1
|
Activation of Inflammatory Networks in the Lungs Caused by Chronic Cold Stress Is Moderately Attenuated by Glucose Supplementation. Int J Mol Sci 2022; 23:ijms231810697. [PMID: 36142633 PMCID: PMC9501069 DOI: 10.3390/ijms231810697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mammals that live in cold climates endure months of exposure to low temperature in the winter. The incidence of respiratory diseases has increased. The goal of this study was to investigate the effects of chronic cold stress on lung inflammatory networks, apoptosis, and mitochondrial function via Yorkshire pig models, as well as the ameliorative effect of glucose as energy supplements. Here, two trials were conducted (chronic cold stress and glucose supplementation). The results showed that chronic cold stress induced obvious inflammatory cell infiltration in the lungs and damaged the lung tissue structure. Compared with the Y-Con group, the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), high mobility group box 1 (HMGB1), nucleotide-binding domain, and leucine-rich repeat protein 3 (NLRP3), IL-1β, IL-2, IL-6, and IFN-γ in the lungs of the Y-CS group was enhanced by chronic cold stress (p < 0.05). Moreover, chronic cold stress promoted the expression of the Bax and Mfn2 in lungs of Y-CS group (p < 0.05). Interestingly, dietary glucose supplementation significantly reduced inflammatory cell infiltration in the lungs. Moreover, glucose supplementation inhibited the expression of TLR4, MyD88, HMGB1, NLRP3, IL-1β, IL-2, IL-6, IFN-γ, and Bax during chronic cold stress. In conclusion, chronic cold stress promoted inflammatory networks, apoptosis, and mitochondrial fusion in the lungs. Dietary glucose supplementation inhibited the inflammatory network during chronic cold stress.
Collapse
|
2
|
Bloomer SA, Brown KE. Hepcidin and Iron Metabolism in Experimental Liver Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1165-1179. [PMID: 33891874 DOI: 10.1016/j.ajpath.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Abstract
The liver plays a pivotal role in the regulation of iron metabolism through its ability to sense and respond to iron stores by release of the hormone hepcidin. Under physiologic conditions, regulation of hepcidin expression in response to iron status maintains iron homeostasis. In response to tissue injury, hepcidin expression can be modulated by other factors, such as inflammation and oxidative stress. The resulting dysregulation of hepcidin is proposed to account for alterations in iron homeostasis that are sometimes observed in patients with liver disease. This review describes the effects of experimental forms of liver injury on iron metabolism and hepcidin expression. In general, models of acute liver injury demonstrate increases in hepcidin mRNA and hypoferremia, consistent with hepcidin's role as an acute-phase reactant. Conversely, diverse models of chronic liver injury are associated with decreased hepcidin mRNA but with variable effects on iron status. Elucidating the reasons for the disparate impact of different chronic injuries on iron metabolism is an important research priority, as is a deeper understanding of the interplay among various stimuli, both positive and negative, on hepcidin regulation. Future studies should provide a clearer picture of how dysregulation of hepcidin expression and altered iron homeostasis impact the progression of liver diseases and whether they are a cause or consequence of these pathologies.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, Abington, Pennsylvania
| | - Kyle E Brown
- Iowa City Veterans Administration Medical Center, Iowa City, Iowa; Division of Gastroenterology-Hepatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; Program in Free Radical and Radiation Biology, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
3
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Agoro R, Park MY, Le Henaff C, Jankauskas S, Gaias A, Chen G, Mohammadi M, Sitara D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021; 106:391-403. [PMID: 32193252 PMCID: PMC7849576 DOI: 10.3324/haematol.2019.237040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLR), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte- secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wildtype mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.
Collapse
Affiliation(s)
- Rafiou Agoro
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Min Young Park
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Carole Le Henaff
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | | | - Alina Gaias
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Gaozhi Chen
- Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China
| | - Moosa Mohammadi
- Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, USA
| | - Despina Sitara
- NYU College of Dentistry and NYU School of Medicine, New York, USA
| |
Collapse
|
5
|
Sherlock LG, Sjostrom K, Sian L, Delaney C, Tipple TE, Krebs NF, Nozik-Grayck E, Wright CJ. Hepatic-Specific Decrease in the Expression of Selenoenzymes and Factors Essential for Selenium Processing After Endotoxemia. Front Immunol 2020; 11:595282. [PMID: 33224150 PMCID: PMC7674557 DOI: 10.3389/fimmu.2020.595282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Selenium (Se) levels decrease in the circulation during acute inflammatory states and sepsis, and are inversely associated with morbidity and mortality. A more specific understanding of where selenoproteins and Se processing are compromised during insult is needed. We investigated the acute signaling response in selenoenzymes and Se processing machinery in multiple organs after innate immune activation in response to systemic lipopolysaccharide (LPS). Methods Wild type (WT) adult male C57/B6 mice were exposed to LPS (5 mg/kg, intraperitoneal). Blood, liver, lung, kidney and spleen were collected from control mice as well as 2, 4, 8, and 24 h after LPS. Plasma Se concentration was determined by ICP-MS. Liver, lung, kidney and spleen were evaluated for mRNA and protein content of selenoenzymes and proteins required to process Se. Results After 8 h of endotoxemia, plasma levels of Se and the Se transporter protein, SELENOP were significantly decreased. Consistent with this timing, the transcription and protein content of several hepatic selenoenzymes, including SELENOP, glutathione peroxidase 1 and 4 were significantly decreased. Furthermore, hepatic transcription and protein content of factors required for the Se processing, including selenophosphate synthetase 2 (Sps2), phosphoseryl tRNA kinase (Pstk), selenocysteine synthase (SepsecS), and selenocysteine lyase (Scly) were significantly decreased. Significant LPS-induced downregulation of these key selenium processing enzymes was observed in isolated hepatocytes. In contrast to the acute and dynamic changes observed in the liver, selenoenzymes did not decrease in the lung, kidney or spleen. Conclusion Hepatic selenoenzyme production and Se processing factors decreased after endotoxemia. This was temporally associated with decreased circulating Se. In contrast to these active changes in the regulation of Se processing in the liver, selenoenzymes did not decrease in the lung, kidney or spleen. These findings highlight the need to further study the impact of innate immune challenges on Se processing in the liver and the impact of targeted therapeutic Se replacement strategies during innate immune challenge.
Collapse
Affiliation(s)
- Laura G Sherlock
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kara Sjostrom
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lei Sian
- Perinatal Nutrition Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Trent E Tipple
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Nancy F Krebs
- Perinatal Nutrition Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Clyde J Wright
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Basics and principles of cellular and systemic iron homeostasis. Mol Aspects Med 2020; 75:100866. [PMID: 32564977 DOI: 10.1016/j.mam.2020.100866] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Iron is a constituent of many metalloproteins involved in vital metabolic functions. While adequate iron supply is critical for health, accumulation of excess iron promotes oxidative stress and causes tissue injury and disease. Therefore, iron homeostasis needs to be tightly controlled. Mammals have developed elegant homeostatic mechanisms at the cellular and systemic level, which serve to satisfy metabolic needs for iron and to minimize the risks posed by iron's toxicity. Cellular iron metabolism is post-transcriptionally controlled by iron regulatory proteins, IRP1 and IRP2, while systemic iron balance is regulated by the iron hormone hepcidin. This review summarizes basic principles of mammalian iron homeostasis at the cellular and systemic level. Particular attention is given on pathways for hepcidin regulation and on crosstalk between cellular and systemic homeostatic mechanisms.
Collapse
|
7
|
A comprehensive mechanistic review insight into the effects of micronutrients on toll-like receptors functions. Pharmacol Res 2019; 152:104619. [PMID: 31887355 DOI: 10.1016/j.phrs.2019.104619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Toll-like receptors (TLRs) are the special proteins receptors for recognition of molecules related to the pathogens. In this way, TLRs and secreted cytokines as a result of TLRs activation are involved in the inflammation pathways. So far, in vivo and in vitro studies have demonstrated that micronutrients (vitamins & minerals) with a broad range of effects on body health, can regulate TLRs signaling pathways. Current review aimed at determining the possible mechanisms of micronutrient effects on TLRs functions. In the aspect of gene expression, micronutrients have inconsistent effects on mRNA level of TLRs which are dependent on time, dose and type of studied TLR. Also, some micronutrients affect gene expression of TLRs signaling mediators namely TLRs adaptors like Myeloid differentiation primary response 88 (MyD88). In the aspect of TLRs signaling pathways, nuclear factor-κB (NF-κB) is an important mediator which is regulated by micronutrients. Also, the regulatory effects of micronutrients on phosphorylation reactions may be effective in the activation/inactivation of TLRs signaling mediators. In addition, zinc can regulate TLRs signaling indirectly via the zinc finger proteins which have contradictory effects on TLRs cascade. In conclusion, the relationship between micronutrients and TLRs signaling is complicated and depends on some known internal, external and genetic factors like form of studied micronutrient, cell type, TLR agonist, dose and time of exposure, inflammation, apoptosis, cell cycle, and environmental factors. Some unknown factors may be effective in TLRs response and as a result additional mechanistic studies are needed to elucidate exact effect of micronutrients on TLRs signaling.
Collapse
|
8
|
Vichaya EG, Gross PS, Estrada DJ, Cole SW, Grossberg AJ, Evans SE, Tuvim MJ, Dickey BF, Dantzer R. Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior. Psychopharmacology (Berl) 2019; 236:2975-2982. [PMID: 30806746 PMCID: PMC6710168 DOI: 10.1007/s00213-019-05190-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE While the relationship between inflammation and depression is well-established, the molecular mechanisms mediating this relationship remain unclear. RNA sequencing analysis comparing brains of vehicle- and lipopolysaccharide-treated mice revealed LCN2 among the most dysregulated genes. As LCN2 is known to be an important regulator of the immune response to bacterial infection, we investigated its role in the behavioral response to lipopolysaccharide. OBJECTIVE To explore the role of LCN2 in modulating behavior following lipopolysaccharide administration using wild type (WT) and lcn2-/- mice. METHODS Using a within-subjects design, mice were treated with 0.33 mg/kg liposaccharide (LPS) and vehicle. Primary outcome measures included body weight, food consumption, voluntary wheel running, sucrose preference, and the tail suspension test. To evaluate the inflammatory response, 1 week later, mice were re-administered either vehicle or LPS and terminated at 6 h. RESULTS While lcn2-/- mice had increased baseline food consumption and body weight, they showed a pattern of reduced food consumption and weight loss similar to WT mice in response to LPS. WT and lcn2-/- mice both recovered voluntary activity on the fourth day following LPS. LPS induced equivalent reductions in sucrose preference and TST immobility in the WT and lcn2-/- mice. Finally, there were no significant effects of genotype on inflammatory markers. CONCLUSIONS Our data demonstrate that lcn2 is dispensable for sterile inflammation-induced sickness and depression-like behavior. Specifically, lcn2-/- mice displayed sickness and immobility in the tail suspension test comparable to that of WT mice both in terms of intensity and duration.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA.
| | - Phillip S Gross
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Darlene J Estrada
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Steve W Cole
- Departments of Medicine and Psychiatry & Biobehavioral Sciences, Jonsson Comprehensive Cancer Center and Norman Cousins Center, UCLA School of Medicine, Los Angeles, CA, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, School of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Samba-Mondonga M, Calvé A, Mallette FA, Santos MM. MyD88 Regulates the Expression of SMAD4 and the Iron Regulatory Hormone Hepcidin. Front Cell Dev Biol 2018; 6:105. [PMID: 30234111 PMCID: PMC6127602 DOI: 10.3389/fcell.2018.00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
The myeloid differentiation primary response gene 88 (MyD88) is an adaptive protein that is essential for the induction of inflammatory cytokines through almost all the Toll-like receptors (TLRs). TLRs recognize molecular patterns present in microorganisms called pathogen-associated molecular patterns. Therefore, MyD88 plays an important role in innate immunity since its activation triggers the first line of defense against microorganisms. Herein, we describe the first reported role of MyD88 in an interconnection between innate immunity and the iron-sensing pathway (BMP/SMAD4). We found that direct interaction of MyD88 with SMAD4 protein activated hepcidin expression. The iron regulatory hormone hepcidin is indispensable for the intestinal regulation of iron absorption and iron recycling by macrophages. We show that MyD88 induces hepcidin expression in a manner dependent on the proximal BMP responsive element on the hepcidin gene (HAMP) promoter. We identified the Toll/interleukin-1 receptor (TIR) domain of MyD88 as the domain of interaction with SMAD4. Furthermore, we show that BMP6 stimulation, which activates SMAD6 expression, also induces MyD88 proteosomal degradation as a negative feedback mechanism to limit hepcidin induction. Finally, we report that the MyD88 gain-of-function L265P mutation, frequently encountered in B-cell lymphomas such as Waldenström’s macroglobulinemia, enhances hepcidin expression and iron accumulation in B cell lines. Our results reveal a new potential role for MyD88 in the SMAD signaling pathway and iron homeostasis regulation.
Collapse
Affiliation(s)
- Macha Samba-Mondonga
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Frédérick A Mallette
- Département de Médecine, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Puy V, Darwiche W, Trudel S, Gomila C, Lony C, Puy L, Lefebvre T, Vitry S, Boullier A, Karim Z, Ausseil J. Predominant role of microglia in brain iron retention in Sanfilippo syndrome, a pediatric neurodegenerative disease. Glia 2018; 66:1709-1723. [DOI: 10.1002/glia.23335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/03/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Vincent Puy
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| | - Walaa Darwiche
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
| | - Stéphanie Trudel
- Laboratoire d'Oncobiologie Moléculaire, CHU Amiens Picardie, F-80054 Amiens, France and EA4666 Lymphocyte Normal, Pathologique et Cancers (LNPC); CURS-Université de Picardie Jules Verne; Amiens F-80054 France
| | - Cathy Gomila
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| | - Christelle Lony
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
| | - Laurent Puy
- Département de Neurologie et Laboratoire de Neuroscience Fonctionnelle EA-4559; CHU Amiens Picardie; Amiens F-80054, France
| | - Thibaud Lefebvre
- INSERM U1149, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, F-75018 Paris, France, DHU UNITY, Laboratory of Excellence, GR-Ex; Paris France
| | - Sandrine Vitry
- Unité de NeuroImmunologie Virale, Institut Pasteur; Paris F-75015 France
| | - Agnès Boullier
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| | - Zoubida Karim
- INSERM U1149, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, F-75018 Paris, France, DHU UNITY, Laboratory of Excellence, GR-Ex; Paris France
| | - Jérôme Ausseil
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| |
Collapse
|
11
|
Layoun A, Samba-Mondonga M, Fragoso G, Calvé A, Santos MM. MyD88 Adaptor Protein Is Required for Appropriate Hepcidin Induction in Response to Dietary Iron Overload in Mice. Front Physiol 2018; 9:159. [PMID: 29556203 PMCID: PMC5845127 DOI: 10.3389/fphys.2018.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Iron homeostasis is tightly regulated to provide virtually all cells in the body, particularly red blood cells, with this essential element while defending against its toxicity. The peptide hormone hepcidin is central to the control of the amount of iron absorbed from the diet and iron recycling from macrophages. Previously, we have shown that hepcidin induction in macrophages following Toll-like receptor (TLR) stimulation depends on the presence of myeloid differentiation primary response gene 88 (MyD88). In this study, we analyzed the regulation of iron metabolism in MyD88−/− mice to further investigate MyD88 involvement in iron sensing and hepcidin induction. We show that mice lacking MyD88 accumulate significantly more iron in their livers than wild-type counterparts in response to dietary iron loading as they are unable to appropriately control hepcidin levels. The defect was associated with inappropriately low levels of Smad4 protein and Smad1/5/8 phosphorylation in liver samples found in the MyD88−/− mice compared to wild-type mice. In conclusion, our results reveal a previously unknown link between MyD88 and iron homeostasis, and provide new insights into the regulation of hepcidin through the iron-sensing pathway.
Collapse
Affiliation(s)
- Antonio Layoun
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Macha Samba-Mondonga
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Willemetz A, Beatty S, Richer E, Rubio A, Auriac A, Milkereit RJ, Thibaudeau O, Vaulont S, Malo D, Canonne-Hergaux F. Iron- and Hepcidin-Independent Downregulation of the Iron Exporter Ferroportin in Macrophages during Salmonella Infection. Front Immunol 2017; 8:498. [PMID: 28507548 PMCID: PMC5410627 DOI: 10.3389/fimmu.2017.00498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
Retention of iron in tissue macrophages via upregulation of hepcidin (HAMP) and downregulation of the iron exporter ferroportin (FPN) is thought to participate in the establishment of anemia of inflammation after infection. However, an upregulation of FPN has been proposed to limit macrophages iron access to intracellular pathogens. Therefore, we studied the iron homeostasis and in particular the regulation of FPN after infection with Salmonella enterica serovar Typhimurium in mice presenting tissue macrophages with high iron (AcB61), basal iron (A/J and wild-type mice), or low iron (Hamp knock out, Hamp-/-) levels. The presence of iron in AcB61 macrophages due to extravascular hemolysis and strong erythrophagocytosis activity favored the proliferation of Salmonella in the spleen and liver with a concomitant decrease of FPN protein expression. Despite systemic iron overload, no or slight increase in Salmonella burden was observed in Hamp-/- mice compared to controls. Importantly, FPN expression at both mRNA and protein levels was strongly decreased during Salmonella infection in Hamp-/- mice. The repression of Fpn mRNA was also observed in Salmonella-infected cultured macrophages. In addition, the downregulation of FPN was associated with decreased iron stores in both the liver and spleen in infected mice. Our findings show that during Salmonella infection, FPN is repressed through an iron and hepcidin-independent mechanism. Such regulation likely provides the cellular iron indispensable for the growth of Salmonella inside the macrophages.
Collapse
Affiliation(s)
- Alexandra Willemetz
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique - UPR 2301, Gif-sur-Yvette, France
| | - Sean Beatty
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - Etienne Richer
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - Aude Rubio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Anne Auriac
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique - UPR 2301, Gif-sur-Yvette, France.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Ruth J Milkereit
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - Olivier Thibaudeau
- Anatomie-Cytologie Pathologiques, CHU Bichat-Claude Bernard, Paris, France
| | | | - Danielle Malo
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - François Canonne-Hergaux
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique - UPR 2301, Gif-sur-Yvette, France.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
13
|
Biedroń R, Peruń A, Józefowski S. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS One 2016; 11:e0153558. [PMID: 27073833 PMCID: PMC4830570 DOI: 10.1371/journal.pone.0153558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Angelika Peruń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
14
|
Park KS, Kim SH, Das A, Yang SN, Jung KH, Kim MK, Berggren PO, Lee Y, Chai JC, Kim HJ, Chai YG. TLR3-/4-Priming Differentially Promotes Ca(2+) Signaling and Cytokine Expression and Ca(2+)-Dependently Augments Cytokine Release in hMSCs. Sci Rep 2016; 6:23103. [PMID: 26980664 PMCID: PMC4793222 DOI: 10.1038/srep23103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
In human mesenchymal stem cells (hMSCs), toll-like receptor 3 (TLR3) and TLR4 act as key players in the tissue repair process by recognizing their ligands and stimulating downstream processes including cytokine release. The mechanisms of TLR3- and TLR4-mediated cytokine releases from hMSCs remain uncertain. Here, we show that exposure to the TLR3 agonist polyinosinic-polycytidylic acid (poly(I:C)) or incubation with the TLR4 agonist lipopolysaccharide (LPS) increased the mRNA expression levels of TLR3, TLR4 and cytokines in hMSCs. Poly(I:C) exposure rather than LPS incubation not only elevated inositol 1,4,5-triphosphate receptor (IP3R) expression and IP3R-mediated Ca(2+) release, but also promoted Orai and STIM expression as well as store-operated Ca(2+) entry into hMSCs. In addition, we also observed that 21 Ca(2+) signaling genes were significantly up-regulated in response to TLR3 priming of hMSCs by RNA sequencing analysis. Both poly(I:C) and LPS exposure enhanced cytokine release from hMSCs. The enhanced cytokine release vanished upon siRNA knockdown and chelation of intracellular Ca(2+). These data demonstrate that TLR3- and TLR4-priming differentially enhance Ca(2+) signaling and cytokine expression, and Ca(2+) -dependently potentiates cytokine release in hMSCs.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Sun Hwa Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Amitabh Das
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Kyoung Hwa Jung
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Mi Kyung Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - YoungSeek Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Jin Choul Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| |
Collapse
|
15
|
Hu S, Peng L, Kwak YT, Tekippe EM, Pasare C, Malter JS, Hooper LV, Zaki MH. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense. Cell Rep 2015; 13:1922-36. [PMID: 26655906 DOI: 10.1016/j.celrep.2015.10.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2(-/-) mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2(-/-) mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2(-/-) mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2(-/-) mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Shuiqing Hu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Youn-Tae Kwak
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin McElvania Tekippe
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center, Dallas, TX 75390, USA
| | | | - James S Malter
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Md Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Waitt CJ, Banda P, Glennie S, Kampmann B, Squire SB, Pirmohamed M, Heyderman RS. Monocyte unresponsiveness and impaired IL1β, TNFα and IL7 production are associated with a poor outcome in Malawian adults with pulmonary tuberculosis. BMC Infect Dis 2015; 15:513. [PMID: 26567164 PMCID: PMC4643523 DOI: 10.1186/s12879-015-1274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 11/07/2015] [Indexed: 01/14/2023] Open
Abstract
Background Early death during TB treatment is associated with depressed TNFα response to antigenic stimulation and propensity to superadded bacterial infection. Hypothesising the role of monocyte unresponsiveness, we further compared the immunological profile between patients who died or suffered a life-threatening deterioration ('poor outcome') during the intensive phase of TB treatment with patients who had an uneventful clinical course (‘good outcome’) who had been recruited as part of a larger prospective cohort study of Malawian TB patients. Methods Using Luminex, IL1β, IL2, IL4, IL5, IL6, IL7, IL8, IL10, IL12, IL13, IL17, GCSF, GMCSF, MCP1, MIP1b, IFNγ and TNFα were measured in whole blood assay supernatants (stimulated with Mycobacterium tuberculosis H37Rv and LPS) and serum from 44 Malawian adult TB patients (22 of each outcome) immediately prior to commencing treatment, after 7 days and on day 56 of TB treatment. Monocyte surface expression of CD14, CD16, TLR2, TLR4, CD86 and HLADR, and intracellular TNFα were measured by flow cytometry as was intracellular TNFα response to purified TLR ligands. Results Lower TB antigen-induced IL1β (p = 0.006), TNFα (p = 0.02) and IL7 (p = 0.009) were produced in the poor outcome group. TNFα was produced by ‘classical’ CD14hiCD16lo monocytes, with no correlation between this response and expression of monocyte surface markers. Response to TB antigens correlated with responses to the purified TLR 2, 3 and 4 ligands. Conclusions Dysregulated monocyte cytokine production was identified in TB patients with poor outcome. Lower TNFα responses to H37Rv paralleled lower responses to a panel of TLR ligands, suggesting an underlying perturbation in common TLR signalling pathways. Future work should explore the role of TLR polymorphisms in immune response and clinical outcome in TB patients. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1274-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catriona John Waitt
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, PO Box 30096, Chichiri, Blantyre, Malawi. .,Department of Molecular and Clinical Pharmacology, The University of Liverpool, Block A, The Waterhouse Buildings, 1-5 Brownlow Street, Liverpool, L69 3GL, United Kingdom.
| | - Peter Banda
- Department of Medicine, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Sarah Glennie
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, PO Box 30096, Chichiri, Blantyre, Malawi. .,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Beate Kampmann
- Imperial College London, London, UK. .,MRC Unit, The Gambia, Serrekunda, Gambia.
| | - S Bertel Squire
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Block A, The Waterhouse Buildings, 1-5 Brownlow Street, Liverpool, L69 3GL, United Kingdom.
| | - Robert Simon Heyderman
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, PO Box 30096, Chichiri, Blantyre, Malawi. .,Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| |
Collapse
|
17
|
|
18
|
Abstract
The purpose of the present study was to compare the activity of two different clinically available iron chelators on the development of acute liver injury after administration of the bacterial endotoxin (lipopolysaccharide [LPS]) in rats. Lipopolysaccharide was administered either alone or after pretreatment with dexrazoxane (DEX) or deferoxamine (DFO). Control groups received only saline or its combination with either chelator. After 8 h, untreated LPS rats developed liver injury, with signs of inflammation and oxidative stress. Lipopolysaccharide reduced plasma iron concentrations in association with increased production of hepcidin and the reduced liver expression of ferroportin. Administration of chelating agents to LPS animals showed distinct effects. Although both drugs were able to reduce liver iron content, together with corresponding changes in hepcidin and ferroportin expressions, only DFO showed a protective effect against liver injury despite relatively small liver concentrations. In sharp contrast, DEX failed to improve any hallmark of liver injury and even worsened the GSH/GSSG ratio, the indicator of oxidative stress in the tissue. High-performance liquid chromatography-mass spectrometry analysis showed marked liver accumulation of iron-chelating metabolite of DEX (ADR-925), whereas the parent compound was undetectable. Further downregulation of transporters involved in bile formation was observed after DFO in the LPS group as well as in healthy animals. Neither chelator imposed significant liver injury in healthy animals. In conclusion, we demonstrated marked differences in the modulation of endotoxemic liver impairment between two iron chelators, implicating that particular qualities of chelating agents may be of crucial importance.
Collapse
|
19
|
Reuben A, Godin-Ethier J, Santos MM, Lapointe R. T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells. Mol Immunol 2015; 65:259-266. [PMID: 25700349 DOI: 10.1016/j.molimm.2015.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 01/20/2023]
Abstract
The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance.
Collapse
Affiliation(s)
- Alexandre Reuben
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, Québec, Canada H2X 0A9; Département de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Jessica Godin-Ethier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, Québec, Canada H2X 0A9; Département de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Manuela M Santos
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, Québec, Canada H2X 0A9; Département de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7.
| | - Réjean Lapointe
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, Québec, Canada H2X 0A9; Département de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
20
|
Layoun A, Samba M, Santos MM. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon Toll-like receptors stimulation. J Vis Exp 2015:e52749. [PMID: 25993651 PMCID: PMC4541597 DOI: 10.3791/52749] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During infection and inflammation, circulating monocytes leave the bloodstream and migrate into tissues, where they differentiate into macrophages. Macrophages express surface Toll-like receptors (TLRs), which recognize molecular patterns conserved through evolution in a wide range of microorganisms. TLRs play a central role in macrophage activation which is usually associated with gene expression alteration. Macrophages are critical in many diseases and have emerged as attractive targets for therapy. In the following protocol, we describe a procedure to isolate murine peritoneal macrophages using Brewer's thioglycollate medium. The latter will boost monocyte migration into the peritoneum, accordingly this will raise macrophage yield by 10-fold. Several studies have been carried out using bone marrow, spleen or peritoneal derived macrophages. However, peritoneal macrophages were shown to be more mature upon isolation and are more stable in their functionality and phenotype. Thus, macrophages isolated from murine peritoneal cavity present an important cell population that can serve in different immunological and metabolic studies. Once isolated, macrophages were stimulated with different TLR ligands and consequently gene expression was evaluated.
Collapse
Affiliation(s)
- Antonio Layoun
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Institut du cancer de Montréal;
| | - Macha Samba
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Institut du cancer de Montréal
| | - Manuela M Santos
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Institut du cancer de Montréal; Département de Médecine, Université de Montréal
| |
Collapse
|
21
|
Lee AJ, Cho KJ, Kim JH. MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp Mol Med 2015; 47:e156. [PMID: 25838003 DOI: 10.1038/emm.2015.8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Endotoxic responses to bacterial lipopolysaccharide (LPS) are triggered by Toll-like receptor 4 (TLR4) and involve the production of inflammatory mediators, including interleukin-6 (IL-6), by macrophages. The detailed mechanism of IL-6 production by macrophages in response to LPS has remained unclear, however. We now show that LPS induces IL-6 synthesis in mouse peritoneal macrophages via the leukotriene B4 receptor BLT2. Our results suggest that TLR4-MyD88 signaling functions upstream of BLT2 and that the generation of reactive oxygen species (ROS) by NADPH oxidase 1 (Nox1) and consequent activation of the transcription factor nuclear factor (NF)-κB function downstream of BLT2 in this response. These results suggest that a TLR4-MyD88-BLT2-Nox1-ROS-NF-κB pathway contributes to the synthesis of IL-6 in LPS-stimulated mouse macrophages.
Collapse
Affiliation(s)
- A-Jin Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Kyung-Jin Cho
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jae-Hong Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
22
|
Gammella E, Buratti P, Cairo G, Recalcati S. Macrophages: central regulators of iron balance. Metallomics 2015; 6:1336-45. [PMID: 24905850 DOI: 10.1039/c4mt00104d] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages are important to immune function and also actively participate in iron homeostasis. The involvement of splenic and liver macrophages in the processing of effete erythrocytes and the subsequent return of iron to the circulation is well established, and the molecular details of iron recycling have been characterized recently. Another important aspect regarding iron handling by macrophages is their capacity to act as immune cells, which involves the inflammatory response, as well as other pathological conditions in which macrophages are central. This review discusses the latest advances in macrophage iron trafficking and the pathophysiological consequences of altered iron homeostasis in these cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
23
|
A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood 2015; 125:2265-75. [PMID: 25662334 DOI: 10.1182/blood-2014-08-595256] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/18/2014] [Indexed: 12/17/2022] Open
Abstract
Regulation of iron metabolism and innate immunity are tightly interlinked. The acute phase response to infection and inflammation induces alterations in iron homeostasis that reduce iron supplies to pathogens. The iron hormone hepcidin is activated by such stimuli causing degradation of the iron exporter ferroportin and reduced iron release from macrophages, suggesting that hepcidin is the crucial effector of inflammatory hypoferremia. Here, we report the discovery of an acute inflammatory condition that is mediated by Toll-like receptors 2 and 6 (TLR2 and TLR6) and which induces hypoferremia in mice injected with TLR ligands. Stimulation of TLR2/TLR6 triggers profound decreases in ferroportin messenger RNA and protein expression in bone marrow-derived macrophages, liver, and spleen of mice without changing hepcidin expression. Furthermore, C326S ferroportin mutant mice with a disrupted hepcidin/ferroportin regulatory circuitry respond to injection of the TLR2/6 ligands FSL1 or PAM3CSK4 by ferroportin downregulation and a reduction of serum iron levels. Our findings challenge the prevailing role of hepcidin in hypoferremia and suggest that rapid hepcidin-independent ferroportin downregulation in the major sites of iron recycling may represent a first-line response to restrict iron access for numerous pathogens.
Collapse
|
24
|
Reuben A, Phénix M, Santos MM, Lapointe R. The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation. Eur J Immunol 2014; 44:1604-14. [PMID: 24643698 DOI: 10.1002/eji.201343955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/21/2014] [Accepted: 02/11/2014] [Indexed: 11/05/2022]
Abstract
MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity.
Collapse
Affiliation(s)
- Alexandre Reuben
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Institut du cancer de Montréal, Montréal, Québec, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
25
|
Balounová J, Vavrochová T, Benešová M, Ballek O, Kolář M, Filipp D. Toll-like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis. Eur J Immunol 2014; 44:1491-502. [PMID: 24470066 DOI: 10.1002/eji.201344040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/03/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Mammalian TLRs in adult animals serve indispensable functions in establishing innate and adaptive immunity and contributing to the homeostasis of surrounding tissues. However, the expression and function of TLRs during mammalian embryonic development has not been studied so far. Here, we show that CD45(+) CD11b(+) F4/80(+) macrophages from 10.5-day embryo (E10.5) co-express TLRs and CD14. These macrophages, which have the capability to engulf both apoptotic cells and bacteria, secrete a broad spectrum of proinflammatory cytokines and chemokines upon TLR stimulation, demonstrating that their TLRs are functional. Comparative microarray analysis revealed an additional set of genes that were significantly upregulated in E10.5 TLR2(+) CD11b(+) macrophages. This analysis, together with our genetic, microscopic, and biochemical evidence, showed that embryonic phagocytes express protein machinery that is essential for the recycling of cellular iron and that this expression can be regulated by TLR engagement in a MyD88-dependent manner, leading to typical inflammatory M1 responses. These results characterize the utility of TLRs as suitable markers for early embryonic phagocytes as well as molecular triggers of cellular responses, the latter being demonstrated by the involvement of TLRs in an inflammation-mediated regulation of embryonic homeostasis via iron metabolism.
Collapse
Affiliation(s)
- Jana Balounová
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
26
|
Zhao M, Chen YH, Chen X, Dong XT, Zhou J, Wang H, Wu SX, Zhang C, Xu DX. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice. Toxicol Lett 2014; 224:201-8. [DOI: 10.1016/j.toxlet.2013.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/23/2023]
|
27
|
Silva-Gomes S, Vale-Costa S, Appelberg R, Gomes MS. Iron in intracellular infection: to provide or to deprive? Front Cell Infect Microbiol 2013; 3:96. [PMID: 24367768 PMCID: PMC3856365 DOI: 10.3389/fcimb.2013.00096] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/21/2013] [Indexed: 12/16/2022] Open
Abstract
Due to their chemical versatility, transition metals were incorporated as cofactors for several basic metabolic pathways in living organisms. This same characteristic makes them potentially harmful, since they can be engaged in deleterious reactions like Fenton chemistry. As such, organisms have evolved highly specialized mechanisms to supply their own metal needs while keeping their toxic potential in check. This dual character comes into play in host-pathogen interactions, given that the host can either deprive the pathogen of these key nutrients or exploit them to induce toxicity toward the invading agent. Iron stands as the prototypic example of how a metal can be used to limit the growth of pathogens by nutrient deprivation, a mechanism widely studied in Mycobacterium infections. However, the host can also take advantage of iron-induced toxicity to control pathogen proliferation, as observed in infections caused by Leishmania. Whether we may harness either of the two pathways for therapeutical purposes is still ill-defined. In this review, we discuss how modulation of the host iron availability impacts the course of infections, focusing on those caused by two relevant intracellular pathogens, Mycobacterium and Leishmania.
Collapse
Affiliation(s)
- Sandro Silva-Gomes
- Infection and Immunity Unit, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal ; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Sílvia Vale-Costa
- Infection and Immunity Unit, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal ; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Rui Appelberg
- Infection and Immunity Unit, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal ; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Maria S Gomes
- Infection and Immunity Unit, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal ; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| |
Collapse
|
28
|
Costa MM, Saraceni PR, Forn-Cuní G, Dios S, Romero A, Figueras A, Novoa B. IL-22 is a key player in the regulation of inflammation in fish and involves innate immune cells and PI3K signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:746-55. [PMID: 23999050 DOI: 10.1016/j.dci.2013.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
IL-22 plays a role in various disorders in mammals, including mucosal-associated infections and inflammatory diseases. No functional IL-22 studies have been conducted on non-mammals to date. In this study, recombinant IL-22 (rIL-22) from turbot was produced to investigate its effects as a bioactive molecule. The expression of several pro-inflammatory cytokines was increased after rIL-22 treatment and reduced by pre-treatment with a JAK/STAT inhibitor. The involvement of the PI3K pathway in IL-22 induction was demonstrated. rIL-22 reduced the mortality in Aeromonas salmonicida-infected turbot, while higher Aeromonas hydrophila- or LPS-induced mortality was observed when IL-22 was blocked in zebrafish embryos. IL-22 knockdown increased pro-inflammatory cytokine expression in bacteria-stimulated fish. In zebrafish, IL-22 expression was detected primarily in the myeloid innate linage. It was found during early developmental stages when the adaptive immune response is not yet functional and in rag1(-)/(-) fish that lack an adaptive immune system. Our results clarify the conserved role of IL-22 in lower vertebrates. We suggest for the first time that IL-22 constitutes a key regulator of inflammatory homeostasis even in distant species such as teleosts, which diverged from mammals more than 350 million years ago.
Collapse
Affiliation(s)
- Maria M Costa
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bagu ET, Layoun A, Calvé A, Santos MM. Friend of GATA and GATA-6 modulate the transcriptional up-regulation of hepcidin in hepatocytes during inflammation. Biometals 2013; 26:1051-65. [PMID: 24179092 DOI: 10.1007/s10534-013-9683-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 10/19/2013] [Indexed: 01/15/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone that plays a central role in the metabolism of iron and its expression in the liver can be induced through two major pathways: the inflammatory pathway, mainly via IL-6; and the iron-sensing pathway, mediated by BMP-6. GATA-proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif-WGATAR-in the promoter region. In hepatoma cells, GATA-proteins 4 and 6 in conjunction with the co-factor friend of GATA (FOG) were shown to modulate the transcription of HAMP. However, it is unclear as to which of the GATA-proteins drive the expression of HAMP in vivo. In this study, using in vitro and in vivo approaches, we investigated the relevance of GATA and FOG proteins in the expression of hepcidin following treatment with IL-6 and BMP-6. We found that treatment of Huh7 cells with either IL-6 or BMP-6 increased the HAMP promoter activity. The HAMP promoter activity following treatment with IL-6 or BMP-6 was further increased by co-transfection of the promoter with GATA proteins 4 and 6. However, co-transfection of the HAMP promoter with FOG proteins 1 or 2 repressed the promoter response to treatments with either IL-6 or BMP-6. The effects of both GATA and FOG proteins on the promoter activity in response to IL-6 or BMP-6 treatment were abrogated by mutation of the GATA response element-TTATCT-in the HAMP promoter region -103/-98. In vivo, treatment of mice with lipopolysaccharide led to a transient increase of Gata-6 expression in the liver that was positively correlated with the expression of hepcidin. Our results indicate that during inflammation GATA-6 is up-regulated in concert with hepcidin while GATA-4 and FOG (1 and 2) are repressed.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, (ICM), University of Montreal, Pavillon De Sève Porte Y-5625, 2099 rue Alexandre De Sève, Montreal, QC, H2L 4M1, Canada,
| | | | | | | |
Collapse
|
30
|
Bloomer SA, Kregel KC, Brown KE. Heat stress stimulates hepcidin mRNA expression and C/EBPα protein expression in aged rodent liver. Arch Gerontol Geriatr 2013; 58:145-52. [PMID: 23993269 DOI: 10.1016/j.archger.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 02/08/2023]
Abstract
Elevations in hepatic iron content occur with aging and physiological stressors, which may promote oxidative injury to the liver. Since dysregulation of the iron regulatory hormone, hepcidin, can cause iron accumulation, our goal was to characterize the regulation of hepcidin in young (6 mo) and old (24 mo) Fischer 344 rats exposed to environmental heat stress. Liver and blood samples were taken in the control condition and after heating. Hepcidin expression did not differ between young and old rats in the control condition, despite higher levels of hepatic iron and IL-6 mRNA in the latter. Following heat stress, pSTAT3 increased in both groups, but C/EBPα and hepcidin mRNA increased only in old rats. Despite this, serum iron decreased in both age groups 2 h after heat stress, suggesting hepcidin-independent hypoferremia in the young rats. The differential regulation of hepcidin between young and old rats after hyperthermia may be due to the enhanced expression of C/EBPα protein in old rats. These data support the concept of "inflammaging" and suggest that repeated exposures to stressors may contribute to the development of anemia in older individuals.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington College, Abington, PA, United States; Department of Health and Human Physiology, The University of Iowa, Iowa City, IA 52242, United States.
| | | | | |
Collapse
|
31
|
Bloomer SA, Han O, Kregel KC, Brown KE. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress. Blood Cells Mol Dis 2013; 52:19-26. [PMID: 23900040 DOI: 10.1016/j.bcmd.2013.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 01/24/2023]
Abstract
An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress. Young (6 mo) and old (24 mo) Fischer 344 rats were exposed to two heating bouts separated by 24 h. Livers were harvested after the second heat stress, and protein levels of the iron import protein, transferrin receptor-1 (TFR1), and the iron export protein, ferroportin (Fpn) were determined by immunoblot. In the nonheated condition, old rats had lower TFR1 expression, and higher Fpn expression. After heat stress, TFR1 declined in the old rats, and iron chelation studies demonstrated that this decline was dependent on a hyperthermia-induced increase in iron. TFR1 did not change in the young rats after heat stress. Since TFR1 is inversely regulated by iron, our results suggest that the increase in intracellular iron with aging and heat stress lower TFR1 expression. Fpn expression increased in both age groups after heat stress, but this response was delayed in old rats. This delay in the induction of an iron exporter suggests a mechanism for the increase in hepatic iron and oxidative injury after heat stress in aged organisms.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington College, Abington, PA 19001, USA.
| | | | | | | |
Collapse
|
32
|
Deschemin JC, Vaulont S. Role of hepcidin in the setting of hypoferremia during acute inflammation. PLoS One 2013; 8:e61050. [PMID: 23637785 PMCID: PMC3634066 DOI: 10.1371/journal.pone.0061050] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The anemia of chronic disease (also called anemia of inflammation) is an acquired disorder of iron homeostasis associated with infection, malignancy, organ failure, trauma, or other causes of inflammation. It is now widely accepted that induction of hepcidin expression in response to inflammation might explain the characteristic hypoferremia associated with this condition. To determine the role of hepcidin in acute inflammation and the regulation of its receptor, the iron exporter, ferroportin, wild-type, heterozygote and hepcidin knockout mice (Hepc−/−) were challenged with sublethal doses of lipopolysaccharide (LPS). Six hours after injection, ferroportin mRNA and protein levels were assessed in the duodenum and the spleen and plasma iron was determined. Our results demonstrate that hepcidin is crucial, though not the sole mediator of LPS-mediated acute hypoferremia, and also that hepcidin major contribution relies on decreased ferroportin protein levels found in the spleen. Furthermore, we establish that LPS-mediated repression of the membrane iron transporter DMT1 and oxidoreductase Dcytb in the duodenum is independent of hepcidin. Finally, our results in the hepc+/− mice indicate that elevated hepcidin gene expression is not a prerequisite for the setting of hypoferremia during early inflammatory response, and they highlight the intimate crosstalk between inflammatory and iron-responsive pathways for the control of hepcidin.
Collapse
Affiliation(s)
- Jean-Christophe Deschemin
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Faculté de Médecine Cochin Port Royal, Paris, France
- Centre National de la Recherche Scientifique, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sophie Vaulont
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Faculté de Médecine Cochin Port Royal, Paris, France
- Centre National de la Recherche Scientifique, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Huang S, Miao R, Zhou Z, Wang T, Liu J, Liu G, Chen YE, Xin HB, Zhang J, Fu M. MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cell Signal 2013; 25:1228-34. [PMID: 23422584 DOI: 10.1016/j.cellsig.2013.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/03/2013] [Accepted: 02/08/2013] [Indexed: 12/20/2022]
Abstract
Septic shock is one of leading causes of morbidity and mortality in hospital patients. However, genetic factors predisposing to septic shock are not fully understood. Our previous work showed that MCP-induced protein 1 (MCPIP1) was induced by lipopolysaccharides (LPSs), which then negatively regulates LPS-induced inflammatory signaling in vitro. Here we report that although MCPIP1 was induced by various toll-like receptor (TLR) ligands in macrophages, MCPIP1-deficient mice are extremely susceptible to TLR4 ligand (LPS)-induced septic shock and death, but not to the TLR2, 3, 5 and 9 ligands-induced septic shock. Consistently, LPS induced tumor necrosis factor α (TNFα) production in MCPIP1-deficient mice was 20-fold greater than that in their wild-type littermates. Further analysis revealed that MCPIP1-deficient mice developed severe acute lung injury after LPS injection and JNK signaling was highly activated in MCPIP1-deficient lungs after LPS stimulation. Finally, macrophage-specific MCPIP1 transgenic mice were partially protected from LPS-induced septic shock, suggesting that inflammatory cytokines from sources other than macrophages may significantly contribute to the pathogenesis of LPS-induced septic shock. Taken together, these results suggest that MCPIP1 selectively suppresses TLR4 signaling pathway and protects mice from LPS-induced septic shock.
Collapse
Affiliation(s)
- Shengping Huang
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|