1
|
Zhu J, Liu L, Wu J, Bai L. Rodent models for dry eye syndrome (DES). Cont Lens Anterior Eye 2025; 48:102383. [PMID: 39956692 DOI: 10.1016/j.clae.2025.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Dry eye syndrome (DES) is a range of ophthalmic conditions characterized by compromised tear film homeostasis, resulting from various pathological factors and primarily manifesting as ocular discomfort and impaired ocular surface integrity. With the rise in screen time due to modern lifestyles, the prevalence of DES is increasing annually, posing a significant global public health challenge. Pathophysiologically, DES involves damage to the lacrimal functional unit (LFU), including the lacrimal glands, meibomian glands, and corneoconjunctival epithelium, highlighting its multifactorial etiology. Current treatments mainly focus on artificial tears for moisture replacement and anti-inflammatory therapies, but both are limited. Consequently, animal models are crucial for understanding the complex pathological mechanisms of DES and identifying potential therapeutic agents. Rodent eyes, with their structural and physiological similarities to human eyes and cost-effectiveness, have become widely used in DES research. This manuscript reviews the current understanding of DES pathogenesis and rodent models, discussing their strengths, weaknesses, and relevant genetic models. The aim is to furnish critical insights and provide a scholarly resource to propel future investigative endeavors into the pathogenesis of and therapy for DES.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Sun X, Zhang J, Li X, Li Y, Zhao X, Sun X, Li Y. Fenofibrate inhibits activation of cGAS-STING pathway by alleviating mitochondrial damage to attenuate inflammatory response in diabetic dry eye. Free Radic Biol Med 2025; 235:364-378. [PMID: 40339725 DOI: 10.1016/j.freeradbiomed.2025.05.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING) signaling pathway are critical regulators of inflammation. This study aims to investigate the role of the cGAS-STING signaling pathway in diabetic dry eye (DDE) disease and further explore the therapeutic efficacy and underlying mechanism of fenofibrate in DDE. Using single-cell RNA sequencing (scRNA-Seq) data from the Gene Expression Omnibus (GEO) database, combined with the STZ-induced DDE mouse model and high-glucose conditions in immortalized human corneal epithelial cells (HCE-T), we observed mitochondrial damage and significantly elevated cytoplasmic mitochondrial DNA (mtDNA) in the diabetic cornea, and identified that the cGAS-STING signaling pathway plays a pivotal role in the pathogenesis of DDE. Notably, we found that the inhibitor H151 reversed the ocular surface inflammatory response via the cGAS-STING pathway. Further investigation revealed that fenofibrate alleviated corneal inflammatory response by reducing the production of reactive oxygen species (ROS), restoring mitochondrial membrane potential (MMP), decreasing mtDNA cytoplasmic leakage, and subsequently suppressing the activation of the cGAS-STING signaling pathway. In conclusion, this study highlights the crucial role of the cGAS-STING signaling pathway in DDE and proposes that fenofibrate alleviates mitochondrial damage to inhibit this pathway, offering novel strategy for the treatment of DDE.
Collapse
Affiliation(s)
- Xia Sun
- The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, Shandong Province, China; Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Jingyi Zhang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Xiaoxia Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Yansheng Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Xinmei Zhao
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Xiaowei Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China.
| | - Yuanbin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China.
| |
Collapse
|
3
|
Yin Y, James Barnstable C, Zhang X, Li X, Zhao S, Tombran-Tink J. Pigment epithelium-derived factor (PEDF) promotes survival and contraction of myoepithelial cells in lacrimal gland. Exp Eye Res 2025; 253:110269. [PMID: 39922524 DOI: 10.1016/j.exer.2025.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
PEDF is critical for general health of the ocular surface. In order to study mechanisms of PEDF's action in lacrimal gland (LG) secretion, these visual structures were studied in a PEDF deficient (Pedf-/-) mouse model using biochemical, histochemical, and morphometric analyses. In Pedf-/- animals there were several ocular surface and LG disturbances not seen in controls. Notably, changes in body and LG weight, corneal sensitivity, tear film, ocular surface damage, and size of acini comprising the LG were evident. Survival of myoepithelial cells (MECs) surrounding the acini showed a PEDF survival dependence as there were significant reduction in MEC-specific P63 cells and Bcl2 expression levels, and increased TUNEL positive cells in PEDF deficient mice. Expression levels of the major contractile MEC proteins, α-SMA, calponin, and keratin 14, were also reduced with PEDF gene deletion and MECs contraction apparatus impaired, since oxytocin significantly reduced acinar area in controls but had no effect in PEDF deficient LGs, although the oxytocin receptor (OXTR) was expressed in both PEDF genotypes. These findings suggest that PEDF is essential to MECs survival and contractile function, and tear homeostasis on the ocular surface. Treatment with PEDF is likely to alleviate ocular-related conditions in diseases associated with dry eye as well as promote healthy MEC cell function in other secretory glands of the body.
Collapse
Affiliation(s)
- Yilan Yin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, 17112, USA
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Skyran Biologics Inc., Harrisburg, PA, 17112, USA.
| |
Collapse
|
4
|
Chang K, Luo P, Guo Z, Yang L, Pu J, Han F, Cai F, Tang J, Wang X. Lipid Metabolism: An Emerging Player in Sjögren's Syndrome. Clin Rev Allergy Immunol 2025; 68:15. [PMID: 39934534 PMCID: PMC11813826 DOI: 10.1007/s12016-025-09023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder that primarily affects the exocrine glands. Due to the intricate nature of the disease progression, the exact mechanisms underlying SS are not completely understood. Recent research has highlighted the complex interplay between immune dysregulation and metabolic abnormalities in inflammatory diseases. Notably, lipid metabolism has emerged as a crucial factor in the modulation of immune function and the progression of autoimmune diseases, including SS. This review explores the prevalence of dyslipidemia in SS, emphasizing its role in the onset, progression, and prognosis of the disease. We specifically described the impact of altered lipid metabolism in exocrine glands and its association with disease-specific features, including inflammation and glandular dysfunction. Additionally, we discussed the potential clinical implications of lipid metabolism regulation, including the role of polyunsaturated fatty acids (PUFAs) and their deficits in SS pathogenesis. By identifying lipid metabolism as a promising therapeutic target, this review highlights the need for further research into lipid-based interventions for the management of SS.
Collapse
Affiliation(s)
- Keni Chang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Peiming Luo
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Zizhen Guo
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Jianping Tang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
5
|
Zhang Q, Su J, Chen J, Wu S, Qi X, Chu M, Jiang S, He K. Diurnal rhythm-modulated transcriptome analysis of meibomian gland in hyperlipidemic mice using RNA sequencing. Int Ophthalmol 2025; 45:57. [PMID: 39890715 DOI: 10.1007/s10792-025-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
AIM To explore the regulatory mechanism of meibomian gland (MG) in hyperlipidemic mice under a diurnal rhythm by transcriptomic analysis based on high-throughput sequencing. METHODS The mouse model of hyperlipidemia induced by four months of high-fat diet (HFD) feeding to a regular light-dark (LD) cycle for 2 weeks was used in this study. Phenotypic observation and RNA sequencing (RNA-seq) of MGs of the experimental mice were then performed to investigate transcriptional changes due to hyperlipidemia and the diurnal rhythm and their effects on meibomian gland dysfunction (MGD). RESULTS The expression levels of the identified dysregulated genes were then validated by qRT-PCR. Several significantly regulated genes and enriched pathways were identified as associated with MGD in hyperlipidemic mice under a diurnal rhythm; these genes included some core diurnal clock genes, e.g., Clock, Per2 and Per3. Phenotypic and histological analysis reveals abnormal morphology concomitantly with a modification of the transcriptional landscape of MG caused by HFD. CONCLUSION Our findings provide us with a deeper understanding of the diurnal rhythm regulation of MG in hyperlipidemic mice altered by daily nutritional challenge.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Jing Chen
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Sainan Wu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Xiaoxuan Qi
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China.
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China.
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Jiang W, Yang L, Liang S. Association between insulin-like growth factor-1 and ocular surface parameters in obese prepubertal boys. Eur J Pediatr 2024; 183:4807-4816. [PMID: 39235603 DOI: 10.1007/s00431-024-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The study aimed to investigate the correlation between insulin-like growth factor 1 (IGF-1) and ocular surface parameters in obese prepubertal boys. Thirty obese prepubertal boys and 30 age- and gender-matched healthy controls underwent physical measurements, laboratory tests, and ocular surface assessments. The obese group showed lower IGF-1 levels (P = 0.001), reduced Schirmer I tear test (SIT) (P <0.001), and higher meibomian gland scores (meiboscore) compared to controls (P = 0.015). Bivariate analysis revealed a positive association between IGF-1 and SIT (r = 0.677, P < 0.001), and a negative association with between IGF-1 and meiboscore (r = - 0.487, P < 0.001). Multiple regression analysis indicated that IGF-1 (P < 0.001) and triglycerides (P = 0.028) independently influenced SIT. Logistic analysis showed a significant association between decreased IGF-1 and higher meiboscore values (OR 0.994, 95% confidence interval 0.988-1.000; P = 0.033). CONCLUSION The findings suggest that reduced IGF-1 in obese prepubertal boys is independently linked to decreased SIT and increased meiboscore, irrespective of obesity and traditional cardiovascular risk factors. This implies that monitoring ocular surface parameters in obese children might provide a new perspective for clinical practice to focus on. WHAT IS KNOWN • Obese children exhibit decreased levels of IGF-1, and this reduction in IGF-1 is associated with cardiovascular metabolic complications related to obesity. • Ocular surface tissues might act as targets for hormones, might experience local effects of these hormone. WHAT IS NEW • In prepubertal obese boys, the decrease in IGF-1 is independently linked to decreased SIT and increased meiboscore, irrespective of obesity and traditional cardiovascular risk factors. • This finding implies that monitoring ocular surface parameters in obese children might provide a new perspective for clinical practice to focus on.
Collapse
Affiliation(s)
- Wen Jiang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lixia Yang
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Shuang Liang
- Department of Pediatrics, The Second Hospital of Shandong University, 247 Beiyuan Main Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
Shen J, Huang X, Guo X, Zhou T, Li G. Safety and Efficacy of Dry Eye Intelligent Therapeutic Device in the Treatment of Meibomian Gland Dysfunction in Rabbits. Curr Eye Res 2024; 49:1030-1041. [PMID: 38813818 DOI: 10.1080/02713683.2024.2357655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE To assess the safety and efficacy of the dry eye intelligent therapeutic device in rabbits with meibomian gland dysfunction. METHODS The meibomian gland dysfunction-afflicted rabbits were subjected to treatment using the dry eye intelligent therapeutic device. Various parameters, including eyelid margin, meibomian gland opening, redness, meibomian gland area, keratoconjunctival fluorescence staining, and intraocular pressure, were examined and analyzed using an ocular surface comprehensive examination instrument, slit lamp, and tonometer at corresponding times points. Hematoxylin and eosin staining was performed to examine the mucosal epithelium and meibomian gland. RESULTS In this study, eyelid margin congestion and meibomian gland opening obstruction were significantly improved after 3 weeks and 4 weeks of treatment, respectively (p < .01, p < .05). The treatment group showed a significant increase in tear meniscus height after 2 weeks, 3 weeks and 4 weeks of treatment (p < .001, p < .01, p < .05). No significant changes were noted in meibomian gland area, redness, intraocular pressure, and keratoconjunctival fluorescence staining of rabbits before and after treatment. Hematoxylin and eosin staining revealed a complete structure of mucosal epithelium and meibomian gland in the treatment group and that the expansion of the blocked meibomian gland duct was reduced. CONCLUSION The utilization of the dry eye intelligent therapeutic device in treating meibomian gland dysfunction-afflicted rabbits exhibits potential promising safety, efficacy, and overall benefits, thereby offering a novel alternative for managing meibomian gland dysfunction patients in clinical settings.
Collapse
Affiliation(s)
- Jiachao Shen
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Huang
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Guo
- Department of Comprehensive Medical, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Zhou
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wu Y, Liu Y, Feng Y, Li X, Lu Z, Gu H, Li W, Hill LJ, Ou S. Evolution of therapeutic strategy based on oxidant-antioxidant balance for fuchs endothelial corneal dystrophy. Ocul Surf 2024; 34:247-261. [PMID: 39111696 DOI: 10.1016/j.jtos.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) stands as the most prevalent primary corneal endothelial dystrophy worldwide, posing a significant risk to corneal homeostasis and clarity. Corneal endothelial cells exhibit susceptibility to oxidative stress, suggesting a nuanced relationship between oxidant-antioxidant imbalance and FECD pathogenesis, irrespective of FECD genotype. Given the constrained availability of corneal transplants, exploration into non-surgical interventions becomes crucial. This encompasses traditional antioxidants, small molecule compounds, biologics, and diverse non-drug therapies, such as gene-related therapy, hydrogen therapy and near infrared light therapy. This review concentrates on elucidating the mechanisms behind oxidant-antioxidant imbalance and the evolution of strategies to restore oxidant-antioxidant balance in FECD. It provides a comprehensive overview of both conventional and emerging therapeutic approaches, offering valuable insights for the advancement of non-surgical treatment modalities. The findings herein might establish a robust foundation for future research and the therapeutic strategy of FECD.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuchong Feng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoshuang Li
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Zhaoxiang Lu
- Institute of Microbiology and Infection, Department of Microbes, Infections and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Medical Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK.
| | - Shangkun Ou
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
9
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
10
|
Chen YQ, Shao YC, Wei RL. Pioglitazone alleviates lacrimal gland impairments induced by high-fat diet by suppressing M1 polarization. J Lipid Res 2024; 65:100606. [PMID: 39067519 PMCID: PMC11386124 DOI: 10.1016/j.jlr.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
A high-fat diet (HFD) contributes to the pathogenesis of various inflammatory and metabolic diseases. Previous research confirms that under HFD conditions, the extraorbital lacrimal glands (ELGs) can be impaired, with significant infiltration of pro-inflammatory macrophages (Mps). However, the relationship between HFD and Mps polarization in the ELGs remains unexplored. We first identified and validated the differential expression of PPAR-γ in murine ELGs fed ND and HFD through RNA sequencing. Tear secretion was measured using the Schirmer test. Lipid droplet deposition within the ELGs was observed through Oil Red O staining and transmission electron microscopy. Mps phenotypes were determined through quantitative RT-PCR, immunofluorescence, and flow cytometric analysis. An in vitro high-fat culture system for Mps was established using palmitic acid (PA), with supernatants collected for co-culture with lacrimal gland acinar cells. Gene expression was determined through ELISA, immunofluorescence, immunohistochemistry, quantitative RT-PCR, and Western blot analysis. Pioglitazone reduced M1-predominant infiltration induced by HFD by increasing PPAR-γ levels in ELGs, thereby alleviating lipid deposition and enhancing tear secretion. In vitro tests indicated that PPAR-γ agonist shifted Mps from M1-predominant to M2-predominant phenotype in PA-induced Mps, reducing lipid synthesis in LGACs and promoting lipid catabolism, thus alleviating lipid metabolic disorders within ELGs. Conversely, the PPAR-γ antagonist induced opposite effects. In summary, the lacrimal gland is highly sensitive to high-fat and lipid metabolic disorders. Downregulation of PPAR-γ expression in ELGs induces Mps polarization toward predominantly M1 phenotype, leading to lipid metabolic disorder and inflammatory responses via the NF-κb/ERK/JNK/P38 pathway.
Collapse
Affiliation(s)
- Yu-Qing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Yu-Chao Shao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Rui-Li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China.
| |
Collapse
|
11
|
Cai Y, Zhang X, Yang C, Jiang Y, Chen Y. Melatonin alleviates high-fat-diet-induced dry eye by regulating macrophage polarization via IFT27 and lowering ERK/JNK phosphorylation. iScience 2024; 27:110367. [PMID: 39100927 PMCID: PMC11294704 DOI: 10.1016/j.isci.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Dry eye disease is the most common ocular surface disease globally, requiring a more effective treatment. We observed that a high-fat diet induced macrophage polarization to M1 and further induced inflammation in the meibomian and lacrimal glands. A four-week treatment with melatonin (MLT) eye drops can regulate macrophage polarization and alleviate dry eye signs. To investigate the therapeutic effects and mechanisms of action of MLT on high-fat-diet-induced dry eye disease in mice, RAW 264.7 cells pretreated with LPS and/or MLT underwent digital RNA with the perturbation of genes sequencing (DRUG-seq). Results showed that IFT27 was up-regulated, and MAPK pathways were suppressed after MLT pre-treatment. ERK/JNK phosphorylation was reduced in meibomian glands of MLT-treated dry eye mice and increased in IFT27 knockdown RAW 264.7 cells. In summary, MLT regulated macrophage polarization via IFT27 and reduced ERK/JNK phosphorylation. These results support that MLT is a promising medication for dry eye disease.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Chen S, Barnstable CJ, Zhang X, Li X, Zhao S, Tombran-Tink J. A PEDF peptide mimetic effectively relieves dry eye in a diabetic murine model by restoring corneal nerve, barrier, and lacrimal gland function. Ocul Surf 2024; 32:1-12. [PMID: 38103731 DOI: 10.1016/j.jtos.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1β and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.
Collapse
Affiliation(s)
- Shuangping Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112.
| |
Collapse
|
13
|
Bu J, Liu Y, Zhang R, Lin S, Zhuang J, Sun L, Zhang L, He H, Zong R, Wu Y, Li W. Potential New Target for Dry Eye Disease-Oxidative Stress. Antioxidants (Basel) 2024; 13:422. [PMID: 38671870 PMCID: PMC11047456 DOI: 10.3390/antiox13040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Dry eye disease (DED) is a multifactorial condition affecting the ocular surface. It is characterized by loss of tear film homeostasis and accompanied by ocular symptoms that may potentially result in damage to the ocular surface and even vision loss. Unmodifiable risk factors for DED mainly include aging, hormonal changes, and lifestyle issues such as reduced sleep duration, increased screen exposure, smoking, and ethanol consumption. As its prevalence continues to rise, DED has garnered considerable attention, prompting the exploration of potential new therapeutic targets. Recent studies have found that when the production of ROS exceeds the capacity of the antioxidant defense system on the ocular surface, oxidative stress ensues, leading to cellular apoptosis and further oxidative damage. These events can exacerbate inflammation and cellular stress responses, further increasing ROS levels and promoting a vicious cycle of oxidative stress in DED. Therefore, given the central role of reactive oxygen species in the vicious cycle of inflammation in DED, strategies involving antioxidants have emerged as a novel approach for its treatment. This review aims to enhance our understanding of the intricate relationship between oxidative stress and DED, thereby providing directions to explore innovative therapeutic approaches for this complex ocular disorder.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yanbo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Sijie Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Le Sun
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lingyu Zhang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Hui He
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rongrong Zong
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yang Wu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Wei Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| |
Collapse
|
14
|
Tang L, Zhang H, Liao Y, Zhou S, Yang Y, Zhang M, Guo Y, Xie T, Chen S, Ouyang W, Lin X, Wang S, Huang C, Zhang M, Zhuang J, Zhao J, Zhang R, Zhang C, Jin Z, Hu J, Liu Z. Chronic Sleep Deprivation Impairs Visual Functions via Oxidative Damage in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:307-320. [PMID: 38245252 DOI: 10.1016/j.ajpath.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024]
Abstract
Sleep deprivation (SD) is a global public health burden, and has a detrimental role in the nervous system. Retina is an important part of the central nervous system; however, whether SD affects retinal structures and functions remains largely unknown. Herein, chronic SD mouse model indicated that loss of sleep for 4 months could result in reductions in the visual functions, but without obvious morphologic changes of the retina. Ultrastructural analysis by transmission electron microscope revealed the deterioration of mitochondria, which was accompanied with the decrease of multiple mitochondrial proteins in the retina. Mechanistically, oxidative stress was provoked by chronic SD, which could be ameliorated after rest, and thus restore retinal homeostasis. Moreover, the supplementation of two antioxidants, α-lipoic acid and N-acetyl-l-cysteine, could reduce retinal reactive oxygen species, repair damaged mitochondria, and, as a result, improve the retinal functions. Overall, this work demonstrated the essential roles of sleep in maintaining the integrity and health of the retina. More importantly, it points towards supplementation of antioxidants as an effective intervention strategy for people experiencing sleep shortages.
Collapse
Affiliation(s)
- Liying Tang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Ophthalmology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Houjian Zhang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yi Liao
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shengmei Zhou
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yaqiong Yang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mouxin Zhang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuli Guo
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Tingyu Xie
- Department of Ophthalmology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shikun Chen
- Department of Ophthalmology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weijie Ouyang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Lin
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Shaopan Wang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Caihong Huang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Minjie Zhang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingbin Zhuang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiankai Zhao
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zhang
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changjun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Jiaoyue Hu
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Zuguo Liu
- Xiamen University-affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
Zhong W, Zhang H, Ran H. Advances in imaging of the lacrimal gland in Sjögren's syndrome: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:68-77. [PMID: 37907965 DOI: 10.1002/jcu.23596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Due to lymphocytic infiltration of the salivary and lacrimal glands, Sjogren's syndrome (SS), a systemic autoimmune illness that mostly affects the exocrine glands, causes dry mouth (xerostomia) and dry eyes (xerophthalmia). Additionally, SS is associated with various comorbidities such as cardiovascular diseases, infections, musculoskeletal diseases, and cancers. Among patients with SS, xerophthalmia frequently arises as a complication, leading to insufficient tear production or rapid tear evaporation, thereby causing discomfort, irritation, and a gritty sensation in the eyes. This article aims to examine recent advancements in the imaging of the lacrimal gland in Sjögren's syndrome and briefly discusses the utilization of various imaging examinations for the lacrimal gland in this particular disease.
Collapse
Affiliation(s)
- Wenxing Zhong
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Li Y, Xie L, Song W, Chen S, Cheng Y, Gao Y, Huang M, Yan X, Yang S. Association between dyslipidaemia and dry eye disease: a systematic review and meta-analysis. BMJ Open 2023; 13:e069283. [PMID: 37989379 PMCID: PMC10668302 DOI: 10.1136/bmjopen-2022-069283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/25/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE To report a systematic review and meta-analysis of the association between dry eye disease (DED) and dyslipidaemia. METHODS PubMed, Embase, Web of Science and Cochrane Library were systematically searched from January 2000 to December 2021. We included observational studies to assess the correlation of DED with meibomian gland dysfunction and dyslipidaemia without any language restrictions. The pooled OR with 95% CI was calculated in Stata V.15. RESULTS Of 6727 identified studies, 18 studies (21 databases) with a total of 2 663 126 patients were analysed in our meta-analysis. The results showed that DED risk was associated with dyslipidaemia (OR=1.53, 95% CI: 1.41 to 1.66, p=0.001), especially elevated total cholesterol levels (OR=1.57, 95% CI: 1.25 to 1.99, p<0.001), elevated low-density lipoprotein cholesterol levels (OR=1.13, 95% CI: 1.06 to 1.20, p<0.001) and high-density lipoprotein cholesterol levels (OR=1.06, 95% CI: 1.01 to 1.11, p<0.001), but not with serum triglyceride levels. Moreover, having a history of lipid-lowering drug use (OR=1.41, 95% CI: 1.19 to 1.67, p<0.001) was also found to be positively associated with DED risk. CONCLUSIONS The findings suggested that dyslipidaemia and lipid-lowering drug use might be associated with an increased risk of DED. More evidence is needed to confirm the findings by prospective studies. PROSPERO REGISTRATION NUMBER CRD42022296664.
Collapse
Affiliation(s)
- Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Songlin Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Wang Z, Wang M, Xu X, Liu Y, Chen Q, Wu B, Zhang Y. PPARs/macrophages: A bridge between the inflammatory response and lipid metabolism in autoimmune diseases. Biochem Biophys Res Commun 2023; 684:149128. [PMID: 39491979 DOI: 10.1016/j.bbrc.2023.149128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Autoimmune diseases (AIDs) are a collection of pathologies that arise from autoimmune reactions and lead to the destruction and damage of the body's tissues and cellular components, ultimately resulting in tissue damage and organ dysfunction. The anti-inflammatory effects of the peroxisome proliferator-activated receptor (PPAR), a pivotal regulator of lipid metabolism, are crucial in the context of AIDs. PPAR mitigates AIDs by modulating macrophage polarization and suppressing the inflammatory response. Numerous studies have demonstrated the crucial involvement of lipid metabolism and phenotypic switching in classically activated (M1)/alternatively activated (M2)-like macrophages in the inflammatory pathway of AIDs. However, the precise mechanism by which PPAR, a critical mediator between of lipid metabolism and macrophage polarization, regulates macrophage polarization remains unclear. This review aimed to clarify the role of PPAR and macrophages in the triangular relationship among AIDs, lipid metabolism, and inflammatory response, and aims to summarize the mechanism of the PPAR-mediated macrophage activation and polarization, which impacts the progression and development of AIDs.
Collapse
Affiliation(s)
- Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China; Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yunyan Liu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China; Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Ying Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China; Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
18
|
Qi D, Zou S, Lu D, Pei X, Huang S, Huang DL, Liu J, Si H, Li Z. Long-term high fructose intake promotes lacrimal gland dysfunction by inducing gut dysbiosis in mice. Exp Eye Res 2023; 234:109573. [PMID: 37442219 DOI: 10.1016/j.exer.2023.109573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The lacrimal gland is essential for maintaining ocular surface health through the secretion of the aqueous layer of the tear film. It is therefore important to explore the intrinsic and extrinsic factors that affect the structure and function of the lacrimal gland and the mechanisms underlying them. With the prevalence of Westernized diets characterized by high sugar and fat content, the susceptibility to many diseases, including ocular diseases, is increased by inducing dysbiosis of the gut microbiome. Here, we found that the composition, abundance, and diversity of the gut microbiome was significantly altered in mice by drinking 15% high fructose water for one month, as determined by 16S rRNA sequencing. This was accompanied by a significant increase in lipid deposition and inflammatory cell infiltration in the extraorbital lacrimal glands (ELGs) of mice. Transcriptome analysis based on bulk RNA-sequencing revealed abnormal activation of some of several metabolic and immune-related pathways. In addition, the secretory response to stimulation with the cholinergic receptor agonist pilocarpine was significantly reduced. However, when the composition and diversity of the gut microbiome of high fructose intake (HFI)-treated mice were improved by transplanting feces from normal young healthy mice, the pathological alterations in ELG structure, inflammatory cell infiltration, secretory function and transcriptome analysis described above were significantly reversed compared to age-matched control mice. In conclusion, our data suggest that prolonged HFI may cause pathological damage to the structure and function of the ELG through the induction of gut dysbiosis. Restoration of intestinal dysbiosis in HFI-treated mice by fecal transplantation has a potential role in ameliorating these pathological impairments.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Du-Liurui Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
19
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
20
|
Li X, Wang Z, Mu J, Puerkaiti H, Nulahou A, Zhang J, Zhao Y, Sun Q, Li Y, Wang Y, Gao Y. Prevalence and associated risk factors of dry eye disease in Hotan, Xinjiang: a cross-sectional study. BMC Ophthalmol 2023; 23:214. [PMID: 37189099 DOI: 10.1186/s12886-023-02955-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVES To assess the prevalence of dry eye disease (DED) in the Uyghur population in Hotan, Xinjiang, and to identify risk factors associated with this disorder. METHODS Between January and September of 2020, 5,121 Uyghur subjects aged 18 - 98 years from 105 villages were selected and studied cross-sectionally using a whole-group random sampling method in the Hotan area, Xinjiang, China. The Ocular Surface Disease Index questionnaire was used to collect subjective symptoms of DED and examine tear-film break-up times. The break up time and Schirmer's test were used to collect objective signs, to determine the prevalence of DED and its risk factors. RESULTS A total of 5,121 subjects aged 18 - 98 years were recruited from the Uyghur population in the Hotan region of Xinjiang, China, for eye examinations and questionnaire surveys. A total of 40.6% (2,078/5,121) were diagnosed with DED, of which 38.3% were male and 41.9% were female. The prevalence of DED was the highest in subjects ≥ 65 years of age, with 47.8% in males and 53.3% in females. The lowest occurrence was in subjects 18 - 44 years of age, with 32.5% in males and 33.7% in females. Older age, tea drinking, and staying awake late were risk factors affecting the severity of DED prevalence (p < 0.05), but there was no significant difference in sex, presence of diabetes, or presence of hypertension (p > 0.05). CONCLUSION The prevalence of DED in the study population was 40.6%, and its prevalence was higher in females, when compared with males. The prevalence of dry eye also increased with age, and at an advanced age, female sex, smoking, staying awake late, and not exercising were risk factors for DED.
Collapse
Affiliation(s)
- Xiaolong Li
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Zhen Wang
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Xinshi District, Ürümqi, Xinjiang, China
| | - Jingyu Mu
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Hamila Puerkaiti
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Ayinu Nulahou
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Jie Zhang
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Yong Zhao
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Qi Sun
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Yuanyuan Li
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Yan Wang
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China
| | - Yunxian Gao
- Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Hospital, No.116, Yellow River Road, Shayibake District, Ürümqi, 830000, China.
- Department of Ophthalmology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, 116 Huanghe Road, Shayibake District, Ürümqi, Xinjiang, China.
| |
Collapse
|
21
|
Zhang Y, Gan M, He Y, Liu T, Xu M. Anxiety Disorders and Gut Dysbiosis in Primary Sjögren's Syndrome-Mediated Dry Eye Patients. Int J Gen Med 2023; 16:1735-1746. [PMID: 37193253 PMCID: PMC10182797 DOI: 10.2147/ijgm.s405225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose Primary Sjögren's syndrome (pSS), a disease that is associated with a high prevalence of psychological disorders, has become increasingly important. Interactions between the gut microbiota and ocular conditions have been identified in pSS. As mental intervention is frequently needed, this study aims to investigate the relationship between anxiety disorders and the gut microbiome in patients with pSS-mediated dry eye. Methods Demographics and self-administered questionnaires were obtained. Faecal samples were evaluated using 16S ribosomal RNA gene sequencing. Results The Hospital Anxiety and Depression Scale (HADS-A) cut-off point of ≥ 8 points showed a sensitivity and specificity of 76.5% and 80.0%, respectively. In all participants, we found that the prevalence of anxiety disorder was 30.4%. Dry eye discomfort could promote an anxious state, and conversely, anxiety could threaten tear film and increase the risk of pSS activity. There was a certain correlation between anxiety disorder and gut dysbiosis. Prevotella was associated with dry eye severity (p <0.001). Bacteroidetes (p =0.046) and Odoribacter (p =0.001) were correlated with pSS activity. Conclusion There is a bidirectional relationship between anxiety disorder and the gut microbiota in pSS-mediated dry eye. Alterations in certain classes of gut microbiota are associated with pSS activity and dry eye severity. Main gut microbiota alterations that have a facilitating impact on anxiety are emerging in pSS-mediated dry eye. Future studies are needed to explore specific therapeutic targets for improving mental health in pSS-mediated dry eye by microbiota intervention.
Collapse
Affiliation(s)
- Yiting Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing Municipality Division, National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Meiqi Gan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing Municipality Division, National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Yuqin He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing Municipality Division, National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Tingting Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing Municipality Division, National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Mei Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing Municipality Division, National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| |
Collapse
|
22
|
Chiang MC, Liu YC, Chen BY, Wu DL, Wu CL, Cheng CW, Chang WL, Lee HJ. Purple Sweet Potato Powder Containing Anthocyanin Mitigates High-Fat-Diet-Induced Dry Eye Disease. Int J Mol Sci 2023; 24:ijms24086983. [PMID: 37108146 PMCID: PMC10138706 DOI: 10.3390/ijms24086983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Purple sweet potato (PSP) powder with anthocyanins possesses the ability to reduce oxidative stress and inflammation. Studies have presumed a positive correlation between body fat and dry eye disease (DED) in adults. The regulation of oxidative stress and inflammation has been proposed as the mechanism underlying DED. This study developed an animal model of high fat diet (HFD)-induced DED. We added 5% PSP powder to the HFD to evaluate the effects and underlying mechanisms in mitigating HFD-induced DED. A statin drug, atorvastatin, was also added to the diet separately to assess its effect. The HFD altered the structure of lacrimal gland (LG) tissue, reduced LG secretory function, and eliminated the expression of proteins related to DED development, including α-smooth muscle actin and aquaporin-5. Although PSP treatment could not significantly reduce body weight or body fat, it ameliorated the effects of DED by preserving LG secretory function, preventing ocular surface erosion, and preserving LG structure. PSP treatment increased superoxide dismutase levels but reduced hypoxia-inducible factor 1-α levels, indicating that PSP treatment reduced oxidative stress. PSP treatment increased ATP-binding cassette transporter 1 and acetyl-CoA carboxylase 1 levels in LG tissue, signifying that PSP treatment regulated lipid homeostasis maintenance to reduce the effects of DED. In conclusion, PSP treatment ameliorated the effects of HFD-induced DED through the regulation of oxidative stress and lipid homeostasis in the LG.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- School of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei 10687, Taiwan
| | - Ying-Chung Liu
- Department of Ophthalmology, Cathay General Hospital, Taipei 10687, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Bo-Yi Chen
- Department of Optometry, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Dai-Lin Wu
- School of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Chia-Lian Wu
- Department of Optometry, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Wen-Lung Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
- Yi-Yeh Biotechnology Co., Taichung 40221, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
23
|
Lacrimal Gland Epithelial Cells Shape Immune Responses through the Modulation of Inflammasomes and Lipid Metabolism. Int J Mol Sci 2023; 24:ijms24054309. [PMID: 36901740 PMCID: PMC10001612 DOI: 10.3390/ijms24054309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Lacrimal gland inflammation triggers dry eye disease through impaired tear secretion by the epithelium. As aberrant inflammasome activation occurs in autoimmune disorders including Sjögren's syndrome, we analyzed the inflammasome pathway during acute and chronic inflammation and investigated its potential regulators. Bacterial infection was mimicked by the intraglandular injection of lipopolysaccharide (LPS) and nigericin, known to activate the NLRP3 inflammasome. Acute injury of the lacrimal gland was induced by interleukin (IL)-1α injection. Chronic inflammation was studied using two Sjögren's syndrome models: diseased NOD.H2b compared to healthy BALBc mice and Thrombospondin-1-null (TSP-1-/-) compared to TSP-1WTC57BL/6J mice. Inflammasome activation was investigated by immunostaining using the R26ASC-citrine reporter mouse, by Western blotting, and by RNAseq. LPS/Nigericin, IL-1α and chronic inflammation induced inflammasomes in lacrimal gland epithelial cells. Acute and chronic inflammation of the lacrimal gland upregulated multiple inflammasome sensors, caspases 1/4, and interleukins Il1b and Il18. We also found increased IL-1β maturation in Sjögren's syndrome models compared with healthy control lacrimal glands. Using RNA-seq data of regenerating lacrimal glands, we found that lipogenic genes were upregulated during the resolution of inflammation following acute injury. In chronically inflamed NOD.H2b lacrimal glands, an altered lipid metabolism was associated with disease progression: genes for cholesterol metabolism were upregulated, while genes involved in mitochondrial metabolism and fatty acid synthesis were downregulated, including peroxisome proliferator-activated receptor alpha (PPARα)/sterol regulatory element-binding 1 (SREBP-1)-dependent signaling. We conclude that epithelial cells can promote immune responses by forming inflammasomes, and that sustained inflammasome activation, together with an altered lipid metabolism, are key players of Sjögren's syndrome-like pathogenesis in the NOD.H2b mouse lacrimal gland by promoting epithelial dysfunction and inflammation.
Collapse
|
24
|
Zhao X, Wu J, Zhu S. Ocular disorders associated with PCSK9 inhibitors: A pharmacovigilance disproportionality analysis. Br J Clin Pharmacol 2023; 89:458-469. [PMID: 35973681 DOI: 10.1111/bcp.15494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS To identify and characterize ocular adverse events (oAEs) that are significantly associated with proprotein convertase subtilisin-like/kexin type 9 (PCSK9) inhibitors using the US Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS We conducted a disproportionality analysis of PCSK9 inhibitors in the FAERS (01/2004-12/2021). The association between PCSK9 inhibitors and oAEs was evaluated using the information component (IC) and the reporting odds ratio (ROR), and the difference in oAEs between evolocumab and alirocumab was compared using the ROR. Different sensitivity analyses were conducted to evaluate the robustness of results. RESULTS A total of 103 531 reports involving at least 1 PCSK9 inhibitor were found in the FAERS. PCSK9 inhibitors were associated with higher reporting of increased lacrimation (IC 0.27 [95% confidence interval {CI} 0.02-0.45]; ROR 1.21 [95% CI 1.04-1.40]), seasonal allergy (IC 0.39 [95% CI 0.04-0.64]; ROR 1.32 [95% CI 1.07-1.62]) and eye operation (IC 0.66 [95% CI 0.04-1.10]; ROR 1.60 [95% CI 1.11-2.30]) compared with the full database, and there was no difference between evolocumab and alirocumab. Sensitivity analyses showed that the disproportionate signals of increased lacrimation disappeared after excluding cases with other lipid-lowering agents in the combined drugs. Except for eye operations, most of these adverse events occurred within 30 days of the first dose, and all 3 oAEs were mostly reported in women and individuals >65 years. CONCLUSION This pharmacovigilance study identified a possible signal of ocular disorders associated with PCSK9 inhibitors and encourages paying attention to at-risk populations in PCSK9 inhibitors medication.
Collapse
Affiliation(s)
- Xiaofang Zhao
- School of Pharmacy, Chongqing Medical University, Chongqing, China.,Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangfan Wu
- School of Pharmacy, Chongqing Medical University, Chongqing, China.,Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenyin Zhu
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Feldt J, Garriz A, Rodriguez Benavente MC, Woodward AM, Zoukhri D, Argüeso P. The Matricellular Protein SPARC Decreases in the Lacrimal Gland At Adulthood and During Inflammation. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 36479944 PMCID: PMC9742964 DOI: 10.1167/iovs.63.13.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein abundantly expressed in basement membranes and capsules surrounding a variety of organs and tissues. It mediates extracellular matrix organization and has been implicated in cell contraction. Here, we evaluated the expression of SPARC in the murine lacrimal gland at adulthood and during inflammation. Methods Lacrimal glands of young mice (4-6 weeks old) and adult mice (32-40 weeks old) were used for extraction of DNA, RNA, and protein. The presence of SPARC was assessed by quantitative PCR, ELISA, and immunofluorescence microscopy. 5-Methylcytosine and DNA methylation were evaluated using ELISA and bisulfite genomic sequencing, respectively. The effects of cytokines and inflammation in Sparc expression were evaluated in vitro and in the non-obese diabetic (NOD) mouse model of Sjögren's syndrome. Results The mRNA and protein levels of SPARC were downregulated in lacrimal glands of mature adult mice presenting age-related histological alterations such as increased deposition of lipofuscin and lipids. Epigenetic analyses indicated that glands in adult mice contain higher levels of global DNA methylation and show increased hypermethylation of specific CpG sites within the Sparc gene promoter. Analysis of smooth muscle actin (SMA)-green fluorescent protein (GFP) transgenic mice revealed that SPARC localizes primarily to myoepithelial cells within the gland. Treatment of myoepithelial cells with IL-1β or TNF-α and the development of inflammation in the NOD mice led to decreased transcription of Sparc. Conclusions SPARC is a novel matricellular glycoprotein expressed by myoepithelial cells in the lacrimal gland. Loss of SPARC during adulthood and chronic inflammation might have detrimental consequences on myoepithelial cell contraction and the secretion of tear fluid.
Collapse
Affiliation(s)
- Jessica Feldt
- Schepens Eye Research Institute, Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Angela Garriz
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Maria C. Rodriguez Benavente
- Schepens Eye Research Institute, Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Ashley M. Woodward
- Schepens Eye Research Institute, Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pablo Argüeso
- Schepens Eye Research Institute, Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
26
|
Chieffi Baccari G, Falvo S, Di Fiore MM, Cioffi F, Giacco A, Santillo A. High-fat diet affects autophagy and mitochondrial compartment in rat Harderian gland. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1025-1038. [PMID: 35927786 DOI: 10.1002/jez.2646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022]
Abstract
The Harderian gland (HG) of Rattus norvegicus is an orbital gland secreting lipids that accumulate in excess under condition of increased lipid metabolism. To study the response elicitated by lipid overload in rat HG, we housed the animals in thermoneutral conditions (28-30°C) in association to high fat diet (HFD). In HFD rats alterated blood lipid levels result in lipid accumulation in HG as demonstrated by the increased gland weight and histochemical/ultrastructural analyses. The HFD-caused oxidative stress forces the gland to trigger antioxidant defense mechanisms and autophagic process, such as lipophagy and mitophagy. Induction of mitochondrial DNA (mtDNA) damage and repair was stronger in HFD-rat HGs. An increase in marker expression levels of mitochondrial biogenesis, fission, and fusion occurred to counteract mtDNA copy number reduction and mitophagy. Therefore, the results demonstrate that rat HG activates autophagy as survival strategy under conditions of increased lipid metabolism and suggest a key role for mitophagy and membrane dynamics in the mitochondrial adaptive response to HFD.
Collapse
Affiliation(s)
- Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria M Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Benevento, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
27
|
Zhang M, Liang Y, Liu Y, Li Y, Shen L, Shi G. High-fat diet-induced intestinal dysbiosis is associated with the exacerbation of Sjogren’s syndrome. Front Microbiol 2022; 13:916089. [PMID: 35935193 PMCID: PMC9354669 DOI: 10.3389/fmicb.2022.916089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental factors are believed to influence the evolution of primary Sjögren’s syndrome (pSS). The aims of this study were to investigate the association of pSS with a high-fat diet (HFD) and to relate HFD-induced gut dysbiosis to pSS exacerbation. Male Wild Type (WT) and IL-14α transgenic mice (IL-14α TG) were fed a standard diet (SD) and HFD for 11 months. We found an increase in the autoantibody level, more severe dry eye, severe dry mouth symptoms, and an earlier presence of systemic features in the IL-14α TG mice treated with HFD. These data suggest that HFD can promote the process of pSS in the IL-14α TG mice. In addition, an HFD leads to a decrease in the richness of gut microbiota of IL-14α TG mice treated with HFD. The abundance of Deferribacterota was significantly enriched in the IL-14α TG mice treated with HFD compared with other groups. Through the mental test between gut microbiota and clinical parameters, we found that HFD-induced dysbiosis gut microbiota were associated with pSS clinical parameters. In conclusion, HFD results in the aggravation of pSS progression, likely due to the increase of potentially pathogenic microorganisms.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Yichen Liang
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, China
- Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Yanbo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Eye Institute of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Long Shen
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, China
- Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
- Long Shen,
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
- *Correspondence: Guixiu Shi,
| |
Collapse
|
28
|
Watane A, Raolji S, Cavuoto K, Galor A. Microbiome and immune-mediated dry eye: a review. BMJ Open Ophthalmol 2022; 7:e000956. [PMID: 36161855 PMCID: PMC9214397 DOI: 10.1136/bmjophth-2021-000956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/06/2022] [Indexed: 11/04/2022] Open
Abstract
In this review, we aim to summarise key articles that explore relationships between the gut and ocular surface microbiomes (OSMs) and immune-mediated dry eye. The gut microbiome has been linked to the immune system by way of stimulating or mitigating a proinflammatory or anti-inflammatory lymphocyte response, which may play a role in the severity of autoimmune diseases. Although the 'normal' gut microbiome varies among individuals and demographics, certain autoimmune diseases have been associated with characteristic gut microbiome changes. Less information is available on relationships between the OSM and dry eye. However, microbiome manipulation in multiple compartments has emerged as a therapeutic strategy, via diet, prebiotics and probiotics and faecal microbial transplant, in individuals with various autoimmune diseases, including immune-mediated dry eye.
Collapse
Affiliation(s)
- Arjun Watane
- Department of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, USA
| | - Shyamal Raolji
- Bascom Palmer Eye Institute, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Kara Cavuoto
- Bascom Palmer Eye Institute, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| |
Collapse
|
29
|
Guo X, Dang W, Li N, Wang Y, Sun D, Nian H, Wei R. PPAR-α Agonist Fenofibrate Ameliorates Sjögren Syndrome-Like Dacryoadenitis by Modulating Th1/Th17 and Treg Cell Responses in NOD Mice. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35687344 PMCID: PMC9202336 DOI: 10.1167/iovs.63.6.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effects and mechanisms of fenofibrate, a synthetic ligand of peroxisome proliferator-activated receptor α (PPAR-α), on autoimmune dacryoadenitis in a mouse model of Sjögren syndrome (SS) dry eye. Methods Male nonobese diabetic (NOD) mice were fed chow with or without 0.03% fenofibrate for 8 weeks, and clinical scores were determined by assessing tear secretion, fluorescein, and hematoxylin and eosin staining. Intracellular IFN-γ, IL-17, and Foxp3 in CD4+ T cells were measured by flow cytometry. The expressions of Th1, Th17, and Treg cell-related transcription factors and cytokines were detected by real-time PCR. The levels of PPAR-α and liver X receptor β (LXR-β) were detected with real-time PCR and Western blotting. Results Fenofibrate efficiently diminished the lymphocytic inflammation in lacrimal glands (LGs), increased tear secretion, and decreased corneal fluorescein staining in NOD mice. Meanwhile, treatment of fenofibrate evidently reduced the proportion of Th1 and Th17 cells and increased the proportion of Treg cells in vivo and vitro, together with decreased expression of T-bet, IFN-γ, RORγt, and IL-17, as well as increased expression of Foxp3 and TGF-β1 in LGs. Furthermore, fenofibrate significantly upregulated the expressions of PPAR-α and LXR-β at the protein and mRNA levels. Conclusions Fenofibrate potently attenuated LG inflammation in a model of autoimmune dry eye, and this effect might partially result from regulating Th1/Th17/Treg cell responses by activating PPAR-α/LXR-β signaling. These data suggest that fenofibrate may be a novel class of therapeutic agent for SS-associated dacryoadenitis.
Collapse
Affiliation(s)
- Xingyi Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Weiyu Dang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ying Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, And Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
30
|
Zou S, Jiao X, Liu J, Qi D, Pei X, Lu D, Huang S, Li Z. High-Fat Nutritional Challenge Reshapes Circadian Signatures in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35588356 PMCID: PMC9123521 DOI: 10.1167/iovs.63.5.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose A high-fat diet (HFD) increases the risk of developing many systemic diseases; however, the effects of high fat intake on lacrimal gland functions and the molecular mechanisms underlying these effects are unknown. We explored the effects of an HFD on the circadian rhythms of the extraorbital lacrimal glands (ELGs). Methods Male C57BL/6J mice maintained on a 12/12-hour light/dark cycle were fed an ad libitum HFD or normal chow (NC) for 2 weeks. The ELGs were collected from euthanized animals every 3 hours throughout the circadian cycle (24 hours). Using high-throughput RNA-sequencing (RNA-Seq), we studied the circadian transcriptomic profile of the ELGs. Circadian oscillations in cell size, secretion response, lipid deposition, and immune cell trafficking of the ELGs were also analyzed. Results An HFD modulated the circadian transcriptomic profile of the ELGs, including the composition, phase, and amplitude of cyclical transcript oscillations, and affected the associated signaling pathways at spatiotemporal levels. HFD feeding significantly altered the normal rhythmic oscillations of ELG cell size, immune cell trafficking, secretion response, and lipid deposition. After dietary reversal in HFD-fed animals, the activity, core temperature, and lipid accumulation in lacrimal glands recovered partially to the level of NC-fed animals. However, the average cell size of the ELGs, the recruitment of immune cells, and the rhythm of lacrimal secretion did not return to the levels of the NC-fed group. Conclusions HFD perturbation interferes with the cyclical transcriptomic profile, cell size, immune cell trafficking, and secretion function of the ELGs with a strikingly high sensitivity.
Collapse
Affiliation(s)
- Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| |
Collapse
|
31
|
Wang S, He X, Li Q, Zhang Y, Hu J, Zong R, Zhuang J, Quantock AJ, Gao Y, Li W, Liu Z. Obstructive Sleep Apnea Affects Lacrimal Gland Function. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35238868 PMCID: PMC8899859 DOI: 10.1167/iovs.63.3.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose To determine the effect of obstructive sleep apnea syndrome (OSA) on lacrimal gland function and its mechanism. Methods Male mice aged seven to eight weeks were housed in cages with cyclic intermittent hypoxia to mimic OSA, and the control group was kept in a normal environment. Slit-lamp observation, fluorescein staining, and corneal sensitivity detection are used to assess cornea changes. Tear secretion was detected by phenol red cotton thread, and the pathological changes of lacrimal gland were observed by hematoxylin and eosin staining, oil red O staining, cholesterol and triglyceride kits, immunofluorescence staining, immunohistochemical staining, real-time polymerase chain reaction, transmission electron microscopy, and Western blot. Results Studies revealed a decreased tear secretion, corneal epithelial defects and corneal hypersensitivity. Myoepithelial cell damage, abnormal lipid accumulation, reduced cell proliferation, increased apoptosis and inflammatory cell infiltration in the lacrimal gland were also seen. Hifα and NF-κB signaling pathways, moreover, were activated, while Pparα was downregulated, in the lacrimal glands of OSA mice. Fenofibrate treatment significantly alleviated pathological changes of the lacrimal gland induced by OSA. Conclusion OSA disturbs the Hifα/Pparα/NF-κB signaling axis, which affects lacrimal gland structure and function and induces dry eye.
Collapse
Affiliation(s)
- Shaopan Wang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| | - Xin He
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Qingmin Li
- Department of Ophthalmology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Yuhan Zhang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China
| | - Jingyi Zhuang
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yingying Gao
- Department of Ophthalmology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Wei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
32
|
He X, Wang S, Sun H, He H, Shi Y, Wu Y, Wu H, Liu Z, Zhuang J, Li W. Lacrimal Gland Microenvironment Changes After Obstruction of Lacrimal Gland Ducts. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35289845 PMCID: PMC8934564 DOI: 10.1167/iovs.63.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate microenvironment changes of the lacrimal gland after obstruction of lacrimal gland ducts. Methods The ducts of rat exorbital lacrimal gland were ligated by sutures for different durations. After that, the sutures in some animals were released, and they were observed for 21 days to evaluate the recovery of the lacrimal gland. Slit lamp and tear secretion test was performed to evaluate ocular surface and lacrimal gland function. The lacrimal gland and cornea were harvested and processed for hematoxylin and eosin staining, oil red O staining, LipidTOX staining, Masson staining, quantitative real time polymerase chain reaction, and immunofluorescence staining. Results After the lacrimal gland ducts were blocked, tear secretion and the weight of the lacrimal gland were reduced. Incidence of corneal neovascularization increased after seven days. Intraglandular ducts dilated and acini destroyed. Long-term ligation induced fibrosis and lipid accumulation of the lacrimal glands. Inflammatory cell infiltrated and inflammatory factors upregulated. Proliferative and apoptotic cells increased. Structure of myoepithelial cells and basement membrane was destroyed. The p63 expression increased whereas Pax6 expression decreased. After suture release, tear secretion and structure of acini could recover in less than seven days after ligation, with a decrease in inflammatory cell infiltration and fibrosis relief. Apoptotic cells and proliferative cells increased at five days thereafter. The structure of the myoepithelial cells and basement membrane could not recover three days after ligation, and the number of mesenchymal cells increased in ligation after five to 14 days. Conclusions Blockage of the lacrimal gland ducts results in dystrophy of lacrimal gland acini cells, inflammation, and lipid accumulation of the lacrimal gland microenvironment. Long-term duct blockage will cause irreversible lacrimal gland failure.
Collapse
Affiliation(s)
- Xin He
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Shaopan Wang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Hui He
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Yalin Shi
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yiming Wu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Han Wu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Jingyi Zhuang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| |
Collapse
|
33
|
Pu Q, Guo XX, Hu JJ, Li AL, Li GG, Li XY. Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-glucose-treated human corneal epithelial cells via the SIRT1/Nrf2/HO-1 pathway. Biomed Pharmacother 2022; 147:112659. [PMID: 35123232 DOI: 10.1016/j.biopha.2022.112659] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM)-related corneal epithelial dysfunction is a severe ocular disorder; however, the effects of nicotinamide mononucleotide (NMN) on high-glucose (HG)-treated human corneal epithelial cells (HCECs) remain unclear. METHODS We conducted an in-vitro study to examine the effects of NMN treatment on HG-treated HCECs. Cell viability was measured using trypan blue stain, mitochondrial membrane potential was measured using JC-1 stain, and intracellular reactive oxygen species and apoptosis assays were conducted using flow cytometry. Transepithelial electrical resistance (TEER) and zonula occludens-1 (ZO-1) immunofluorescence for tight junction examinations were conducted. Immunoblot analyses were conducted to analyze the expression of silent information regulator-1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) of the SIRT1/Nrf2/HO-1 pathway. RESULTS NMN increased cell viability by reducing cell damage, reducing apoptosis, increasing cell migration, and restoring tight junctions in HG-treated HCECs. By analyzing the expressions of SIRT1, Nrf2, HO-1, NMN demonstrated protective effects via the SIRT1/Nrf2/HO-1 pathway. CONCLUSIONS NMN increases cell viability by reversing cell damage, reducing apoptosis, increasing cell migration, and restoring tight junctions in HG-treated HCECs, and these effects may be mediated by the SIRT1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiao-Xiao Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jing-Jie Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ao-Ling Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Gui-Gang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
34
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
35
|
Bu J, Zhang M, Wu Y, Jiang N, Guo Y, He X, He H, Jeyalatha MV, Reinach PS, Liu Z, Li W. High-Fat Diet Induces Inflammation of Meibomian Gland. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34398199 PMCID: PMC8374999 DOI: 10.1167/iovs.62.10.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To determine if a high-fat diet (HFD) induces meibomian gland (MG) inflammation in mice. Methods Male C57BL/6J mice were fed a standard diet (SD), HFD, or HFD supplemented with the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone for various durations. Body weight, blood lipid levels, and eyelid changes were monitored at regular intervals. MG sections were subjected to hematoxylin and eosin staining, LipidTox staining, TUNEL assay, and immunostaining. Quantitative RT-PCR and western blot analyses were performed to detect relative gene expression and signaling pathway activation in MGs. Results MG acinus accumulated more lipids in the mice fed the HFD. Periglandular CD45-positive and F4/80-positive cell infiltration were more evident in the HFD mice, and they were accompanied by upregulation of inflammation-related cytokines. PPAR-γ downregulation accompanied activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways in the HFD mice. There was increased acini cell apoptosis and mitochondria damage in mice fed the HFD. MG inflammation was ameliorated following a shift to the standard diet and rosiglitazone treatment in the mice fed the HFD. Conclusions HFD-induced declines in PPAR-γ expression and MAPK and NF-κB signaling pathway activation resulted in MG inflammation and dysfunction in mice.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Minjie Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| | - Nan Jiang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hui He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - M Vimalin Jeyalatha
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peter Sol Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
36
|
Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production. Int J Mol Sci 2020; 21:ijms21228772. [PMID: 33233559 PMCID: PMC7699756 DOI: 10.3390/ijms21228772] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Dyslipidemia may be linked to meibomian gland dysfunction (MGD) and altered meibum lipid composition. The purpose was to determine if plasma and meibum cholesteryl esters (CE), triglycerides (TG), ceramides (Cer) and sphingomyelins (SM) change in a mouse model of diet-induced obesity where mice develop dyslipidemia. METHODS Male C57/BL6 mice (8/group, age = 6 wks) were fed a normal (ND; 15% kcal fat) or an obesogenic high-fat diet (HFD; 42% kcal fat) for 10 wks. Tear production was measured and meibography was performed. Body and epididymal adipose tissue (eAT) weights were determined. Nano-ESI-MS/MS and LC-ESI-MS/MS were used to detect CE, TG, Cer and SM species. Data were analyzed by principal component analysis, Pearson's correlation and unpaired t-tests adjusted for multiple comparisons; significance set at p ≤ 0.05. RESULTS Compared to ND mice, HFD mice gained more weight and showed heavier eAT and dyslipidemia with higher levels of plasma CE, TG, Cer and SM. HFD mice had hypertrophic meibomian glands, increased levels of lipid species acylated by saturated fatty acids in plasma and meibum and excessive tear production. CONCLUSIONS The majority of meibum lipid species with saturated fatty acids increased with HFD feeding with evidence of meibomian gland hypertrophy and excessive tearing. The dyslipidemia is associated with altered meibum composition, a key feature of MGD.
Collapse
|