1
|
Wang B, Fu W, Ueda A, Shah H, Wu CF, Chi W, Zhuang X. Genetic vitamin B6 deficiency and alcohol interaction in behavior and metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641947. [PMID: 40093095 PMCID: PMC11908246 DOI: 10.1101/2025.03.06.641947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Alcohol abuse is a leading cause of preventable deaths, affecting brain function and metabolism, including GABA transmission and vitamin B6 (VB6) levels. However, the interaction between genetic VB6 deficiency and alcohol consumption remains unexplored. Here, we utilized Drosophila models with mutations in pyridox(am)ine-5'-phosphate oxidase (PNPO), a key enzyme in VB6 metabolism, to examine this interaction at behavioral and biochemical levels. Our findings demonstrate that PNPO deficiency reduces alcohol aversion, increases consumption, and alters locomotor behavior. Biochemically, PNPO deficiency and alcohol exposure converge on amino acid metabolism, elevating inhibitory neurotransmitters GABA and glycine. Moreover, both PNPO deficiency and alcohol exposure lead to lethality with significant interaction, which can be rescued by VB6 supplementation. These results highlight a functional interaction between genetic VB6 deficiency and alcohol, suggesting potential therapeutic strategies for alcohol-related behaviors.
Collapse
Affiliation(s)
- Benjamin Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Wenqin Fu
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Atsushi Ueda
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242
| | - Hardik Shah
- Biological Science Division, Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242
| | - Wanhao Chi
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Present address: The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Yoon HJ, Doyle MA, Altemus ME, Bethi R, Lago SH, Winder DG, Calipari ES. Operant ethanol self-administration behaviors do not predict sex differences in continuous access home cage drinking. Alcohol 2025; 123:87-99. [PMID: 39218047 PMCID: PMC12034132 DOI: 10.1016/j.alcohol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding sex differences in disease prevalence is critical to public health, particularly in the context of alcohol use disorder (AUD). The goal of this study was to understand sex differences in ethanol drinking behavior and define the precise conditions under which sex differences emerge. Consistent with prior work, C57BL/6J females drank more than males under continuous access two-bottle choice conditions. However, using ethanol self-administration - where an operant response results in access to an ethanol sipper for a fixed time period - we found no sex differences in operant response rates or ethanol consumption (volume per body weight consumed, as well as lick behavior). This remained true across a wide range of parameters including acquisition, when the ethanol sipper access period was manipulated, and when the concentration of the ethanol available was scaled. The only sex differences observed were in total ethanol consumption, which was explained by differences in body weight between males and females, rather than by sex differences in motivation to drink. Using dimensionality reduction approaches, we found that drinking behavior in the operant context did not cluster by sex, but rather clustered by high and low drinking phenotypes. Interestingly, these high and low drinking phenotypes in the operant context showed no correlation with those same categorizations in the home cage context within the same animals. These data underscore the complexity of sex differences in ethanol consumption, highlighting the important role that drinking conditions/context plays in the expression of these differences.
Collapse
Affiliation(s)
- Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Megan E Altemus
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Sofia H Lago
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
McNamara TA, Weng H, Liao HY, Ito R. Individual and sex differences in frontloading behavior and approach- avoidance conflict preference predict addiction-like ethanol seeking in rats. Sci Rep 2025; 15:2982. [PMID: 39848982 PMCID: PMC11757739 DOI: 10.1038/s41598-024-82517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/05/2024] [Indexed: 01/25/2025] Open
Abstract
Recent research has identified sex-dependent links between risk taking behaviors, approach-avoidance bias and alcohol intake. However, preclinical studies have typically assessed alcohol drinking using a singular dimension of intake (i.e. drinking level), failing to capture the multidimensional pattern of aberrant alcohol-seeking observed in alcohol use disorder. In this study, we sought to further explore individual and sex differences in the relationship between approach-avoidance bias, frontloading (bingeing and onset skew) and multiple addiction-like indices of ethanol seeking that included motivation for ethanol, persistence despite its absence (extinction), and ethanol-taking in the face of mild footshock. We found that female rats displayed more addiction-like phenotypes than males overall, and that frontloading patterns differed by sex, with females outdrinking males in the early part of access sessions (bingeing), but males strongly concentrating their lever pressing for ethanol in that period (onset skew). Multiple regression analyses revealed that bingeing was a strong positive predictor and onset skew a negative predictor of motivational breakpoint. Cued-conflict preference - a measure of approach-avoidance bias towards a mixed-valence conflict cue - was predictive of both extinction and footshock in males, but not females. Our data highlight key sex differences, and the relevance of both frontloading patterns and conflict preference in predicting future addiction-like phenotypes.
Collapse
Affiliation(s)
- Tanner A McNamara
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, Canada
| | - Hanyi Weng
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, Canada
| | - Hsin Yu Liao
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Hou S, Arce Soto NM, Glover EJ. Modeling Alcohol Consumption in Rodents Using Two-Bottle Choice Home Cage Drinking and Microstructural Analysis. J Vis Exp 2024:10.3791/67486. [PMID: 39584683 PMCID: PMC11849807 DOI: 10.3791/67486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Two-bottle choice home cage drinking is one of the most widely used paradigms to study ethanol consumption in rodents. In its simplest form, animals are provided with access to two drinking bottles, one of which contains regular tap water and the other ethanol, with daily intake measured by change in bottle weight over the 24 h period. Consequently, this approach requires no specialized laboratory equipment. While such ease of implementation is likely the greatest contributor to its widespread adoption by preclinical alcohol researchers, the resolution of drinking data acquired using this approach is limited by the number of times the researcher measures bottle weight (e.g., once daily). However, the desire to examine drinking patterns in the context of overall intake, pharmacological interventions, and neuronal manipulations has prompted the development of home cage lick detection systems that can acquire data at the level of individual licks. Although a number of these systems have been developed recently, the open-source system, LIQ HD (Lick Instance Quantifier Home cage Device), has garnered significant attention in the field for its affordability and user friendliness. Although exciting, this system was designed for use in mice. Here, we review appropriate procedures for standard and lickometer-equipped two-bottle choice home cage drinking. We also introduce methods for adapting the LIQ HD system to rats including hardware modifications to accommodate larger cage size and a redesigned 3D printed bottle holder compatible with standard off-the-shelf drinking bottles. Using this approach, researchers can examine daily drinking patterns in addition to levels of intake in many rats in parallel thereby increasing the resolution of acquired data with minimal investment in additional resources. These methods provide researchers with the flexibility to use either standard bottles or a lickometer-equipped apparatus to interrogate the neurobiological mechanisms underlying alcohol drinking depending on their precise experimental needs.
Collapse
Affiliation(s)
- Shikun Hou
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago
| | - Nathaly M Arce Soto
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago;
| |
Collapse
|
5
|
Hou S, Arce Soto NM, Glover EJ. Modelling alcohol consumption in rodents using two-bottle choice home cage drinking and optional lickometry-based microstructural analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604367. [PMID: 39091815 PMCID: PMC11291077 DOI: 10.1101/2024.07.19.604367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Two-bottle choice home cage drinking is one of the most widely used paradigms to study ethanol consumption in rodents. In its simplest form, animals are provided with access to two drinking bottles, one of which contains regular tap water and the other ethanol, for 24 hr/day with daily intake measured via change in bottle weight over the 24 hr period. Consequently, this approach requires no specialized laboratory equipment. While such ease of implementation is likely the greatest contributor to its widespread adoption by preclinical alcohol researchers, the resolution of drinking data acquired using this approach is limited by the number of times the researcher measures bottle weight (e.g., once daily). However, the desire to examine drinking patterns in the context of overall intake, pharmacological interventions, and neuronal manipulations has prompted the development of home cage lickometer systems that can acquire data at the level of individual licks. Although a number of these systems have been developed recently, the open-source system, LIQ HD, has garnered significant attention in the field for its affordability and user friendliness. Although exciting, this system was designed for use in mice. Here, we review appropriate procedures for standard and lickometer-equipped two-bottle choice home cage drinking. We also introduce methods for adapting the LIQ HD system to rats including hardware modifications to accommodate larger cage size and a redesigned 3D printed bottle holder compatible with standard off-the-shelf drinking bottles. Using this approach, researchers can examine daily drinking patterns in addition to levels of intake in many rats in parallel thereby increasing the resolution of acquired data with minimal investment in additional resources. These methods provide researchers with the flexibility to use either standard bottles or a lickometer-equipped apparatus to interrogate the neurobiological mechanisms underlying alcohol drinking depending on their precise experimental needs.
Collapse
Affiliation(s)
- Shikun Hou
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Nathaly M Arce Soto
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Becker HC, Lopez MF. Animal Models of Excessive Alcohol Consumption in Rodents. Curr Top Behav Neurosci 2024. [PMID: 38340255 DOI: 10.1007/7854_2024_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- RHJ Veterans Administration Health Care System, Medical University of South Carolina, Charleston, SC, USA.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Jacotte-Simancas A, Molina PE, Gilpin NW. Repeated Mild Traumatic Brain Injury and JZL184 Produce Sex-Specific Increases in Anxiety-Like Behavior and Alcohol Consumption in Wistar Rats. J Neurotrauma 2023; 40:2427-2441. [PMID: 37503666 PMCID: PMC10649186 DOI: 10.1089/neu.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Alcohol use disorder (AUD) is highly comorbid with traumatic brain injury (TBI). Previously, using a lateral fluid percussion model (LFP) (an open-head injury model) to generate a single mild to moderate traumatic brain injury (TBI) we showed that TBI produces escalation in alcohol drinking, that alcohol exposure negatively impacts TBI outcomes, and that the endocannabinoid degradation inhibitor (JZL184) confers significant protection from behavioral and neuropathological outcomes in male rodents. In the present study, we used a weight drop model (a closed-head injury model) to produce repeated mild TBI (rmTBI; three TBIs separated by 24 hours) in male and female rats to examine the sex-specific effects on anxiety-like behavior and alcohol consumption, and whether systemic treatment with JZL184 would reverse TBI effects on those behaviors. In two separate studies, adult male and female Wistar rats were subjected to rmTBI or sham procedure using the weight drop model. Physiological measures of injury severity were collected from all animals. Animals in both studies were allowed to consume alcohol using an intermittent 2-bottle choice procedure (12 pre-TBI sessions and 12 post-TBI sessions). Neurological severity and neurobehavioral scores (NSS and NBS, respectively) were tested 24 hours after the final injury. Anxiety-like behavior was tested at 37-38 days post-injury in Study 1-, and 6-8-days post-injury in Study 2. Our results show that females exhibited reduced respiratory rates relative to males with no significant differences between Sham and rmTBI, no effect of rmTBI or sex on righting reflex, and increased neurological deficits in rmTBI groups in both studies. In Study 1, rmTBI increased alcohol consumption in female but not male rats. Male rats consistently exhibited higher levels of anxiety-like behavior than females. The rmTBI did not affect anxiety-like behavior 37-38 days post-injury. In Study 2, rmTBI once again increased alcohol consumption in female but not male rats, and repeated systemic treatment with JZL184 did not affect alcohol consumption. Also in Study 2, rmTBI increased anxiety-like behavior in males but not females and repeated systemic treatment with JZL184 produced an unexpected increase in anxiety-like behavior 6-8 days post-injury. In summary, rmTBI increased alcohol consumption in female rats, systemic JZL184 treatment did not alter alcohol consumption, and both rmTBI and systemic JZL184 treatment increased anxiety-like behavior 6-8 days post-injury in males but not females, highlighting robust sex differences in rmTBI effects.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Ford MM, George BE, Van Laar VS, Holleran KM, Naidoo J, Hadaczek P, Vanderhooft LE, Peck EG, Dawes MH, Ohno K, Bringas J, McBride JL, Samaranch L, Forsayeth JR, Jones SR, Grant KA, Bankiewicz KS. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat Med 2023; 29:2030-2040. [PMID: 37580533 PMCID: PMC10602124 DOI: 10.1038/s41591-023-02463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/15/2023] [Indexed: 08/16/2023]
Abstract
Alcohol use disorder (AUD) exacts enormous personal, social and economic costs globally. Return to alcohol use in treatment-seeking patients with AUD is common, engendered by a cycle of repeated abstinence-relapse episodes even with use of currently available pharmacotherapies. Repeated ethanol use induces dopaminergic signaling neuroadaptations in ventral tegmental area (VTA) neurons of the mesolimbic reward pathway, and sustained dysfunction of reward circuitry is associated with return to drinking behavior. We tested this hypothesis by infusing adeno-associated virus serotype 2 vector encoding human glial-derived neurotrophic factor (AAV2-hGDNF), a growth factor that enhances dopaminergic neuron function, into the VTA of four male rhesus monkeys, with another four receiving vehicle, following induction of chronic alcohol drinking. GDNF expression ablated the return to alcohol drinking behavior over a 12-month period of repeated abstinence-alcohol reintroduction challenges. This behavioral change was accompanied by neurophysiological modulations to dopamine signaling in the nucleus accumbens that countered the hypodopaminergic signaling state associated with chronic alcohol use, indicative of a therapeutic modulation of limbic circuits countering the effects of alcohol. These preclinical findings suggest gene therapy targeting relapse prevention may be a potential therapeutic strategy for AUD.
Collapse
Affiliation(s)
- Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Psychology, Lewis & Clark College, Portland, OR, USA
| | - Brianna E George
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Victor S Van Laar
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jerusha Naidoo
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Piotr Hadaczek
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Lauren E Vanderhooft
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Emily G Peck
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Monica H Dawes
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kousaku Ohno
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - John Bringas
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lluis Samaranch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - John R Forsayeth
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Ardinger CE, Lapish CC, Czachowski CL, Grahame NJ. A critical review of front-loading: A maladaptive drinking pattern driven by alcohol's rewarding effects. Alcohol Clin Exp Res 2022; 46:1772-1782. [PMID: 36239713 PMCID: PMC9588658 DOI: 10.1111/acer.14924] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 01/31/2023]
Abstract
Front-loading is a drinking pattern in which alcohol intake is skewed toward the onset of reward access. This phenomenon has been reported across several different alcohol self-administration protocols in a wide variety of species, including humans. The hypothesis of the current review is that front-loading emerges in response to the rewarding effects of alcohol and can be used to measure the motivation to consume alcohol. Alternative or additional hypotheses that we consider and contrast with the main hypothesis are that: (1) front-loading is directed at overcoming behavioral and/or metabolic tolerance and (2) front-loading is driven by negative reinforcement. Evidence for each of these explanations is reviewed. We also consider how front-loading has been evaluated statistically in previous research and make recommendations for defining this intake pattern in future studies. Because front-loading may predict long-term maladaptive alcohol drinking patterns leading to the development of alcohol use disorder (AUD), several future directions are proposed to elucidate the relationship between front-loading and AUD.
Collapse
Affiliation(s)
- Cherish E. Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Christopher C. Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA,Stark Neuroscience Research InstituteIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Cristine L. Czachowski
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Nicholas J. Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
10
|
Fredriksson I, Jayaram-Lindström N, Kalivas PW, Melas PA, Steensland P. N-acetylcysteine improves impulse control and attenuates relapse-like alcohol intake in long-term drinking rats. Behav Brain Res 2022; 436:114089. [PMID: 36063970 DOI: 10.1016/j.bbr.2022.114089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Increasing evidence suggests that individuals with alcohol use disorder (AUD) present with a disrupted glutamatergic system that underlies core components of addictive disorders, including drug relapse and low impulse control. N-acetylcysteine (NAC) is a cystine prodrug that has been found to promote glutamate homeostasis and drug abstinence. However, no studies to date have evaluated NAC's effect on impulsivity in substance use disorders. Here we determined whether NAC would decrease alcohol-intake behaviors, in addition to improving impulse control, in long-term alcohol drinking male Wistar-Han rats. Before the start of the experiments, all rats were exposed to long-term intermittent access to 20% ethanol for at least seven weeks. Next, in different groups of rats, the effect of NAC (60 and/or 90mg/kg) was evaluated on (i) voluntary alcohol drinking using a two-bottle free choice paradigm, (ii) the motivation to self-administer alcohol under a progressive ratio schedule of reinforcement, and (iii) relapse-like drinking using the alcohol deprivation effect model. Finally, (iv) NAC's effect on impulse control was evaluated using the five-choice serial reaction time task. Results showed that NAC administration at 90mg/kg significantly reduced relapse-like drinking and improved impulse control. In contrast, NAC had no effect on levels of alcohol drinking or motivation to drink alcohol. In conclusion, our findings continue to support the use of NAC as an adjuvant treatment for the maintenance of abstinence in AUD. Moreover, we provide evidence for NAC's efficacy in improving impulse control following drinking, which warrants further investigation in substance use settings.
Collapse
Affiliation(s)
- Ida Fredriksson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| | - Nitya Jayaram-Lindström
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Ralph Johnson Veterans Administration, Charleston, SC, USA
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden; Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Pia Steensland
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| |
Collapse
|
11
|
Williams KL, Parikh UK, Doyle SM, Meyer LN. Effect of intermittent access to alcohol mixed in energy drink during adolescence on alcohol self-administration, anxiety, and memory during adulthood in rats. Alcohol Clin Exp Res 2022; 46:1423-1432. [PMID: 35778776 DOI: 10.1111/acer.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mixing alcohol with caffeinated energy drinks is a common practice among young people. Consumption of alcohol mixed in energy drink is associated with increased risk of binge drinking and alcohol dependence. The purpose of this study was to determine whether voluntary intermittent access to alcohol mixed in energy drink in adolescent rats alters adult self-administration of alcohol, anxiety, and memory. METHODS For 10 weeks in the home-cage, two groups of adolescent female Sprague-Dawley rats had intermittent access to energy drink (ED) or 10% alcohol mixed in energy drink (AmED) with water concurrently available. Other rat groups had daily continuous access to ED or AmED. Anxiety was measured with an open field test and memory was assessed with a novel place recognition test. For self-administration, rats pressed levers for 10% alcohol alone on a fixed ratio (FR1) and on a progressive ratio (PR). RESULTS Intermittent access to AmED generated greater intake during the initial 30 min of access (AmED 1.70 ± 0.04 g/kg vs. ED 1.01 ± 0.06 g/kg) and during the subsequent 24 h (AmED 7.04 ± 0.25 g/kg vs. ED 5.60 ± 0.29 g/kg). Intermittent AmED caused a significant but small decrease in anxiety while neither ED nor AmED altered memory. During alcohol self-administration, group differences emerged only during PR testing during which intermittent AmED rats responded more than all other groups. CONCLUSIONS These findings suggest that intermittent access to AmED generates binge-like consumption that supports human findings that AmED generates greater alcohol consumption. Furthermore, experience with AmED may alter the motivational properties of alcohol into adulthood without necessarily causing a major impact on anxiety or memory.
Collapse
Affiliation(s)
- Keith L Williams
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Urja K Parikh
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Shannon M Doyle
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Lindsey N Meyer
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
12
|
Sampedro‐Piquero P, Moreno‐Fernández RD, Begega A, López M, Santín LJ. Long-term consequences of alcohol use in early adolescent mice: Focus on neuroadaptations in GR, CRF and BDNF. Addict Biol 2022; 27:e13158. [PMID: 35229955 DOI: 10.1111/adb.13158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023]
Abstract
Our aim was to assess the cognitive and emotional state, as well as related-changes in the glucocorticoid receptor (GR), the corticotropin-releasing factor (CRF) and the brain-derived neurotrophic factor (BDNF) expression of adolescent C57BL/6J male mice after a 5-week two-bottle choice protocol (postnatal day [pd]21 to pd52). Additionally, we wanted to analyse whether the behavioural and neurobiological effects observed in late adolescence (pd62) lasted until adulthood (pd84). Behavioural testing revealed that alcohol during early adolescence increased anxiety-like and compulsive-related behaviours, which was maintained in adulthood. Concerning cognition, working memory was only altered in late adolescent mice, whereas object location test performance was impaired in both ages. In contrast, novel object recognition remained unaltered. Immunohistochemical analysis showed that alcohol during adolescence diminished BDNF+ cells in the cingulate cortex, the hippocampal CA1 layer and the central amygdala. Regarding hypothalamic-pituitary-adrenal axis (HPA) functioning, alcohol abuse increased the GR and CRF expression in the hypothalamic paraventricular nucleus and the central amygdala. Besides this, GR density was also higher in the prelimbic cortex and the basolateral amygdala, regardless of the animals' age. Our findings suggest that adolescent alcohol exposure led to long-term behavioural alterations, along with changes in BDNF, GR and CRF expression in limbic brain areas involved in stress response, emotional regulation and cognition.
Collapse
Affiliation(s)
- Patricia Sampedro‐Piquero
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología Universidad Autónoma de Madrid Madrid Spain
| | | | - Azucena Begega
- Departamento de Psicología, Facultad de Psicología Universidad de Oviedo Oviedo Spain
| | - Matías López
- Departamento de Psicología, Facultad de Psicología Universidad de Oviedo Oviedo Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
- Neuroimmunology and NeuroInflammation Department Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
| |
Collapse
|
13
|
Quadir SG, Arleth GM, Jahad JV, Echeveste Sanchez M, Effinger DP, Herman MA. Sex differences in affective states and association with voluntary ethanol intake in Sprague-Dawley rats. Psychopharmacology (Berl) 2022; 239:589-604. [PMID: 35044485 DOI: 10.1007/s00213-021-06052-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023]
Abstract
Alcohol use disorders (AUDs) are a major problem across the USA. While AUD remains a complex human condition, it is difficult to isolate the directionality of anxiety and ethanol (EtOH) drinking from outside influences. The present study sought to investigate the relationship between affective states and EtOH intake using male and female Sprague-Dawley rats. Using complementary tests of anxiety- and depressive-like behavior, we found sex- and test-specific differences in basal affective behavior such that females displayed enhanced anxiety-like behavior in the splash test and males displayed enhanced anxiety-like behavior in the novelty-suppressed feeding test. Although, there were no sex differences in EtOH intake and no correlation between baseline anxiety-like behavior and subsequent EtOH intake, we did find that depressive-like behavior predicted future EtOH intake in female rats only. In addition, we observed an increase in depressive-like behavior is male rats in both the water and EtOH drinking groups (compared to baseline levels). Furthermore, post-drinking anxiety-like behavior, but not depressive-like behavior predicted subsequent EtOH intake in female rats. Lastly, we found a history of EtOH intake decreased pain thresholds in male and female rats, but increased anxiety-like and depressive-like behavior was associated with decreased thermal sensitivity only in EtOH-drinking males. Together, these experiments provide important information on the complex interaction between negative affect and EtOH intake and how these two contexts reciprocally do, or do not, influence each other in a sex-specific manner.
Collapse
Affiliation(s)
- S G Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - G M Arleth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J V Jahad
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M Echeveste Sanchez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Koskela M, Piepponen TP, Lindahl M, Harvey BK, Andressoo JO, Võikar V, Airavaara M. The overexpression of GDNF in nucleus accumbens suppresses alcohol-seeking behavior in group-housed C57Bl/6J female mice. J Biomed Sci 2021; 28:87. [PMID: 34923968 PMCID: PMC8686589 DOI: 10.1186/s12929-021-00782-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background Craving for alcohol, in other words powerful desire to drink after withdrawal, is an important contributor to the development and maintenance of alcoholism. Here, we studied the role of GDNF (glial cell line-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) on alcohol-seeking behavior in group-housed female mice. Methods We modeled alcohol-seeking behavior in C57Bl/6J female mice. The behavioral experiments in group-housed female mice were performed in an automated IntelliCage system. We conducted RT-qPCR analysis of Gdnf, Bdnf, Manf and Cdnf expression in different areas of the female mouse brain after alcohol drinking conditioning. We injected an adeno-associated virus (AAV) vector expressing human GDNF or BDNF in mouse nucleus accumbens (NAc) after ten days of alcohol drinking conditioning and assessed alcohol-seeking behavior. Behavioral data were analyzed by two-way repeated-measures ANOVA, and statistically significant effects were followed by Bonferroni’s post hoc test. The student’s t-test was used to analyze qPCR data. Results The RT-qPCR data showed that Gdnf mRNA level in NAc was more than four times higher (p < 0.0001) in the mice from the sweetened alcohol group compared to the water group. Our data showed a more than a two-fold decrease in Manf mRNA (p = 0.04) and Cdnf mRNA (p = 0.02) levels in the hippocampus and Manf mRNA in the VTA (p = 0.04) after alcohol consumption. Two-fold endogenous overexpression of Gdnf mRNA and lack of CDNF did not affect alcohol-seeking behavior. The AVV-GDNF overexpression in nucleus accumbens suppressed alcohol-seeking behavior while overexpression of BDNF did not. Conclusions The effect of increased endogenous Gdnf mRNA level in female mice upon alcohol drinking has remained unknown. Our data suggest that an increase in endogenous GDNF expression upon alcohol drinking occurs in response to the activation of another mesolimbic reward pathway participant.
Collapse
Affiliation(s)
- Maryna Koskela
- Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Brandon K Harvey
- National Institute on Drug Abuse, IRP, NIH, Biomedical Research Center, 251 Bayview Boulevard Suite 200, Baltimore, MD, 21224, USA
| | - Jaan-Olle Andressoo
- Faculty of Medicine, University of Helsinki, PO Box 56, 00014, Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vootele Võikar
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Mikko Airavaara
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland. .,Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
15
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
16
|
Flores-Bonilla A, De Oliveira B, Silva-Gotay A, Lucier KW, Richardson HN. Shortening time for access to alcohol drives up front-loading behavior, bringing consumption in male rats to the level of females. Biol Sex Differ 2021; 12:51. [PMID: 34526108 PMCID: PMC8444481 DOI: 10.1186/s13293-021-00395-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background Incentives to promote drinking (“happy hour”) can encourage faster rates of alcohol consumption, especially in women. Sex differences in drinking dynamics may underlie differential health vulnerabilities relating to alcohol in women versus men. Herein, we used operant procedures to model the happy hour effect and gain insight into the alcohol drinking dynamics of male and female rats. Methods Adult male and female Wistar rats underwent operant training to promote voluntary drinking of 10% (w/v) alcohol (8 rats/sex). We tested how drinking patterns changed after manipulating the effort required for alcohol (fixed ratio, FR), as well as the length of time in which rats had access to alcohol (self-administration session length). Rats were tested twice within the 12 h of the dark cycle, first at 2 h (early phase of the dark cycle, “early sessions”) and then again at 10 h into the dark cycle (late phase of the dark cycle, “late sessions”) with an 8-h break between the two sessions in the home cage. Results Adult females consumed significantly more alcohol (g/kg) than males in the 30-min sessions with the FR1 schedule of reinforcement when tested late in the dark cycle. Front-loading of alcohol was the primary factor driving higher consumption in females. Changing the schedule of reinforcement from FR1 to FR3 reduced total consumption. Notably, this manipulation had minimal effect on front-loading behavior in females, whereas front-loading behavior was significantly reduced in males when more effort was required to access alcohol. Compressing drinking access to 15 min to model a happy hour drove up front-loading behavior, generating alcohol drinking patterns in males that were similar to patterns in females (faster drinking and higher intake). Conclusions This strategy could be useful for exploring sex differences in the neural mechanisms underlying alcohol drinking and related health vulnerabilities. Our findings also highlight the importance of the time of testing for detecting sex differences in drinking behavior. Voluntary alcohol drinking is higher in adult female rats compared to adult male rats. This sex difference is most pronounced in the later phase of the dark cycle, and when the operant effort is minimal (when 1 lever press gives 1 reward: fixed ratio 1, FR1). Higher alcohol intake in females is primarily due to “front-loading”, or the rapid consumption of alcohol within the first 5 min of access. Increasing the effort required to obtain alcohol from FR1 to FR3 dampens front-loading drinking behavior, resulting in similar levels of total intake in males and females. Compressing the time of access to 15 min drives up front-loading to such a degree that rats end up consuming more alcohol in total than they do in 30-min sessions. In males, this increase in drinking is large enough that it eliminates the sex difference in total alcohol intake.
Collapse
Affiliation(s)
- Annabelle Flores-Bonilla
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Barbara De Oliveira
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrea Silva-Gotay
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kyle W Lucier
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Heather N Richardson
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA. .,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
17
|
BERQUIST MD, FANTEGROSSI WE. Effects of 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine on alcohol consumption in Long-Evans rats. Behav Pharmacol 2021; 32:382-391. [PMID: 33595958 PMCID: PMC8266736 DOI: 10.1097/fbp.0000000000000628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objectives of this study were to determine alcohol consumption after administration of (R)(-)-2,5-dimethoxy-4-iodoamphetamine (DOI) or naltrexone in Long-Evans rats, and to assess the effectiveness of these treatments based on individual differences in alcohol consumption. Adult male Long-Evans rats (N = 16) were given opportunities to orally self-administer a 20% (v/v) ethanol (EtOH) solution using an intermittent access, two-bottle (vs. tap water) choice procedure in their home cages. EtOH consumption and preference, total fluid consumption and food intake were measured. Last, we assessed the effects of naltrexone (1 mg/kg; subcutaneous) and (R)(-)-DOI (0.1-1 mg/kg; subcutaneous) on EtOH intake and preference using a quartile analysis. Rats showed stable EtOH (20%) intake and preference after 15 EtOH access sessions. Naltrexone produced a transient decrease in EtOH intake, but an inconsistent effect on EtOH preference, whereas DOI dose-dependently reduced EtOH intake and preference for at least 24 h. Subsequent quartile analyses revealed that rats with the highest EtOH intake during the first 60 min of access to EtOH showed greater reductions in EtOH intake and preference after DOI treatment. This is the first report to show that DOI-elicited reductions in EtOH intake and preference in rats depend on baseline EtOH intake, perhaps supporting a 'baseline dependency' hypothesis of effectiveness with phenethylamine psychedelics on EtOH consumption. If so, individuals with greater potential to develop severe AUDs may be particularly responsive to the positive motivational changes produced by treatment with psychedelics that target the 5-HT2 receptor family.
Collapse
Affiliation(s)
- Michael D. BERQUIST
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William E. FANTEGROSSI
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
18
|
Ehinger Y, Phamluong K, Darevesky D, Welman M, Moffat JJ, Sakhai SA, Whiteley EL, Berger AL, Laguesse S, Farokhnia M, Leggio L, Lordkipanidzé M, Ron D. Differential correlation of serum BDNF and microRNA content in rats with rapid or late onset of heavy alcohol use. Addict Biol 2021; 26:e12890. [PMID: 32135570 DOI: 10.1111/adb.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Heavy alcohol use reduces the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex of rodents through the upregulation of microRNAs (miRs) targeting BDNF mRNA. In humans, an inverse correlation exists between circulating blood levels of BDNF and the severity of psychiatric disorders including alcohol abuse. Here, we set out to determine whether a history of heavy alcohol use produces comparable alterations in the blood of rats. We used an intermittent access to 20% alcohol using the two-bottle choice paradigm (IA20%2BC) and measured circulating levels of BDNF protein and miRs targeting BDNF in the serum of Long-Evans rats before and after 8 weeks of excessive alcohol intake. We observed that the drinking profile of heavy alcohol users is not unified, whereas 70% of the rats gradually escalate their alcohol intake (late onset), and 30% of alcohol users exhibit a very rapid onset of drinking (rapid onset). We found that serum BDNF levels are negatively correlated with alcohol intake in both rapid onset and late onset rats. In contrast, increased expression of the miRs targeting BDNF, miR30a-5p, miR-195-5p, miR191-5p and miR206-3p, was detected only in the rapid onset rats. Finally, we report that the alcohol-dependent molecular changes are not due to alterations in platelet number. Together, these data suggest that rats exhibit both late and rapid onset of alcohol intake. We further show that heavy alcohol use produces comparable changes in BDNF protein levels in both groups. However, circulating microRNAs are responsive to alcohol only in the rapid onset rats.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Khanhky Phamluong
- Department of Neurology University of California, San Francisco San Francisco California
| | - David Darevesky
- Department of Neurology University of California, San Francisco San Francisco California
| | - Melanie Welman
- Research Center Montreal Heart Institute Montreal Quebec Canada
| | - Jeffrey J. Moffat
- Department of Neurology University of California, San Francisco San Francisco California
| | - Samuel A. Sakhai
- Department of Neurology University of California, San Francisco San Francisco California
| | - Ellanor L. Whiteley
- Department of Neurology University of California, San Francisco San Francisco California
| | - Anthony L. Berger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Sophie Laguesse
- Department of Neurology University of California, San Francisco San Francisco California
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Marie Lordkipanidzé
- Research Center Montreal Heart Institute Montreal Quebec Canada
- Faculty of Pharmacy University of Montreal Montreal Quebec Canada
| | - Dorit Ron
- Department of Neurology University of California, San Francisco San Francisco California
| |
Collapse
|
19
|
Alipour M, Jafarian M, Rastgoo R, Mokri A, Gorji A, Zarrindast MR, Lorestani F, Razaghi EM. Cabergoline in Treatment of Methamphetamine-Dependent Patients and Its Effect on Serum Level of Glial Cell-Derived Neurotrophic Factor: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Eur Addict Res 2021; 27:457-468. [PMID: 33857946 DOI: 10.1159/000515398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methamphetamine use disorder is an important public health problem, especially in the younger generation, and associated with various psychiatric, cognitive, social, economic, and legal issues. Cabergoline, a drug with dopaminergic properties and long half-life, has been considered for the treatment of stimulant dependence. The systemic use of cabergoline has been shown to increase glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE In this study, we investigated the effects of cabergoline on the serum level of GDNF and its effect on abstaining from methamphetamine in individuals treated for methamphetamine use disorder. METHOD Sixty male subjects with methamphetamine use disorder were randomly assigned to 2 groups receiving cabergoline and placebo, respectively. During a 12-week follow-up, we compared the serum level of GDNF, urine test results for methamphetamine use, and depression scale between the 2 groups. RESULTS We found that serum GDNF was lower in subjects who used methamphetamine than healthy subjects (p < 0.0001). However, the serum level of GDNF was not associated with cabergoline use. The rising number of cases testing positive in the placebo group showed a trend resulting in no significant difference between cases testing positive and negative (p = 0.585) at the end of week 12. In the verum group, however, the significantly high number of cases who tested negative - sober - for substances observed in early stages (weeks 7-8) continued to remain significantly higher till the end of the study (p = 0.043), resembling an association between treatment with cabergoline and remaining sober. Although reduced during treatment, recovery from depression was not associated with cabergoline treatment. CONCLUSION The findings of this study confirmed the effect of cabergoline in reducing methamphetamine use. However, a serum level of the GDNF increase, as seen in animal studies, was not associated with cabergoline treatment of human subjects. This study was registered at the Iranian Registry of Clinical Trials (TRN:IRCT2015050422077N1, October 06, 2015, https://en.irct.ir/trial/19134).
Collapse
Affiliation(s)
- Mohammadesmaeil Alipour
- Department of Neuroscience and Addiction Studies, MD, PhD Candidate in Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Janbazan Medical and Engineering Research Center, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rastgoo
- Department of Neuroscience and Addiction Studies, MD, PhD Candidate in Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azarakhsh Mokri
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Westfalische Wilhelms-Universität Münster, Münster, Germany
| | - Mohammad R Zarrindast
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Lorestani
- Department of Psychology, Faculty of Humaities, Saveh Islamic Azad University, Saveh, Iran
| | - Emran M Razaghi
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Liran M, Rahamim N, Ron D, Barak S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039271. [PMID: 31964648 DOI: 10.1101/cshperspect.a039271] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dorit Ron
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, California 94143-0663, USA
| | - Segev Barak
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
21
|
Brancato A, Castelli V, Lavanco G, Cannizzaro C. Environmental Enrichment During Adolescence Mitigates Cognitive Deficits and Alcohol Vulnerability due to Continuous and Intermittent Perinatal Alcohol Exposure in Adult Rats. Front Behav Neurosci 2020; 14:583122. [PMID: 33100982 PMCID: PMC7546794 DOI: 10.3389/fnbeh.2020.583122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical and functional long-term abnormalities with limited treatment options. This study investigated long-term consequences of continuous and intermittent maternal alcohol drinking on behavioral readouts of cognitive function and alcohol vulnerability in the offspring. The effects of environmental enrichment (EE) during adolescence were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation periods—equivalent to the whole gestational period in humans. Male offspring were reared in standard conditions or EE until adulthood and were then assessed for declarative memory in the novel object recognition test; spatial learning, cognitive flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD decreased locomotor activity, exploratory behavior, and declarative memory with respect to controls, whereas perinatal IAD displayed impaired declarative memory and spatial learning and memory. Moreover, both perinatal alcohol-exposed offspring showed higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal IAD rats showed a greater alcohol consumption and relapse behavior with respect to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD, while it mitigated spatial learning and reference memory impairment in perinatal-IAD progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related long-term consequences on cognition and vulnerability to alcohol in the offspring. However, increased positive environmental stimuli during adolescence may curtail the detrimental effects of developmental alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Ozturk B, Pogun S, Kanit L. Increased alcohol preference and intake in nicotine-preferring rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 46:408-420. [PMID: 31860364 DOI: 10.1080/00952990.2019.1695808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alcohol and tobacco are among the leading substances that are misused together and shared genetic vulnerability is likely. Increased susceptibility to nicotine self-administration has been shown in alcohol-preferring rat-lines. However, a nicotine-preferring (nP) rat-line has not been studied for alcohol preference. OBJECTIVES To evaluate alcohol preference and intake in male and female nP rats. We hypothesized that nP rats and females would drink more ethanol than control rats and males, respectively. METHODS nP rats are being selectively outbred for high oral nicotine intake at Ege University. Seventeen nP (18th generation) and 20 naïve female and male SD rats, not previously exposed to alcohol or nicotine, were used. Twelve-week-old rats were given intermittent access to 20% ethanol in a 2-bottle-choice-procedure for six weeks. After one week withdrawal, six weeks of oral nicotine self-administration was applied. RESULTS nP rats drank significantly more ethanol than controls and their preference for ethanol over water was higher. Female rats' ethanol intake was higher than males'. The nP rats' nicotine preference and intake were higher than controls, and they gained less weight. CONCLUSION We have shown for the first time that nP rats also have high alcohol intake. Our results support the hypothesis that shared genetic factors may underlie concurrent addiction to nicotine and alcohol and have translational value in understanding their misuse. Considering the increased vulnerability for alcohol use disorder in smokers and sex differences observed, early preventive measures in families with a history of tobacco addiction, specifically targeting female members, could have public health benefits.
Collapse
Affiliation(s)
- Baran Ozturk
- Center for Brain Research and School of Medicine Department of Physiology, Ege University , Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research and School of Medicine Department of Physiology, Ege University , Izmir, Turkey
| | - Lutfiye Kanit
- Center for Brain Research and School of Medicine Department of Physiology, Ege University , Izmir, Turkey
| |
Collapse
|
24
|
Aguirre CG, Stolyarova A, Das K, Kolli S, Marty V, Ray L, Spigelman I, Izquierdo A. Sex-dependent effects of chronic intermittent voluntary alcohol consumption on attentional, not motivational, measures during probabilistic learning and reversal. PLoS One 2020; 15:e0234729. [PMID: 32555668 PMCID: PMC7302450 DOI: 10.1371/journal.pone.0234729] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Forced alcohol (ethanol, EtOH) exposure has been shown to cause significant impairments on reversal learning, a widely-used assay of cognitive flexibility, specifically on fully-predictive, deterministic versions of this task. However, previous studies have not adequately considered voluntary EtOH consumption and sex effects on probabilistic reversal learning. The present study aimed to fill this gap in the literature. Methods Male and female Long-Evans rats underwent either 10 weeks of voluntary intermittent 20% EtOH access or water only (H2O) access. Rats were then pretrained to initiate trials and learn stimulus-reward associations via touchscreen response, and subsequently required to select between two visual stimuli, rewarded with probability 0.70 or 0.30. In the final phase, reinforcement contingencies were reversed. Results We found significant sex differences on several EtOH-drinking variables, with females reaching a higher maximum EtOH consumption, exhibiting more high-drinking days, and escalating their EtOH at a quicker rate compared to males. During early abstinence, EtOH drinkers (and particularly EtOH-drinking females) made more initiation omissions and were slower to initiate trials than H2O drinking controls, especially during pretraining. A similar pattern in trial initiations was also observed in discrimination, but not in reversal learning. EtOH drinking rats were unaffected in their reward collection and stimulus response times, indicating intact motivation and motor responding. Although there were sex differences in discrimination and reversal phases, performance improved over time. We also observed sex-independent drinking group differences in win-stay and lose-shift strategies specific to the reversal phase. Conclusions Females exhibit increased vulnerability to EtOH effects in early learning: there were sex-dependent EtOH effects on attentional measures during pretraining and discrimination phases. We also found sex-independent EtOH effects on exploration strategies during reversal. Future studies should aim to uncover the neural mechanisms for changes in attention and exploration in both acute and prolonged EtOH withdrawal.
Collapse
Affiliation(s)
- Claudia G. Aguirre
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
- * E-mail: (AI); (CGA)
| | - Alexandra Stolyarova
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
| | - Kanak Das
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
| | - Saisriya Kolli
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
| | - Vincent Marty
- The Brain Research Institute, University of California-Los Angeles, Los Angeles, California, United States of America
- School of Dentistry, University of California-Los Angeles, Los Angeles, California, United States America
| | - Lara Ray
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
- The Brain Research Institute, University of California-Los Angeles, Los Angeles, California, United States of America
- Integrative Center for Addictions, University of California-Los Angeles, Los Angeles, California, United States of America
| | - Igor Spigelman
- The Brain Research Institute, University of California-Los Angeles, Los Angeles, California, United States of America
- School of Dentistry, University of California-Los Angeles, Los Angeles, California, United States America
| | - Alicia Izquierdo
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
- The Brain Research Institute, University of California-Los Angeles, Los Angeles, California, United States of America
- Integrative Center for Addictions, University of California-Los Angeles, Los Angeles, California, United States of America
- Integrative Center for Learning and Memory, University of California-Los Angeles, Los Angeles, California, United States of America
- * E-mail: (AI); (CGA)
| |
Collapse
|
25
|
Sanchez-Marin L, Gavito AL, Decara J, Pastor A, Castilla-Ortega E, Suarez J, de la Torre R, Pavon FJ, Rodriguez de Fonseca F, Serrano A. Impact of intermittent voluntary ethanol consumption during adolescence on the expression of endocannabinoid system and neuroinflammatory mediators. Eur Neuropsychopharmacol 2020; 33:126-138. [PMID: 32057593 DOI: 10.1016/j.euroneuro.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
The adolescent brain displays high vulnerability to the deleterious effects of ethanol, including greater risk of developing alcohol use disorder later in life. Here, we characterized the gene expression of the endocannabinoid system (ECS) and relevant signaling systems associated with neuroinflammation and emotional behaviors in the brain of young adult control and ethanol-exposed (EtOH) rats. We measured mRNA levels of candidate genes using quantitative real time PCR in the medial prefrontal cortex (mPFC), amygdala and hippocampus. EtOH rats were generated by maintenance on an intermittent and voluntary ethanol consumption during adolescence using the two-bottle choice paradigm (4 days/week for 4 weeks) followed by 2 week-withdrawal, a time-point of withdrawal with no physical symptoms. Mean differences and effect sizes were calculated using t-test and Cohen's d values. In the mPFC and hippocampus, EtOH rats had significantly higher mRNA expression of endocannabinoid-signaling (mPFC: Ppara, Dagla, Daglb and Napepld; and hippocampus: Cnr2, Dagla and Mgll) and neuroinflammation-associated genes (mPFC: Gfap; and hippocampus: Aif1) than in controls. Moreover, EtOH rats had significantly higher mRNA expression of neuropeptide Y receptor genes (Npy1r, Npy2r and Npy5r) in the hippocampus. Finally, EtOH rats also displayed higher plasma endocannabinoid levels than controls. In conclusion, these results suggest that adolescent ethanol exposure can lead to long-term alterations in the gene expression of the ECS and other signaling systems involved in neuroinflammation and regulation of emotional behaviors in key brain areas for the development of addiction.
Collapse
Affiliation(s)
- L Sanchez-Marin
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A Pastor
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - E Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Suarez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - R de la Torre
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - F J Pavon
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain; Unidad Gestión Clínica del Corazón, IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - F Rodriguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| | - A Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| |
Collapse
|
26
|
Maier HB, Neyazi M, Neyazi A, Hillemacher T, Pathak H, Rhein M, Bleich S, Goltseker K, Sadot-Sogrin Y, Even-Chen O, Frieling H, Barak S. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res 2020; 121:1-9. [PMID: 31710958 DOI: 10.1016/j.jpsychires.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.
Collapse
Affiliation(s)
- Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Meraj Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Hansi Pathak
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Koral Goltseker
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Sadot-Sogrin
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Abstract
The receptor tyrosine kinases (RTKs) are a large family of proteins that transduce extracellular signals to the inside of the cell to ultimately affect important cellular functions such as cell proliferation, survival, apoptosis, differentiation, and migration. They are expressed in the nervous system and can regulate behavior through modulation of neuronal and glial function. As a result, RTKs are implicated in neurodegenerative and psychiatric disorders such as depression and addiction. Evidence has emerged that 5 RTKs (tropomyosin-related kinase B (TrkB), RET proto-oncogene (RET), anaplastic lymphoma kinase (ALK), fibroblast growth factor receptor (FGFR), and epidermal growth factor receptor (EGFR)) modulate alcohol drinking and other behaviors related to alcohol addiction. RTKs are considered highly "druggable" targets and small-molecule inhibitors of RTKs have been developed for the treatment of various conditions, particularly cancer. These kinases are therefore attractive targets for the development of new pharmacotherapies to treat alcohol use disorder (AUD). This review will examine the preclinical evidence describing TrkB, RET, ALK, FGFR, and EGFR modulation of alcohol drinking and other behaviors relevant to alcohol abuse.
Collapse
Affiliation(s)
- Kana Hamada
- Department of Psychiatry and Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, Illinois, 60612, USA
| | - Amy W Lasek
- Department of Psychiatry and Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, Illinois, 60612, USA.
| |
Collapse
|
28
|
Nentwig TB, Starr EM, Chandler LJ, Glover EJ. Absence of compulsive drinking phenotype in adult male rats exposed to ethanol in a binge-like pattern during adolescence. Alcohol 2019; 79:93-103. [PMID: 30664983 PMCID: PMC6639162 DOI: 10.1016/j.alcohol.2019.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 02/02/2023]
Abstract
The abuse of alcohol during adolescence is widespread and represents a particular concern, given that earlier age of drinking onset is associated with increased risk for the development of alcohol use disorders (AUDs). Despite this risk, it remains unclear whether binge-like adolescent alcohol exposure facilitates drinking despite aversive consequences, a characteristic common among individuals with AUDs. The present study examined voluntary alcohol consumption and aversion-resistant drinking in adult male Long-Evans rats that had undergone adolescent intermittent ethanol (AIE) exposure by vapor inhalation between postnatal days (PD) 28-44. Ethanol consumption during adulthood was examined using a two-bottle choice (2BC) intermittent access procedure. Rats were tested for aversion-resistant drinking using ethanol adulterated with quinine (10, 30, 100 mg/L) after two 7-week periods of 2BC drinking. After completion of the second test of aversion-resistant drinking, rats were trained to operantly self-administer ethanol. The results revealed that both air control (AIR) and AIE-exposed rats exhibited similar ethanol intake and preference in the 2BC paradigm. After 7 weeks of 2BC drinking, quinine adulteration significantly suppressed ethanol intake, but only at the highest concentration examined (100 mg/L). However, upon retesting after a total of 17 weeks of 2BC drinking, 30-mg/L quinine suppressed ethanol intake. Notably, AIR- and AIE-exposed rats were equally sensitive to quinine-adulterated ethanol at both time points. In addition, AIR- and AIE-exposed rats responded similarly during operant ethanol self-administration on both fixed and progressive ratio schedules of reinforcement. Finally, both AIR- and AIE-exposed rats exhibited similar preference for sucrose. The results of this study show that binge-like ethanol vapor exposure during adolescence does not alter voluntary ethanol consumption, motivation to operantly respond for ethanol, or promote aversion-resistant ethanol consumption in adulthood. These data, together with previous work reporting conflicting results across various rodent models of adolescent alcohol exposure, underscore the need to further explore the role that exposure to alcohol during adolescence has on the development of heavy and compulsive drinking phenotypes in adulthood.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States
| | - E Margaret Starr
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States
| | - Elizabeth J Glover
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States.
| |
Collapse
|
29
|
Hosová D, Spear LP. Voluntary elevated ethanol consumption in adolescent Sprague-Dawley rats: Procedural contributors and age-specificity. Alcohol 2019; 78:1-12. [PMID: 30797832 DOI: 10.1016/j.alcohol.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Alcohol consumption is typically initiated during adolescence, with the incidence of binge drinking (production of blood ethanol concentrations [BECs] > 80 mg/dL) peaking during this stage of development. Studies in outbred rats investigating the consequences of adolescent ethanol exposure have typically employed intragastric, vapor, or intraperitoneal administration to attain BECs in this range. While these procedures have yielded valuable data regarding the consequences of adolescent exposure, they are varyingly stressful, administer the full dose at once, and/or bypass digestion. Consequently, we have worked to develop a model of voluntary elevated ethanol consumption in outbred adolescent Sprague-Dawley males and females, building on our previous work (see Hosová & Spear, 2017). This model utilizes daily 30-min access to 10% ethanol (v/v) in chocolate Boost® from postnatal day (P)28-41. Experiment 1 compared intake levels between (1a) animals given either ball-bearing or open-ended sipper tube tips for solution access, (1b) animals separated from their cage mate by wire mesh or isolated to a separate cage during solution access, (1c) animals given solution access with or without simultaneous access to banana-flavored sugar pellets, and (1d) animals that were either moderately food-restricted or fed ad libitum. Experiment 2 compared intake levels between animals given daily solution access and animals given access only on a "Monday-Wednesday-Friday" intermittent schedule. Experiment 3 compared adolescent and adult (P70-83) consumption using the finalized procedure as based on the results of Experiments 1 and 2. As in our previous work, consumptions well within the binge range were produced on some days, with high-consumption days typically followed by several days of lower consumption before increasing again. Sipper tube type (1a) and simultaneous pellet access (1c) did not affect consumption, while intake was significantly higher in non-isolated (1b), food-restricted (1d), daily-access (2), and adolescent (3) animals. However, although ethanol intake was higher in food-restricted animals, the resulting BECs were equivalent or higher in non-restricted animals, likely due to a hepatoprotective effect of moderate food restriction. Post-consumption intoxication ratings correlated with BECs and were notably higher in adults than adolescents, despite the lower voluntary consumption levels of adults, confirming prior reports of the attenuated sensitivity of adolescents to ethanol intoxication relative to adults. The final model utilized ball-bearing sipper tube tips to provide daily access to 10% ethanol in chocolate Boost® to free-feeding adolescent animals separated from their cage mate by wire mesh, with no food provided during solution access. This easy-to-implement model is effective in producing elevated voluntary ethanol consumption in adolescent, but not adult, Sprague-Dawley rats.
Collapse
Affiliation(s)
- Dominika Hosová
- Binghamton University, Binghamton, NY, 13902, United States.
| | | |
Collapse
|
30
|
Jeong JE, Paik SH, Choi MR, Cho H, Choi JS, Choi SW, Kim DJ. Altered Plasma Levels of Glial Cell Line-Derived Neurotrophic Factor in Patients with Internet Gaming Disorder: A Case-Control, Pilot Study. Psychiatry Investig 2019; 16:469-474. [PMID: 31247707 PMCID: PMC6603705 DOI: 10.30773/pi.2019.04.02.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 11/27/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been reported to be involved in negatively regulating the effects of addictive disorders. The objective of this study was to investigate alterations in the levels of GDNF in patients with Internet gaming disorder (IGD) and to assess the relationship between GDNF levels and the severity of IGD indices. Nineteen male patients with IGD and 19 sexmatched control subjects were evaluated for alteration of plasma GDNF levels and for relationship between GDNF levels and clinical characteristics of Internet gaming, including the Young's Internet Addiction Test (Y-IAT). The GDNF levels were found to be significantly low in patients with IGD (103.2±62.0 pg/mL) compared with the levels of controls (245.2±101.6 pg/mL, p<0.001). GDNF levels were negatively correlated with Y-IAT scores (Spearman's rho=-0.645, p=<0.001) and this negative correlation remained even after controlling for multiple variables (r=-0.370, p=0.048). These findings support the assumed role of GDNF in the regulation of IGD.
Collapse
Affiliation(s)
- Jo-Eun Jeong
- Department of Psychiatry, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Soo-Hyun Paik
- Department of Psychiatry, Keyo Hospital, Keyo Medical Foundation, Uiwang, Republic of Korea
| | - Mi Ran Choi
- Addiction Laboratory, Department of Psychiatry, College of Medicine, The Catholic of University of Korea, Seoul, Republic of Korea
| | - Hyun Cho
- Addiction Laboratory, Department of Psychiatry, College of Medicine, The Catholic of University of Korea, Seoul, Republic of Korea.,Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMU-SNU Boramae Medical Center, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sam-Wook Choi
- Department of Psychiatry, True Mind Mental Health Clinic, Seoul, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
31
|
Voluntary ethanol consumption during early social isolation and responding for ethanol in adulthood. Alcohol 2019; 77:1-10. [PMID: 30240808 DOI: 10.1016/j.alcohol.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the influence of rearing environments concurrent with voluntary intermittent access to ethanol on subsequent adult ethanol-related behaviors. Previous research has shown that adult rats reared in post-weaning, social isolation conditions (IC) respond more for operant ethanol compared to laboratory standard conditions (SC). Ethanol-exposed adolescents tend to consume more ethanol in adulthood than rats exposed as adults. The current study examined voluntary ethanol consumption during adolescence between IC and SC rats, subsequent operant responding for ethanol, and extinction of responding in the same rats as adults. Differences in ethanol metabolism may alter the amount of reward value per unit of ethanol consumed. Therefore, the current study also examined blood ethanol concentrations (BEC) between IC rats and SC rats. Ethanol-naïve Long-Evans rats arrived in the lab at postnatal day (PND) 21 and were separated into either IC or SC where they remained for the duration of the experiments. On PND 27, rats received intermittent access to 20% ethanol (3 days/week) for 4 or 6 weeks. Rats in the 6-week cohort were then trained to lever press for 20% ethanol in 30-min sessions followed by extinction. A separate cohort was reared in IC or SC, injected with 1.5 or 3.0 g/kg of ethanol (intraperitoneally [i.p.]), followed by BEC measurement. Overall, IC rats had higher ethanol preference and consumption during adolescence/early adulthood. IC and SC rats did not differ in their rates of operant responding for ethanol, and SC rats responded more than IC rats during extinction. There were no differences in BEC between IC and SC rats. These findings highlight the importance of the environment during rat adolescent development with isolation conditions increasing binge-like drinking and ethanol preference after 3-4 weeks without differences in metabolism as a potential factor. Additionally, the findings indicate that intermittent adolescent access to ethanol may change typical differences in operant responding patterns between IC and SC rats in adulthood.
Collapse
|
32
|
Barak S, Ahmadiantehrani S, Logrip ML, Ron D. GDNF and alcohol use disorder. Addict Biol 2019; 24:335-343. [PMID: 29726054 DOI: 10.1111/adb.12628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been extensively studied for its role in the development and maintenance of the midbrain dopaminergic system, although evidence suggests that GDNF also plays a role in drug and alcohol addiction. This review focuses on the unique actions of GDNF in the mechanisms that prevent the transition from recreational alcohol use to abuse. Specifically, we describe studies in rodents suggesting that alcohol acutely increases GDNF expression in the ventral tegmental area, which enables the activation of the mitogen-activated protein kinase signaling pathway and the gating of alcohol intake. We further provide evidence to suggest that GDNF acts in the ventral tegmental area via both nongenomic and genomic mechanisms to suppress alcohol consumption. In addition, we describe findings indicating that when this endogenous protective pathway becomes dysregulated, alcohol intake levels escalate. Finally, we describe the potential use of GDNF inducers as a novel therapeutic approach to treat alcohol use disorder.
Collapse
Affiliation(s)
- Segev Barak
- School of Psychological Sciences and the Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
| | | | - Marian L. Logrip
- Department of PsychologyIndiana University‐Purdue University Indianapolis Indianapolis IN USA
| | - Dorit Ron
- Department of NeurologyUniversity of California San Francisco San Francisco CA USA
| |
Collapse
|
33
|
Wscieklica T, Le Sueur-Maluf L, Prearo L, Conte R, Viana MDB, Céspedes IC. Chronic intermittent ethanol administration differentially alters DeltaFosB immunoreactivity in cortical-limbic structures of rats with high and low alcohol preference. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:264-275. [DOI: 10.1080/00952990.2019.1569667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tatiana Wscieklica
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Leandro Prearo
- Pró-Reitor de Graduação, Universidade Municipal de São Caetano do Sul (USCS), São Caetano do Sul, SP, Brazil
| | - Rafael Conte
- Departamento de Neurociências e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Isabel Cristina Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
34
|
González-Marín MC, Lebourgeois S, Jeanblanc J, Diouf M, Naassila M. Evaluation of alcohol use disorders pharmacotherapies in a new preclinical model of binge drinking. Neuropharmacology 2018; 140:14-24. [DOI: 10.1016/j.neuropharm.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
|
35
|
Gavin DP, Hashimoto JG, Lazar NH, Carbone L, Crabbe JC, Guizzetti M. Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 2018; 9:346. [PMID: 30214456 PMCID: PMC6125400 DOI: 10.3389/fgene.2018.00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic mental illness in which patients often achieve protracted periods of abstinence prior to relapse. Epigenetic mechanisms may provide an explanation for the persisting gene expression changes that can be observed even after long periods of abstinence and may contribute to relapse. In this study, we examined two histone modifications, histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3), in the prefrontal cortex of Withdrawal Seizure Resistant (WSR) mice 21 days after 72 h of ethanol vapor exposure. These histone modifications were selected because they are associated with active promoters (H3K4me3) and repressed gene expression in a euchromatic environment (H3K27me3). We performed a genome-wide analysis to identify differences in H3K4me3 and H3K27me3 levels in post-ethanol exposure vs. control mice by ChIP-seq. We detected a global reduction in H3K4me3 peaks and increase in H3K27me3 peaks in post-ethanol exposure mice compared to controls, these changes are consistent with persistent reductions in gene expression. Pathway analysis of genes displaying changes in H3K4me3 and H3K27me3 revealed enrichment for genes involved in proteoglycan and calcium signaling pathways, respectively. Microarray analysis of 7,683 genes and qPCR analysis identified eight genes displaying concordant regulation of gene expression and H3K4me3/H3K27me3. We also compared changes in H3K4me3 and/or H3K27me3 from our study with changes in gene expression in response to ethanol from published literature and we found that the expression of 52% of the genes with altered H3K4me3 binding and 40% of genes with H3K27me3 differences are altered by ethanol exposure. The chromatin changes associated with the 21-day post-exposure period suggest that this period is a unique state in the addiction cycle that differs from ethanol intoxication and acute withdrawal. These results provide insights into the enduring effects of ethanol on proteoglycan and calcium signaling genes in the brain.
Collapse
Affiliation(s)
- David P. Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Nathan H. Lazar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Lucia Carbone
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
36
|
Animal models of binge drinking, current challenges to improve face validity. Neurosci Biobehav Rev 2018; 106:112-121. [PMID: 29738795 DOI: 10.1016/j.neubiorev.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Binge drinking (BD), i.e., consuming a large amount of alcohol in a short period of time, is an increasing public health issue. Though no clear definition has been adopted worldwide the speed of drinking seems to be a keystone of this behavior. Developing relevant animal models of BD is a priority for gaining a better characterization of the neurobiological and psychobiological mechanisms underlying this dangerous and harmful behavior. Until recently, preclinical research on BD has been conducted mostly using forced administration of alcohol, but more recent studies used scheduled access to alcohol, to model more voluntary excessive intakes, and to achieve signs of intoxications that mimic the human behavior. The main challenges for future research are discussed regarding the need of good face validity, construct validity and predictive validity of animal models of BD.
Collapse
|
37
|
The neurokinin-1 receptor mediates escalated alcohol intake induced by multiple drinking models. Neuropharmacology 2018; 137:194-201. [PMID: 29758386 DOI: 10.1016/j.neuropharm.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that the neurokinin-1 receptor (NK1R) is upregulated in the central nucleus of the amygdala of alcohol preferring (P) rats and that this receptor mediates escalated alcohol consumption in this strain. However, it is unclear if non-genetic models of escalated consumption are also mediated by NK1R signaling, and if so, what brain regions govern this effect. In the experiments presented here, we use two methods of inducing escalated alcohol intake in outbred Wistar rats: yohimbine pretreatment and intermittent alcohol access (Monday, Wednesday, and Friday availability; 20% alcohol). We found that escalated alcohol consumption induced by both yohimbine injection and intermittent access is attenuated by systemic administration of the NK1R antagonist L822429. Also, when compared to continuous alcohol access or access to water alone, NK1R expression was increased in the nucleus accumbens (NAC) and dorsal striatum, but not the amygdala. Escalated consumption induced by intermittent access was attenuated when the NK1R antagonist L822429 was infused directly into the dorsal striatum, but not when infused into the NAC. Taken together, these results suggest that NK1R upregulation contributes to escalated alcohol consumption that is induced by genetic selection, yohimbine injection, and intermittent access. However there is a dissociation between the regions involved in these behaviors with amygdalar upregulation contributing to genetic predisposition to escalated consumption and striatal upregulation driving escalation that is induced by environmental exposures.
Collapse
|
38
|
Ma T, Cheng Y, Roltsch Hellard E, Wang X, Lu J, Gao X, Huang CCY, Wei XY, Ji JY, Wang J. Bidirectional and long-lasting control of alcohol-seeking behavior by corticostriatal LTP and LTD. Nat Neurosci 2018; 21:373-383. [PMID: 29434375 PMCID: PMC5857235 DOI: 10.1038/s41593-018-0081-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Addiction is proposed to arise from alterations in synaptic strength via mechanisms of long-term potentiation (LTP) and depression (LTD). However, the causality between these synaptic processes and addictive behaviors is difficult to demonstrate. Here we report that LTP and LTD induction altered operant alcohol self-administration, a motivated drug-seeking behavior. We first induced LTP by pairing presynaptic glutamatergic stimulation with optogenetic postsynaptic depolarization in the dorsomedial striatum, a brain region known to control goal-directed behavior. Blockade of this LTP by NMDA-receptor inhibition unmasked an endocannabinoid-dependent LTD. In vivo application of the LTP-inducing protocol caused a long-lasting increase in alcohol-seeking behavior, while the LTD protocol decreased this behavior. We further identified that optogenetic LTP and LTD induction at cortical inputs onto striatal dopamine D1 receptor-expressing neurons controlled these behavioral changes. Our results demonstrate a causal link between synaptic plasticity and alcohol-seeking behavior and suggest that modulation of this plasticity may inspire a therapeutic strategy for addiction.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Emily Roltsch Hellard
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Cathy C Y Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xiao-Yan Wei
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
39
|
Satta R, Hilderbrand ER, Lasek AW. Ovarian Hormones Contribute to High Levels of Binge-Like Drinking by Female Mice. Alcohol Clin Exp Res 2018; 42:286-294. [PMID: 29205408 DOI: 10.1111/acer.13571] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the incidence of binge drinking by women has increased. Binge drinking is detrimental to women's health, yet the biological mechanisms that promote excessive drinking by women are not well understood. One method of assessing binge-like ethanol (EtOH) consumption in mice is the drinking in the dark (DID) test, in which mice drink sufficient EtOH to achieve intoxication. In this study, we directly compared male, female, and ovariectomized (OVX) mice for DID and tested whether 17β-estradiol (E2) contributes to DID. We also measured whether DID varies throughout the estrous cycle and whether repeated intermittent DID impacts the estrous cycle. METHODS Male, female, and OVX C57BL/6J mice were tested for DID for 2 hours per day on days 1 to 3 and for 4 hours on day 4 using a single bottle containing 20% EtOH. To measure the effects of E2 on DID, OVX mice were treated with estradiol benzoate (EB) or vehicle daily starting 2 weeks prior to the drinking test and throughout the DID procedure. In a separate group of experiments, EtOH consumption and estrous cycle phase were measured in freely cycling mice that were drinking EtOH or water 5 days per week for 2 or 6 weeks. RESULTS Female mice consumed more EtOH than male and OVX mice. Treatment with EB increased EtOH consumption by OVX mice compared with vehicle-treated controls. However, EtOH intake did not vary across the estrous cycle, nor did long-term DID alter the estrous cycle. CONCLUSIONS These results demonstrate that ovarian hormones, specifically E2, contribute to increased EtOH consumption by female mice in the DID test. Although ovarian hormones contribute to this behavior, EtOH consumption is not affected by estrous cycle phase in freely cycling mice. This study provides a framework for understanding the factors that contribute to binge drinking in females.
Collapse
Affiliation(s)
- Rosalba Satta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Elisa R Hilderbrand
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|
41
|
Kotan VO, Yüksel RN, Kotan Z, Okay İT, Topçuoğlu C, Özkaya G, Bayram Ş, Göka E. Serum glial cell line-derived neurotrophic factor levels and impulsivity in heroin addiction: a cross-sectional, case-control study of 129 heroin addicts. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1415186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Vahap Ozan Kotan
- Psychiatry Department, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Rabia Nazik Yüksel
- Psychiatry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Zeynep Kotan
- Psychiatry Department, Dr. Abdurrahman Yurtaslan Ankara Onkoloji Training and Research Hospital, Ankara, Turkey
| | - İhsan Tuncer Okay
- Psychiatry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Canan Topçuoğlu
- Biochemistry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Güven Özkaya
- Biostatistics Department, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Şenol Bayram
- Psychiatry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Erol Göka
- Psychiatry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
42
|
Ray LA, Bujarski S, Shoptaw S, Roche DJO, Heinzerling K, Miotto K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 2017; 42:1776-1788. [PMID: 28091532 PMCID: PMC5520778 DOI: 10.1038/npp.2017.10] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Current directions in medication development for alcohol use disorder (AUD) emphasize the need to identify novel molecular targets and efficiently screen new compounds aimed at those targets. Ibudilast (IBUD) is a neuroimmune modulator that inhibits phosphodiesterase-4 and -10 and macrophage migration inhibitory factor and was recently found to reduce alcohol intake in rats by ∼50%. To advance medication development for AUD, the present study consists of a randomized, crossover, double-blind, placebo-controlled laboratory study of IBUD in nontreatment-seeking individuals with current (ie, past month) mild-to-severe AUD. This study tested the safety, tolerability, and initial human laboratory efficacy of IBUD (50 mg b.i.d.) on primary measures of subjective response to alcohol as well as secondary measures of cue- and stress-induced changes in craving and mood. Participants (N=24) completed two separate 7-day intensive outpatient protocols that included daily visits for medication administration and testing. Upon reaching a stable target dose of IBUD (or matched placebo), participants completed a stress-exposure session (day 5; PM), an alcohol cue-exposure session (day 6; AM), and an i.v. alcohol administration session (day 6; PM). Participants stayed overnight after the alcohol administration, and discharge occurred on day 7 of the protocol. Medication conditions were separated by a washout period that was ⩾7 days. IBUD was well tolerated; however, there were no medication effects on primary measures of subjective response to alcohol. IBUD was associated with mood improvements on the secondary measures of stress exposure and alcohol cue exposure, as well as reductions in tonic levels of craving. Exploratory analyses revealed that among individuals with higher depressive symptomatology, IBUD attenuated the stimulant and mood-altering effects of alcohol as compared with placebo. Together, these findings extend preclinical demonstrations of the potential utility of IBUD for the treatment of AUD and suggest that depressive symptomatology should be considered as a potential moderator of efficacy for pharmacotherapies with neuroimmune effects, such as IBUD.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Spencer Bujarski
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Steve Shoptaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Family Medicine, University of California, Los Angeles, CA, USA
| | - Daniel JO Roche
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Keith Heinzerling
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Family Medicine, University of California, Los Angeles, CA, USA
| | - Karen Miotto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Kang S, Li J, Zuo W, Fu R, Gregor D, Krnjevic K, Bekker A, Ye JH. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 2017; 42:1813-1824. [PMID: 28387223 PMCID: PMC5520788 DOI: 10.1038/npp.2017.68] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) and anxiety disorders (ADs) are often seen concurrently, but their underlying cellular basis is unclear. For unclear reasons, the lateral habenula (LHb), a key brain region involved in the pathophysiology of ADs, becomes hyperactive after ethanol withdrawal. M-type K+ channels (M-channels), important regulators of neuronal activity, are abundant in the LHb, yet little is known about their role in AUDs and associated ADs. We report here that in rats at 24 h withdrawal from systemic ethanol administration (either by intraperitoneal injection, 2 g/kg, twice/day, for 7 days; or intermittent drinking 20% ethanol in a two-bottle free choice protocol for 8 weeks), the basal firing rate and the excitability of LHb neurons in brain slices was higher, whereas the amplitude of medium afterhyperpolarization and M-type K+ currents were smaller, when compared to ethanol naive rats. Concordantly, M-channel blocker (XE991)-induced increase in the spontaneous firing rate in LHb neurons was smaller. The protein expression of M-channel subunits, KCNQ2/3 in the LHb was also smaller. Moreover, anxiety levels (tested in open field, marble burying, and elevated plus maze) were higher, which were alleviated by LHb inhibition either chemogenetically or by local infusion of the M-channel opener, retigabine. Intra-LHb infusion of retigabine also reduced ethanol consumption and preference. These findings reveal an important role of LHb M-channels in the expression of AUDs and ADs, and suggest that the M-channels could be a potential therapeutic target for alcoholics.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Danielle Gregor
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA, Tel: 973 972 1866, Fax: 973 972 0582, E-mail:
| |
Collapse
|
44
|
Kimbrough A, Kim S, Cole M, Brennan M, George O. Intermittent Access to Ethanol Drinking Facilitates the Transition to Excessive Drinking After Chronic Intermittent Ethanol Vapor Exposure. Alcohol Clin Exp Res 2017; 41:1502-1509. [PMID: 28679148 DOI: 10.1111/acer.13434] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol binge drinking in humans is thought to increase the risk for alcohol use disorder (AUD). Unclear is whether drinking patterns (e.g., bingelike or stable drinking) differentially affect the transition to compulsive-like drinking in dependent individuals. We examined whether chronic bingelike drinking facilitates the transition to compulsive-like drinking in rats. METHODS Male Wistar rats were given 5 months of intermittent access to ethanol (EtOH) (IAE) or continuous access to EtOH (CAE) in a 2-bottle choice paradigm. Then, rats were given chronic intermittent EtOH (CIE) vapor exposure. Escalation of EtOH intake and compulsive-like responding for EtOH, using a progressive-ratio schedule of reinforcement and quinine-adulterated EtOH, were measured. RESULTS IAE rats escalated EtOH drinking after 2 weeks of 2-bottle choice, whereas CAE rats exhibited stable EtOH drinking for 5 months. After 8 weeks of CIE, both IAE + CIE and CAE + CIE rats escalated their EtOH intake. However, IAE rats escalated their EtOH intake weeks sooner than CAE rats and exhibited greater EtOH intake. No differences in compulsive-like responding were found between IAE + CIE and CAE + CIE rats. However, both IAE + CIE and CAE + CIE rats showed strong compulsive-like responding compared with rats without prior IAE or CAE. CONCLUSIONS Chronic EtOH drinking at stable or escalated levels for several months is associated with more compulsive-like responding for EtOH in rats that are exposed to CIE compared with rats without a prior history of EtOH drinking. Moreover, IAE facilitated the transition to compulsive-like responding for EtOH after CIE exposure, reflected by the escalation of EtOH intake. These results suggest that IAE may facilitate the transition to AUD. This study indicates that despite a moderate level of EtOH drinking, the IAE animal model is highly relevant to early stages of alcohol abuse and suggests that it may be associated with neuroadaptations that produce a faster transition to alcohol dependence.
Collapse
Affiliation(s)
- Adam Kimbrough
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Sarah Kim
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Maury Cole
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Molly Brennan
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
45
|
de Guglielmo G, Kallupi M, Cole MD, George O. Voluntary induction and maintenance of alcohol dependence in rats using alcohol vapor self-administration. Psychopharmacology (Berl) 2017; 234:2009-2018. [PMID: 28342089 PMCID: PMC5658208 DOI: 10.1007/s00213-017-4608-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
RATIONALE A major issue in the addiction field is the limited number of animal models of the voluntary induction and maintenance of alcohol dependence in outbred rats. OBJECTIVES To address this issue, we developed a novel apparatus that vaporizes alcohol for 2-10 min after an active nosepoke response. METHODS Male Wistar rats were allowed to self-administer alcohol vapor for 8 h/day every other day for 24 sessions (escalated) or eight sessions (non-escalated). Escalated and non-escalated rats were then tested for progressive ratio responding. Anxiety-like behavior, somatic signs of withdrawal, and hyperalgesia were assessed during acute withdrawal. RESULTS The results showed that rats exhibited excellent discrimination between the active and inactive operanda (>85%), and the escalated rats quickly increased their blood alcohol levels from ~50 to >200 mg% in ~6 weeks. Compared with non-escalated rats, escalated rats exhibited severe addiction-like behavior, including somatic signs of withdrawal, anxiety-like behavior, hyperalgesia, and higher responding on a progressive ratio schedule of reinforcement. CONCLUSIONS These results demonstrate that outbred rats will voluntarily self-administer alcohol vapor to the point of dependence without the use of forced alcohol administration, sweeteners, food/water restriction, operant pretraining, or behavioral/genetic selection. This novel animal model may be particularly useful for medication development to help unveil the neuronal circuitry that underlies the voluntary induction of alcohol addiction and identify novel molecular targets that are specifically recruited after the voluntary induction and maintenance of alcohol dependence.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA
| | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA
| | - Maury D Cole
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Liu F, Laguesse S, Legastelois R, Morisot N, Ben Hamida S, Ron D. mTORC1-dependent translation of collapsin response mediator protein-2 drives neuroadaptations underlying excessive alcohol-drinking behaviors. Mol Psychiatry 2017; 22:89-101. [PMID: 26952865 PMCID: PMC5097030 DOI: 10.1038/mp.2016.12] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) has an essential role in dendritic mRNA translation and participates in mechanisms underlying alcohol-drinking and reconsolidation of alcohol-related memories. Here, we report that excessive alcohol consumption increases the translation of downstream targets of mTORC1, including collapsin response mediator protein-2 (CRMP-2), in the nucleus accumbens (NAc) of rodents. We show that alcohol-mediated induction of CRMP-2 translation is mTORC1-dependent, leading to increased CRMP-2 protein levels. Furthermore, we demonstrate that alcohol intake also blocks glycogen synthase kinase-3β (GSK-3β)-phosphorylation of CRMP-2, which results in elevated binding of CRMP-2 to microtubules and a concomitant increase in microtubule content. Finally, we show that systemic administration of the CRMP-2 inhibitor lacosamide, or knockdown of CRMP-2 in the NAc decreases excessive alcohol intake. These results suggest that CRMP-2 in the NAc is a convergent point that receives inputs from two signaling pathways, mTORC1 and GSK-3β, that in turn drives excessive alcohol-drinking behaviors.
Collapse
Affiliation(s)
- F Liu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Laguesse
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - R Legastelois
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - N Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Ben Hamida
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking. J Neurosci 2016; 36:10116-27. [PMID: 27683907 DOI: 10.1523/jneurosci.4597-14.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Brain-derived neurotrophic factor (BDNF) signaling in the dorsolateral striatum (DLS) keeps alcohol intake in moderation. For example, activation of the BDNF receptor tropomyosin receptor kinase B (TrkB) in the DLS reduces intake in rats that consume moderate amounts of alcohol. Here, we tested whether long-term excessive consumption of alcohol produces neuroadaptations in BDNF signaling in the rat DLS. We found that BDNF was no longer able to gate alcohol self-administration after a history of repeated cycles of binge alcohol drinking and withdrawal. We then elucidated the possible neuroadaptations that could block the ability of BDNF to keep consumption of alcohol in moderation. We report that intermittent access to 20% alcohol in a two-bottle choice paradigm that models excessive alcohol drinking produces a mobilization of DLS p75 neurotrophin receptor (p75NTR), whose activities oppose those of the Trk receptors, including TrkB. These neuroadaptations were not observed in the DLS of rats exposed to continuous access to 10% alcohol or in rats consuming sucrose. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of the p75NTR gene in the DLS, as well as intra-DLS infusion or systemic administration of the p75NTR modulator, LM11A-31, significantly reduced binge drinking of alcohol. Together, our results suggest that excessive alcohol consumption produces a change in BDNF signaling in the DLS, which is mediated by the recruitment of p75NTR. Our data also imply that modulators of p75NTR signaling could be developed as medications for alcohol abuse disorders. SIGNIFICANCE STATEMENT Neuroadaptations gate or drive excessive, compulsive alcohol drinking. We previously showed that brain-derived neurotrophic factor and its receptor, TrkB, in the dorsolateral striatum (DLS), are part of an endogenous system that keeps alcohol drinking in moderation. Here, we show that a history of excessive alcohol intake produces neuroadaptations in the DLS that preclude BDNF's ability to gate alcohol self-administration in rats by the recruitment of the low-affinity neurotrophin receptor, p75NTR, whose activities opposes those of the Trk receptors. Finally, we show that the administration of the p75NTR modulator, LM11A-31, significantly reduces excessive alcohol intake suggesting that the drug may be developed as a new treatment for alcohol abuse disorders.
Collapse
|
48
|
Lhullier AC, Moreira FP, da Silva RA, Marques MB, Bittencourt G, Pinheiro RT, Souza LDM, Portela LV, Lara DR, Jansen K, Wiener CD, Oses JP. Increased serum neurotrophin levels related to alcohol use disorder in a young population sample. Alcohol Clin Exp Res 2016; 39:30-3. [PMID: 25623403 DOI: 10.1111/acer.12592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/01/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND The diagnosis of alcohol use disorder is based on clinical signs and on the measurement of biological markers. However, these markers are neither sufficiently sensitive, nor specific enough, for determining the effects of alcohol abuse on the central nervous system. Serum neurotrophins are important regulators of neural survival, development, function, and plasticity and have been found to be reduced in alcohol use disorder. The aim of this study was to investigate the alterations in serum neurotrophin levels (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF], and nerve growth factor [NGF]) in alcohol use disorder in a young population, and thus possibly representing the early stages of the illness. METHODS This is a cross-sectional study, nested in a population-based study of people aged 18 to 35, involving 795 participants. The participants responded to the CAGE questionnaire, and a CAGE score of ≥2 was considered to be a positive screen for the abuse/dependence or moderate to severe alcohol use disorder. Serum BDNF, GDNF, and NGF levels were measured by ELISA. RESULTS In the CAGE ≥ 2 group, GDNF (p ≤ 0.001) and NGF (p ≤ 0.001) serum levels were significantly increased, and the BDNF elevation was near a statistical significance (p = 0.068) when compared to the CAGE < 2 group. A significantly positive correlation was observed only in the CAGE ≥ 2 group for BDNF/GDNF (r = 0.37, p < 0.001) and GDNF/NGF (r = 0.84, p < 0.001) levels. The correlation between the NGF and BDNF levels was significantly positive in both groups (r = 0.28, p < 0.001 for the CAGE < 2 group, and r = 0.30, p = 0.008 for the CAGE ≥ 2 group). CONCLUSIONS These results suggest that elevated neurotrophins are candidate markers for the early stages of alcohol misuse.
Collapse
Affiliation(s)
- Alfredo C Lhullier
- Escola de Psicologia, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas, Pelotas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vallöf D, Maccioni P, Colombo G, Mandrapa M, Jörnulf JW, Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents. Addict Biol 2016; 21:422-37. [PMID: 26303264 PMCID: PMC5049632 DOI: 10.1111/adb.12295] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022]
Abstract
The incretin hormone, glucagon-like peptide 1 (GLP-1), regulates gastric emptying, glucose-dependent stimulation of insulin secretion and glucagon release, and GLP-1 analogs are therefore approved for treatment of type II diabetes. GLP-1 receptors are expressed in reward-related areas such as the ventral tegmental area and nucleus accumbens, and GLP-1 was recently shown to regulate several alcohol-mediated behaviors as well as amphetamine-induced, cocaine-induced and nicotine-induced reward. The present series of experiments were undertaken to investigate the effect of the GLP-1 receptor agonist, liraglutide, on several alcohol-related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well-documented effects of alcohol on the mesolimbic dopamine system, namely alcohol-induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self-administration of alcohol in selectively bred Sardinian alcohol-preferring rats. Collectively, these data suggest that GLP-1 receptor agonists could be tested for treatment of alcohol dependence in humans.
Collapse
Affiliation(s)
- Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of PharmacologyThe Sahlgrenska Academy at the University of GothenburgSweden
| | - Paola Maccioni
- Neuroscience Institute, Section of CagliariNational Research Council of ItalyItaly
| | - Giancarlo Colombo
- Neuroscience Institute, Section of CagliariNational Research Council of ItalyItaly
| | - Minja Mandrapa
- Institute of Neuroscience and Physiology, Department of PharmacologyThe Sahlgrenska Academy at the University of GothenburgSweden
| | - Julia Winsa Jörnulf
- Institute of Neuroscience and Physiology, Department of PharmacologyThe Sahlgrenska Academy at the University of GothenburgSweden
| | - Emil Egecioglu
- Institute of Experimental Medical Sciences, Section of Diabetes and MetabolismLund UniversitySweden
| | - Jörgen A. Engel
- Institute of Neuroscience and Physiology, Department of PharmacologyThe Sahlgrenska Academy at the University of GothenburgSweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of PharmacologyThe Sahlgrenska Academy at the University of GothenburgSweden
| |
Collapse
|
50
|
Sheth C, Furlong TM, Keefe KA, Taha SA. Lesion of the rostromedial tegmental nucleus increases voluntary ethanol consumption and accelerates extinction of ethanol-induced conditioned taste aversion. Psychopharmacology (Berl) 2016; 233:3737-3749. [PMID: 27549757 PMCID: PMC5063894 DOI: 10.1007/s00213-016-4406-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
RATIONALE Ethanol has rewarding and aversive properties, and the balance of these properties influences voluntary ethanol consumption. Preclinical and clinical evidence show that the aversive properties of ethanol limit intake. The neural circuits underlying ethanol-induced aversion learning are not fully understood. We have previously shown that the lateral habenula (LHb), a region critical for aversive conditioning, plays an important role in ethanol-directed behaviors. However, the neurocircuitry through which LHb exerts its actions is unknown. OBJECTIVE In the present study, we investigate a role for the rostromedial tegmental nucleus (RMTg), a major LHb projection target, in regulating ethanol-directed behaviors. METHODS Rats received either sham or RMTg lesions and were studied during voluntary ethanol consumption; operant ethanol self-administration, extinction, and yohimbine-induced reinstatement of ethanol-seeking; and ethanol-induced conditioned taste aversion (CTA). RESULTS RMTg lesions increased voluntary ethanol consumption and accelerated extinction of ethanol-induced CTA. CONCLUSIONS The RMTg plays an important role in regulating voluntary ethanol consumption, possibly by mediating ethanol-induced aversive conditioning.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112-5820, USA.
| | - Teri M. Furlong
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| | - Kristen A. Keefe
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| | - Sharif A. Taha
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| |
Collapse
|