepted as an overall negative prognostic factor for cancer incidence, progression, and outcome. This is in part due to the meta-inflammatory and immunosuppressive effects of obesity. Immunotherapy is increasingly used in cancer therapy, and there are many different types of immunotherapy approaches. The effects of obesity on immunotherapy have only recently been studied with the demonstration of an "obesity paradox", in which some immune therapies have been demonstrated to result in greater efficacy in obese subjects despite the direct adverse effects of obesity and excess body fat acting on the cancer itself. The multifactorial characteristics that influence the effects of obesity (age, sex, lean muscle mass, underlying metabolic conditions and drugs) further confound interpretation of clinical data and necessitate the use of more relevant preclinical models mirroring these variables in the human scenario. Such models will allow for more nuanced mechanistic assessment of how obesity can impact, both positively and negatively, cancer biology, host metabolism, immune regulation, and how these intersecting processes impact the delivery and outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Logan V Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
14
|
Wen J, Yi L, Wan L, Dong X. Prognostic value of GLCE and infiltrating immune cells in Ewing sarcoma. Heliyon 2023; 9:e19357. [PMID: 37662777 PMCID: PMC10474439 DOI: 10.1016/j.heliyon.2023.e19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The prognostic value of D-glucuronyl C5-epimerase (GLCE) and mast cell infiltration in Ewing sarcoma (ES) has not been well specified and highlighted, which may facilitate survival prediction and treatment. Methods Several qualified datasets were downloaded from the GEO website. Common differentially expressed genes between normal subjects and ES patients in GSE17679, GSE45544, and GSE68776 were identified and screened by multiple algorithms to find hub genes with prognostic value. The prognostic value of 64 infiltrating cells was also explored. A prognostic model was established and then validated with GSE63155 and GSE63156. Finally, functional analysis was performed. Results GLCE and mast cell infiltration were screened as two indicators for a prognostic model. The Kaplan‒Meier analysis showed that patients in the low GLCE expression, mast cell infiltration and risk score groups had poorer outcomes than patients in the high GLCE expression, mast cell infiltration and risk score groups, both in the training and validation sets. Scatter plots and heatmaps also indicated the same results. The concordance indices and calibration analyses indicated a high prediction accuracy of the model in the training and validation sets. The time-dependent receiver operating characteristic analyses suggested high sensitivity and specificity of the model, with area under the curve values between 0.76 and 0.98. The decision curve analyses suggested a significantly higher net benefit by the model than the treat-all and treat-none strategies. Functional analyses suggested that glycosaminoglycan biosynthesis-heparan sulfate/heparin, the cell cycle and microRNAs in cancer were upregulated in ES patients. Conclusions GLCE and mast cell infiltration are potential prognostic indicators in ES. GLCE may affect the proliferation, angiogenesis and metastasis of ES by affecting the biosynthesis of heparan sulfate and heparin.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Lijun Yi
- Central Laboratory, Jiangxi Provincial Children's Hospital, Yangming Rd, Nanchang, Jiangxi, 330006, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, 410008, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
15
|
Song H, Wang X, Zhang C, He J. Construction of an M2 macrophage-related prognostic model in hepatocellular carcinoma. Front Oncol 2023; 13:1170775. [PMID: 37409259 PMCID: PMC10319018 DOI: 10.3389/fonc.2023.1170775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Background M2 macrophages play a crucial role in promoting tumor angiogenesis and proliferation, as well as contributing to chemotherapy resistance and metastasis. However, their specific role in the tumor progression of hepatocellular carcinoma (HCC) and their impact on the clinical prognosis remain to be further elucidated. Materials and methods M2 macrophage-related genes were screened using CIBERSORT and weighted gene co-expression network analysis (WGCNA), while subtype identification was performed using unsupervised clustering. Prognostic models were constructed using univariate analysis/least absolute shrinkage selector operator (LASSO) Cox regression. In addition, Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and mutation analysis were used for further analysis. The relationship between the risk score and tumor mutation burden (TMB), microsatellite instability (MSI), the efficacy of transcatheter arterial chemoembolization (TACE), immunotype, and the molecular subtypes were also investigated. Moreover, the potential role of the risk score was explored using the ESTIMATE and TIDE (tumor immune dysfunction and exclusion) algorithms and stemness indices, such as the mRNA expression-based stemness index (mRNAsi) and the DNA methylation-based index (mDNAsi). In addition, the R package "pRRophetic" was used to examine the correlation between the risk score and the chemotherapeutic response. Finally, the role of TMCC1 in HepG2 cells was investigated using various techniques, including Western blotting, RT-PCR and Transwell and wound healing assays. Results This study identified 158 M2 macrophage-related genes enriched in small molecule catabolic processes and fatty acid metabolic processes in HCC. Two M2 macrophage-related subtypes were found and a four-gene prognostic model was developed, revealing a positive correlation between the risk score and advanced stage/grade. The high-risk group exhibited higher proliferation and invasion capacity, MSI, and degree of stemness. The risk score was identified as a promising prognostic marker for TACE response, and the high-risk subgroup showed higher sensitivity to chemotherapeutic drugs (e.g., sorafenib, doxorubicin, cisplatin, and mitomycin) and immune checkpoint inhibitor (ICI) treatments. The expression levels of four genes related to the macrophage-related risk score were investigated, with SLC2A2 and ECM2 showing low expression and SLC16A11 and TMCC1 exhibiting high expression in HCC. In vitro experiments showed that TMCC1 may enhance the migration ability of HepG2 cells by activating the Wnt signaling pathway. Conclusion We identified 158 HCC-related M2 macrophage genes and constructed an M2 macrophage-related prognostic model. This study advances the understanding of the role of M2 macrophages in HCC and proposes new prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Szumera-Ciećkiewicz A, Bobak K, Spałek MJ, Sokół K, Wągrodzki M, Owczarek D, Kawecka M, Puton B, Koseła-Paterczyk H, Rutkowski P, Czarnecka AM. Predictive Biomarkers of Pathological Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15112960. [PMID: 37296922 DOI: 10.3390/cancers15112960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Marginally resectable and unresectable soft tissue sarcomas (STS) remain a therapy challenge due to the lack of highly active treatment. The aim of the study was to identify a biomarker to predict the pathological response (PR) to preplanned treatment of these STSs. METHODS In the phase II clinical trial (NCT03651375), locally advanced STS patients received preoperative treatment with a combination of doxorubicin-ifosfamide chemotherapy and 5 × 5 Gy radiotherapy. PR to the treatment was classified using the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group recommendations. We have chosen HIF-1α, CD163, CD68, CD34, CD105, and γH2AFX proteins, rendering different biological phenomena, for biomarker study. RESULTS Nineteen patients were enrolled and in four cases a good PR was reported. The high expression of HIF-1α before surgery showed a negative correlation with PR, which means a poor response to therapy. Furthermore, the samples after surgery had decreased expression of HIF-1α, which confirmed the correlation with PR. However, high expression of γH2AFX positively correlated with PR, which provides better PR. The high number of positive-staining TAMs and the high IMVD did not correlate with PR. CONCLUSIONS HIF1α and γH2AFX could be potential biomarkers for PR prediction after neoadjuvant treatment in STS.
Collapse
Affiliation(s)
- Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Klaudia Bobak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Mateusz J Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- 1st Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Kamil Sokół
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Michał Wągrodzki
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Daria Owczarek
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Monika Kawecka
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
17
|
Bareke H, Ibáñez-Navarro A, Guerra-García P, González Pérez C, Rubio-Aparicio P, Plaza López de Sabando D, Sastre-Urgelles A, Ortiz-Cruz EJ, Pérez-Martínez A. Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas. Int J Mol Sci 2023; 24:ijms24098324. [PMID: 37176035 PMCID: PMC10178897 DOI: 10.3390/ijms24098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Collapse
Affiliation(s)
- Halin Bareke
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Adrián Ibáñez-Navarro
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Pilar Guerra-García
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos González Pérez
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Pedro Rubio-Aparicio
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Ana Sastre-Urgelles
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo José Ortiz-Cruz
- Department of Orthopedic Surgery and Traumatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
18
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
19
|
Palombo R, Passacantilli I, Terracciano F, Capone A, Matteocci A, Tournier S, Alberdi A, Chiurchiù V, Volpe E, Paronetto MP. Inhibition of the PI3K/AKT/mTOR signaling promotes an M1 macrophage switch by repressing the ATF3-CXCL8 axis in Ewing sarcoma. Cancer Lett 2023; 555:216042. [PMID: 36565919 DOI: 10.1016/j.canlet.2022.216042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Ewing sarcomas are aggressive pediatric tumors of bone and soft tissues driven by in frame chromosomal translocations that yield fusion proteins guiding the oncogenic program. Promising alternative strategies to ameliorate current treatments involve inhibition of the PI3K/AKT/mTOR pathway. In this study, we identified the activating transcription factor 3 (ATF3) as an important mediator of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells. ATF3 exerted its pro-tumoral activity through modulation of several chemokine-encoding genes, including CXCL8. The product of CXCL8, IL-8, acts as a pro-inflammatory chemokine critical for cancer progression and metastasis. We found that ATF3/IL-8 axis impacts macrophages populating the surrounding tumor microenvironment by promoting the M2 phenotype. Our study reveals valuable information on the PI3K/AKT/mTOR derived chemokine signaling in Ewing sarcoma cells: by promoting ATF3 and CXCL8 downregulation, inhibition of the PI3K/AKT/mTOR signaling promotes a proinflammatory response leading to upregulation of the protective anti-tumoral M1 macrophages.
Collapse
Affiliation(s)
- Ramona Palombo
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy
| | - Ilaria Passacantilli
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Francesca Terracciano
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Alessia Capone
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Alessandro Matteocci
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Simon Tournier
- Plateforme Technologique IRSL UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint Louis, Université Paris Cité, France
| | - Antonio Alberdi
- Plateforme Technologique IRSL UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint Louis, Université Paris Cité, France
| | - Valerio Chiurchiù
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Institute of Translational Pharmacology, CNR, Via del Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Elisabetta Volpe
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Maria Paola Paronetto
- Laboratories of Molecular and Cellular Neurobiology, Molecular Neuroimmunology, and Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy.
| |
Collapse
|
20
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
22
|
C-Reactive Protein Pretreatment-Level Evaluation for Ewing's Sarcoma Prognosis Assessment-A 15-Year Retrospective Single-Centre Study. Cancers (Basel) 2022; 14:cancers14235898. [PMID: 36497377 PMCID: PMC9735882 DOI: 10.3390/cancers14235898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A pathological/inflamed cellular microenvironment state is an additional risk factor for any cancer type. The importance of a chronic inflammation state in most diffuse types of tumour has already been analysed, except for in Ewing’s sarcoma. It is a highly malignant blue round cell tumour, with 90% of cases occurring in patients aged between 5 and 25 years. Worldwide, 2.9 out of 1,000,000 children per year are affected by this malignancy. The aim of this retrospective study was to analyse the role of C-reactive protein (CRP) as a prognostic factor for Ewing’s sarcomas. Methods: This retrospective study at Klinikum rechts der Isar included 82 patients with a confirmed Ewing’s sarcoma diagnosis treated between 2004 and 2019. Preoperative CRP determination was assessed in mg/dL with a normal value established as below 0.5 mg/dL. Disease-free survival time was calculated as the time between the initial diagnosis and an event such as local recurrence or metastasis. Follow-up status was described as death of disease (DOD), no evidence of disease (NED) or alive with disease (AWD). The exclusion criteria of this study included insufficient laboratory values and a lack of information regarding the follow-up status or non-oncological resection. Results: Serum CRP levels were significantly different in patients with a poorer prognosis (DOD) and in patients who presented distant metastasis (p = 0.0016 and p = 0.009, respectively), whereas CRP levels were not significantly different in patients with local recurrence (p = 0.02). The optimal breakpoint that predicted prognosis was 0.5 mg/dL, with a sensitivity of 0.76 and a specificity of 0.74 (AUC 0.81). Univariate CRP analysis level >0.5 mg/dL revealed a hazard ratio of 9.5 (95% CI 3.5−25.5). Conclusions: In Ewing’s sarcoma cases, we consider a CRP pretreatment value >0.5 mg/dL as a sensitive prognostic risk factor indication for distant metastasis and poor prognosis. Further research with more data is required to determine more sensitive cutoff levels.
Collapse
|
23
|
Xia Y, Wang D, Piao Y, Chen M, Wang D, Jiang Z, Liu B. Modulation of immunosuppressive cells and noncoding RNAs as immunotherapy in osteosarcoma. Front Immunol 2022; 13:1025532. [PMID: 36457998 PMCID: PMC9705758 DOI: 10.3389/fimmu.2022.1025532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 07/21/2023] Open
Abstract
The most common bone cancer is osteosarcoma (OS), which mostly affects children and teenagers. Early surgical resection combined with chemotherapy significantly improves the prognosis of patients with OS. Existing chemotherapies have poor efficacy in individuals with distant metastases or inoperable resection, and these patients may respond better to novel immunotherapies. Immune escape, which is mediated by immunosuppressive cells in the tumour microenvironment (TME), is a major cause of poor OS prognosis and a primary target of immunotherapy. Myeloid-derived suppressor cells, regulatory T cells, and tumour-associated macrophages are the main immunosuppressor cells, which can regulate tumorigenesis and growth on a variety of levels through the interaction in the TME. The proliferation, migration, invasion, and epithelial-mesenchymal transition of OS cells can all be impacted by the expression of non-coding RNAs (ncRNAs), which can also influence how immunosuppressive cells work and support immune suppression in TME. Interferon, checkpoint inhibitors, cancer vaccines, and engineered chimeric antigen receptor (CAR-T) T cells for OS have all been developed using information from studies on the metabolic properties of immunosuppressive cells in TME and ncRNAs in OS cells. This review summarizes the regulatory effect of ncRNAs on OS cells as well as the metabolic heterogeneity of immunosuppressive cells in the context of OS immunotherapies.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yuting Piao
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Cillo AR, Mukherjee E, Bailey NG, Onkar S, Daley J, Salgado C, Li X, Liu D, Ranganathan S, Burgess M, Sembrat J, Weiss K, Watters R, Bruno TC, Vignali DAA, Bailey KM. Ewing Sarcoma and Osteosarcoma Have Distinct Immune Signatures and Intercellular Communication Networks. Clin Cancer Res 2022; 28:4968-4982. [PMID: 36074145 PMCID: PMC9669190 DOI: 10.1158/1078-0432.ccr-22-1471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE Ewing sarcoma and osteosarcoma are primary bone sarcomas occurring most commonly in adolescents. Metastatic and relapsed disease are associated with dismal prognosis. Although effective for some soft tissue sarcomas, current immunotherapeutic approaches for the treatment of bone sarcomas have been largely ineffective, necessitating a deeper understanding of bone sarcoma immunobiology. EXPERIMENTAL DESIGN Multiplex immunofluorescence analysis of immune infiltration in relapsed versus primary disease was conducted. To better understand immune states and drivers of immune infiltration, especially during disease progression, we performed single-cell RNA sequencing (scRNAseq) of immune populations from paired blood and bone sarcoma tumor samples. RESULTS Our multiplex immunofluorescence analysis revealed increased immune infiltration in relapsed versus primary disease in both Ewing sarcoma and osteosarcoma. scRNAseq analyses revealed terminally exhausted CD8+ T cells expressing co-inhibitory receptors in osteosarcoma and an effector T-cell subpopulation in Ewing sarcoma. In addition, distinct subsets of CD14+CD16+ macrophages were present in Ewing sarcoma and osteosarcoma. To determine pathways driving tumor immune infiltration, we conducted intercellular communication analyses and uncovered shared mechanisms of immune infiltration driven by CD14+CD16+ macrophages and unique pathways of immune infiltration driven by CXCL10 and CXCL12 in osteosarcoma. CONCLUSIONS Our study provides preclinical rationale for future investigation of specific immunotherapeutic targets upon relapse and provides an invaluable resource of immunologic data from bone sarcomas.
Collapse
Affiliation(s)
- Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Elina Mukherjee
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathanael G Bailey
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Program in Microbiology and Immunology, Pittsburgh, PA, USA
| | - Jessica Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudia Salgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xiang Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,School of Medicine, Tsinghua University, Beijing, China
| | - Dongyan Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,School of Medicine, Tsinghua University, Beijing, China
| | | | - Melissa Burgess
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kurt Weiss
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca Watters
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Blay JY, Duffaud F, George S, Maki RG, Penel N. Regorafenib for the Treatment of Sarcoma. Curr Treat Options Oncol 2022; 23:1477-1502. [PMID: 36178573 DOI: 10.1007/s11864-022-00990-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Sarcomas are a rare group of tumors with many subtypes, conventionally classified into soft-tissue sarcomas and bone sarcomas. Chemotherapeutic regimens form the mainstay of systemic therapy but are not well defined beyond the first-line setting and clinical outcomes are variable. Tyrosine kinase inhibitors (TKIs), with a broad inhibition profile which have been shown to target tumor angiogenesis, have an established role in the treatment of sarcomas without characteristic driver alterations. One such TKI, regorafenib, has been evaluated in sarcomas and clinical data are discussed in this review. An overview of regorafenib data from five phase 2 and one phase 1b clinical trials in over 10 sarcoma subtypes (both soft-tissue and bone) in adult and pediatric patients is reviewed. Regorafenib demonstrated clinical benefit in patients with non-adipocytic soft-tissue sarcomas, osteosarcoma and Ewing sarcoma who had progressed on prior therapy. Patients with otherwise limited treatment options may therefore benefit from regorafenib therapy.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Léon Bérard Center, Lyon, France.
| | - Florence Duffaud
- Medical Oncology Unit, La Timone University Hospital, Marseille, France.,Aix Marseille University (AMU), Marseille, France
| | - Suzanne George
- Dana-Farber Cancer Institute, Harvard Medical School, Cambridge, MA, USA
| | - Robert G Maki
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Penel
- Medical Oncology Department, Oscar Lambret Cancer Center and Lille University, Lille, France
| |
Collapse
|
26
|
Thakur MD, Franz CJ, Brennan L, Brouwer-Visser J, Tam R, Korski K, Koeppen H, Ziai J, Babitzki G, Ranchere-Vince D, Vasiljevic A, Dijoud F, Marec-Bérard P, Rochet I, Cannarile MA, Marabelle A. Immune contexture of paediatric cancers. Eur J Cancer 2022; 170:179-193. [PMID: 35660252 DOI: 10.1016/j.ejca.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The clinical development of immune checkpoint-targeted immunotherapies has been disappointing so far in paediatric solid tumours. However, as opposed to adults, very little is known about the immune contexture of paediatric malignancies. METHODS We investigated by gene expression and immunohistochemistry (IHC) the immune microenvironment of five major paediatric cancers: Ewing sarcoma (ES), osteosarcoma (OS), rhabdomyosarcoma (RMS), medulloblastoma (MB) and neuroblastoma (NB; 20 cases each; n = 100 samples total), and correlated them with overall survival. RESULTS NB and RMS tumours had high immune cell gene expression values and high T-cell counts but were low for antigen processing cell (APC) genes. OS and ES tumours showed low levels of T-cells but the highest levels of APC genes. OS had the highest levels of macrophages (CSF1R, CD163 and CD68), whereas ES had the lowest. MB appeared as immune deserts. Tregs (FOXP3 staining) were higher in both RMS and OS. Most tumours scored negative for PD-L1 in tumour and immune cells, with only 11 of 100 samples positive for PD-L1 staining. PD-L1 and OX40 levels were generally low across all five indications. Interestingly, NB had comparable levels of CD8 by IHC and by gene expression to adult tumours. However, by gene expression, these tumours were low for T-cell cytotoxic molecules GZMB, GZMA and PRF1. Surprisingly, the lower the level of tumour infiltrative CD8 T-cells, the better the prognosis was in NB, RMS and ES. Gene expression analyses showed that MYCN-amplified NB have higher amounts of immune suppressive cells such as macrophages, myeloid-derived suppressor cells and Tregs, whereas the non-MYCN-amplified tumours were more infiltrated and had higher expression levels of Teff. CONCLUSIONS Our results describe the quality and quantity of immune cells across five major paediatric cancers and provide some key features differentiating these tumours from adult tumour types. These findings explain why anti-PD(L)1 might not have had single agent success in paediatric cancers. These results provides the rationale for the development of biologically stratified and personalised immunotherapy strategies in children with relapsing/refractory cancers.
Collapse
Affiliation(s)
| | - Carl J Franz
- Lake Tahoe Community College, South Lake Tahoe, CA, USA
| | - Laura Brennan
- Roche Pharma Research and Early Development, Early Biomarker Development Oncology, Roche Innovation Center New York, Little Falls, NJ, USA
| | - Jurriaan Brouwer-Visser
- Roche Pharma Research and Early Development, Early Biomarker Development Oncology, Roche Innovation Center New York, Little Falls, NJ, USA
| | | | - Konstanty Korski
- Roche Innovation Center Munich, Pharma Research and Early Development, Penzberg, Germany
| | | | | | | | | | - Alexandre Vasiljevic
- Team Fluid, INSERM U1028, CNRS UMR 5292, Lyon Neurosciences Recherche Center, Université Lyon 1, Lyon, France
| | - Frédérique Dijoud
- Centre de Pathologie Est, Hospices Civils de Lyon, Université Lyon 1, Lyon, France
| | - Perrine Marec-Bérard
- Institut d'Hématologie et d'Oncologie Pédiatrique (iHOPe), Centre Léon Bérard, Lyon, France
| | - Isabelle Rochet
- Institut d'Hématologie et d'Oncologie Pédiatrique (iHOPe), Centre Léon Bérard, Lyon, France
| | - Michael A Cannarile
- Roche Innovation Center Munich, Pharma Research and Early Development, Penzberg, Germany
| | - Aurélien Marabelle
- Institut d'Hématologie et d'Oncologie Pédiatrique (iHOPe), Centre Léon Bérard, Lyon, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France; Laboratoire de Recherche Translationelle en Immunothérapies, INSERM U1015, Gustave Roussy, Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicetre, France.
| |
Collapse
|
27
|
Kim Y, Kim D, Sung WJ, Hong J. High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Front Immunol 2022; 13:837004. [PMID: 35242139 PMCID: PMC8886164 DOI: 10.3389/fimmu.2022.837004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial stromal tumor (EST) is an uncommon and unusual mesenchymal tumor of the uterus characterized by multicolored histopathological, immunohistochemical, and molecular features. The morphology of ESTs is similar to normal endometrial stromal cells during the proliferative phase of the menstrual cycle. ESTs were first classified into benign and malignant based on the number of mitotic cells. However, recently WHO has divided ESTs into four categories: endometrial stromal nodules (ESN), undifferentiated uterine sarcoma (UUS), low-grade endometrial stromal sarcoma (LG-ESS), and high-grade endometrial stromal sarcoma (HG-ESS). HG-ESS is the most malignant of these categories, with poor clinical outcomes compared to other types. With advances in molecular biology, ESTs have been further classified with morphological identification. ESTs, including HG-ESS, is a relatively rare type of cancer, and the therapeutics are not being developed compared to other cancers. However, considering the tumor microenvironment of usual stromal cancers, the advance of immunotherapy shows auspicious outcomes reported in many different stromal tumors and non-identified uterine cancers. These studies show the high possibility of successful immunotherapy in HG-ESS patients in the future. In this review, we are discussing the background of ESTs and the BCOR and the development of HG-ESS by mutations of BCOR or other related genes. Among the gene mutations of HG-ESSs, BCOR shows the most common mutations in different ways. In current tumor therapies, immunotherapy is one of the most effective therapeutic approaches. In order to connect immunotherapy with HG-ESS, the understanding of tumor microenvironment (TME) is required. The TME of HG-ESS shows the mixture of tumor cells, vessels, immune cells and non-malignant stromal cells. Macrophages, neutrophils, dendritic cells and natural killer cells lose their expected functions, but rather show pro-tumoral functions by the matricellular proteins, extracellular matrix and other complicated environment in TME. In order to overcome the current therapeutic limitations of HG-ESS, immunotherapies should be considered in addition to the current surgical strategies. Checkpoint inhibitors, cytokine-based immunotherapies, immune cell therapies are good candidates to be considered as they show promising results in other stromal cancers and uterine cancers, while less studied because of the rarity of ESTs. Based on the advance of knowledge of immune therapies in HG-ESS, the new strategies can also be applied to the current therapies and also in other ESTs.
Collapse
Affiliation(s)
- Youngah Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea.,Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| |
Collapse
|
28
|
Holterhus M, Altvater B, Kailayangiri S, Rossig C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers (Basel) 2022; 14:cancers14092177. [PMID: 35565307 PMCID: PMC9105669 DOI: 10.3390/cancers14092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Common pediatric solid cancers fail to respond to standard immuno-oncology agents relying on preexisting adaptive antitumor immune responses. The adoptive transfer of tumor-antigen specific T cells, such as CAR-gene modified T cells, is an attractive strategy, but its efficacy has been limited. Evidence is accumulating that local barriers in the tumor microenvironment prevent the infiltration of T cells and impede therapeutic immune responses. A thorough understanding of the components of the functional compartment of the tumor microenvironment and their interaction could inform effective combination therapies and novel engineered therapeutics, driving immunotherapy towards its full potential in pediatric patients. This review summarizes current knowledge on the cellular composition and significance of the tumor microenvironment in common extracranial solid cancers of childhood and adolescence, such as embryonal tumors and bone and soft tissue sarcomas, with a focus on myeloid cell populations that are often present in abundance in these tumors. Strategies to (co)target immunosuppressive myeloid cell populations with pharmacological anticancer agents and with selective antagonists are presented, as well as novel concepts aiming to employ myeloid cells to cooperate with antitumor T cell responses.
Collapse
|
29
|
Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, Silvestris N, Brunetti O, Baradaran B. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother 2022; 146:112588. [PMID: 35062062 DOI: 10.1016/j.biopha.2021.112588] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.
Collapse
Affiliation(s)
- Ali Baradaran
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia; Research & Development, BSD Robotics, Queensland, Australia
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Chakraborty B, Byemerwa J, Shepherd J, Haines CN, Baldi R, Gong W, Liu W, Mukherjee D, Artham S, Lim F, Bae Y, Brueckner O, Tavares K, Wardell SE, Hanks BA, Perou CM, Chang CY, McDonnell DP. Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma. J Clin Invest 2021; 131:151347. [PMID: 34637400 DOI: 10.1172/jci151347] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies have significantly prolonged patient survival across multiple tumor types, particularly in melanoma. Interestingly, sex-specific differences in response to ICB have been observed, with males receiving a greater benefit from ICB than females, although the mechanism or mechanisms underlying this difference are unknown. Mining published transcriptomic data sets, we determined that the response to ICBs is influenced by the functionality of intratumoral macrophages. This puts into context our observation that estrogens (E2) working through the estrogen receptor α (ERα) stimulated melanoma growth in murine models by skewing macrophage polarization toward an immune-suppressive state that promoted CD8+ T cell dysfunction and exhaustion and ICB resistance. This activity was not evident in mice harboring macrophage-specific depletion of ERα, confirming a direct role for estrogen signaling within myeloid cells in establishing an immunosuppressed state. Inhibition of ERα using fulvestrant, a selective estrogen receptor downregulator (SERD), decreased tumor growth, stimulated adaptive immunity, and increased the antitumor efficacy of ICBs. Further, a gene signature that determines ER activity in macrophages predicted survival in patients with melanoma treated with ICB. These results highlight the importance of E2/ER signaling as a regulator of intratumoral macrophage polarization, an activity that can be therapeutically targeted to reverse immune suppression and increase ICB efficacy.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jonathan Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corinne N Haines
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert Baldi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wen Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Debarati Mukherjee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yeeun Bae
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olivia Brueckner
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kendall Tavares
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brent A Hanks
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
31
|
Zhu YC, Elsheikha HM, Wang JH, Fang S, He JJ, Zhu XQ, Chen J. Synergy between Toxoplasma gondii type I Δ GRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer 2021; 9:jitc-2021-002970. [PMID: 34725213 PMCID: PMC8562526 DOI: 10.1136/jitc-2021-002970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background In this study, we hypothesize that the ability of the protozoan Toxoplasma gondii to modulate immune response within the tumor might improve the therapeutic effect of immune checkpoint blockade. We examined the synergetic therapeutic activity of attenuated T. gondii RH ΔGRA17 strain and programmed death ligand-1 (PD-L1) treatment on both targeted and distal tumors in mice. Methods The effects of administration of T. gondii RH ΔGRA17 strain on the tumor volume and survival rate of mice bearing flank B16-F10, MC38, or LLC tumors were studied. We characterized the effects of ΔGRA17 on tumor biomarkers’ expression, PD-L1 expression, immune cells infiltrating the tumors, and expression of immune-related genes by using immunohistochemistry, immunofluorescence, flow cytometry, NanoString platform, and real-time quantitative PCR, respectively. The role of immune cells in the efficacy of ΔGRA17 plus PD-L1 blockade therapy was determined via depletion of immune cell subtypes. Results Treatment with T. gondii ΔGRA17 tachyzoites and anti-PD-L1 therapy significantly extended the survival of mice and suppressed tumor growth in preclinical mouse models of melanoma, Lewis lung carcinoma, and colon adenocarcinoma. Attenuation of the tumor growth was detected in the injected and distant tumors, which was associated with upregulation of innate and adaptive immune pathways. Complete regression of tumors was underpinned by late interferon-gamma-producing CD8+ cytotoxic T cells. Conclusion The results from these models indicate that intratumoral injection of ΔGRA17 induced a systemic effect, improved mouse immune response, and sensitized immunologically ‘cold’ tumors and rendered them sensitive to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yu-Chao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jian-Hua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Shuai Fang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China .,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
32
|
Pachva MC, Lai H, Jia A, Rouleau M, Sorensen PH. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front Cell Dev Biol 2021; 9:726205. [PMID: 34604225 PMCID: PMC8484747 DOI: 10.3389/fcell.2021.726205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive cancer and the second most common malignant bone tumor of children and young adults. Although patients with localized disease have a survival rate of approximately 75%, the prognosis for patients with metastatic disease remains dismal (<30%) and has not improved in decades. Standard-of-care treatments include local therapies such as surgery and radiotherapy, in addition to poly-agent adjuvant chemotherapy, and are often associated with long-term disability and reduced quality of life. Novel targeted therapeutic strategies that are more efficacious and less toxic are therefore desperately needed, particularly for metastatic disease, given that the presence of metastasis remains the most powerful predictor of poor outcome in EwS. Intercellular communication within the tumor microenvironment is emerging as a crucial mechanism for cancer cells to establish immunosuppressive and cancer-permissive environments, potentially leading to metastasis. Altering this communication within the tumor microenvironment, thereby preventing the transfer of oncogenic signals and molecules, represents a highly promising therapeutic strategy. To achieve this, extracellular vesicles (EVs) offer a candidate mechanism as they are actively released by tumor cells and enriched with proteins and RNAs. EVs are membrane-bound particles released by normal and tumor cells, that play pivotal roles in intercellular communication, including cross-talk between tumor, stromal fibroblast, and immune cells in the local tumor microenvironment and systemic circulation. EwS EVs, including the smaller exosomes and larger microvesicles, have the potential to reprogram a diversity of cells in the tumor microenvironment, by transferring various biomolecules in a cell-specific manner. Insights into the various biomolecules packed in EwS EVs as cargos and the molecular changes they trigger in recipient cells of the tumor microenvironment will shed light on various potential targets for therapeutic intervention in EwS. This review details EwS EVs composition, their potential role in metastasis and in the reprogramming of various cells of the tumor microenvironment, and the potential for clinical intervention.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horton Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andy Jia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Ewing Sarcoma-Derived Extracellular Vesicles Impair Dendritic Cell Maturation and Function. Cells 2021; 10:cells10082081. [PMID: 34440851 PMCID: PMC8391167 DOI: 10.3390/cells10082081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive pediatric cancer of bone and soft tissues characterized by scant T cell infiltration and predominance of immunosuppressive myeloid cells. Given the important roles of extracellular vesicles (EVs) in cancer-host crosstalk, we hypothesized that EVs secreted by EwS tumors target myeloid cells and promote immunosuppressive phenotypes. Here, EVs were purified from EwS and fibroblast cell lines and exhibited characteristics of small EVs, including size (100–170 nm) and exosome markers CD63, CD81, and TSG101. Treatment of healthy donor-derived CD33+ and CD14+ myeloid cells with EwS EVs but not with fibroblast EVs induced pro-inflammatory cytokine release, including IL-6, IL-8, and TNF. Furthermore, EwS EVs impaired differentiation of these cells towards monocytic-derived dendritic cells (moDCs), as evidenced by reduced expression of co-stimulatory molecules CD80, CD86 and HLA-DR. Whole transcriptome analysis revealed activation of gene expression programs associated with immunosuppressive phenotypes and pro-inflammatory responses. Functionally, moDCs differentiated in the presence of EwS EVs inhibited CD4+ and CD8+ T cell proliferation as well as IFNγ release, while inducing secretion of IL-10 and IL-6. Therefore, EwS EVs may promote a local and systemic pro-inflammatory environment and weaken adaptive immunity by impairing the differentiation and function of antigen-presenting cells.
Collapse
|
34
|
Mantle cell lymphoma polarizes tumor-associated macrophages into M2-like macrophages, which in turn promote tumorigenesis. Blood Adv 2021; 5:2863-2878. [PMID: 34297045 DOI: 10.1182/bloodadvances.2020003871] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are recognized as a hallmark of certain solid cancers and predictors of poor prognosis; however, the functional role of TAMs in lymphoid malignancies, including B-cell lymphoma, has not been well defined. We identified infiltration of F4/80+ TAMs in a syngeneic mouse model using the recently generated murine mantle cell lymphoma (MCL) cell line FC-muMCL1. Multicolor flow cytometric analysis of syngeneic lymphoma tumors showed distinct polarization of F4/80+ TAMs into CD206+ M2 and CD80+ M1 phenotypes. Using human MCL cell lines (Mino, Granta, and JVM2), we further showed that MCL cells polarized monocyte-derived macrophages toward an M2-like phenotype, as assessed by CD163+ expression and increased interleukin-10 (IL-10) level; however, levels of the M1 markers CD80 and IL-12 remained unaffected. To show that macrophages contribute to MCL tumorigenesis, we xenografted the human MCL cell line Mino along with CD14+ monocytes and compared tumor growth between these 2 groups. Results showed that xenografted Mino along with CD14+ monocytes significantly increased the tumor growth in vivo compared with MCL cells alone (P < .001), whereas treatment with liposomal clodronate (to deplete the macrophages) reversed the effect of CD14+ monocytes on growth of MCL xenografts (P < .001). Mechanistically, IL-10 secreted by MCL-polarized M2-like macrophages was found to be responsible for increasing MCL growth by activating STAT1 signaling, whereas IL-10 neutralizing antibody or STAT1 inhibition by fludarabine or STAT1 short hairpin RNA significantly abolished MCL growth (P < .01). Collectively, our data show the existence of a tumor microenvironmental network of macrophages and MCL tumor and suggest the importance of macrophages in interventional therapeutic strategies against MCL and other lymphoid malignancies.
Collapse
|
35
|
HLA-G and HLA-E Immune Checkpoints Are Widely Expressed in Ewing Sarcoma but Have Limited Functional Impact on the Effector Functions of Antigen-Specific CAR T Cells. Cancers (Basel) 2021; 13:cancers13122857. [PMID: 34201079 PMCID: PMC8227123 DOI: 10.3390/cancers13122857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Solid cancers can effectively counteract immune attack by inhibitory checkpoints in the tumor microenvironment. Blockade of relevant immune checkpoints could be a useful tool for enhancing the efficacy of antitumor T cell therapies. Here, we studied the capacity of two nonclassical HLA molecules with known immunosuppressive function, HLA-G and HLA-E, to prevent antigen-specific immune effector functions of gene-engineered T cells against Ewing sarcoma. Inflammatory conditions and interactions of Ewing sarcoma cells with antitumor T cells reliably induced upregulation of the two molecules on the tumor cells. Moreover, as previously shown for HLA-G, HLA-E was detected in a high proportion of human Ewing sarcoma biopsies. However, artificial expression of either of the two molecules on Ewing sarcoma cells failed to reduce cytolytic and activation responses of antigen-specific T cells. We conclude that blockade of HLA-G and HLA-E immune checkpoints is not a promising strategy for enhancing T cell therapies in Ewing sarcoma. Abstract Immune-inhibitory barriers in the tumor microenvironment of solid cancers counteract effective T cell therapies. Based on our finding that Ewing sarcomas (EwS) respond to chimeric antigen receptor (CAR) gene-modified effector cells through upregulation of human leukocyte antigen G (HLA-G), we hypothesized that nonclassical HLA molecules, HLA-G and HLA-E, contribute to immune escape of EwS. Here, we demonstrate that HLA-G isotype G1 expression on EwS cells does not directly impair cytolysis by GD2-specific CAR T cells (CART), whereas HLA-G1 on myeloid bystander cells reduces CART degranulation responses against EwS cells. HLA-E was induced in EwS cells by IFN-γ stimulation in vitro and by GD2-specific CART treatment in vivo and was detected on tumor cells or infiltrating myeloid cells in a majority of human EwS biopsies. Interaction of HLA-E-positive EwS cells with GD2-specific CART induced upregulation of HLA-E receptor NKG2A. However, HLA-E expressed by EwS tumor cells or by myeloid bystander cells both failed to reduce antitumor effector functions of CART. We conclude that non-classical HLA molecules are expressed in EwS under inflammatory conditions, but have limited functional impact on antigen-specific T cells, arguing against a relevant therapeutic benefit from combining CART therapy with HLA-G or HLA-E checkpoint blockade in this cancer.
Collapse
|
36
|
Ren EH, Deng YJ, Yuan WH, Zhang GZ, Wu ZL, Li CY, Xie QQ. An Immune-Related Long Non-Coding RNA Signature to Predict the Prognosis of Ewing's Sarcoma Based on a Machine Learning Iterative Lasso Regression. Front Cell Dev Biol 2021; 9:651593. [PMID: 34124041 PMCID: PMC8187926 DOI: 10.3389/fcell.2021.651593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to construct a new immune-associated long non-coding RNA (lncRNA) signature to predict the prognosis of Ewing sarcoma (ES) and explore its molecular mechanisms. We downloaded transcriptome and clinical prognosis data from the Gene Expression Omnibus (GSE17679, which included 88 ES samples and 18 matched normal skeletal muscle samples), and used it as a training set to identify immune-related lncRNAs with different expression levels in ES. Univariable Cox regression was used to screen immune-related lncRNAs related to ES prognosis, and an immune-related lncRNA signature was constructed based on machine learning iterative lasso regression. An external verification set was used to confirm the predictive ability of the signature. Clinical feature subgroup analysis was used to explore whether the signature was an independent prognostic factor. In addition, CIBERSORT was used to explore immune cell infiltration in the high- and low-risk groups, and to analyze the correlations between the lncRNA signature and immune cell levels. Gene set enrichment and variation analyses were used to explore the possible regulatory mechanisms of the immune-related lncRNAs in ES. We also analyzed the expression of 17 common immunotherapy targets in the high- and low-risk groups to identify any that may be regulated by immune-related lncRNAs. We screened 35 immune-related lncRNAs by univariate Cox regression. Based on this, an immune-related 11-lncRNA signature was generated by machine learning iterative lasso regression. Analysis of the external validation set confirmed its high predictive ability. DPP10 antisense RNA 3 was negatively correlated with resting dendritic cell, neutrophil, and γδ T cell infiltration, and long intergenic non-protein coding RNA 1398 was positively correlated with resting dendritic cells and M2 macrophages. These lncRNAs may affect ES prognosis by regulating GSE17721_CTRL_VS_PAM3CSK4_12H_BMDC_UP, GSE2770_IL4_ACT_VS_ACT_CD4_TCELL_48H_UP, GSE29615_CTRL_VS_DAY3_ LAIV_IFLU_VACCINE_PBMC_UP, complement signaling, interleukin 2-signal transducer and activator of transcription 5 signaling, and protein secretion. The immune-related 11-lncRNA signature may also have regulatory effects on the immunotherapy targets CD40 molecule, CD70 molecule, and CD276 molecule. In conclusion, we constructed a new immune-related 11-lncRNA signature that can stratify the prognoses of patients with ES.
Collapse
Affiliation(s)
- En-Hui Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen-Hua Yuan
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuo-Long Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - Qi-Qi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
37
|
Human leukocyte antigen I is significantly downregulated in patients with myxoid liposarcomas. Cancer Immunol Immunother 2021; 70:3489-3499. [PMID: 33893830 PMCID: PMC8571150 DOI: 10.1007/s00262-021-02928-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The characteristics of the tumor immune microenvironment remains unclear in liposarcomas, and here we aimed to determine the prognostic impact of the tumor immune microenvironment across separate liposarcomas subtypes. A total of 70 liposarcoma patients with three subtypes: myxoid liposarcoma (n = 45), dedifferentiated liposarcoma (n = 17), and pleomorphic liposarcoma (n = 8) were enrolled. The presence of tumor infiltrating lymphocytes (CD4+ , CD8+ , FOXP3+ lymphocytes) and CD163+ macrophages and expression of HLA class I and PD-L1 were assessed by immunohistochemistry in the diagnostic samples; overall survival and progression-free survival were estimated from outcome data. For infiltrating lymphocytes and macrophages, dedifferentiated liposarcoma and pleomorphic liposarcoma patients had a significantly higher number than myxoid liposarcoma patients. While myxoid liposarcoma patients with a high number of macrophages were associated with worse overall and progression-free survival, dedifferentiated liposarcoma patients with high macrophage numbers showed a trend toward favorable prognosis. Expression of HLA class I was negative in 35 of 45 (77.8%) myxoid liposarcoma tumors, whereas all dedifferentiated liposarcoma and pleomorphic liposarcoma tumors expressed HLA class I. The subset of myxoid liposarcoma patients with high HLA class I expression had significantly poor overall and progression-free survival, while dedifferentiated liposarcoma patients with high HLA class I expression tended to have favorable outcomes. Only four of 17 (23.5%) dedifferentiated liposarcomas, two of eight (25%) pleomorphic liposarcomas, and no myxoid liposarcoma tumors expressed PD-L1. Our results demonstrate the unique immune microenvironment of myxoid liposarcomas compared to other subtypes of liposarcomas, suggesting that the approach for immunotherapy in liposarcomas should be based on subtype.
Collapse
|
38
|
Henrich IC, Jain K, Young R, Quick L, Lindsay JM, Park DH, Oliveira AM, Blobel GA, Chou MM. Ubiquitin-Specific Protease 6 Functions as a Tumor Suppressor in Ewing Sarcoma through Immune Activation. Cancer Res 2021; 81:2171-2183. [PMID: 33558334 PMCID: PMC8137534 DOI: 10.1158/0008-5472.can-20-1458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/21/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma is the second most common pediatric bone cancer, with a 5-year survival rate for metastatic disease of only 20%. Recent work indicates that survival is strongly correlated with high levels of tumor-infiltrating lymphocytes (TIL), whose abundance is associated with IFN-inducible chemokines CXCL10 and CCL5. However, the tumor-intrinsic factors that drive chemokine production and TIL recruitment have not been fully elucidated. We previously showed that ubiquitin-specific protease 6 (USP6) directly deubiquitinates and stabilizes Jak1, thereby inducing an IFN signature in Ewing sarcoma cells. Here, we show that this gene set comprises chemokines associated with immunostimulatory, antitumorigenic functions, including CXCL10 and CCL5. USP6 synergistically enhanced chemokine production in response to exogenous IFN by inducing surface upregulation of IFNAR1 and IFNGR1. USP6-expressing Ewing sarcoma cells stimulated migration of primary human monocytes and T lymphocytes and triggered activation of natural killer (NK) cells in vitro. USP6 inhibited Ewing sarcoma xenograft growth in nude but not NSG mice and was accompanied by increased intratumoral chemokine production and infiltration and activation of NK cells, dendritic cells, and macrophages, consistent with a requirement for innate immune cells in mediating the antitumorigenic effects of USP6. High USP6 expression in patients with Ewing sarcoma was associated with chemokine production, immune infiltration, and improved survival. This work reveals a previously unrecognized tumor-suppressive function for USP6, which engenders an immunostimulatory microenvironment through pleiotropic effects on multiple immune lineages. This further raises the possibility that USP6 activity may be harnessed to create a "hot" tumor microenvironment in immunotherapy. SIGNIFICANCE: This study reveals a novel tumor-suppressive function for USP6 by inducing an immunostimulatory microenvironment, suggesting that USP6 activity may be exploited to enhance immunotherapy regimens.
Collapse
Affiliation(s)
- Ian C Henrich
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kanika Jain
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Young
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Laura Quick
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jarrett M Lindsay
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H Park
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andre M Oliveira
- Department Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gerd A Blobel
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
- Department Pediatric Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Margaret M Chou
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Pitoia F. Complete response to larotrectinib treatment in a patient with papillary thyroid cancer harboring an ETV6-NTRK3 gene fusion. Clin Case Rep 2021; 9:1905-1912. [PMID: 33936613 PMCID: PMC8077291 DOI: 10.1002/ccr3.3900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Larotrectinib, a highly selective TRK inhibitor, was administered to a patient with rapidly progressing radioactive iodine-refractory papillary NTRK3 fusion-positive thyroid cancer. The patient achieved a durable (sustained for 11 months) complete response after 2 months of treatment and complete intracranial responses in metastatic brain lesions after 7 months of treatment. Larotrectinib may provide a therapeutic route for patients with RAI-R-differentiated thyroid cancer who might otherwise have few treatment options.
Collapse
Affiliation(s)
- Fabián Pitoia
- Division of Endocrinology, Hospital de ClínicasUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
40
|
Role of Tumor-Associated Macrophages in Sarcomas. Cancers (Basel) 2021; 13:cancers13051086. [PMID: 33802565 PMCID: PMC7961818 DOI: 10.3390/cancers13051086] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent studies have shown the pro-tumoral role of tumor-associated macrophages (TAMs) not only in major types of carcinomas but also in sarcomas. Several types of TAM-targeted drugs have been investigated under clinical trials, which may represent a novel therapeutic approach for bone and soft-tissue sarcomas. Abstract Sarcomas are complex tissues in which sarcoma cells maintain intricate interactions with their tumor microenvironment. Tumor-associated macrophages (TAMs) are a major component of tumor-infiltrating immune cells in the tumor microenvironment and have a dominant role as orchestrators of tumor-related inflammation. TAMs promote tumor growth and metastasis, stimulate angiogenesis, mediate immune suppression, and limit the antitumor activity of conventional chemotherapy and radiotherapy. Evidence suggests that the increased infiltration of TAMs and elevated expression of macrophage-related genes are associated with poor prognoses in most solid tumors, whereas evidence of this in sarcomas is limited. Based on these findings, TAM-targeted therapeutic strategies, such as inhibition of CSF-1/CSF-1R, CCL2/CCR2, and CD47/SIRPα, have been developed and are currently being evaluated in clinical trials. While most of the therapeutic challenges that target sarcoma cells have been unsuccessful and the prognosis of sarcomas has plateaued since the 1990s, several clinical trials of these strategies have yielded promising results and warrant further investigation to determine their translational benefit in sarcoma patients. This review summarizes the roles of TAMs in sarcomas and provides a rationale and update of TAM-targeted therapy as a novel treatment approach for sarcomas.
Collapse
|
41
|
Domenici G, Eduardo R, Castillo-Ecija H, Orive G, Montero Carcaboso Á, Brito C. PDX-Derived Ewing's Sarcoma Cells Retain High Viability and Disease Phenotype in Alginate Encapsulated Spheroid Cultures. Cancers (Basel) 2021; 13:cancers13040879. [PMID: 33669730 PMCID: PMC7922076 DOI: 10.3390/cancers13040879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ewing’s Sarcoma (ES) is the second most frequent bone tumour in children and young adults, with very aggressive behaviour and significant disease recurrence. To better study the disease and find new therapies, experimental models are needed. Recently, patient-derived xenografts (PDX), obtained by implanting patient tumour samples in immunodeficient mice, have been developed. However, when ES cells are extracted from the patient’s tumour or from PDX and placed on plasticware surfaces, they lose their original 3D configuration, cell identity and function. To overcome these issues, we implemented cultures of PDX-derived ES cells, by making them aggregate to form ES cell spheroids and then encapsulating these 3D spheroids into a hydrogel, alginate, to stabilize the culture. We show that this methodology maintained ES cell viability and intrinsic characteristics of the original ES tumour cells for at least one month and that it is suitable for study the effect of anticancer drugs. Abstract Ewing’s Sarcoma (ES) is the second most frequent malignant bone tumour in children and young adults and currently only untargeted chemotherapeutic approaches and surgery are available as treatment, although clinical trials are on-going for recently developed ES-targeted therapies. To study ES pathobiology and develop novel drugs, established cell lines and patient-derived xenografts (PDX) are the most employed experimental models. Nevertheless, the establishment of ES cell lines is difficult and the extensive use of PDX raises economic/ethical concerns. There is a growing consensus regarding the use of 3D cell culture to recapitulate physiological and pathophysiological features of human tissues, including drug sensitivity. Herein, we implemented a 3D cell culture methodology based on encapsulation of PDX-derived ES cell spheroids in alginate and maintenance in agitation-based culture systems. Under these conditions, ES cells displayed high proliferative and metabolic activity, while retaining the typical EWSR1-FLI1 chromosomal translocation. Importantly, 3D cultures presented reduced mouse PDX cell contamination compared to 2D cultures. Finally, we show that these 3D cultures can be employed in drug sensitivity assays, with results similar to those reported for the PDX of origin. In conclusion, this novel 3D cell culture method involving ES-PDX-derived cells is a suitable model to study ES pathobiology and can assist in the development of novel drugs against this disease, complementing PDX studies.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Helena Castillo-Ecija
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Ángel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
42
|
Shen R, Liu B, Li X, Yu T, Xu K, Ma J. Development and validation of an immune gene-set based prognostic signature for soft tissue sarcoma. BMC Cancer 2021; 21:144. [PMID: 33557781 PMCID: PMC7871579 DOI: 10.1186/s12885-021-07852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Sarcomas is a group of heterogeneous malignant tumors originated from mesenchymal tissue and different types of sarcomas have disparate outcomes. The present study aims to identify the prognostic value of immune-related genes (IRGs) in sarcoma and establish a prognostic signature based on IRGs. Methods We collected the expression profile and clinical information of 255 soft tissue sarcoma samples from The Cancer Genome Atlas (TCGA) database and 2498 IRGs from the ImmPort database. The LASSO algorithm and Cox regression analysis were used to identify the best candidate genes and construct a signature. The prognostic ability of the signature was evaluated by ROC curves and Kaplan-Meier survival curves and validated in an independent cohort. Besides, a nomogram based on the IRGs and independent prognostic clinical variables was developed. Results A total of 19 IRGs were incorporated into the signature. In the training cohort, the AUC values of signature at 1-, 2-, and 3-years were 0.938, 0.937 and 0.935, respectively. The Kaplan-Meier survival curve indicated that high-risk patients were significantly worse prognosis (P < 0.001). In the validation cohort, the AUC values of signature at 1-, 2-, and 3-years were 0.730, 0.717 and 0.647, respectively. The Kaplan-Meier survival curve also showed significant distinct survival outcome between two risk groups. Furthermore, a nomogram based on the signature and four prognostic variables showed great accuracy in whole sarcoma patients and subgroup analyses. More importantly, the results of the TF regulatory network and immune infiltration analysis revealed the potential molecular mechanism of IRGs. Conclusions In general, we identified and validated an IRG-based signature, which can be used as an independent prognostic signature in evaluating the prognosis of sarcoma patients and provide potential novel immunotherapy targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07852-2.
Collapse
Affiliation(s)
- Rui Shen
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Bo Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xuesen Li
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tengbo Yu
- Department of Sport Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Kuishuai Xu
- Department of Sport Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jinfeng Ma
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
43
|
Abstract
The Janus-faced roles of macrophages in cancer imply both tumor-suppressive and -stimulating actions of these innate immune cells. Whereas the balance is toward tumor promotion in most epithelial cancers, we have recently shown that osteosarcoma metastasis seems to be inhibited by macrophages. Here we discuss the possible mechanism of this observation.
Collapse
|
44
|
Koo J, Hayashi M, Verneris MR, Lee-Sherick AB. Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Front Oncol 2020; 10:581107. [PMID: 33381449 PMCID: PMC7769312 DOI: 10.3389/fonc.2020.581107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
For many pediatric sarcoma patients, multi-modal therapy including chemotherapy, radiation, and surgery is sufficient to cure their disease. However, event-free and overall survival rates for patients with more advanced disease are grim, necessitating the development of novel therapeutic approaches. Within many pediatric sarcomas, the normal immune response, including recognition and destruction of cancer cells, is lost due to the highly immune suppressive tumor microenvironment (TME). In this setting, tumor cells evade immune detection and capitalize on the immune suppressed microenvironment, leading to unchecked proliferation and metastasis. Recent preclinical and clinical approaches are aimed at understanding this immune suppressive microenvironment and employing cancer immunotherapy in an attempt to overcome this, by renewing the ability of the immune system to recognize and destroy cancer cells. While there are several factors that drive the attenuation of immune responses in the sarcoma TME, one of the most remarkable are tumor associated macrophage (TAMs). TAMs suppress immune cytolytic function, promote tumor growth and metastases, and are generally associated with a poor prognosis in most pediatric sarcoma subtypes. In this review, we summarize the mechanisms underlying TAM-facilitated immune evasion and tumorigenesis and discuss the potential therapeutic application of TAM-focused drugs in the treatment of pediatric sarcomas.
Collapse
Affiliation(s)
- Jane Koo
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Masanori Hayashi
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Michael R Verneris
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Alisa B Lee-Sherick
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
45
|
Abstract
Magnetic resonance imaging (MRI) has been the cornerstone of imaging of brain tumors in the past 4 decades. Conventional MRI remains the workhorse for neuro-oncologic imaging, not only for basic information such as location, extent, and navigation but also able to provide information regarding proliferation and infiltration, angiogenesis, hemorrhage, and more. More sophisticated MRI sequences have extended the ability to assess and quantify these features; for example, permeability and perfusion acquisitions can assess blood-brain barrier disruption and angiogenesis, diffusion techniques can assess cellularity and infiltration, and spectroscopy can address metabolism. Techniques such as fMRI and diffusion fiber tracking can be helpful in diagnostic planning for resection and radiation therapy, and more sophisticated iterations of these techniques can extend our understanding of neurocognitive effects of these tumors and associated treatment responses and effects. More recently, MRI has been used to go beyond such morphological, physiological, and functional characteristics to assess the tumor microenvironment. The current review highlights multiple recent and emerging approaches in MRI to characterize the tumor microenvironment.
Collapse
|
46
|
An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning. J Cancer Res Clin Oncol 2020; 147:153-165. [PMID: 32968877 DOI: 10.1007/s00432-020-03396-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Ewing sarcoma (ES) is one of the most common malignant bone tumors in children and adolescents. The immune microenvironment plays an important role in the development of ES. Here, we developed an optimal signature for determining ES patient prognosis based on immune-related genes (IRGs). METHODS We analyzed the ES gene expression profile dataset, GSE17679, from the GEO database and extracted differential expressed IRGs (DEIRGs). Then, we conducted functional correlation and protein-protein interaction (PPI) analyses of the DEIRGs and used the machine learning algorithm-iterative Lasso Cox regression analysis to build an optimal DEIRG signature. In addition, we applied ES samples from the ICGC database to test the optimal gene signature. We performed univariate and multivariate Cox regressions on clinicopathological characteristics and optimal gene signature to evaluate whether signature is an important prognostic factor. Finally, we calculated the infiltration of 24 immune cells in ES using the ssGSEA algorithm, and analyzed the correlation between the DEIRGs in the optimal gene signature and immune cells. RESULTS A total of 249 DEIRGs were screened and an 11-gene signature with the strongest correlation with patient prognoses was analyzed using a machine learning algorithm. The 11-gene signature also had a high prognostic value in the ES external verification set. Univariate and multivariate Cox regression analyses showed that 11-gene signature is an independent prognostic factor. We found that macrophages and cytotoxic, CD8 T, NK, mast, B, NK CD56bright, TEM, TCM, and Th2 cells were significantly related to patient prognoses; the infiltration of cytotoxic and CD8 T cells in ES was significantly different. By correlating prognostic biomarkers with immune cell infiltration, we found that FABP4 and macrophages, and NDRG1 and Th2 cells had the strongest correlation. CONCLUSION Overall, the IRG-related 11-gene signature can be used as a reliable ES prognostic biomarker and can provide guidance for personalized ES therapy.
Collapse
|
47
|
Zhang X, Li W, Sun J, Yang Z, Guan Q, Wang R, Li X, Li Y, Feng Y, Wang Y. How to use macrophages to realise the treatment of tumour. J Drug Target 2020; 28:1034-1045. [PMID: 32603199 DOI: 10.1080/1061186x.2020.1775236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages (Mø) are immune cells with natural phagocytic ability and play an important role in tumorigenesis, development and metastasis. Mø play a dual role of tumour inhibition and tumour promotion in tumour development due to their two different phenotypes. Mø in the tumour microenvironment have long been referred to as tumour-associated Mø (TAMs). Mø are mainly involved in tumour resistance, cancer metastasis and mediating immunosuppression. Nowadays, Mø and Mø membranes have been widely used in drug delivery systems (DDSs) because of their good biocompatibility, natural phagocytosis and their important role in tumour development. In this review, from the perspective of Mø's role in tumour development, we present strategies and drugs of Mø targeting and focusing on the several types of biomimetic nanoparticles constructed by Mø and Mø membranes in tumour therapy, and discuss the problem of this delivery system in present research and future directions.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, P.R. China
| | - Zhixin Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Qingxia Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Rui Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Xiuyan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yongji Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yufei Feng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| |
Collapse
|
48
|
Schober SJ, Thiede M, Gassmann H, Prexler C, Xue B, Schirmer D, Wohlleber D, Stein S, Grünewald TGP, Busch DH, Richter GHS, Burdach SEG, Thiel U. MHC Class I-Restricted TCR-Transgenic CD4 + T Cells Against STEAP1 Mediate Local Tumor Control of Ewing Sarcoma In Vivo. Cells 2020; 9:cells9071581. [PMID: 32610710 PMCID: PMC7408051 DOI: 10.3390/cells9071581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2-/-gc-/- mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5-6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS.
Collapse
Affiliation(s)
- Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Correspondence: (S.J.S.); (U.T.)
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Carolin Prexler
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Busheng Xue
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - David Schirmer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Dirk Wohlleber
- Institute of Molecular Immunology/Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, 81674 Munich, Germany;
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU, 80337 Munich, Germany; (S.S.); (T.G.P.G.)
| | - Thomas G. P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU, 80337 Munich, Germany; (S.S.); (T.G.P.G.)
- Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81674 Munich, Germany;
| | - Guenther H. S. Richter
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefan E. G. Burdach
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Munich, 80336 Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Correspondence: (S.J.S.); (U.T.)
| |
Collapse
|
49
|
Wunder JS, Lee MJ, Nam J, Lau BY, Dickson BC, Pinnaduwage D, Bull SB, Ferguson PC, Seto A, Gokgoz N, Andrulis IL. Osteosarcoma and soft-tissue sarcomas with an immune infiltrate express PD-L1: relation to clinical outcome and Th1 pathway activation. Oncoimmunology 2020; 9:1737385. [PMID: 33457085 PMCID: PMC7790526 DOI: 10.1080/2162402x.2020.1737385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint proteins, such as PD-L1 and PD-1, are important in several cancers; however, their role in osteosarcoma (OSA) and soft tissue sarcoma (STS) remains unclear. Our aims were to determine whether subsets of OSA/STS harbor tumor-infiltrating lymphocytes (TILs) and express PD-L1, and how PD-L1 expression is related to clinical outcome. Tissue sections of 25 cases each of untreated undifferentiated pleomorphic sarcoma (UPS), myxofibrosarcoma (MFS), liposarcoma (LPS) and 24 of leiomyosarcoma (LMS) were subjected to immunohistochemistry (IHC) for immune cells, PD-L1 and PD-1. RT-qPCR was utilized to quantify levels of PD-L1 mRNA from 33 UPS, 57 MFS and 79 OSA primary-untreated specimens. PD-L1 mRNA levels were tested for their correlation with overall survival in patients presenting without metastases. Transcriptome analysis evaluated biological pathway differences between high and low PD-L1 expressers. A subset of UPS and MFS contained TILs and expressed PD-L1 and PD-1; LMS and LPS did not. PD-L1 levels by IHC and RT-qPCR were positively correlated. PD-L1 over-expression was associated with better survival for UPS and OSA, but not MFS. The Th1 pathway was significantly activated in UPS with high levels of PD-L1 and improved survival. Some sarcoma subtypes harbor TILs and express PD-L1. Patients with UPS and OSA with high levels of PD-L1 had better overall survival than those with low expression levels. Important biological pathways distinguish PD-L1 high and low groups. The stratification of patients with OSA/STS with respect to potential immune therapies may be improved through investigation of the expression of immune cells and checkpoint proteins.
Collapse
Affiliation(s)
- Jay S Wunder
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Surgery, University of Toronto, ON, Canada
| | - Minji J Lee
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Junghyun Nam
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Beatrice Y Lau
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Brendan C Dickson
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | | | - Shelley B Bull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Peter C Ferguson
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON, Canada.,Department of Surgery, University of Toronto, ON, Canada
| | - Andrew Seto
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Saggioro M, D'Angelo E, Bisogno G, Agostini M, Pozzobon M. Carcinoma and Sarcoma Microenvironment at a Glance: Where We Are. Front Oncol 2020; 10:76. [PMID: 32195166 PMCID: PMC7063801 DOI: 10.3389/fonc.2020.00076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Cells and extracellular matrix (ECM) components represent the multifaceted and dynamic environment that distinguishes each organ. Cancer is characterized by the dysregulation of the composition and structure of the tissues, giving rise to the tumor milieu. In this review, we focus on the microenvironmental analysis of colorectal cancer (CRC) and rhabdomyosarcoma (RMS), two different solid tumors. While a lot is known about CRC environment, for RMS, this aspect is mostly unexplored. Following the example of the more complete CRC microenvironmental characterization, we collected and organized data on RMS for a better awareness of how tissue remodeling affects disease progression.
Collapse
Affiliation(s)
- Mattia Saggioro
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| | - Edoardo D'Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Padova, Italy
| | - Gianni Bisogno
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Marco Agostini
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Padova, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| |
Collapse
|