1
|
Sun L, Hu P, Yang H, Ren J, Hu R, Wu S, Wang Y, Du Y, Zheng J, Wang F, Gao H, Yan J, Yuan YF, Guan XY, Xiao J, Li Y. ADARp110 promotes hepatocellular carcinoma progression via stabilization of CD24 mRNA. Proc Natl Acad Sci U S A 2025; 122:e2409724122. [PMID: 39808660 PMCID: PMC11761664 DOI: 10.1073/pnas.2409724122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific Adarp110 knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC. It creates an immunosuppressive microenvironment by inhibiting total immune cells, particularly cytotoxic GZMB+CD8+ T cells infiltration, while augmenting Treg cells, MDSCs, and exhausted CD8+ T cells ratios. Mechanistically, ADARp110 interacts with SNRPD3 and RNPS1 to stabilize CD24 mRNA by inhibiting STAU1-mediated mRNA decay. CD24 protects HCC cells from two indispensable mechanisms: macrophage phagocytosis and oxidative stress. Genetic knockdown or monoclonal antibody treatment of CD24 inhibits ADARp110-overexpressing tumor growth. Our findings unveil different mechanisms for ADARp110 modulation of tumor immune microenvironment and identify CD24 as a promising therapeutic target for HCCs.
Collapse
Affiliation(s)
- Liangzhan Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong999077, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong999077, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen518067, China
- Peking University Shenzhen Graduate School, Peking University, Shenzhen518055, China
| | - Pengchao Hu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Oncology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang441000, China
| | - Hui Yang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jun Ren
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Rong Hu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Shasha Wu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanchen Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| | - Yuyang Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jingyi Zheng
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| | - Fenfen Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Han Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jingsong Yan
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou510060, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong999077, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong999077, China
| | - Jia Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Zhuhai519000, China
| | - Yan Li
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| |
Collapse
|
2
|
Lajiness JD, Bloodworth JC, Blankenship RL, Kosins AE, Cook-Mills JM. Dendritic cell-specific deletion of PKCδ in offspring of allergic mothers prevents the predisposition for development of allergic lung inflammation in offspring. J Leukoc Biol 2024; 116:1432-1445. [PMID: 39312649 PMCID: PMC11599121 DOI: 10.1093/jleuko/qiae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024] Open
Abstract
In humans and in mice, maternal allergy predisposes offspring to development of allergy. In murine models, increased levels of maternal β-glucosylceramides are both necessary and sufficient for the development of allergic predisposition in offspring. Furthermore, increased numbers of CD11b+ dendritic cell subsets in the offspring of allergic mothers are associated with allergic predisposition. In vitro, β-glucosylceramides increase CD11b+ dendritic cell subset numbers through increased PKCδ signaling, but it is not known if enhanced PKCδ signaling in dendritic cells is required in vivo. We demonstrate that dendritic cell-specific deletion of PKCδ prevents the β-glucosylceramide-induced increase in CD11b+ dendritic cell subset numbers both in vitro as well as in vivo in the fetal liver of offspring of mothers injected with β-glucosylceramides. Furthermore, dendritic cell-specific deletion of PKCδ in offspring prevents the maternal allergy-induced increase in CD11b+ dendritic cell subsets and decreases allergen-induced interleukin-5 and eosinophilia in lungs of offspring. However, loss of PKCδ in dendritic cells did not prevent development of allergen-specific IgE. Our study provides mechanistic insight into the function of PKCδ in the origins of allergic disease beginning in utero as well as in the development of postnatal allergic lung inflammation.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffrey C Bloodworth
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ross L Blankenship
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Allison E Kosins
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Joan M Cook-Mills
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Zheng Z, Chen D, Lv J, Du J, Liu K. Causal effects of plasma metabolites on autoimmune hepatitis (AIH): a bidirectional two-sample mendelian randomization study. Sci Rep 2024; 14:22944. [PMID: 39362997 PMCID: PMC11449928 DOI: 10.1038/s41598-024-74387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune hepatitis(AIH) is a chronic progressive inflammatory liver disease induced by loss of immune tolerance. The role of circulating metabolites in disease pathogenesis is unclear. This study aimed to investigate potential causal links between plasma metabolites and AIH risk by employing a two-sample Mendelian randomization approach. A comprehensive bidirectional two-sample Mendelian randomization analysis was conducted using genome-wide significant variant-metabolite and variant-AIH associations in European ancestry individuals. Various methods assessed causal relationships among 1400 metabolites and AIH, incorporating sensitivity analyses to evaluate pleiotropy and heterogeneity. Fifty-eight metabolites displayed possible associations, including increased AIH risk with genetically predicted higher kynurenine (p = 2.79 × 10- 5, OR: 1.64, 95% CI 1.30-2.07) and a protective effect for the dopamine sulfate ratio (p = 1.06 × 10- 5,OR: 0.62, 95% CI 0.49-0.79). Reciprocal analysis revealed a causal effect of AIH on kynurenine( p = 2.79 × 10- 5, OR: 1.64, 95% CI 1.30-2.07), but not on the dopamine sulfate ratio(p = 0.691, OR: 1.05, 95% CI 0.67-1.64). Our genetics-based approach provides evidence supporting a causal role for specific metabolite levels in AIH risk. The results deliver evidence supporting a causal effect of a specific metabolite ratio(dopamine 4-sulfate/dopamine 3-O-sulfate) on AIH risk. Experimental validation and mechanistic examinations are warranted to confirm findings.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Dahua Chen
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiaming Lv
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juan Du
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaitai Liu
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner J, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 PMCID: PMC11672868 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J. Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NHMRC Ideas Grant to MJH APP2001543
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nicole G. Coufal
- Department of Pediatrics, University of California, San Diego CA 92093, Rady Children’s Hospital, San Diego CA 92123. Sanford Consortium for Regenerative Medicine, San Diego CA 92037
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Jonathan Miner
- Departments of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
5
|
Roučová K, Vopálenský V, Mašek T, Del Llano E, Provazník J, Landry JJM, Azevedo N, Ehler E, Beneš V, Pospíšek M. Loss of ADAR1 protein induces changes in small RNA landscape in hepatocytes. RNA (NEW YORK, N.Y.) 2024; 30:1164-1183. [PMID: 38844344 PMCID: PMC11331409 DOI: 10.1261/rna.080097.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 08/18/2024]
Abstract
In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.
Collapse
Affiliation(s)
- Kristina Roučová
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Václav Vopálenský
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Tomáš Mašek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Edgar Del Llano
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | | | | | | | - Edvard Ehler
- Department of Biology and Environmental Studies, Faculty of Education, Charles University, 116 39 Prague, Czech Republic
| | | | - Martin Pospíšek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
6
|
Gan WL, Ren X, Ng VHE, Ng L, Song Y, Tano V, Han J, An O, Xie J, Ng BYL, Tay DJT, Tang SJ, Shen H, Khare S, Chong KHC, Young DY, Wu B, DasGupta R, Chen L. Hepatocyte-macrophage crosstalk via the PGRN-EGFR axis modulates ADAR1-mediated immunity in the liver. Cell Rep 2024; 43:114400. [PMID: 38935501 DOI: 10.1016/j.celrep.2024.114400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.
Collapse
Affiliation(s)
- Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xi Ren
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vincent Tano
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jinghe Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China
| | - Bryan Y L Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Khare
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, Genome, #02-01, Singapore, Singapore
| | - Kelvin Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Dan Yock Young
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, Genome, #02-01, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Yin X, Mi Y, Wang X, Li Y, Zhu X, Bukhari I, Wang Q, Zheng P, Xue X, Tang Y. Exploration and Validation of Ferroptosis-Associated Genes in ADAR1 Deletion-Induced NAFLD through RNA-seq Analysis. Int Immunopharmacol 2024; 134:112177. [PMID: 38696908 DOI: 10.1016/j.intimp.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/21/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xuecui Yin
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Gastroenterology, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohan Wang
- Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Zhu
- Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingde Wang
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Gastroenterology, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Youcai Tang
- Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury and Henan Provincial Outstanding Overseas Scientists Chronic Liver Injury Workshop, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Gastroenterology, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Zhang L, Huang X, Wang D, Fan C, Jiang H, Xie D. Transcriptomic evaluation of N6-methyladenosine modification can be used to identify differentially gene and immune-related biological processes in TX mice with liver fibrosis. Mol Biol Rep 2024; 51:149. [PMID: 38236359 DOI: 10.1007/s11033-023-09163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification controls the stability, splicing, and translation of mRNA, which is important in the development of illnesses. Wilson's disease (WD) is an autosomal recessive liver copper metabolic disorder that causes liver fibrosis. The role of m6A methylation in WD-induced liver fibrosis development is still unclear. Thus, the goal of this study was to examine the scope of m6A methylation and further explore the potential targets related to WD-induced liver fibrosis. RESULTS A total of 1930 significantly different m6A peaks were found on 1737 mRNAs, of which 993 were hypermethylated and 744 were hypomethylated when comparing normal and WD-induced liver fibrosis mice (n = 3). In parallel, 1261 differentially expressed mRNAs, comprising 557 upregulated and 704 downregulated mRNAs, were found. Overall, 114 mRNAs with significant changes in m6A levels and RNA expression were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 12 hub genes were identified, these genes were mainly enriched in the inflammatory response and immunomodulation, and they are associated with immune cell infiltration. CONCLUSIONS The significant difference in the amount of mRNA m6A modifications indicates that m6A modification is involved in the progression of WD-induced liver fibrosis, and theidentified hub genes are involved in inflammation and immune infiltration. These results may provide insights for subsequent studies on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Lili Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaofeng Huang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dan Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
9
|
Wang L, Duan C, Wu X, Xie J, Zhao X, Si Y, Wu D, Wang Y, Zhao P, Chen J, Yin W, Li J. ADAR1 regulates macrophage polarization and is protective against liver ischemia and reperfusion injury. Immunobiology 2024; 229:152777. [PMID: 38113710 DOI: 10.1016/j.imbio.2023.152777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Liver ischemia and reperfusion injury (LIRI) is a major risk for the poor prognosis of patients receiving liver transplantation. The molecular mechanism involved in LIRI is complex and related to various cellular components. We previously reported that adenosine deaminase acting on RNA 1 (ADAR1) alleviated the allogeneic skin graft rejection by regulating macrophage polarization. However, the regulatory effects of ADAR1 on liver macrophages after LIRI remain largely unknown. In this study, we mainly adopted a mouse model of LIRI and cellular experiments with hypoxia and reoxygenation (HR) treatment to explore the regulatory roles of ADAR1 on liver macrophages under LIRI conditions. We found that IRI caused decreased ADAR1 in liver tissues and remarkable changes of liver macrophage polarization and profiles. ADAR1 supplementation alleviated the pathological injury caused by IRI and accelerated the activation of M2 macrophages in the liver of IRI mice. Increased hypoxia duration reduced ADAR1 expression levels in murine RAW264.7 macrophages at the transcriptional level. Further overexpression of ADAR1 significantly increased the expressions of anti-inflammatory cytokines and promoted M2 polarization of macrophages under HR exposure. ADAR1 knockdown exhibited opposite effects on macrophage polarization. Hence, ADAR1 promotes the M2 polarization of liver macrophages that may further alleviate LIRI. The protective effects of ADAR1 against LIRI provide a novel insight into the prevention and treatment of LIRI.
Collapse
Affiliation(s)
- Linxiao Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China; College of Life Sciences, Northwest University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiuhua Wu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital, Shanghai, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiaojun Zhao
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yi Si
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dan Wu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yifan Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Peng Zhao
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jijun Chen
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Junjie Li
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Properties of Eugenol in Lipopolysaccharide-Induced Macrophages and Its Role in Preventing β-Cell Dedifferentiation and Loss Induced by High Glucose-High Lipid Conditions. Molecules 2023; 28:7619. [PMID: 38005341 PMCID: PMC10673503 DOI: 10.3390/molecules28227619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is a natural immune response to injury, infection, or tissue damage. It plays a crucial role in maintaining overall health and promoting healing. However, when inflammation becomes chronic and uncontrolled, it can contribute to the development of various inflammatory conditions, including type 2 diabetes. In type 2 diabetes, pancreatic β-cells have to overwork and the continuous impact of a high glucose, high lipid (HG-HL) diet contributes to their loss and dedifferentiation. This study aimed to investigate the anti-inflammatory effects of eugenol and its impact on the loss and dedifferentiation of β-cells. THP-1 macrophages were pretreated with eugenol for one hour and then exposed to lipopolysaccharide (LPS) for three hours to induce inflammation. Additionally, the second phase of NLRP3 inflammasome activation was induced by incubating the LPS-stimulated cells with adenosine triphosphate (ATP) for 30 min. The results showed that eugenol reduced the expression of proinflammatory genes, such as IL-1β, IL-6 and cyclooxygenase-2 (COX-2), potentially by inhibiting the activation of transcription factors NF-κB and TYK2. Eugenol also demonstrated inhibitory effects on the levels of NLRP3 mRNA and protein and Pannexin-1 (PANX-1) activation, eventually impacting the assembly of the NLRP3 inflammasome and the production of mature IL-1β. Additionally, eugenol reduced the elevated levels of adenosine deaminase acting on RNA 1 (ADAR1) transcript, suggesting its role in post-transcriptional mechanisms that regulate inflammatory responses. Furthermore, eugenol effectively decreased the loss of β-cells in response to HG-HL, likely by mitigating apoptosis. It also showed promise in suppressing HG-HL-induced β-cell dedifferentiation by restoring β-cell-specific biomarkers. Further research on eugenol and its mechanisms of action could lead to the development of therapeutic interventions for inflammatory disorders and the preservation of β-cell function in the context of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.); (O.K.)
| |
Collapse
|
11
|
Cai D, Fraunfelder M, Fujise K, Chen SY. ADAR1 exacerbates ischemic brain injury via astrocyte-mediated neuron apoptosis. Redox Biol 2023; 67:102903. [PMID: 37801857 PMCID: PMC10570147 DOI: 10.1016/j.redox.2023.102903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Astrocytes affect stroke outcomes by acquiring functionally dominant phenotypes. Understanding molecular mechanisms dictating astrocyte functional status after brain ischemia/reperfusion may reveal new therapeutic strategies. Adenosine deaminase acting on RNA (ADAR1), an RNA editing enzyme, is not normally expressed in astrocytes, but highly induced in astrocytes in ischemic stroke lesions. The expression of ADAR1 steeply increased from day 1 to day 7 after middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. ADAR1 deficiency markedly ameliorated the volume of the cerebral infarction and neurological deficits as shown by the rotarod and cylinder tests, which was due to the reduction of the numbers of activated astrocytes and microglia. Surprisingly, ADAR1 was mainly expressed in astrocytes while only marginally in microglia. In primary cultured astrocytes, ADAR1 promoted astrocyte proliferation via phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, ADAR1 deficiency inhibited brain cell apoptosis in mice with MCAO as well as in activated astrocyte-conditioned medium-induced neurons in vitro. It appeared that ADAR1 induces neuron apoptosis by secretion of IL-1β, IL-6 and TNF-α from astrocytes through the production of reactive oxygen species. These results indicated that ADAR1 is a novel regulator promoting the proliferation of the activated astrocytes following ischemic stroke, which produce various inflammatory cytokines, leading to neuron apoptosis and worsened ischemic stroke outcome.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mikayla Fraunfelder
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
12
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
13
|
Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules 2023; 28:6487. [PMID: 37764262 PMCID: PMC10534668 DOI: 10.3390/molecules28186487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.
Collapse
Affiliation(s)
| | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| |
Collapse
|
14
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
15
|
van Toorn R, van Niekerk M, Moosa S, Goussard P, Solomons R. Adar-associated Aicardi Goutières syndrome in a child with bilateral striatal necrosis and recurrent episodes of transaminitis. BMJ Case Rep 2023; 16:e252436. [PMID: 36914176 PMCID: PMC10016292 DOI: 10.1136/bcr-2022-252436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/16/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) refers to a group of genetic diseases characterised by severe inflammatory encephalopathy that usually present within the first year of life, resulting in progressive loss of cognition, spasticity, dystonia and motor disability. Pathogenic variants in the adenosine deaminase acting on RNA (Adar) enzyme have been linked to AGS type 6 (AGS6, Online Mendelian Inheritance in Man (OMIM) 615010). In knockout mouse models, loss of Adar activates the interferon (IFN) pathway and causes autoimmune pathogenesis in the brain or liver. Bilateral striatal necrosis (BSN) has previously been reported in case series of children with biallelic pathogenic variants in Adar We describe a unique, previously unreported case of a child with AGS6, with clinical manifestations of BSN and recurrent transient episodes of transaminitis. The case highlights the importance of Adar in protecting the brain and liver from IFN-induced inflammation. Adar-related disease should therefore be considered in the differential diagnosis of BSN accompanied by recurrent episodes of transaminitis.
Collapse
Affiliation(s)
- Ronald van Toorn
- Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Magriet van Niekerk
- Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shahida Moosa
- Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Pierre Goussard
- Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Regan Solomons
- Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
16
|
Cai D, Sun C, Murashita T, Que X, Chen SY. ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circ Res 2023; 132:e78-e93. [PMID: 36688311 PMCID: PMC10316962 DOI: 10.1161/circresaha.122.321722] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKβ, resulting in an increased IKKβ (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Takashi Murashita
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
17
|
Rupani DN, Thege FI, Chandra V, Rajaei H, Cowan RW, Wörmann SM, Le Roux O, Malaney P, Manning SL, Hashem J, Bailey-Lundberg J, Rhim AD, McAllister F. Adar1 deletion causes degeneration of the exocrine pancreas via Mavs-dependent interferon signaling. Development 2023; 150:dev201097. [PMID: 36458554 PMCID: PMC10110501 DOI: 10.1242/dev.201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-binding protein that deaminates adenosine (A) to inosine (I). A-to-I editing alters post-transcriptional RNA processing, making ADAR1 a crucial regulator of gene expression. Consequently, Adar1 has been implicated in organogenesis. To determine the role of Adar1 in pancreatic development and homeostasis, we conditionally deleted Adar1 from the murine pancreas (Ptf1aCre/+; Adar1Fl/Fl). The resulting mice had stunted growth, likely due to malabsorption associated with exocrine pancreatic insufficiency. Analyses of pancreata revealed ductal cell expansion, heightened interferon-stimulated gene expression and an increased influx of immune cells. Concurrent deletion of Adar1 and Mavs, a signaling protein implicated in the innate immune pathway, rescued the degenerative phenotype and resulted in normal pancreatic development. Taken together, our work suggests that the primary function of Adar1 in the pancreas is to prevent aberrant activation of the Mavs-mediated innate immune pathway, thereby maintaining pancreatic homeostasis.
Collapse
Affiliation(s)
- Dhwani N. Rupani
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fredrik I. Thege
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hajar Rajaei
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Cowan
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonja M. Wörmann
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara L. Manning
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jack Hashem
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer Bailey-Lundberg
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Sciences Center, Houston, TX 77030, USA
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, Houston, TX 77030, USA
| | - Andrew D. Rhim
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Sun C, Cai D, Chen SY. ADAR1 promotes systemic sclerosis via modulating classic macrophage activation. Front Immunol 2022; 13:1051254. [PMID: 36532023 PMCID: PMC9751044 DOI: 10.3389/fimmu.2022.1051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction As a multisystem autoimmune disorder disease, systemic sclerosis (SSc) is characterized by inflammation and fibrosis in the skin and other internal organs. However, mechanisms underlying the inflammatory response that drives the development of SSc remain largely unknown. Methods ADAR1 heterozygous knockout (AD1+/-) mice and myeloid-specific ADAR1 knockout mice were used to determine the function of ADAR1 in SSc. Histopathological analyses and western blot confirmed the role of ADAR1 in bleomycin-induced increased skin and lung fibrosis. Results In this study, we discover that adenosine deaminase acting on RNA (ADAR1), a deaminase converting adenosine to inosine (i.e., RNA editing) in RNA, is abundantly expressed in macrophages in the early stage of bleomycin-induced SSc. Importantly, ADAR1 is essential for SSc formation and indispensable for classical macrophage activation because ADAR1 deficiency in macrophages significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammation mediator inducible NO synthase (iNOS) and IL-1β in macrophages. Mechanistically, deletion of ADAR1 blocks macrophage activation through diminishing NF-κB signaling. Discussion Our studies reveal that ADAR1 promotes macrophage activation in the onset of SSc. Thus, targeting ADAR1 could be a potential novel therapeutic strategy for treating sclerosis formation.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
19
|
Xiang R, Liu Y, Fan L, Jiang B, Wang F. RNA adenosine deaminase (ADAR1) alleviates high-fat diet-induced nonalcoholic fatty liver disease by inhibiting NLRP3 inflammasome. J Transl Med 2022; 102:1088-1100. [PMID: 36775349 DOI: 10.1038/s41374-022-00805-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic inflammatory disease in which nucleotide-binding domain of leucine-rich repeat protein 3 (NLRP3) inflammasome plays an important role. The present research was aimed to explore the protective function of ADAR1, an RNA editing enzyme, against inflammatory damages in high-fat diet (HFD)-induced NAFLD through inhibiting NLRP3 inflammasome and subsequent inflammation. A total of 30 patients with NAFLD were investigated, and ADAR1 mRNA expression in peripheral blood monocytes surveyed. The in vivo study used lentivirus to explore the function of ADAR1 overexpression in the HFD-induced mouse model of NAFLD. The in vitro study used lentivirus and siRNA to explore the function of ADAR1 on the NLRP3 inflammasome activation in THP-1 cells. Results shown that the ADAR1 expression was upregulated in NAFLD patients in comparison to healthy controls. In vivo, the upregulation of ADAR1 impaired NLRP3 inflammasome activation and alleviated liver disease in HFD mice in comparison to the control group. Moreover, ADAR1 overexpression attenuated NLRP3 inflammasome in lipopolysaccharide (LPS)+ palmitic acid (PA)-induced THP-1 cells, while ADAR1 knockdown increased the NLRP3 inflammasome activation. Furthermore, we speculated that c-Jun may participate in ADAR1's inhibition of NLRP3 inflammasome. Our results suggested that ADAR1 is a potential treatment target for NAFLD via regulating the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Rong Xiang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Yuxing Liu
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Boyue Jiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Fang Wang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China. .,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
20
|
Biomarkers in Liquid Biopsies for Prediction of Early Liver Metastases in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14194605. [PMID: 36230528 PMCID: PMC9562670 DOI: 10.3390/cancers14194605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies with poor survival rates. Only 20% of the patients are eligible for R0-surgical resection, presenting with early relapses, mainly in the liver. PDAC patients with hepatic metastases have a worse outcome compared to patients with metastases at other sites. Early detection of hepatic spread bears the potential to improve patient outcomes. Thus, this study sought for serum-based perioperative biomarkers allowing discrimination of early (EHMS ≤ 12 months) and late hepatic metastatic spread (LHMS > 12 months). Serum samples from 83 resectable PDAC patients were divided into EHMS and LHMS and analyzed for levels of inflammatory mediators by LEGENDplexTM, which was validated and extended by Olink® analysis. CA19-9 serum levels served as control. Results were correlated with clinicopathological data. While serum CA19-9 levels were comparable, Olink® analysis confirmed distinct differences between both groups. It revealed significantly elevated levels of factors involved in chemotaxis and migration of immune cells, immune activity, and cell growth in serum of LHMS-patients. Overall, Olink® analysis identified a comprehensive biomarker panel in serum of PDAC patients that could provide the basis for predicting LHMS. However, further studies with larger cohorts are required for its clinical translation.
Collapse
|
21
|
Cao Z, Yang F, Lin Y, Shan J, Cao H, Zhang C, Zhuang Y, Xing C, Hu G. Selenium Antagonizes Cadmium-Induced Inflammation and Oxidative Stress via Suppressing the Interplay between NLRP3 Inflammasome and HMGB1/NF-κB Pathway in Duck Hepatocytes. Int J Mol Sci 2022; 23:ijms23116252. [PMID: 35682929 PMCID: PMC9181349 DOI: 10.3390/ijms23116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 μM) and/or Se (0.4 μM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chenghong Xing
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| | - Guoliang Hu
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| |
Collapse
|
22
|
Sáenz JB, Vargas N, Cho CJ, Mills JC. Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCI Insight 2022; 7:153511. [PMID: 35132959 PMCID: PMC8855806 DOI: 10.1172/jci.insight.153511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
Cells recognize both foreign and host-derived double-stranded RNA (dsRNA) via a signaling pathway that is usually studied in the context of viral infection. It has become increasingly clear that the sensing and handling of endogenous dsRNA is also critical for cellular differentiation and development. The adenosine RNA deaminase, ADAR1, has been implicated as a central regulator of the dsRNA response, but how regulation of the dsRNA response might mediate cell fate during injury and whether such signaling is cell intrinsic remain unclear. Here, we show that the ADAR1-mediated response to dsRNA was dramatically induced in 2 distinct injury models of gastric metaplasia. Mouse organoid and in vivo genetic models showed that ADAR1 coordinated a cell-intrinsic, epithelium-autonomous, and interferon signaling–independent dsRNA response. In addition, dsRNA accumulated within a differentiated epithelial population (chief cells) in mouse and human stomachs as these cells reprogrammed to a proliferative, reparative (metaplastic) state. Finally, chief cells required ADAR1 to reenter the cell cycle during metaplasia. Thus, cell-intrinsic ADAR1 signaling is critical for the induction of metaplasia. Because metaplasia increases cancer risk, these findings support roles for ADAR1 and the response to dsRNA in oncogenesis.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nancy Vargas
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine.,Department of Pathology and Immunology; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Soundararajan R, Varanasi SM, Patil SS, Srinivas S, Hernández-Cuervo H, Czachor A, Bulkhi A, Fukumoto J, Galam L, Lockey RF, Kolliputi N. Lung fibrosis is induced in ADAR2 overexpressing mice via HuR-induced CTGF signaling. FASEB J 2022; 36:e22143. [PMID: 34985777 PMCID: PMC10395739 DOI: 10.1096/fj.202101511r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.
Collapse
Affiliation(s)
- Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sai Manasa Varanasi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sriraja Srinivas
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Alexander Czachor
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Adeeb Bulkhi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Internal Medicine, College of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
24
|
Guo X, Liu S, Yan R, Nguyen V, Zenati M, Billiar TR, Wang Q. ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway. Life Sci Alliance 2022; 5:5/3/e202101191. [PMID: 34969816 PMCID: PMC8739526 DOI: 10.26508/lsa.202101191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
The RNA-sensing signaling pathway has been well studied as an essential antiviral mechanism of innate immunity. However, its role in non-infected cells is yet to be thoroughly characterized. Here, we demonstrated that the RNA sensing signaling pathway also reacts to the endogenous cellular RNAs in endothelial cells (ECs), and this reaction is regulated by the RNA-editing enzyme ADAR1. Cellular RNA sequencing analysis showed that EC RNAs endure extensive RNA editing, especially in the RNA transcripts of short interspersed nuclear elements. The EC-specific deletion of ADAR1 dramatically reduced the editing level on short interspersed nuclear element RNAs, resulting in newborn death in mice with damage evident in multiple organs. Genome-wide gene expression analysis revealed a prominent innate immune activation with a dramatically elevated expression of interferon-stimulated genes. However, blocking the RNA sensing signaling pathway by deletion of the cellular RNA receptor MDA-5 prevented interferon-stimulated gene expression and rescued the newborn mice from death. This evidence demonstrated that the RNA-editing/RNA-sensing signaling pathway dramatically modulates EC function, representing a novel molecular mechanism for the regulation of EC functions.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rose Yan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vy Nguyen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA .,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,VA Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Mohamad MI, Desoky IA, Ahmed Zaki K, Sadek DR, Kamal Kassim S, Abdel-Wahab Mohamed D. Pterostilbene ameliorates the disrupted Adars expression and improves liver fibrosis in DEN-induced liver injury in Wistar rats: A novel potential effect. Gene 2021; 813:146124. [PMID: 34921950 DOI: 10.1016/j.gene.2021.146124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
The knowledge of RNA editing modifications and its subsequent proteomic diversity in is still limited and represents only the tip of the iceberg. Adenosine to inosine (A-to-I) RNA editing is the most prevalent in RNA editome with a rising role for ADARgene family as a major regulator of the dynamic landscape of RNA editing. This study aimed at evaluating the potential chemopreventive effects of the epigenetic regulator "pterostilbene" in diethylnitrosamine (DEN)-exposedrat model. Consequently, the hepatic Adars expression was investigated as a possible mechanism for mediation of the putative pterostilbene-induced chemopreventive effect. The effects of administration of pterostilbene were investigated on the structural changes, immunohistochemical staining, liver function test, serum alpha feto-protein (AFP), IL-6, and hepatic Adar1 and Adar2 relative gene expression at the beginning and at the 6th week of the study. Pterostilbene attenuated DEN-induced liver injury, improves hepatocyte parrafin-1 (Hep Par-1), decreases heat shock protein 70 (HSP70), improved AFP, serum albumin, transaminases, IL-6 with alleviation of disturbed hepatic Adar1 and Adar2 expression. This study spotlights the role of pterostilbene in attenuation of DEN-induced liver injury which could be mediated, at least partially, through the alleviation of the aberrant expression of Adar enzymes. Yet, more in-depth studies are needed to further elucidate the molecular mechanisms underlying the effects of pterostilbene on RNA editing enzymes.
Collapse
Affiliation(s)
- Magda I Mohamad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Islam A Desoky
- Department of Biochemistry, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Kamelia Ahmed Zaki
- Department of Biochemistry, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Doaa R Sadek
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar Kamal Kassim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dalia Abdel-Wahab Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Wang L, Sun Y, Song X, Wang Z, Zhang Y, Zhao Y, Peng X, Zhang X, Li C, Gao C, Li N, Gao L, Liang X, Wu Z, Ma C. Hepatitis B virus evades immune recognition via RNA adenosine deaminase ADAR1-mediated viral RNA editing in hepatocytes. Cell Mol Immunol 2021; 18:1871-1882. [PMID: 34253859 PMCID: PMC8322072 DOI: 10.1038/s41423-021-00729-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
HBV is considered as a "stealth" virus that does not invoke interferon (IFN) responses; however, the mechanisms by which HBV bypasses innate immune recognition are poorly understood. In this study, we identified adenosine deaminases acting on RNA 1 (ADAR1), which is a key factor in HBV evasion from IFN responses in hepatocytes. Mechanically, ADAR1 interacted with HBV RNAs and deaminated adenosine (A) to generate inosine (I), which disrupted host immune recognition and thus promoted HBV replication. Loss of ADAR1 or its deficient deaminase activity promoted IFN responses and inhibited HBV replication in hepatocytes, and blocking the IFN signaling pathways released the inhibition of HBV replication caused by ADAR1 deficiency. Notably, the HBV X protein (HBx) transcriptionally promoted ADAR1 expression to increase the threshold required to trigger intrinsic immune activation, which in turn enhanced HBV escape from immune recognition, leading to persistent infection. Supplementation with 8-azaadenosine, an ADAR1 inhibitor, efficiently enhanced liver immune activation to promote HBV clearance in vivo and in vitro. Taken together, our results delineate a molecular mechanism by which HBx promotes ADAR1-derived HBV immune escape and suggest a targeted therapeutic intervention for HBV infection.
Collapse
Affiliation(s)
- Liyuan Wang
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Yang Sun
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Ying Zhao
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Nailin Li
- Clinical Pharmacology Group, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China.
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China.
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China.
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
27
|
Aicardi-Goutières syndrome-associated mutation at ADAR1 gene locus activates innate immune response in mouse brain. J Neuroinflammation 2021; 18:169. [PMID: 34332594 PMCID: PMC8325854 DOI: 10.1186/s12974-021-02217-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aicardi-Goutières syndrome (AGS) is a severe infant or juvenile-onset autoimmune disease characterized by inflammatory encephalopathy with an elevated type 1 interferon-stimulated gene (ISG) expression signature in the brain. Mutations in seven different protein-coding genes, all linked to DNA/RNA metabolism or sensing, have been identified in AGS patients, but none of them has been demonstrated to activate the IFN pathway in the brain of an animal. The molecular mechanism of inflammatory encephalopathy in AGS has not been well defined. Adenosine Deaminase Acting on RNA 1 (ADAR1) is one of the AGS-associated genes. It carries out A-to-I RNA editing that converts adenosine to inosine at double-stranded RNA regions. Whether an AGS-associated mutation in ADAR1 activates the IFN pathway and causes autoimmune pathogenesis in the brain is yet to be determined. Methods Mutations in the ADAR1 gene found in AGS patients were introduced into the mouse genome via CRISPR/Cas9 technology. Molecular activities of the specific p.K999N mutation were investigated by measuring the RNA editing levels in brain mRNA substrates of ADAR1 through RNA sequencing analysis. IFN pathway activation in the brain was assessed by measuring ISG expression at the mRNA and protein level through real-time RT-PCR and Luminex assays, respectively. The locations in the brain and neural cell types that express ISGs were determined by RNA in situ hybridization (ISH). Potential AGS-related brain morphologic changes were assessed with immunohistological analysis. Von Kossa and Luxol Fast Blue staining was performed on brain tissue to assess calcification and myelin, respectively. Results Mice bearing the ADAR1 p.K999N were viable though smaller than wild type sibs. RNA sequencing analysis of neuron-specific RNA substrates revealed altered RNA editing activities of the mutant ADAR1 protein. Mutant mice exhibited dramatically elevated levels of multiple ISGs within the brain. RNA ISH of brain sections showed selective activation of ISG expression in neurons and microglia in a patchy pattern. ISG-15 mRNA was upregulated in ADAR1 mutant brain neurons whereas CXCL10 mRNA was elevated in adjacent astroglia. No calcification or gliosis was detected in the mutant brain. Conclusions We demonstrated that an AGS-associated mutation in ADAR1, specifically the p.K999N mutation, activates the IFN pathway in the mouse brain. The ADAR1 p.K999N mutant mouse replicates aspects of the brain interferonopathy of AGS. Neurons and microglia express different ISGs. Basal ganglia calcification and leukodystrophy seen in AGS patients were not observed in K999N mutant mice, indicating that development of the full clinical phenotype may need an additional stimulus besides AGS mutations. This mutant mouse presents a robust tool for the investigation of AGS and neuroinflammatory diseases including the modeling of potential “second hits” that enable severe phenotypes of clinically variable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02217-9.
Collapse
|
28
|
Malik TN, Doherty EE, Gaded VM, Hill TM, Beal PA, Emeson RB. Regulation of RNA editing by intracellular acidification. Nucleic Acids Res 2021; 49:4020-4036. [PMID: 33721028 PMCID: PMC8053123 DOI: 10.1093/nar/gkab157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic deamination of adenosine-to-inosine (A-to-I) by RNA editing is a widespread post-transcriptional modification catalyzed by the adenosine deaminase acting on RNA (ADAR) family of proteins. ADAR-mediated RNA editing modulates cellular pathways involved in innate immunity, RNA splicing, RNA interference, and protein recoding, and has been investigated as a strategy for therapeutic intervention of genetic disorders. Despite advances in basic and translational research, the mechanisms regulating RNA editing are poorly understood. Though several trans-acting regulators of editing have been shown to modulate ADAR protein expression, previous studies have not identified factors that modulate ADAR catalytic activity. Here, we show that RNA editing increases upon intracellular acidification, and that these effects are predominantly explained by both enhanced ADAR base-flipping and deamination rate at acidic pH. We also show that the extent of RNA editing increases with the reduction in pH associated with conditions of cellular hypoxia.
Collapse
Affiliation(s)
- Turnee N Malik
- Training Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Erin E Doherty
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Vandana M Gaded
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Theodore M Hill
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Ronald B Emeson
- Training Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O'Connell MA. ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 2021; 46:758-771. [PMID: 33736931 DOI: 10.1016/j.tibs.2021.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.
Collapse
Affiliation(s)
- Jaclyn Quin
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| |
Collapse
|
30
|
Kurkowiak M, Arcimowicz Ł, Chruściel E, Urban-Wójciuk Z, Papak I, Keegan L, O'Connell M, Kowalski J, Hupp T, Marek-Trzonkowska N. The effects of RNA editing in cancer tissue at different stages in carcinogenesis. RNA Biol 2021; 18:1524-1539. [PMID: 33593231 PMCID: PMC8582992 DOI: 10.1080/15476286.2021.1877024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification observed in normal physiological processes and often aberrant in diseases including cancer. RNA editing changes the sequences of mRNAs, making them different from the source DNA sequence. Edited mRNAs can produce editing-recoded protein isoforms that are functionally different from the corresponding genome-encoded protein isoforms. The major type of RNA editing in mammals occurs by enzymatic deamination of adenosine to inosine (A-to-I) within double-stranded RNAs (dsRNAs) or hairpins in pre-mRNA transcripts. Enzymes that catalyse these processes belong to the adenosine deaminase acting on RNA (ADAR) family. The vast majority of knowledge on the RNA editing landscape relevant to human disease has been acquired using in vitro cancer cell culture models. The limitation of such in vitro models, however, is that the physiological or disease relevance of results obtained is not necessarily obvious. In this review we focus on discussing in vivo occurring RNA editing events that have been identified in human cancer tissue using samples surgically resected or clinically retrieved from patients. We discuss how RNA editing events occurring in tumours in vivo can identify pathological signalling mechanisms relevant to human cancer physiology which is linked to the different stages of cancer progression including initiation, promotion, survival, proliferation, immune escape and metastasis.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Liam Keegan
- CEITEC Masaryk University, Brno, CZ, Czech Republic
| | | | - Jacek Kowalski
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland.,Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ted Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland.,University of Edinburgh, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
31
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
32
|
Wang XL, Yan R, Zhang Z, Cong GZ, Yi ZJ, Leng YP, Chen AF. Endothelial cell-specific deficiency of the adenosine deaminase ADAR1 aggravates LPS-induced lung injury in mice via an MDA5-independent pathway. FEBS Lett 2020; 594:2182-2182. [PMID: 32049361 DOI: 10.1002/1873-3468.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) has been shown to participate in the regulation of endothelial cells (ECs), as well as local and systemic inflammatory responses. Here, we find that bacterial lipopolysaccharide (LPS)-induced upregulation of ADAR1 in lung ECs is impaired in aged mice, an animal model with high rates of sepsis and mortality. Endothelial cell-specific ADAR1 knockout (ADAR1ECKO ) mice suffer from higher mortality rates, aggravated lung injury, and increased vascular permeability under LPS challenge. In primary ADAR1 knockout ECs, expression of the melanoma differentiation-associated gene 5 (MDA5), a downstream effector of ADAR1, is significantly elevated. MDA5 knockout completely rescues the postnatal offspring death of ADAR1ECKO mice. However, there is no reduction in mortality or apoptosis in lung cells of ADAR1ECKO /MDA5-/- mice challenged with LPS, indicating the involvement of an MDA5-independent mechanism in this process.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yan
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhen Zhang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guang-Zhi Cong
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhong-Jie Yi
- Department of Hepatobiliary Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi-Ping Leng
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
- Institute for Cardiovascular Development and Regeneration, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
33
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
34
|
Jiang Y, Wang Z, Chen X, Wang W, Wang X. ADAR1 silencing-induced HUVEC apoptosis is mediated by FGFR2 under hypoxia stress. Drug Des Devel Ther 2018; 12:4181-4189. [PMID: 30573948 PMCID: PMC6292393 DOI: 10.2147/dddt.s181312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The adenosine deaminase acting on RNA 1 (ADAR1) specifically deaminates adenosine to inosine in double-stranded RNA (dsRNA). Emerging evidence indicated that under hypoxia condition, such as tumor microenvironment, ADAR1 level was increased. Interestingly, we found FGFR2 was also increased under hypoxia stress. The purpose of this study was to investigate the regulation mechanism of ADAR1 and the potential role of ADAR1–FGFR2 axis in cell proliferation and apoptosis. Methods Using human umbilical vein endothelial cells as cellular model, we explored the function of ADAR1 in regulating cell survival. Results We found manipulation of FGFR2 activity could override the cellular effect of ADAR1, suggesting FGFR2 could be a potential effector of ADAR1. Moreover, our results revealed that PI3K-Akt pathway was involved in ADAR1–FGFR2 axis-induced cell proliferation. Conclusion In summary, this study supported the notion that ADAR1 could play a role in tumor cell proliferation, which was mediated by FGFR2.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Zhancheng Wang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Xu Chen
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Wei Wang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Xiaowei Wang
- Shanghai Weiang Info Tech Ltd., Shanghai 200233, China
| |
Collapse
|
35
|
ADAR1 affects HCV infection by modulating innate immune response. Antiviral Res 2018; 156:116-127. [PMID: 29906476 DOI: 10.1016/j.antiviral.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) is a globally prevalent infectious pathogen. As many as 80% of people infected with HCV do not control the virus and develop a chronic infection. Response to interferon (IFN) therapy is widely variable in chronic HCV infected patients, suggesting that HCV has evolved mechanisms to suppress and evade innate immunity responsible for its control and elimination. Adenosine deaminase acting on RNA 1 (ADAR1) is a relevant factor in the regulation of the innate immune response. The loss of ADAR1 RNA-editing activity and the resulting loss of inosine bases in RNA are critical in producing aberrant RLR-mediated innate immune response, mediated by RNA sensors MDA5 and RIG-I. Here, we describe ADAR1 role as a regulator of innate and antiviral immune function in HCV infection, both in vitro and in patients. Polymorphisms within ADAR1 gene were found significantly associated to poor clinical outcome to HCV therapy and advanced liver fibrosis in a cohort of HCV and HIV-1 coinfected patients. Moreover, ADAR1 knockdown in primary macrophages and Huh7 hepatoma cells enhanced IFN and IFN stimulated gene expression and increased HCV replication in vitro. Overall, our results demonstrate that ADAR1 regulates innate immune signaling and is an important contributor to the outcome of the HCV virus-host interaction. ADAR1 is a potential target to boost antiviral immune response in HCV infection.
Collapse
|
36
|
ADAR1 prevents small intestinal injury from inflammation in a murine model of sepsis. Cytokine 2018; 104:30-37. [PMID: 29414324 DOI: 10.1016/j.cyto.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1), a double-stranded RNA-editing enzyme that converts adenosine (A) to inosine (I), has been identified as a modulator of immune responses. However, the role of ADAR1 in small intestinal homeostasis during sepsis remains unclear. In this study, we examined the role of ADAR1 on intestinal inflammation in a murine model of sepsis. We found that ADAR1 was highly expressed in "septic" macrophages and small intestinal tissue of septic mice. Deletion of ADAR1 in "septic" macrophages led to rapid apoptosis. In addition, suppression of ADAR1 in "septic" macrophages significantly enhanced inflammation, while over-expression of ADAR1 significantly suppressed the level of inflammatory cytokines. Furthermore, suppression of ADAR1 in septic mice significantly enhanced inflammation and intestinal damage, while enhanced ADAR1 expression resulted in reduced damage and inflammation. Finally, over-expression of ADAR1 improved survival of septic mice. In conclusion, we have identified a novel ADAR1 protective effect for maintaining intestinal homeostasis. Our findings may provide a new targeted therapy for sepsis treatment.
Collapse
|
37
|
Feig JL, Mediero A, Corciulo C, Liu H, Zhang J, Perez-Aso M, Picard L, Wilder T, Cronstein B. The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin. PLoS One 2017; 12:e0188135. [PMID: 29145453 PMCID: PMC5690602 DOI: 10.1371/journal.pone.0188135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis. Methods Thioacetamide (100mg/kg IP)-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ) (n = 5–10). Bleomycin (0.25U, SubQ)-treated mice were treated with vehicle or tenofovir (75mg/kg, IP) (n = 5–10). Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA. Results Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1. Conclusions These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases.
Collapse
Affiliation(s)
- Jessica L. Feig
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Aranzazu Mediero
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Carmen Corciulo
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Hailing Liu
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Jin Zhang
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- Department of Immunology and Rheumatology, LiHuili Hospital, Medical School of Ningbo University, Ningbo, China
| | - Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Laura Picard
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Bruce Cronstein
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Medrano LM, Berenguer J, Jiménez-Sousa MA, Aldámiz-Echevarria T, Tejerina F, Diez C, Vigón L, Fernández-Rodríguez A, Resino S. ADAR1 polymorphisms are related to severity of liver fibrosis in HIV/HCV-coinfected patients. Sci Rep 2017; 7:12918. [PMID: 29018269 PMCID: PMC5635123 DOI: 10.1038/s41598-017-12885-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023] Open
Abstract
The adenosine deaminase acting on RNA (ADAR1) gene is an interferon-stimulated gene involved in liver injury protection. Our aim was to analyze the association of polymorphisms within this gene with the severity of liver disease in European HIV/HCV-coinfected patients. We performed a cross-sectional study in 220 patients that underwent a liver biopsy. Five SNPs in the ADAR1 gene (rs1127326, rs1127317, rs1127314, rs1127313, rs2229857) were genotyped by GoldenGate assay. The outcome variables were fibrosis stage and necroinflammatory activity grade by METAVIR-score, aspartate aminotransferase to platelet ratio index (APRI), FIB-4 index, and fibrosis progression rate (FPR). In multivariate analysis, fibrosis progression rate (FPR) (aAMRs = 0.97) decreased in a dose-dependent manner with the presence of rs2229857_T, rs1127313_G, rs1127314_G and rs1127317_G; while rs1127326_T allele had only significant associations with FIB-4 (aAMRs ≤ 0.63) and FPR (aAMRs ≤ 0.97). Moreover, carriers of rs2229857_T, rs1127314_G, rs1127317_G, and rs1127326_T alleles were protected against advanced fibrosis (F ≥ 3) (adjusted ORs (aORs) ≤ 0.44), APRI ≥ 1.5 (aORs ≤ 0.33), and FPR ≥ 0.075 (aORs ≤ 0.45). rs1127313_G carriers showed lower odds of having F ≥ 3 (aORs = 0.39), FIB4 ≥ 3.25 (aOR = 0.22) and FPR ≥ 0.075 (aORs = 0.44). In conclusion, ADAR1 polymorphisms protected against severe liver disease in HIV/HCV-coinfected patients. These results could be used to improve therapeutic decision-making in clinical practice.
Collapse
Affiliation(s)
- Luz M Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María A Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Teresa Aldámiz-Echevarria
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Tejerina
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Diez
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lorena Vigón
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
39
|
Kim KH, Choi S, Zhou Y, Kim EY, Lee JM, Saha PK, Anakk S, Moore DD. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology 2017; 66:498-509. [PMID: 28378930 PMCID: PMC8156739 DOI: 10.1002/hep.29199] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED The nuclear receptors farnesoid X receptor (FXR; NR1H4) and small heterodimer partner (SHP; NR0B2) play crucial roles in bile acid homeostasis. Global double knockout of FXR and SHP signaling (DKO) causes severe cholestasis and liver injury at early ages. Here, we report an unexpected beneficial impact on glucose and fatty acid metabolism in aged DKO mice, which show suppressed body weight gain and adiposity when maintained on normal chow. This phenotype was not observed in single Fxr or Shp knockouts. Liver-specific Fxr/Shp double knockout mice fully phenocopied the DKO mice, with lower hepatic triglyceride accumulation, improved glucose/insulin tolerance, and accelerated fatty acid use. In both DKO and liver-specific Fxr/Shp double knockout livers, these metabolic phenotypes were associated with altered expression of fatty acid metabolism and autophagy-machinery genes. Loss of the hepatic FXR/SHP axis reprogrammed white and brown adipose tissue gene expression to boost fatty acid usage. CONCLUSION Combined deletion of the hepatic FXR/SHP axis improves glucose/fatty acid homeostasis in aged mice, reversing the aging phenotype of body weight gain, increased adiposity, and glucose/insulin tolerance, suggesting a central role of this axis in whole-body energy homeostasis. (Hepatology 2017;66:498-509).
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sungwoo Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Eun Young Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pradip K. Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX,Program in Developmental Biology, Baylor College of Medicine, Houston, TX,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| |
Collapse
|
40
|
Abstract
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver ischemia-reperfusion injury involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver ischemia-reperfusion injury in patients.
Collapse
|
41
|
RNA Editing, ADAR1, and the Innate Immune Response. Genes (Basel) 2017; 8:genes8010041. [PMID: 28106799 PMCID: PMC5295035 DOI: 10.3390/genes8010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.
Collapse
|
42
|
Janus effects of ADAR1 on CVB3-induced viral myocarditis at different infection stages. Int J Cardiol 2016; 223:898-905. [DOI: 10.1016/j.ijcard.2016.08.315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 01/05/2023]
|
43
|
Li L, Qian G, Zuo Y, Yuan Y, Cheng Q, Guo T, Liu J, Liu C, Zhang L, Zheng H. Ubiquitin-dependent Turnover of Adenosine Deaminase Acting on RNA 1 (ADAR1) Is Required for Efficient Antiviral Activity of Type I Interferon. J Biol Chem 2016; 291:24974-24985. [PMID: 27729454 DOI: 10.1074/jbc.m116.737098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) catalyzes RNA editing of cellular and viral RNAs. Besides RNA editing, ADAR1 has recently been shown to play important roles in maintaining the body balance, including tissue homoeostasis, organ development, and autoimmune regulations, by inhibiting both IFN production and subsequent IFN-activated pathways. Accordingly, the question was raised how IFN signaling induced by viral infections overcomes the inhibitory effect of constitutively expressed ADAR1 (ADAR1-P110) to execute efficient antiviral activity. Here we unexpectedly found that IFN signaling promoted Lys48-linked ubiquitination and degradation of ADAR1-P110. Furthermore, we identified the E3 ligase β transducin repeat-containing protein responsible for IFN-mediated ADAR1-P110 down-regulation. IFN signaling promoted the interaction between β transducin repeat-containing protein and ADAR1-P110 as well as protein turnover of ADAR1-P110. Moreover, we found that both lysine 574 and 576 are essential for ADAR1-P110 ubiquitination. Critically, we demonstrated that down-regulation of ADAR1-P110 is required for IFN signaling to execute efficient antiviral activity during viral infections. These findings renew the understanding of the mechanisms by which IFN signaling acts to achieve antiviral functions and may provide potential targets for IFN-based antiviral therapy.
Collapse
Affiliation(s)
- Lemin Li
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Guanghui Qian
- the Institutes of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu Province 215025, China
| | - Yibo Zuo
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Yukang Yuan
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Qiao Cheng
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Tingting Guo
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Jin Liu
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Chang Liu
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Liting Zhang
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| | - Hui Zheng
- From the Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China and
| |
Collapse
|
44
|
Ben-Shoshan SO, Kagan P, Sultan M, Barabash Z, Dor C, Jacob-Hirsch J, Harmelin A, Pappo O, Marcu-Malina V, Ben-Ari Z, Amariglio N, Rechavi G, Goldstein I, Safran M. ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis. RNA Biol 2016; 14:587-602. [PMID: 27362366 DOI: 10.1080/15476286.2016.1203501] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Shirley Oren Ben-Shoshan
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,d Sackler Faculty of Medicine , Tel Aviv University , Israel
| | - Polina Kagan
- b Liver Research Laboratory , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,d Sackler Faculty of Medicine , Tel Aviv University , Israel
| | - Maya Sultan
- b Liver Research Laboratory , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel
| | - Zohar Barabash
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel
| | - Chen Dor
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel
| | - Jasmine Jacob-Hirsch
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,e The Mina and Everard Goodman Faculty of Life Sciences , Bar Ilan University , Ramat Gan , Israel
| | - Alon Harmelin
- f Department of Veterinary Resources , Weizmann Institute of Science , Rehovot , Israel
| | - Orit Pappo
- c Department of Pathology , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel
| | - Victoria Marcu-Malina
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel
| | - Ziv Ben-Ari
- b Liver Research Laboratory , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,d Sackler Faculty of Medicine , Tel Aviv University , Israel
| | - Ninette Amariglio
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,e The Mina and Everard Goodman Faculty of Life Sciences , Bar Ilan University , Ramat Gan , Israel
| | - Gideon Rechavi
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,d Sackler Faculty of Medicine , Tel Aviv University , Israel
| | - Itamar Goldstein
- a Sheba Cancer Research Center , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel.,d Sackler Faculty of Medicine , Tel Aviv University , Israel
| | - Michal Safran
- b Liver Research Laboratory , Chaim Sheba Academic Medical Center, Tel Hashomer , Israel
| |
Collapse
|
45
|
Sun Q, Wang Q, Scott MJ, Billiar TR. Immune Activation in the Liver by Nucleic Acids. J Clin Transl Hepatol 2016; 4:151-7. [PMID: 27350945 PMCID: PMC4913071 DOI: 10.14218/jcth.2016.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 12/17/2022] Open
Abstract
Viral infection in the liver, including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, is a major health problem worldwide, especially in developing countries. The infection triggers a pro-inflammatory response in patients that is crucial for host defense. Recent studies have identified multiple transmembrane and cytosolic receptors that recognize pathogen-derived nucleic acids, and these receptors are essential for driving immune activation in the liver. In addition to sensing DNA/RNA from pathogens, these intracellular receptors can be activated by nucleic acids of host origin in response to sterile injuries. In this review, we discuss the expanding roles of these receptors in both immune and nonimmune cells in the liver.
Collapse
Affiliation(s)
- Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- *Correspondence to: Timothy R. Billiar, Department of Surgery, University of Pittsburgh, Suite F1281, 200 Lothrop Street, Pittsburgh, PA 15213, USA. Tel: +1-412-647-1749, Fax: +1-412-647-3247,
| |
Collapse
|
46
|
The role of RNA editing by ADAR1 in prevention of innate immune sensing of self-RNA. J Mol Med (Berl) 2016; 94:1095-1102. [PMID: 27044320 DOI: 10.1007/s00109-016-1416-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/25/2022]
Abstract
The innate immune system is the first line of the cellular defence against invading pathogens. A critical component of this defence is the capacity to discriminate foreign RNA molecules, which are distinct from most cellular RNAs in structure and/or modifications. However, a series of rare autoimmune/autoinflammatory diseases in humans highlight the propensity for the innate immune sensing system to be activated by endogenous cellular double-stranded RNAs (dsRNAs), underscoring the fine line between distinguishing self from non-self. The RNA editing enzyme ADAR1 has recently emerged as a key regulator that prevents innate immune pathway activation, principally the cytosolic dsRNA sensor MDA5, from inducing interferon in response to double-stranded RNA structures within endogenous RNAs. Adenosine-to-Inosine RNA editing by ADAR1 is proposed to destabilise duplexes formed from inverted repetitive elements within RNAs, which appear to prevent MDA5 from sensing these RNA as virus-like in the cytoplasm. Aberrant activation of these pathways has catastrophic effects at both a cellular and organismal level, contributing to one of the causes of the conditions collectively known as the type I interferonopathies.
Collapse
|