1
|
Wang T, Li H, Li Y, Li M, Zhao H, Zhang W, Zhao T, Wang Y, Wang J, Wang J. Selenomethionine supplementation mitigates fluoride-induced liver apoptosis and inflammatory reactions by blocking Parkin-mediated mitophagy in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175458. [PMID: 39142410 DOI: 10.1016/j.scitotenv.2024.175458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
As an environmental pollutant, fluoride-induced liver damage is directly linked to mitochondrial alteration and oxidative stress. Selenium's antioxidant capacity has been shown to alleviate liver damage. Emerging research proves that E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy may be a therapeutic target for fluorosis. The current study explored the effect of diverse selenium sources on fluoride-caused liver injury and the role of Parkin-mediated mitophagy in this intervention process. Therefore, this study established a fluoride-different selenium sources co-intervention wild-type (WT) mouse model and a fluoride-optimum selenium sources co-intervention Parkin gene knockout (Parkin-/-) mouse model. Our results show that selenomethionine (SeMet) is the optimum selenium supplementation form for mice suffering from fluorosis when compared to sodium selenite and chitosan nano‑selenium because mice from the F-SeMet group showed more closely normal growth and development levels of liver function, antioxidant capacity, and anti-inflammatory ability. Explicitly, SeMet ameliorated liver inflammation and cell apoptosis in fluoride-toxic mice, accomplished through downregulating the mRNA and protein expression levels associated with mitochondrial fusion and fission, mitophagy, apoptosis, inflammatory signalling pathway of nuclear factor-kappa B (NF-κB), reducing the protein expression levels of PARKIN, PTEN-induced putative kinase1 (PINK1), SQSTM1/p62 (P62), microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate specific proteinase 3 (CASPAS3), as well as restraining the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ). The Parkin-/- showed comparable positive effects to the SeMet in the liver of fluorosis mice. The structure of the mitochondria, mRNA, protein expression levels, and the content of proinflammatory factors in mice from the FParkin-/- and F + SeMetParkin-/- groups closely resembled those in the F + SeMetWT group. Overall, the above results indicated that SeMet could alleviate fluoride-triggered inflammation and apoptosis in mice liver via blocking Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Haojei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Yuanyuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Meng Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Wenhui Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Tianrui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Yinghui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China.
| |
Collapse
|
2
|
Elfeky N, Rizk A, Gharieb MM. Exploring the lipids, carotenoids, and vitamins content of Rhodotorula glutinis with selenium supplementation under lipid accumulating and growth proliferation conditions. BMC Microbiol 2024; 24:451. [PMID: 39506648 PMCID: PMC11539581 DOI: 10.1186/s12866-024-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Rhodotorula glutinis, a specific type of yeast, has been recognised as a superior resource for generating selenium-enriched biomass that possesses exceptional nutritional and functional attributes. The purpose of this investigation was to assess the effect of sodium selenite at different concentrations on lipid and carotenoid synthesis, as well as the growth of R. glutinis. METHODS The lipid's fatty acid composition was determined using gas chromatography (GC). The vitamins were detected by high-performance liquid chromatography (HPLC). Transmission electron microscopy was used to detect the structural modification of yeast cells caused by the addition of sodium selenite to the growth medium, as well as the accumulation of elemental selenium in the yeast cells. RESULTS The yeast cells demonstrated the ability to endure high concentrations of sodium selenite under lipid accumulation (LAM) and growth-promoting (YPD) conditions. 25.0 mM and 30.0 mM, respectively, were published as the IC50 values for the LAM and YPD conditions. In both growth media, 1 mM sodium selenite boosted lipid synthesis. Lipid accumulation increased 26% in LAM to 11.4 g/l and 18% in YPD to 4.3 g/l. Adding 1 mM and 3 mM sodium selenite to YPD medium increased total and cellular carotenoids by 22.8% (646.7 µg/L and 32.12 µg/g) and 48.7% (783.3 µg/L and 36.43 µg/g), respectively. Palmitic acid was identified as the most abundant fatty acid in all treatments, followed by oleic acid and linoleic acid. The concentrations of water soluble vitamins (WSV) and fat soluble vitamins (FSV) were generally significantly increased after supplementation with 1.0 mM sodium selenite. TEM examination revealed a significant reduction in lipid bodies accumulation in the yeast cells when sodium selenite was added to lipid-promoting environments. This decline is accompanied by an augmentation in the formation of peroxisomes, indicating that selenium has a direct impact on the degradation of fatty acids. In addition, autophagy appears to be the primary mechanism by which selenium ions are detoxified. Additionally, intracellular organelles disintegrate, cytoplasmic vacuolization occurs, and the cell wall and plasma membrane rupture, resulting in the discharge of cytoplasmic contents, when a high concentration of sodium selenite (20.0 mM) is added. Also, the presence of numerous electron-dense granules suggests an intracellular selenium-detoxification pathway. CONCLUSION This study proposes the use of YPD with 1 mM sodium selenite to cultivate selenium-enriched biomass from R. glutinis. This approach leads to heightened lipid levels with higher accumulation of oleic, linoleic and linolenic acids, carotenoids, and vitamins. Hence, this biomass has the potential to be a valuable additive for animal, fish, and poultry feed. Furthermore, explain certain potential factors that indicate the impact of selenium in reducing the accumulation of lipid droplets in R. glutinis during lipogenesis, as detected through TEM examination.
Collapse
Affiliation(s)
- Nora Elfeky
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt.
| | - Aya Rizk
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Mohamed M Gharieb
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Elkhateeb FSO, Ghazalah AA, Lohakare J, Abdel-Wareth AAA. Selenium nanoparticle inclusion in broiler diets for enhancing sustainable production and health. Sci Rep 2024; 14:18557. [PMID: 39122731 PMCID: PMC11315896 DOI: 10.1038/s41598-024-67399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to evaluate the effects of dietary supplementation of nanoparticles of Selenium (Nano-Se) on productive performance, nutrient digestibility, carcass criteria, selenium retention, blood biochemistry, and histopathological examination of broiler chicken. A total of 192 1-day-old male broiler chickens (Cobb 500) were randomly assigned to one of four treatment diets, with each diet given to six replicates of eight chicks. The birds were randomly assigned to one of four treatment groups, each of which included Nano-Se at levels of 0, 0.2, 0.3, or 0.4 mg/kg. The feeding experiment lasted 35 days. Nano-Se addition to broiler diets at 0.2 and 0.3 mg/kg enhanced body weight and body weight gain linearly compared to the control diet and 0.4 mg/kg. The apparent digestibility coefficient of ether extracts linearly increased with increasing Nano-Se levels up to 0.4 mg/kg. Increasing Nano-Se decreased serum cholesterol, triglycerides, alanine aminotransaminase, aspartate aminotransaminase, and creatinine in broiler chickens. Also, serum antioxidants showed a significant increase with increasing Nano-Se levels. As Nano-Se levels were supplemented, improvements in cooking loss, water-holding capacity, and antioxidants were observed as compared to the control. Additionally, a noticeable improvement in meat quality was observed regarding the obtained meat characters. It was preferred to use low doses of Nano-Se (0.3 mg/kg), as tissue retention of Se for both meat and liver was more comparable to the control. In conclusion, nutritional supplementation with Nano-Se increased growth performance, nutrient digestibility, selenium retention, meat quality, blood biochemistry, histological indices, and antioxidant activity of broiler chickens. Overall, the best performance of broilers was observed with Nano-Se supplementation at 0.3 mg/kg, highlighting its potential as a novel supplement for broiler diets.
Collapse
Affiliation(s)
- Fatma S O Elkhateeb
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Abdallah A Ghazalah
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Ahmed A A Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt.
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA.
| |
Collapse
|
4
|
Kaewsatuan P, Morawong T, Lu P, Kamkaew A, Molee A, Molee W. In ovo feeding of l-arginine and selenium nanoparticles influences post-hatch growth, muscle development, antioxidant status, and meat quality in slow-growing chickens. J Anim Sci 2024; 102:skae290. [PMID: 39315561 PMCID: PMC11503214 DOI: 10.1093/jas/skae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
This study investigated the effects of in ovo feeding (IOF) of l-arginine (L-Arg), selenium nanoparticles (SeNP), and a combination of L-Arg and SeNP on the hatchability, post-hatch growth, muscle development, antioxidant status, and meat quality of slow-growing chickens. On day 18 of incubation, a total of 960 fertilized eggs with similar weights were randomly assigned to 4 treatment groups with 4 replicates of 60 eggs each: (1) non-injected control group (Control), (2) injected with 1% of L-Arg (IOF_L-Arg), (3) injected with 0.3 µg/egg of SeNP (IOF_SeNP), and (4), injected with 1% of L-Arg and 0.3 µg/egg of SeNP (IOF_L-Arg + SeNP). A completely randomized design was used. After hatching, 640 mixed-sex chicks were allocated to 4 treatment groups and split into 4 replicate pens (40 birds per pen). All groups of chicks were fed with commercial feed ad libitum until they reached 63 d of age and were subsequently weighed and slaughtered. The results of the present study showed that hatchability was similar among treatments. Final BW or breast muscle yield was not affected (P > 0.05) by IOF treatment. Chickens treated with IOF_L-Arg + SeNP exhibited decreased feed conversion ratio, drip loss, and increased protein content in breast meat (P < 0.05). The IOF_L-Arg + SeNP group exhibited a higher density of breast muscle fibers than the control group (P < 0.05). Overall, in ovo feeding of L-Arg combined with SeNP resulted in improved feed efficiency and enhanced antioxidant capacity at hatch without any adverse effects on chicken hatchability, health, or subsequent growth. Furthermore, meat from chickens in the IOF_L-Arg + SeNP group exhibited a preferable texture with a higher protein content.
Collapse
Affiliation(s)
- Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thanidtha Morawong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panpan Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Liu J, Wang Z, Li C, Chen Z, Zheng A, Chang W, Liu G, Cai H. Effects of Selenium Dietary Yeast on Growth Performance, Slaughter Performance, Antioxidant Capacity, and Selenium Deposition in Broiler Chickens. Animals (Basel) 2023; 13:3830. [PMID: 38136867 PMCID: PMC10740573 DOI: 10.3390/ani13243830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) yeast, a bioavailable form of selenium, exhibits enhanced bioavailability due to its unique organic matrix and superior metabolic availability compared to the inorganic selenium sources. This study aims to evaluate the effects of Se yeast on the growth performance, slaughter performance, antioxidant capacity, and Se deposition in broiler chickens. A total of 264 1-day-old male AA broilers (38.7 ± 0.1 g) were randomly assigned to four treatment groups, with six replicates of 11 chickens per replicate. The broilers were fed a basal diet or a diet supplemented with 0.1, 0.2, and 0.4 mg/kg Se yeast. The experiment lasted for 42 days. Although the results showed that Se yeast did not significantly improve the growth performance of broilers, it did significantly decrease the abdominal fat ratio. Additionally, supplementation of Se yeast significantly improved the antioxidant capacity of broilers. The quadratic regression models were used to simulate the relationship between Se content in the feed and Se deposition in broiler tissues. The regression equations were as follows: pectoral muscle, Y = 2.628X - 0.340X2 - 0.592 (R2 = 0.927); leg muscle, Y = 2.317X - 0.272X2 - 0.490 (R2 = 0.937); liver, Y = 3.357X - 0.453X2 - 0.493 (R2 = 0.961); kidney, Y = 4.084X - 0.649X2 + 0.792 (R2 = 0.932). Based on these findings, the Se deposition in broiler tissues can be predicted by the Se content of the additive, which is of great significance for the precise production of Se-enriched functional chicken products.
Collapse
Affiliation(s)
- Jinmei Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Zheng Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| |
Collapse
|
6
|
An J, Kim Y, Song M, Choi J, Oh H, Chang S, Song D, Cho H, Park S, Jeon K, Park Y, Park G, Oh S, Kim Y, Choi N, Kim J, Kim H, Cho J. Effects of different levels of organic chromium and selenomethionine cocktails in broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1226-1241. [PMID: 38616877 PMCID: PMC11007298 DOI: 10.5187/jast.2023.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/16/2024]
Abstract
Selenium (Se) is an essential trace mineral that plays an important role in physiological processes by regulating the antioxidant defense system and enhancing immunity. Chromium is an essential mineral involved in carbohydrate and lipid metabolism and also plays a role in maintaining normal insulin function. Based on these advantages, we hypothesized that the addition of selenomethionine (SeMet) and organic chromium (OC) to broiler diets would increase Se deposition, antioxidant capacity and immune response in meat. Therefore, this study analyzed the effects of OC and SeMet on growh performance, nutrients digestibility, blood profiles, intestinal morphology, meat quality characteristics, and taxonomic analysis of broilers. A total of 168 one-day-old broiler chicken (Arbor Acres) were randomly allotted to 3 groups based on the initial body weight of 37.33 ± 0.24 g with 7 replicate per 8 birds (mixed sex). The experiments period was 28 days. Dietary treatments were folloewd: Basal diets based on corn-soybean meal (CON), basal diet supplemented with 0.2 ppm OC and 0.2 ppm SeMet (CS4), and basal diet supplemented with 0.4 ppm OC and 0.4 ppm SeMet (CS8). Supplementation of OC and SeMet did not affect on growth performance, nutrient digestibility. However, CS8 supplementation increased in duodenum villus height and villus height : crypt depth, and increased in breast meat Se deposition. In addition, CS8 group showed higher uric acid and total antioxidant status than CON group. Taxonomic analysis at phylum level revealed that Proteobacteria and Firmicutes of CS4 and CS8 were lower than CON group. In genus level, the relative abundance of fecal Lactobacillus and Enterococcus of CS4 and CS8 groups were higher than CON group. In short, 0.4 ppm OC and 0.4 ppm SeMet supplementation to broiler diet supporitng positive gut microbiome change, also enhancing antioxidant capacity, and Se deposition in breast meat.
Collapse
Affiliation(s)
- Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Younggwang Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Yunhwan Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | | | - Sehyuk Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Yuna Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Nayoung Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | | | - Hyeunbum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
7
|
Ferrari L, Cattaneo DM, Abbate R, Manoni M, Ottoboni M, Luciano A, von Holst C, Pinotti L. Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:193-203. [PMID: 37484993 PMCID: PMC10362088 DOI: 10.1016/j.aninu.2023.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays an important role in animal and human development and physiological homoeostasis. This review surveys the role of Se in the environment, plants and animal bodies, and discusses data on Se biofortification with different sources of supplementation, from inorganic to organic forms, with special focus on Se-enriched yeast (Se-yeast). Although Se-yeast remains one of the main sources of organic Se, other emerging and innovative sources are reviewed, such as Se-enriched insects and Se-nanoparticles and their potential use in animal nutrition. Se-enriched insects are discussed as an option for supplying Se in organic form to livestock diets. Se-nanoparticles are also discussed, as they represent a more biocompatible and less toxic source of inorganic Se for animal organisms, compared to selenite and selenate. We also provide up to date information on the legal framework in the EU, USA, and Canada of Se that is contained in feed additives. From the scientific evidence available in the literature, it can be concluded that among the inorganic forms, sodium selenite is still one of the main options, whereas Se-yeast remains the primary organic form. However, other potential sources such as Se-enriched insects and Se-nanoparticles are being investigated as they could potentially combine a high bioavailability and reduced Se emissions in the environment.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Donata M.I.R. Cattaneo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Rossella Abbate
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Michele Manoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Alice Luciano
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | | | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
8
|
Wickramasuriya SS, Park I, Lee Y, Lillehoj HS. Effect of Dietary Organic Selenium on Growth Performance, Gut Health, and Coccidiosis Response in Broiler Chickens. Animals (Basel) 2023; 13:ani13091560. [PMID: 37174598 PMCID: PMC10177327 DOI: 10.3390/ani13091560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
A total of 252 one-day-old Ross broilers were randomly allocated to one of six treatments in a 2 × 3 factorial arrangement with respective Eimeria challenges (non-infection and infection) and three different selenium (Se) diets. Dietary treatments were as follows: (1) Se un-supplemented control (CON), (2) inorganic Se treatment (SS; 0.3 mg/kg as sodium selenite), and (3) organic Se treatment (SY; 0.3 mg/kg as selenized yeast). Six replicate cages were allocated per treatment. Chickens in the respective Eimeria infection groups were infected with an E. acervulina, E. tenella, and E. maxima oocyst mixture (15,000 oocysts/chicken) on day 16. Growth performance was measured on days 16, 22, and 24. On day 22, intestinal samples were collected from randomly selected chickens to evaluate gut lesion scores, antioxidant enzymes, and tight junction gene expression. Blood, breast, and liver samples were collected to analyze the Se concentrations on day 24. Dietary SY supplementation improved (p < 0.05) the growth performance of the chickens regardless of the Eimeria challenge. Moreover, independent of Eimeria infection, Se supplementation elevated (p < 0.05) the heme oxygenase 1 (HMOX-1) expression in jejunal mucosa at 6 days post-infection (dpi). Duodenal junctional adhesion molecule 2 (JAM-2) expression and jejunal occludin (OCLN) were elevated (p < 0.05) with dietary SY supplementation at 6 dpi. Among Se sources, broiler chickens fed with the SY diet showed higher (p < 0.05) Se concentrations in breast muscle and serum on 8 dpi. These results confirmed the beneficial effects of dietary Se and the efficiency of organic Se compared with inorganic Se for growth improvement and muscle Se enrichment in broiler chickens regardless of coccidiosis infection.
Collapse
Affiliation(s)
- Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
9
|
Shaufi MAM, Sieo CC, Chong CW, Geok Hun T, Omar AR, Han Ming G, Wan Ho Y. Effects of Phage Cocktail, Probiotics, and Their Combination on Growth Performance and Gut Microbiota of Broiler Chickens. Animals (Basel) 2023; 13:ani13081328. [PMID: 37106891 PMCID: PMC10135209 DOI: 10.3390/ani13081328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Phages, which are often used therapeutically, have begun to receive interest as alternatives to antibiotic growth promoters (AGPs) for enhancing chicken growth. Another option that has been extensively studied as a growth promoter in chickens is probiotics. To the best of our knowledge, there is currently no study available on the use of phages and probiotics in combination as potential feed additives for broiler chickens. Therefore, this study demonstrated the effects of a phage cocktail, probiotics, and their combination on the growth performance and gut microbiota of broiler chickens. A total of 288 one-day-old male Cobb 500 broilers were randomly allotted to one of six treatments in a completely randomised design. The treatments were (i) C (basal diet (BD) only), (ii) 1ϕ (BD + 0.1% phage cocktail), (iii) 2ϕ (BD + 0.2% phage cocktail), (iv) P (BD + 0.1% probiotic), (v) 1ϕP (BD + 0.1% phage cocktail + 0.1% probiotic), and (vi) 2ϕP (BD + 0.2% phage cocktail + 0.1% probiotic). The 1ϕP treatment had significantly (p < 0.05) better BW (35 days), BWG (22-35 days, 1-35 days), and FCR (1-21 days, 22-35 days, 1-35 days) compared to C. Unique gut microbiota diversity was also found between the ϕP (1ϕP and 2ϕP) and non-ϕP groups (C, 1ϕ, 2ϕ, and P) in ilea, particularly in the 35-day-old chickens. Microorganisms associated with short-chain fatty acid (SCFA) producers were significantly (p < 0.05) more present in the ϕP group than in the non-ϕP group. The predicted genes related to carbohydrate and amino acid metabolism were significantly upregulated in ϕP groups compared to non-ϕP groups. These genes were involved in the digestion and absorption of nutrients, as well as the production of energy. Our findings showed that the 1ϕP treatment could be a potential alternative to AGPs for poultry, as growth performance was enhanced, and gut microbiota was positively modulated.
Collapse
Affiliation(s)
- Mohd Asrore Mohd Shaufi
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Chin Chin Sieo
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Chun Wie Chong
- Department of Life Sciences, International Medical University, Jalan Jalil Perkasa 19, Taman Esplanade, Kuala Lumpur 57000, Malaysia
| | - Tan Geok Hun
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Gan Han Ming
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Yin Wan Ho
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| |
Collapse
|
10
|
Lochi GM, Shah MG, Gandahi JA, Gadahi JA, Hadi SA, Farooq T, Vistro WA, Rahmani MM. Effect of Selenium Nanoparticles and Chitosan on Production Performance and Antioxidant Integrity of Heat-Stressed Broiler. Biol Trace Elem Res 2023; 201:1977-1986. [PMID: 35676590 DOI: 10.1007/s12011-022-03262-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
In this study, 336-day-old corn cob broilers were bought for the poultry experimental station during the months of May and June 2021. Before the arrival of chicks, the brooders, chick feeders, drinkers, humidity, temperature, and feeding management were controlled according to scientific patterns. These birds were randomly divided into seven groups and six replications of eight birds, viz. Group-A (positive control on basal diet only), Group-B (negative control on basal diet and HS), group-C (basal diet + simple Se 0.3 mg/kg feed), Group-D (basal diet + SeNP 0.3 mg/kg feed + HS), Group-E (BD + HS + chitosan), Group-F (BD + Se + COS), and Group-G (nano Se with chitosan 0.3 mg/kg + BD + HS). On the 42nd day of research, two birds were selected from each replication and sacrificed after blood collection. The initial data related to feeding intake, live body weight, and feed conversion ratio (FCR) were collected before slaughter. The intestinal samples were collected and immediately transferred to formalin after grass morphometry. The live body weight, FCR, feed intake, intestinal histomorphology, relative organ weight, and antioxidant parameters like MDA, SOD, and GPX were significant (P > 0.005) in all groups, with Group-G at the highest, followed by Groups-F, E, D, C, A, and B. Group-B (negative control group) was the most affected group in all aspects because of heat stress and only basal diet. It was concluded that heat stress highly causes a loss in performance, intestinal gross morphology, and histology in poultry, and increases stress conditions, whereas the selenium nanoparticle works to improve the body weight, FCR, and intestinal parameters.
Collapse
Affiliation(s)
- Ghulam Murtaza Lochi
- Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan
| | - Muhammad Ghiasuddin Shah
- Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan
| | - Jameel Ahmed Gandahi
- Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan.
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan
| | - Syed Abdul Hadi
- Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan
| | - Tanzeela Farooq
- Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan
| | - Waseem Ali Vistro
- Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan
| | - Mohammad Malyar Rahmani
- Veterinary Science Faculty, Nangarhar University, Jalalabad, Nangarhar Province, Afghanistan
| |
Collapse
|
11
|
Quantitative Proteomic Analysis Reveals Yeast Cell Wall Products Influence the Serum Proteome Composition of Broiler Chickens. Int J Mol Sci 2022; 23:ijms231911844. [PMID: 36233150 PMCID: PMC9569515 DOI: 10.3390/ijms231911844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
With an ever-growing market and continual financial pressures associated with the prohibition of antibiotic growth promoters, the poultry industry has had to rapidly develop non-antibiotic alternatives to increase production yields. A possible alternative is yeast and its derivatives, such as the yeast cell wall (YCW), which have been proposed to confer selected beneficial effects on the host animal. Here, the effect of YCW supplementation on the broiler chicken was investigated using a quantitative proteomic strategy, whereby serum was obtained from three groups of broilers fed with distinct YCW-based Gut Health Products (GHP) or a control basal diet. Development of a novel reagent enabled application of ProteoMiner™ technology for sample preparation and subsequent comparative quantitative proteomic analysis revealed proteins which showed a significant change in abundance (n = 167 individual proteins; p < 0.05); as well as proteins which were uniquely identified (n = 52) in, or absent (n = 37) from, GHP-fed treatment groups versus controls. An average of 7.1% of proteins showed changes in abundance with GHP supplementation. Several effects of these GHPs including immunostimulation (via elevated complement protein detection), potential alterations in the oxidative status of the animal (e.g., glutathione peroxidase and catalase), stimulation of metabolic processes (e.g., differential abundance of glyceraldehyde-3-phosphate dehydrogenase), as well as evidence of a possible hepatoprotective effect (attenuated levels of serum α-glutathione s-transferase) by one GHP feed supplement, were observed. It is proposed that specific protein detection may be indicative of GHP efficacy to stimulate broiler immune status, i.e., may be biomarkers of GHP efficacy. In summary, this work has developed a novel technology for the preparation of high dynamic range proteomic samples for LC-MS/MS analysis, is part of the growing area of livestock proteomics and, importantly, provides evidential support for beneficial effects that GHP supplementation has on the broiler chicken.
Collapse
|
12
|
Zhang L, Zhang Y, Li S, Li C, Hu X, Li Z, Yue T, Hu Z. Effect of the selenized yeast added in feed on selenium-containing proteins of albumins in egg yolk. Food Chem 2022; 402:134435. [DOI: 10.1016/j.foodchem.2022.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
13
|
Xu X, Wei Y, Zhang Y, Jing X, Cong X, Gao Q, Cheng S, Zhu Z, Zhu H, Zhao J, Liu Y. A new selenium source from Se-enriched Cardamine violifolia improves growth performance, anti-oxidative capacity and meat quality in broilers. Front Nutr 2022; 9:996932. [PMID: 36105580 PMCID: PMC9465325 DOI: 10.3389/fnut.2022.996932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Cardamine violifolia (Cv) is a kind of selenium-enriched plant which contains high levels of organic selenium (Se) such as selenocysteine and methylselenocysteine. This study was conducted to investigate the effects of this new source of Se on the growth performance, anti-oxidative capacity and meat quality in broilers compared with other frequently-used Se sources. Methods A total of 240 broilers were allotted into 4 treatments: (1) Control group (Se free diets, CON); (2) Sodium selenite group (0.3 mg/kg Se sourced from Na2SeO3 diets, SeNa); (3) Selenium yeast group (0.3 mg/kg Se sourced from Se-Yeast diets, SeY); (4) Plant Se group (0.3 mg/kg Se sourced from Cv diets, SeCv). The whole study lasted 42 days and was divided into 2 stages (1-21 d as earlier stage and 22-42 d as later stage). Results The results showed that the broilers fed SeCv diets had improved average daily gain and the ratio of feed to gain compared to the broilers fed SeNa and SeY diets during the earlier stage. However, there was no significant difference in growth performance of broilers fed these 3 sources of Se diets during the whole period. The broilers fed SeCv diets had improved intestinal mucosal morphology on d 21 and 42. Enhanced liver total anti-oxidative capacity was observed from the broilers fed SeCv diets compared with the other 2 Se sources diets on d 21. Furthermore, lower liver malondialdehyde contents were determined from the broilers fed SeCv and SeY diets compared with SeNa diets. At last, the broilers fed SeCv had increased redness in thigh muscle and decreased cooking loss in both breast and thigh muscle compared with the boilers fed SeNa diets. However, the broilers had similar meat quality between SeCv group and SeY group. Conclusion In conclusion, these results demonstrated that SeCv was a well-organic Se source for broilers.
Collapse
Affiliation(s)
- Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yu Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Xiaoqing Jing
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Qingyu Gao
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhenzhou Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiangchao Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, NC, United States
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
14
|
Abbas AO, Alaqil AA, Mehaisen GMK, El Sabry MI. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front Vet Sci 2022; 9:880790. [PMID: 35573399 PMCID: PMC9096893 DOI: 10.3389/fvets.2022.880790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) induces deleterious effects on the performance of laying hens and causes economic losses for poultry industry. This study was carried out to investigate the organic effect of selenium-enriched yeast (SY) on relieving the performance, immunity and physiological deterioration induced by heat stress in laying hens. A total of 324, 28-week-old, Hy-Line Brown commercial chicken layers were randomly distributed into 4 treatments according to a 2 × 2 factorial design, with 9 hens × 9 replicates per treatment (n = 81). From 30 to 34 weeks of age, layers were exposed to 2 temperature treatments (the HS treatment groups): a thermoneutral temperature at 24°C and a heat stress at 35°C. Layers were further assigned into the 2 subgroups according to dietary supplementation with organic selenium-enriched yeast (the SY treatment groups) at either 0 or 0.4 mg/kg diet. Results indicated that all the aspects of the layer performance during the experimental period were impaired by exposure to HS, while SY supplementation improved the layer performance in both the HS and non-HS layers. Intestinal villi disruptions and liver necrotic hepatocytes were observed in the layers exposed to HS, while villi integrity and hepatocytic normality were enhanced by SY treatment. A significant (P < 0.05) decrease in the total leukocyte count, sheep red blood cell (SRBC) antibody titer, and T- and B-lymphocyte proliferation along with an increase in the heterophils/lymphocytes (H/L) ratio were observed in the HS layers compared to non-HS layers. On the contrary, SY treatment significantly (P < 0.05) improved the immune function traits in both the HS layers and non-HS layers. Furthermore, the SY treatment plays an important role in mitigating the oxidative stress and inflammation induced by HS, displaying lower levels of plasma corticosterone, lipid peroxidation, interleukin-1β, and tumor necrosis factor-α in HS layers supplemented with SY compared to HS layers without SY supplementation. These results conclude that addition of SY to the diet of laying hens could be applied as a potential nutritional approach to relieve the deterioration effects of heat stress on the immunity, physiological status, and productive performance of laying hens.
Collapse
Affiliation(s)
- Ahmed O Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdulaziz A Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Deng S, Hu S, Xue J, Yang K, Zhuo R, Xiao Y, Fang R. Productive Performance, Serum Antioxidant Status, Tissue Selenium Deposition, and Gut Health Analysis of Broiler Chickens Supplemented with Selenium and Probiotics-A Pilot Study. Animals (Basel) 2022; 12:ani12091086. [PMID: 35565512 PMCID: PMC9103767 DOI: 10.3390/ani12091086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The effect and interaction of dietary selenium (Se) and probiotics on three yellow chicken growth performance, tissue Se content, antioxidant capacity, and gut health were studied from 0 to 70 days of age. A total of 400 one-day-old broilers were distributed into four groups (I-Se, O-Se, I-Se + pros, and O-Se + pros groups) consisting of a 2 × 2 factorial design. The main factors were the source of Se (I-Se = inorganic Se: 0.2 mg/kg sodium selenite; O-Se = organic Se: 0.2 mg/kg Selenium yeast) and the level of probiotics (0.5% EM or 0% EM, the component of EM mainly includes Lactobacillus and Yeast at the dose of 2 × 108 cfu/kg and 3 × 107 cfu/kg, respectively). Each treatment had 5 duplicates consisting of 20 broilers. The results showed that the I-Se group had a greater (p < 0.05) ratio of feed: weight gain (F/G) of broilers at Starter (0−35 d) than the other treatments. Compared to the I-Se group, the O-Se group increased (p < 0.05) Se concentrations in the liver, pancreas, breast muscles, thigh muscle, and the activity of total antioxidative capacity (T-AOC) in serum, as well as the relative abundance of Barnesiella and Lactobacillus in cecum. Meanwhile, probiotics enhanced (p < 0.05) Se concentrations in the pancreas, thigh muscle, serum, and the activity of T-AOC and glutathione peroxidase (GSH-Px), the duodenum’s ratio of villi height to crypt depth (V/C), the jejunum villus height and V/C, and the ileum’s villus height. Furthermore, the significant interactions (p < 0.05) between Se sources and the level of probiotics were observed in Se concentrations in the pancreas, thigh muscle, serum, crypt depth of duodenum, and villus height of jejunum of birds, and Barnesiella abundance in the cecal. In conclusion, our results demonstrate that the combination of O-Se + pros can improve broiler early growth performance, tissue Se content in the pancreas, thigh muscle, and serum, promote intestinal development, and regulate the composition of intestinal flora, suggesting a better combination. These findings provide an effective method of nutrient combination addition to improving the performance of three yellow chickens.
Collapse
Affiliation(s)
- Shengting Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Shengjun Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence:
| |
Collapse
|
16
|
Xue J, Fang C, Mu R, Zhuo R, Xiao Y, Qing Y, Tang J, Fang R. Potential Mechanism and Effects of Different Selenium Sources and Different Effective Microorganism Supplementation Levels on Growth Performance, Meat Quality, and Muscle Fiber Characteristics of Three-Yellow Chickens. Front Nutr 2022; 9:869540. [PMID: 35495956 PMCID: PMC9051370 DOI: 10.3389/fnut.2022.869540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
A trial was conducted to investigate the effects of different Se sources, including sodium selenite (S-Se) and selenium yeast (Y-Se) and different effective microorganism (EM) addition levels on growth performance, meat quality, and muscle fiber characteristics of three-yellow chickens and its potential mechanism. A total of 400 birds were randomly distributed into 4 groups (S-Se, S-Se + EM, Y-Se, and Y-Se + EM groups) consisting of a 2 × 2 factorial arrangement. The main factors were the source of Se (ISe = inorganic Se: 0.2 mg/kg S-Se; OSe = organic Se: 0.2 mg/kg Y-Se) and the level of EM (HEMB = high EM: 0.5% EM; ZEMB = low EM: 0% EM). Each treatment had 5 replicates and each replicate consisted of 20 broiler chickens. The trial lasted for 70 days. The results showed that, in breast muscle, the broiler chickens fed OSe source decreased the pH24h, drip loss, shear force, perimeter, cross-sectional area, and diameter, but increased the a24h* and density compared with the broiler chickens fed ISe source (p < 0.05); broiler chickens supplied with HEMB level decreased the cross-sectional area and diameter, but increased the pH24h, a24h,* and density compared with the broiler chickens supplied with ZEMB level (p < 0.05). In thigh muscle, OSe source and HEMB level also could improve the meat quality and change muscle fiber characteristics of broiler chickens (p < 0.05). Meat quality was correlated with the muscle fiber characteristics (p < 0.05). OSe source and HEMB level could regulate the expression levels of muscle fiber-relative genes in the breast and thigh muscles (p < 0.05). In conclusion, OSe source and HEMB level could improve the meat quality of the breast and thigh muscles of three-yellow chickens by changing the muscle fiber characteristics, and they changed the muscle fiber characteristics by regulating the expression levels of muscle fiber-relative genes.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rui Mu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yiqing Qing
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Jiaxi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
- *Correspondence: Rejun Fang
| |
Collapse
|
17
|
Wang C, Wang L, Zhang L, Lu L, Liu T, Li S, Luo X, Liao X. Determination of optimal dietary selenium levels by full expression of selenoproteins in various tissues of broilers from 22 to 42 d of age. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:18-25. [PMID: 34977372 PMCID: PMC8669245 DOI: 10.1016/j.aninu.2021.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
The current NRC dietary selenium (Se) requirement (0.15 mg/kg) of broilers from 22 to 42 d of age is primarily based on a previous study reported in 1986, which might not be applicable to modern classes of rapidly growing broilers. The present experiment was conducted to determine the optimal dietary Se level for meeting metabolic and functional Se requirements of broilers fed a corn-soybean meal diet from 22 to 42 d of age. A total of 336 Arbor Acres male broilers at 22 d old were randomly assigned to 1 of 6 treatments with 7 replicates and fed a basal corn-soybean meal diet (control, containing 0.014 mg Se/kg) and the basal diet supplemented with 0.10, 0.20, 0.30, 0.40, or 0.50 mg Se/kg from Na2SeO3 for 21 d. The results showed that the Se concentrations in plasma, liver, kidney, pancreas, breast and thigh muscles, the activity of glutathione peroxidase (GPX) in plasma, liver and kidney, the mRNA expression levels of Gpx4, selenoprotein (Seleno) h and Selenou in liver, Selenop and Selenoh in kidney, and the protein expression levels of GPX4 in the liver and kidney of broilers were affected (P < 0.05) by supplemental Se level, and increased quadratically (P < 0.05) with the increase of supplemental Se level. The estimates of optimal dietary Se levels were 0.10 to 0.49 mg/kg based on the fitted broken-line or asymptotic models (P < 0.0001) of the above Se concentration indices, and 0.08 to 0.37 mg/kg based on the fitted broken-line, quadratic or asymptotic models (P < 0.007) of the above selenoprotein expression indices. These results indicate that the optimal dietary Se levels would be 0.49 mg/kg to support the maximum Se concentrations and 0.37 mg/kg to support the full expression of selenoproteins in plasma and various tissues of broilers fed a corn-soybean meal diet from 22 to 42 d of age.
Collapse
Affiliation(s)
- Chuanlong Wang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lisai Wang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Biochemistry Department, Case Western Reserve University, Cleveland, 44106, USA
| | - Sufen Li
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
18
|
Wang J, Zhang J, Zhong Y, Qin L, Li J. Sex-dimorphic distribution and anti-oxidative effects of selenomethionine and Se-methylselenocysteine supplementation. J Food Sci 2021; 86:5424-5438. [PMID: 34796490 DOI: 10.1111/1750-3841.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
Selenium (Se) is a vital trace element in human beings and is essential for protection against oxidative stress. This study aimed to investigate the accumulation and antioxidant effects of two organic seleniums, L-selenomethionine (SM) and L-Se-methylselenocysteine (SMC), through in vivo and in vitro experiments. L02 cells were pretreated with 10 nM SM or SMC for 24 h, followed by exposure to 100 nM of H₂O₂. Cell viability, apoptosis, and antioxidant capacity were detected to evaluate SM and SMC's protective effect. Organic selenium (SM and SMC) and inorganic selenium (sodium selenite, SS) were compared in terms of their in vivo accumulation and antioxidant capacity when supplemented daily and subsequently deprived in SD rats. Our results show that SM or SMC pre-treatment could significantly prevent elevated apoptosis and declined antioxidant ability. We found that organic Se supplementation resulted in higher Se accumulation than inorganic Se in the liver and kidney. The antioxidant capacity of liver and kidney tissues from rats fed with either organic selenium was significantly improved and was higher than that of SS. In summary, this study suggests that organic selenium supplements are more effective in facilitating Se accumulation in liver and kidney, enhancing antioxidant capacities, thereby protecting cells from oxidative stress. PRACTICAL APPLICATION: This study compared the antioxidant capacity of sodium selenite, L-selenomethionine, and L-Se-methylselenocysteine in vitro and in vivo. The results showed that organic selenium has a stronger antioxidant capacity and that significant differences exist in its absorption and conversion in male and female rats. Our results provide theoretical guidance for dietary supplementation of selenium.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jiayu Zhang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuting Zhong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Gul F, Ahmad B, Afzal S, Ullah A, Khan S, Aman K, Khan MT, Hadi F, Kiran K, Zahra M, Maqbool T, Mohsin U, Nadeem T, Javed MA, Ali Q, Ahmad L. Comparative analysis of various sources of selenium on the growth performance and antioxidant status in broilers under heat stress. BRAZ J BIOL 2021; 83:e251004. [PMID: 34614126 DOI: 10.1590/1519-6984.251004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
The supplementation of Selenium-enriched probiotics is effective in reducing oxidative stress and maintaining meat quality stability in broiler chicken especially under heat stress. An experimental study was conducted to perform Comparative analysis of Selenium yeast with inorganic Se in broilers under heat stress. A total of 120 broilers chicks of one day were assigned to 4 groups each consisting 30 chicks fed on same basal diet but different selenium sources. The basal diet of group D1 was not supplemented with Se source (Negative control), group D2 basal diet was supplemented with inorganic selenium (Sodium selenite 0.22mg/Kg starter phase and 0.15mg/Kg finisher phase), group D3 basal diet was supplemented with commercially available organic selenium (Seleno-methionine 0.22mg/Kg starter phase and 0.15mg/Kg finisher phase) and group D4 basal diet was supplemented with self-developed organic selenium (Se-enriched yeast 0.22mg/Kg starter phase and 0.15mg/Kg finisher phase). The performance parameters i.e. feed intake (FI), live body weight (BW) and FCR were not significantly (p>0.05) effected by selenium supplementation in the starter phase but were significantly (p<0.05) effected in the finisher phase. Selenium supplementation significantly (p<0.05) effected serum Se level in different supplemented groups. Higher serum Se value (58.20±0.06) was recorded in D4 group. Similarly significantly lower selenium value was recorded for D4 and higher was recorded for D1 (11.36±0.08). However lower serum Paraoxonase (PON) value was recorded for D4 (13.24±0.01) and higher for D1 (13.33±0.03). Comparatively self-developed Se enriched yeast increased the Se accumulation and improved antioxidant system. Glutathione peroxidase (GPx) was found higher in D4 (12.333±0.03) followed by D3, D2 and D1 respectively. Whereas superoxide dismutase (SOD) was significantly lower (p<0.05) in D4 (0.1437±0.003) followed by D3 (0.1457±0.002). Selenium supplementation increased the bird's survival rate. Birds fed on Se enriched yeast showed higher Se deposition and better antioxidant capacity as compared to other sources of selenium. Se-enriched yeast displayed an improved result on Se deposition in tissues, and oxidative capacity, meat tenderness and immune response level as compared to other sources of selenium.
Collapse
Affiliation(s)
- F Gul
- University of Peshawar, Center of Biotechnology and Microbiology, Peshawar, Pakistan
| | - B Ahmad
- University of Peshawar, Center of Biotechnology and Microbiology, Peshawar, Pakistan
| | - S Afzal
- University of Peshawar, Center of Biotechnology and Microbiology, Peshawar, Pakistan
| | - A Ullah
- University of Peshawar, Center of Biotechnology and Microbiology, Peshawar, Pakistan
| | - S Khan
- Bacha Khan University, Institute of Microbiology and Biotechnology, Charsada, Pakistan
| | - K Aman
- Abasyn University Peshawar, Department of Microbiology, Peshawar, Pakistan
| | - M T Khan
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - F Hadi
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - K Kiran
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - M Zahra
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - T Maqbool
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - U Mohsin
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - T Nadeem
- University of the Punjab Lahore, Centre of Excellence in Molecular Biology, Lahore, Pakistan
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - Q Ali
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan.,University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - L Ahmad
- Khybar Medical College Peshawar, Department of Medicine, Khyber Pakhtunkhwa, Peshawar, Pakistan
| |
Collapse
|
20
|
Arnaut PR, da Silva Viana G, da Fonseca L, Alves WJ, Muniz JCL, Pettigrew JE, E Silva FF, Rostagno HS, Hannas MI. Selenium source and level on performance, selenium retention and biochemical responses of young broiler chicks. BMC Vet Res 2021; 17:151. [PMID: 33836766 PMCID: PMC8033718 DOI: 10.1186/s12917-021-02855-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Background Selenium (Se) has been recognized as an essential micronutrient for nearly all forms of life. In recent decades, broiler responses to dietary Se supplemental levels and sources have received considerable attention. On environmental grounds, organic trace mineral utilization in practical broiler feeds has been defended due to its higher bioavailability. In such feeds, trace minerals are provided simultaneously in the same supplement as inorganic salts or organic chelates, a fact commonly ignored in assays conducted to validate organic trace mineral sources. The current assay aimed to investigate growth and biochemical responses, as well as Se retention of growing chicks fed diets supplemented with organic and inorganic Se levels and where the trace minerals (zinc, copper, manganese, and iron) were provided as organic chelates or inorganic salts according to Se source assessed. In so doing, a 2 × 5 factorial arrangement was used to investigate the effects of sodium selenite (SS) and selenium-yeast (SY) supplemented in feeds to provide the levels of 0, 0.08, 0.16, 0.24, and 0.32 mg Se/kg. Results Chicks fed selenium-yeast diets had body weight (BW), and average daily gain (ADG) maximized at 0.133 and 0.130 mg Se/kg, respectively. Both Se sources linearly increased (P < 0.05) the glutathione peroxidase (GSH-Px) activity in chick blood but higher values were observed in sodium selenite fed chicks (P < 0.05). Both Se sources influenced thyroid hormone serum concentrations (P < 0.05). Chicks fed SY exhibited greater retention of Se in the feathers (P < 0.05). Relative bioavailability of selenium yeast compared with SS for the Se content in carcass, feathers, total and Se retention were, 126, 116, 125 and 125%, respectively. SY supplementation resulted in lower liver Se concentration as Se supplementation increased (P < 0.05). Conclusions Based on performance traits, the supplemental level of organic Se as SY in organic trace minerals supplement to support the maximal growth of broiler chicks is 0.133 mg Se/kg.
Collapse
Affiliation(s)
- Pedro Righetti Arnaut
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| | - Gabriel da Silva Viana
- Production Systems, Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland.
| | - Lucimauro da Fonseca
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| | - Warley Junior Alves
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| | | | | | | | | | - Melissa Izabel Hannas
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| |
Collapse
|
21
|
Alian HA, Samy HM, Ibrahim MT, Mahmoud MMA. Nanoselenium effect on growth performance, carcass traits, antioxidant activity, and immune status of broilers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38607-38616. [PMID: 32623680 DOI: 10.1007/s11356-020-09952-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 05/21/2023]
Abstract
A 42-day comparative study was conducted to assess the impact of nanoselenium to other selenium sources on performance, antioxidant activity, immunity, and carcass traits in broilers. Ross 308 (n = 156) 1-day-old broiler chicks, with average initial body weight of 45.80 ± 0.35, were randomly allocated to 4 groups. The first group (G1) fed the basal diet without selenium supplementation. The second group (G2), the third group (G3), and the fourth group (G4) were supplemented with dietary selenium at the level of 0.3 mg kg-1 diet in the form of sodium selenite, seleno-methionine, and nanoselenium, respectively. The results revealed significant improvement on most of the performance parameters of nanoselenium at the level of 0.3 mg kg-1 diet (P < 0.05). Nanoselenium and seleno-methionine achieved the best dressing %, spleen index %, and thymus index %. Concerning to internal organ indices, none of these indices was significantly affected by any selenium sources (P < 0.05). Glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) content were not significantly affected by different selenium sources among all experimental groups. Serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) showed significant (P < 0.05) decrease in nanoselenium supplemented group compared with other groups. In case of serum IL-10 level, a significant (P < 0.05) increase was reported in nanoselenium supplemented group followed by G3 then G2. There were no statistical differences in the serum alanine transaminase, aspartate transaminase, total protein, albumin concentration, serum creatinine level, and uric acid concentration levels among all experimental groups. It is concluded that nano selenium can be a useful and better source of selenium for broilers.
Collapse
Affiliation(s)
- Heba A Alian
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hayam M Samy
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammed T Ibrahim
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt
| | - Manal M A Mahmoud
- Faculty of Veterinary Medicine, Department of Nutrition and clinical nutrition, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
22
|
Woods SL, Rose SP, Whiting IM, Yovchev DG, Ionescu C, Blanchard A, Pirgozliev V. The effect of selenium source on the oxidative status and performance of broilers reared at standard and high ambient temperatures. Br Poult Sci 2020; 62:235-243. [PMID: 32993355 DOI: 10.1080/00071668.2020.1824292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. This study investigated the oxidative status of broilers fed diets containing selenium (Se) from 14 to 35 d of age and reared at two different constant temperatures. Measurements of oxidative status included blood glutathione peroxidase (GSH-Px) and plasma total antioxidant status (TAS). Other variables included feed intake (FI), weight gain (WG), feed conversion ratio (FCR), Se levels in breast and liver tissue, jejunal villus morphometry, percentage weight of organs in relation to body weight; apparent metabolisable energy adjusted for nitrogen (AMEn); dry matter retention (DMR); fat retention (FR) and nitrogen retention (NR).2. The experiment started at 14 d of age, when 240 birds were randomly allocated to 48 pens (12 pens in four rooms). Treatments included a control diet 1 (SFC; 209.4 g/kg CP and 12.98 MJ/kg ME and no added Se containing saturated fat); diet 2 (SFSe) the control plus 12.605 mg/kg Se additive; diet 3 (USFC) was a second control diet (208.2 g/kg CP and 13.10 MJ/kg ME with no added Se containing unsaturated fat as rapeseed oil); diet 4 (USFSe) was the latter control plus 12.605 mg/kg Se additive. Two rooms were kept at a standard temperature of 20°C (ST) and two rooms were kept at high temperature of 35°C (HT).3. A temperature x Se interaction existed for GSH-Px in birds reared at ST (P < 0.05), and these birds had the highest levels of Se in liver tissue (P < 0.05). Fat x Se interactions were evident in breast tissue with highest levels in USFSe (P < 0.05). Adding Se improved jejunal VH: CD in USFSe fed birds (P < 0.001).4. Birds reared at ST had higher FI and WG than those reared at HT (P < 0.001), and had lower FCR than those reared at HT (P < 0.05). AMEn (MJ/kg DM) and FR were higher in birds fed USF diets, and lowest in birds fed SF (P < 0.50 and P < 0.001 respectively). NR was highest in birds raised at ST (P < 0.50).5. Broiler growth performance was reduced by HT. Oxidative status and Se in liver tissue was improved by adding Se in both diets.
Collapse
Affiliation(s)
- S L Woods
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| | - S P Rose
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| | - I M Whiting
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| | - D G Yovchev
- Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | | | | | - V Pirgozliev
- National Lnstitute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
| |
Collapse
|
23
|
Woods SL, Rose SP, Whiting IM, Ionescu C, Blanchard A, Pirgozliev V. The effect of feeding different sources and levels of selenium on growth performance and antioxidant status of broilers raised at two different temperatures. Br Poult Sci 2020; 61:669-675. [PMID: 32551912 DOI: 10.1080/00071668.2020.1782350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. This study examined the effects of different dietary sources and levels of selenium (Se) on growth performance, hepatic and breast meat Se content, glutathione peroxidase (GSH-Px) activity and total antioxidant status (TAS) in blood, when fed to broilers from 14 to 35 d of age and reared at two different temperatures (20°C and 35°C). 2. Five hundred and sixty male Ross 308 broilers were reared in a single floor pen and fed the same proprietary starter diet from 0 to 14 d age (229.9 g/kg CP and 12.67 MJ/kg ME, without Se supplementation). 3. The experiment started at 14 d age, and the birds randomly assigned to 112 raised-floor pens (0.36 m2 area, 5 birds/pen). Each of the seven experimental diets were offered to birds in 16 pens within four rooms. Two rooms were at 20°C and two rooms were maintained at 35°C. The experimental diets were fed from 14 to 35 d age and contained 214.9 g/kg CP and 13.11 MJ/kg ME. The experimental diets were as follows; control diet containing background Se only (0.189 mg/kg; C); low level sodium selenite (0.376 mg/kg; LSS): high level sodium selenite (0.558 mg/kg; HSS); low level commercial B Traxim® Se (0.244 mg/kg) (LBT); high level B Traxim® Se (0.448 mg/kg; HBT); low level selenised yeast (0.290 mg/kg; LSY); high level selenised yeast (0.487 mg/kg; HSY). 4. Birds consumed more when raised at 20°C compared to birds reared at 35°C (P ≤ 0.05). Birds fed lower Se level reared at 35°C had higher weight gain versus those fed higher Se level (P < 0.05). Birds fed SY had the lowest feed intake, weight gain and FCE (P < 0.05). The greatest GSH-Px activity was observed in birds fed SS diets (P < 0.001). There were interactions between diet x level for TAS, which were highest in birds fed LBT compared to birds fed HBT (P < 0.05). Breast Se content was higher in birds fed HSY compared to LSY (P < 0.001). The highest hepatic Se was seen in birds fed SY and lowest in C (P < 0.001). 5. Birds fed BT diets showed similar levels of Se to those birds fed inorganic Se, and similar levels of GSH-Px to birds fed SY. Further comparative work with broilers fed BT and other Se supplemented diets may elucidate the findings from this report.
Collapse
Affiliation(s)
- S L Woods
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | - S P Rose
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | - I M Whiting
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | | | | | - V Pirgozliev
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| |
Collapse
|
24
|
Liu G, Zhao Y, Cao S, Luo X, Wang R, Zhang L, Lu L, Liao X. Relative bioavailability of selenium yeast for broilers fed a conventional corn-soybean meal diet. J Anim Physiol Anim Nutr (Berl) 2020; 104:1052-1066. [PMID: 31782562 DOI: 10.1111/jpn.13262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 12/01/2022]
Abstract
The present study was conducted to assess the relative bioavailability of selenium (Se) as Se yeast (SY) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 360 one-d-old Arbor Acres commercial broilers were randomly assigned to 5 treatments with 6 replicates per treatment in a completely randomized design involving a 2 (Se sources: SY and SS) × 2 (added Se levels: 0.20 and 0.40 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control diet) for 42 days. The results showed that Se concentrations in plasma, liver, heart, breast muscle, pancreas and kidney of broilers on d 21 and 42, glutathione peroxidase (GSH-Px) activity in the pancreas on d 21 as well as in the breast muscle and pancreas on d 42, and GSH-Px mRNA levels in the liver, heart, breast muscle and pancreas on d 21 increased linearly (p < .03) as levels of added Se increased. Furthermore, a difference (p ≤ .05) between SY and SS was detected for Se concentrations in plasma, liver, heart, breast muscle, pancreas and kidney, GSH-Px activity in pancreas on both d 21 and 42, as well as pancreatic GSH-Px mRNA level on d 21. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY relative to SS (100%) were 111%-394% (p ≤ .05) when calculated from the Se concentrations in plasma, liver, heart, breast muscle, pancreas, kidney and GSH-Px activities in pancreas on d 21 and 42, as well as GSH-Px mRNA level in pancreas on d 21. The results from this study indicated that the Se from SY was more available for enhancing the Se concentrations in plasma or tissues and the expression and activity of GSH-Px in pancreas of broilers than the Se from SS.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhen Zhao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sumei Cao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Runlian Wang
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Wei R, Song Q, Hu S, Xu H, Liu H, Kang B, Li L, Zeng X, Chen L, Han C. Overfeeding influence on antioxidant capacity of serum, liver, gut, and breast muscle in Gang Goose and Tianfu Meat Goose. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
El-Deep MH, Amber KA, Elgendy S, Dawood MAO, Zidan A. In ovo injection of nano-selenium spheres mitigates the hatchability, histopathology image and immune response of hatched chicks. J Anim Physiol Anim Nutr (Berl) 2020; 104:1392-1400. [PMID: 32343020 DOI: 10.1111/jpn.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023]
Abstract
In ovo injection of nano-selenium (Se) produced by lactic acid bacteria (LAB-nano-Se) was investigated on the hatchability, immune responses and the histopathological alterations in hatched chicks. The eggs (18 day age) were injected with 0.5 ml of 0.9% NaCl (normal saline, NS), while the control group was kept without injection. In the third, fourth and fifth groups, the eggs were injected with 0.5 ml of NS and LAB-nano-Se at 10, 20 and 30 μg/egg. The results revealed improved growth performance in groups injected with LAB-nano-Se when compared to the control treatment. The highest final weight and weight gain were noticed in 20 μg LAB-nano-Se/egg group (p < .05). The feed conversion ratio was reduced in all treated groups when compared to the control group (p < .05). Groups injected with LAB-nano-Se showed enhanced hatchability of the whole incubated eggs (p < .05). Total lipids and cholesterol levels were decreased significantly in groups treated with LAB-nano-Se at 10 and 20 μg/egg when compared to the non-treated group. At the same time, globulin was increased by LAB-nano-Se in ovo injection. Furthermore, the total antioxidant capacity, catalase, glutathione peroxidase, superoxide dismutase increased in groups treated with LAB-nano-Se at 10 and 20 μg/egg with insignificant (p > .05) differences with those treated with LAB-nano-Se at 30 μg/egg using in ovo injection technique. Also, higher total blood protein and phagocytosis were significantly observed in groups treated with at 10, 20 and 30 μg LAB-nano-Se/egg. The histopathological images of hatched chicks revealed that nano-Se presented normal effects on liver and kidney tissues and restored the parameters as mentioned earlier. To conclude, LAB-nano-Se exhibited beneficial effects in hatched chicks through improving immune and antioxidant activities as well as histopathological effects by using in ovo technique.
Collapse
Affiliation(s)
| | - Khairy A Amber
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Salwa Elgendy
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Abdulrahman Zidan
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
27
|
Güz BC, Molenaar R, de Jong IC, Kemp B, van den Brand H, van Krimpen M. Effects of dietary organic minerals, fish oil, and hydrolyzed collagen on growth performance and tibia characteristics of broiler chickens. Poult Sci 2020; 98:6552-6563. [PMID: 31392338 PMCID: PMC6870562 DOI: 10.3382/ps/pez427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Nutrition is a crucial factor for growth and bone development in broiler chickens. Adjustments in dietary ingredients might affect bone development and consequently locomotion related problems. This study was designed to evaluate effects of dietary organic minerals (ORM), fish oil (FISH), and hydrolyzed collagen (COL) on growth performance and tibia characteristics of broiler chickens. A total of three hundred eighty four 1-day-old Ross 308 male broiler chickens were used in a complete randomized block design with 4 diet groups and 8 replicates per diet group. In the ORM diet, the inorganic macro and trace minerals were replaced by their organic varieties. In the FISH diet, palm oil and soybean oil were partly replaced by FISH. In the COL diet, soybean meal was partly replaced by COL. Results showed that the ORM and COL diet groups reached a higher body weight (BW) at 42 D of age than the FISH diet group, whereas the control group was in between. The feed conversion ratio between day 1 and 42 was lower in the ORM and COL diet groups than in both other diet groups. On day 28, 35, and 42, gait score (GS), Varus Valgus deformity, tibia length (TL), thickness, femoral and metatarsal head thickness (THT), mineral content (TMC), mineral density (TMD), breaking strength (TBS), stiffness (TSF), and energy to fracture (TEF) were measured (n = 3/replicate). The ORM diet group had higher TL at day 42, higher THT at day 28, higher TMC at day 42, higher TMD at day 28, 35, and 42, higher TBS at day 42, higher TSF at day 35 and 42, and higher TEF at day 42 compared to the FISH diet group, with the COL and control diet groups in between. It can be concluded that replacing dietary inorganic macro and trace minerals by their organic varieties seems to stimulate tibia dimensions, strength, and mineral content of broiler chickens. On the contrary, FISH appears to negatively affect tibia characteristics.
Collapse
Affiliation(s)
- B C Güz
- Adaptation Physiology Group, Wageningen University and Research, 6708 PB Wageningen, Gelderland, The Netherlands
| | - R Molenaar
- Adaptation Physiology Group, Wageningen University and Research, 6708 PB Wageningen, Gelderland, The Netherlands
| | - I C de Jong
- Wageningen Livestock Research, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, Gelderland, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Wageningen University and Research, 6708 PB Wageningen, Gelderland, The Netherlands
| | - H van den Brand
- Adaptation Physiology Group, Wageningen University and Research, 6708 PB Wageningen, Gelderland, The Netherlands
| | - M van Krimpen
- Wageningen Livestock Research, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, Gelderland, The Netherlands
| |
Collapse
|
28
|
D’Amato R, Regni L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C, Businelli D. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4075-4097. [PMID: 32181658 PMCID: PMC7997367 DOI: 10.1021/acs.jafc.0c00172] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Se intake in humans is often low and very seldom excessive, and its bioavailability depends also on its chemical form, with organic Se as the most available after ingestion. The main dietary source of Se for humans is represented by plants, since many species are able to metabolize and accumulate organic Se in edible parts to be consumed directly (leaves, flowers, fruits, seeds, and sprouts) or after processing (oil, wine, etc.). Countless studies have recently investigated the Se biofortification of plants to produce Se-enriched foods and elicit the production of secondary metabolites, which may benefit human health when incorporated into the diet. Moreover, feeding animals Se-rich diets may provide Se-enriched meat. This work reviews the most recent literature on the nutraceutical profile of Se-enriched foods from plant and animal sources.
Collapse
Affiliation(s)
- Roberto D’Amato
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Luca Regni
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Beatrice Falcinelli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Simona Mattioli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Paolo Benincasa
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Alessandro Dal Bosco
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Pablo Pacheco
- Instituto
de Química de San Luis, INQUISAL, Centro Científico-Tecnológico
de San Luis (CCT-San Luis), Consejo Nacional
de Investigaciones Científicas − Universidad Nacional
de San Luis, Chacabuco y Pedernera, Ciudad de San Luis 5700, Argentina
| | - Primo Proietti
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Elisabetta Troni
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Claudio Santi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia 06123, Italy
| | - Daniela Businelli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
29
|
Supplemental hot melt extruded nano-selenium increases expression profiles of antioxidant enzymes in the livers and spleens of weanling pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Woods SL, Sobolewska S, Rose SP, Whiting IM, Blanchard A, Ionescu C, Bravo D, Pirgozliev V. Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. Br Poult Sci 2020; 61:274-280. [PMID: 31951478 DOI: 10.1080/00071668.2020.1716301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. This study was conducted to determine the effect of different sources of selenium (Se) on breast and liver tissue deposition, apparent metabolisable energy (AME), growth performance and antioxidant status of broilers, measured as Se content in liver and breast tissues and glutathione peroxidase (GSH-Px) in blood, when used in 0-35 d broiler chicken diets. 2. A total of 200 male Ross 308 broilers were used in the feeding trial, which comprised two dietary phases, a starter from 0 to 21 d and finisher from 21 to 35 d of age. Four treatments with 10 replications each were used. A control diet (C) was formulated that was sufficient in protein and energy (230 and 215 g/kg of crude protein and 12.67 and 13.11 MJ/kg of metabolisable energy, respectively), for both phases, but contained background Se only from the feed ingredients. Diet 2 (IS) was supplemented with 10.35 g/t inorganic, elemental source of Se. Diet 3 (SY) was supplemented with 136.36 g/t selenised yeast, an organic source derived from Saccharomyces cerevisiae. Diet 4 (SS) was supplemented with 0.666 g/t sodium selenite, an inorganic source. 3. Birds fed the SY diet consumed less and weighed less than those fed IS or C (P < 0.05; 0-35 d of age), but there was no difference compared to birds fed SS diets. There were no differences in FCR or dietary AME between broilers fed different Se sources. All diets containing supplementary Se increased concentrations in the liver and breast muscle, and for GSH-Px levels in blood compared to birds fed the C diet (P < 0.001). Birds fed SY diets had greater Se levels in liver and breast tissues compared to birds fed any of the other diets (P < 0.001). 4. Diets supplemented with Se had variable effects on broiler growth performances and antioxidant status. Feeding Se from a yeast source has higher transfer into breast tissues. Feeding different sources and levels of Se to birds in a more challenging situation to induce oxidative stress may bring more conclusive results.
Collapse
Affiliation(s)
- S L Woods
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | - S Sobolewska
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | - S P Rose
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | - I M Whiting
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| | | | | | - D Bravo
- Pancosma , 1180 Rolle, Switzerland
| | - V Pirgozliev
- National Institute of Poultry Husbandry, Harper Adams University , Newport, UK
| |
Collapse
|
31
|
Mohammadi E, Janmohammadi H, Olyayee M, Helan JA, Kalanaky S. Nano selenium improves humoral immunity, growth performance and breast-muscle selenium concentration of broiler chickens. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Selenium (Se) is an essential trace element and plays pivotal roles in poultry nutrition.
Aims
The present study was designed to compare the impact of dietary supplementation of different sources of Se on growth performance, Se concentration of breast meat, and immune response of broiler chickens.
Methods
In total, 300 1-day-old as hatched broilers were randomly allocated to six dietary treatments, with five replicates of 10 birds per each. The experimental diets were as follows: (1) corn–soybean meal-based diet supplemented with 0.30 mg/kg of sodium selenite, (2) basal diet supplemented with 0.30 mg/kg of Se-enriched yeast, and (3–6) basal diet supplemented with 0.15, 0.30, 0.90 and 1.50 mg/kg of nano-Se respectively. Humoral immunity was assessed by antibody titer against a 5% sheep red blood-cell suspension and cellular immunity was measured by administration of phytohaemagglutinin-p at 38 days.
Key results
Results indicated that during the periods from 1 to 10 days, from 11 to 24 days, from 25 to 42 days and from 1 to 42 days, average daily gain, average daily feed intake, and feed conversion ratio did not differ among the treatments (P > 0.05). Assessment of orthogonal contrasts at the whole phase of feeding showed that the average daily gain in the broilers fed organic Se was significantly (P < 0.05) higher than that in those fed inorganic Se, as well as nano-Se in comparison to organic Se; such effects were not observed in earlier feeding stages. Se supplementation significantly increased the Se concentration of breast muscle (P < 0.0001). The birds that received 1.50 mg/kg of diet nano-Se showed higher (P < 0.05) total immunoglobulin and IgG titers in primary and secondary immune responses against sheep erythrocytes respectively. Toe web swelling after 24 h and 48 h of receiving phytohaemagglutinin-p was not affected by Se supplementation (P > 0.05).
Conclusions
In conclusion, the addition of nano-Se gave better results than did inorganic (sodium selenite) and organic (yeast selenium) forms of Se in performance traits, breast meat Se concentration and antibody response of broilers.
Implications
Novel elemental nanometer particulates, including nano-Se, exhibit new characteristics and a different mode of actions in comparison with organic and inorganic forms of Se sources in poultry diets. Inclusion of the nano form of Se in broiler diets and study of productive performance, immunity responses and meat quality leads to improve balanced broiler diets formulation in view of Se.
Collapse
|
32
|
Reshadi H, Torki M, Mohammadi H. Changes in performance, egg quality and blood parameters of laying hens fed selenium and oregano oil. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Organic and herbal additives in feed may lead to more healthy animal products. For this study, we hypothesised that an organic form of selenium and/or a herbal additive (oregano, Origanum vulgare L.) may improve performance of laying hens.
Aims
The study was designed to determine the effects of selenium source (SS, sodium selenite; or selenium yeast, SY), oregano essential oil (OEO) and a combination of Se and OEO on performance, egg quality and blood parameters of laying hens.
Methods
In total, 216 Lohmann LSL-Lite laying hens, 66 weeks of age, were assigned to feed on one of six diets: control group, receiving basal diet (BD); BD + 0.3 mg SS/kg; BD + 0.3 mg SY/kg; BD + 250 mg OEO/kg; BD + 250 mg OEO + 0.3 mg SS/kg; BD + 250 mg OEO + 0.3 mg SY/kg. For each treatment, there were six replicates of six hens each for 12 weeks.
Key results
Feed conversion ratio was higher (P < 0.05) with the OEO diet than in the control. The SY diet decreased egg production and the OEO diet decreased egg mass (P < 0.05), although this effect was reversed with the SY + OEO diet. This would illustrate a synergistic effect of OEO with SY. Highest and lowest yolk colour values were found with the SY and SS diets, respectively (P < 0.05). Serum uric acid was lower with diets containing Se than the control diet (P < 0.05). Glutathione peroxidase activity was highest with SY and SY + OEO diets and lowest with the OEO diet (P < 0.05). Birds fed the SS + OEO diet showed the highest total antioxidant capacity and those fed SY showed the lowest total antioxidant capacity (P < 0.05).
Conclusions
Based on the results of the current study, it can be concluded that SY diet have increasing effect on egg weight in laying hens. In addition, novel synergistic effects between OEO and SY diets on improving egg production, egg mass and feed conversion ratio have been found. In terms of oxidative status, the detected synergistic effects between OEO and SS diets on total antioxidant capacity and between OEO and SY diets on glutathione peroxidase (GPx) have not been reported before, that appreciate more clarifying investigations in future. Although, dietary supplemental SY individually and also with OEO increased GPx, adding SS to diet together with OEO showed more improving effect on GPx compared to the separate usage.
Implications
Dietary supplemental SY can improve egg weight in laying hens. In addition, adding SY to diet of laying hens individually and with OEO have beneficial effects on oxidative status of bird in terms of GPs activity, which in turn can ameliorate the unfavourable impressions of probable environmentally oxidative stress on productive performance.
Collapse
|
33
|
Wang D, Wang D, Pu L, Wei G. Improved Antioxidant Capacity and Immune Function of Broiler Chickens Fed with Selenium-enriched Candida utilis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- D Wang
- Soochow University, China
| | - D Wang
- Soochow University, China
| | - L Pu
- Soochow University, China
| | - G Wei
- Soochow University, China
| |
Collapse
|
34
|
Effects of selenium source and level in diet on glutathione peroxidase activity, tissue selenium distribution, and growth performance in poultry. Anim Health Res Rev 2019; 19:166-176. [PMID: 30683170 DOI: 10.1017/s1466252318000105] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Today, a few differing sources of selenium (Se), i.e. inorganic, organic, and nano forms of Se, are used as feed supplements for poultry. Published research indicates that nano-Se and organic Se possess comparable efficiency to inorganic Se in increasing GSH-Px activity of plasma and various tissues, but they deposit at higher rates in various tissues. However, there are principal differences in absorption mechanisms, metabolism, and efficiency of these three forms of Se. The aim of this review was to analyze the available literature on the effects of different Se sources and levels in the diet on glutathione peroxidase (GSH-Px) activity, tissue Se distribution and growth performance in poultry. Higher levels of Se increase GSH-Px activity in the body, but this reaches a plateau even if Se concentrations in diet increase further, while the deposition of Se in tissues increases as Se content in diet increases. In addition, many studies have shown the positive effects of adding Se to diet on growth performance in poultry. Optimal Se supplementation is necessary not only for good poultry health but also to ensure and preserve meat quality during storage and to provide human beings with this microelement.
Collapse
|
35
|
Effect of Dietary Modulation of Selenium Form and Level on Performance, Tissue Retention, Quality of Frozen Stored Meat and Gene Expression of Antioxidant Status in Ross Broiler Chickens. Animals (Basel) 2019; 9:ani9060342. [PMID: 31212705 PMCID: PMC6617058 DOI: 10.3390/ani9060342] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although the importance of usage of selenium as essential trace element in poultry production has been proven, the best source and level has not been fully addressed yet. Three different dietary selenium forms with three different levels were chosen to be added in broiler diet. Met-Se or nano-Se up to 0.6 mg/kg increased their performance and was more efficiently retained in the body than SeS. Frozen stored meat quality was improved in a dose-dependent manner especially with both Met-Se and nano-Se. Nano-Se was more potent than Met-Se, which in turn was more potent than inorganic Se against oxidative stress, which improved the quality of meat under frozen conditions. Abstract This study compares between different selenium forms (sodium selenite; SeS, selenomethionine; Met-Se or nano-Se) and levels on growth performance, Se retention, antioxidative potential of fresh and frozen meat, and genes related to oxidative stress in Ross broilers. Birds (n = 450) were randomly divided into nine experimental groups with five replicates in each and were fed diets supplemented with 0.3, 0.45, and 0.6 mg Se/kg as (SeS, Met-Se), or nano-Se. For overall growth performance, dietary inclusion of Met-Se or nano-Se significantly increased (p < 0.05) body weight gain and improved the feed conversion ratio of Ross broiler chicks at the level of 0.45 and 0.6 mg/kg when compared with the group fed the same level of SeS. Se sources and levels significantly affected (p < 0.05) its concentrations in breast muscle, liver, and serum. Moreover, Se retention in muscle was higher (p < 0.05) after feeding of broiler chicks on a diet supplemented with Met-Se or nano-Se compared to the SeS group, especially at 0.6 mg/kg. Additionally, higher dietary levels from Met-Se or nano-Se significantly reduced oxidative changes in breast and thigh meat in the fresh state and after a four-week storage period and increased muscular pH after 24 h of slaughter. Also, broiler’s meat in the Met-Se and nano-Se groups showed cooking loss and lower drip compared to the SeS group (p < 0.05). In the liver, the mRNA expression levels of glutathione peroxidase, superoxide dismutase, and catalase were elevated by increasing dietary Se levels from Met-Se and nano-Se groups up to 0.6 mg/kg when compared with SeS. Therefore, dietary supplementation with 0.6 mg/kg Met-Se and nano-Se improved growth performance and were more efficiently retained than with SeS. Both sources of selenium (Met-Se and nano-Se) downregulated the oxidation processes of meat during the first four weeks of frozen storage, especially in thigh meat, compared with an inorganic source. Finally, dietary supplementation of Met-Se and nano-Se produced acceptable Se levels in chicken meat offered for consumers.
Collapse
|
36
|
Zeng R, Liang Y, Farooq MU, Zhang Y, Ei HH, Tang Z, Zheng T, Su Y, Ye X, Jia X, Zhu J. Alterations in transcriptome and antioxidant activity of naturally aged mice exposed to selenium-rich rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17834-17844. [PMID: 31037530 DOI: 10.1007/s11356-019-05226-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is a vital element which leads to strong antioxidation in animals and humans. However, the mechanism underlying natural cereal Se-induced biological changes is not well understood. This study intended to explore the gene differential expression in naturally aged mice exposed to selenium by RNA-Seq technique. A total spectrum of 53 differentially expressed genes was quantified in mice heart tissues treated with Se-rich and general rice. The GO functional annotation of differentially expressed genes disclosed the enrichment of cellular process, ionic binding, biological regulation, and catalytic activity. One hundred twenty-three differential pathways (cardiovascular diseases, immune system, transport and catabolism, longevity regulating, and PI3K-AKT signaling) were identified according to KEGG metabolic terms. Afterwards, the effect of Se-rich rice on the antioxidant activity was assessed. The selenium-rich diet increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in mice serum and livers while significantly reduces methane dicarboxylic aldehyde (MDA) contents. FOXO1 and FOXO3 genes, which acted as the regulators of apoptosis and the antioxidant enzyme, were significantly enhanced in mice when fed with Se-rich rice. In short, the present findings disclosed the alluring insights of organic and inorganic selenium sources on certain biological processes and antioxidant activity of living bodies. However, long-term trials are still required to draw a definitive conclusion, including risks and benefit analysis for various management strategies.
Collapse
Affiliation(s)
- Rui Zeng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanke Liang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Muhammad Umer Farooq
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yujie Zhang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hla Hla Ei
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhichen Tang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tengda Zheng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Su
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
37
|
Designing selenium functional foods and beverages: A review. Food Res Int 2019; 120:708-725. [DOI: 10.1016/j.foodres.2018.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
|
38
|
Wang Y, Yang HM, Cao W, Li YB. Effects of selenium supplementation on growth performance, selenium content and gene expression in pigeon squabs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1501282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Y. Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - H. M. Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - W. Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Y. B. Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| |
Collapse
|
39
|
de Souza-Vilela J, Andrew NR, Ruhnke I. Insect protein in animal nutrition. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Global meat consumption per capita is expected to increase ~40% from 2019 to 2050. Over 30% of the total cropland worldwide is currently being used to produce either livestock and poultry feed or silage to meet the demand. One solution to reduce cropland use for animal feed is to increase the production of alternative protein sources. The primary protein sources for animal nutrition, including soybeans, peas and fish meal, are of increasing demand and are subsequently becoming more expensive, making their long-term use unsustainable. Insects such as the black soldier fly larvae (Hermetia illucens), crickets (Gryllus testaceus Walker) or mealworms (Tenebrio molitor) offer a viable addition to the feed sources and can provide valuable, high-quality energy, protein and fat to an animal’s diet. Here, we review the environmental benefits of insect feedstuff, current research findings related to the use of insects for animal nutrition, and outline additional products that can generate benefits to insect producers.
Collapse
|
40
|
Mörschbächer AP, Dullius A, Dullius CH, Bandt CR, Kuhn D, Brietzke DT, José Malmann Kuffel F, Etgeton HP, Altmayer T, Gonçalves TE, Schweizer YA, Oreste EQ, Ribeiro AS, Lehn DN, Volken de Souza CF, Hoehne L. Assessment of selenium bioaccumulation in lactic acid bacteria. J Dairy Sci 2018; 101:10626-10635. [DOI: 10.3168/jds.2018-14852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023]
|
41
|
Zhang S, Liao X, Ma X, Zhang L, Lu L, Luo X. Relative bioavailability of ultrafine sodium selenite for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2018; 96:4755-4767. [PMID: 30215747 PMCID: PMC6247847 DOI: 10.1093/jas/sky333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
The particle size of selenium (Se) sources could affect Se absorption and utilization, and thus it is hypothesized that the Se bioavailability might be higher in ultrafine sodium selenite (USSe) than in sodium selenite (SSe) for broilers because of USSe's smaller particle size. An experiment was conducted to investigate the relative bioavailability of Se as USSe relative to SSe for broiler chicks fed a conventional corn-soybean meal diet. A total of 504 one-d-old Arbor Acres commercial male broilers were randomly allotted to 1 of 7 treatments with 6 replicates per treatment in a completely randomized design involving in a 2 (Se sources) × 3 (added Se levels) factorial arrangement of treatments plus a Se-unsupplemented control diet containing 0.05 mg Se/kg by analysis for 21 d. The 2 Se sources were USSe and SSe, and the 3 added Se levels were 0.15, 0.30, or 0.45 mg Se/kg. The Se concentrations, glutathione peroxidase (GSH-Px) activities, and mRNA relative abundances in plasma, liver, or pancreas of broilers on day 14 and 21 were determined. The results showed that Se concentrations, GSH-Px activities in plasma, liver, and pancreas, and mRNA relative abundances in the liver and pancreas of broilers on day 14 and 21 increased linearly (P < 0.05) as the added Se-level increased. Furthermore, a difference (P < 0.05) between USSe and SSe was detected for GSH-Px mRNA relative abundance in the pancreas of broilers on day 14. On the basis of the slope ratios from the multiple linear regression of the pancreatic GSH-Px mRNA relative abundance of broilers at 14 d of age on daily dietary analyzed Se intake, the Se bioavailability of USSe relative to SSe (100%) was 158% (P < 0.05). The results from this study indicated that the Se from USSe was more available to broilers than the Se from SSe in enhancing the pancreatic GSH-Px mRNA expression.
Collapse
Affiliation(s)
- Shumin Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuelian Ma
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
42
|
Markovic R, Ciric J, Drljacic A, Šefer D, Jovanovic I, Jovanovic D, Milanovic S, Trbovic D, Radulovic S, Baltic MŽ, Starcevic M. The effects of dietary Selenium-yeast level on glutathione peroxidase activity, tissue Selenium content, growth performance, and carcass and meat quality of broilers. Poult Sci 2018; 97:2861-2870. [PMID: 29669132 DOI: 10.3382/ps/pey117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/10/2018] [Indexed: 01/05/2023] Open
Abstract
The present study was conducted to assess effects of selenium (Se)-yeast supplementation on glutathione peroxidase activity, Se levels in tissues, growth performance, carcass, and meat composition in broilers. A total of 275 one-d-old Cobb 500 broilers of both sexes were randomly allotted to 1 of 5 treatments during a 42-d period. The 5 treatments differed only in Se content: group 1 had no additional Se (background only); groups 2, 3, and 4 received 0.3 mg/kg of added Se from the beginning of the trial until d 21, whereas in the second half of the study (from d 22 to 42), these groups received 0.3, 0.6, and 0.9 mg/kg of added Se, respectively; and group 5 received 0.9 mg/kg of Se for the entire experimental period. At the end of the study, the control group showed significantly lower (P < 0.01) glutathione peroxidase activity in blood plasma compared to Se-supplemented groups. Regarding Se concentration in various tissues, the groups receiving Se yeast showed higher plasma, feces, and meat Se contents than the control group (P < 0.01). Supplementation of Se improved broilers' body weight, weight gain and feed conversion ratio (P < 0.01). Dressing percentage was lower in the control group and the group with 0.3 mg/kg of added Se compared to other experimental groups (0.6 and 0.9 mg/kg of dietary Se). The proportion of less valuable carcass parts (wings and legs) was higher (P < 0.01) in the group fed the basal diet compared to groups supplemented with 0.9 mg/kg of Se. Initial and ultimate pH values differed among experimental groups (P < 0.05). Supplementation of Se improved the broiler's antioxidative resistance, growth performance, carcass quality, and chemical composition of meat.
Collapse
Affiliation(s)
- Radmila Markovic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Jelena Ciric
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Aleksandar Drljacic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Dragan Šefer
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Ivan Jovanovic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Dragoljub Jovanovic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Svetlana Milanovic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Dejana Trbovic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Republic of Serbia
| | - Stamen Radulovic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | - Milan Ž Baltic
- University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Republic of Serbia
| | | |
Collapse
|
43
|
Wang Y, Xiao X, Zhan X. Antagonistic effects of different selenium sources on growth inhibition, oxidative damage, and apoptosis induced by fluorine in broilers. Poult Sci 2018; 97:3207-3217. [DOI: 10.3382/ps/pey192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
|
44
|
Fe, Zn and Se Bioavailability in Chicken Meat Emulsions Enriched with Minerals, Hydroxytyrosol and Extra Virgin Olive Oil as Measured by Caco-2 Cell Model. Nutrients 2018; 10:nu10080969. [PMID: 30049997 PMCID: PMC6116065 DOI: 10.3390/nu10080969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
There is a high demand for functional meat products due to increasing concern about food and health. In this work, Zn and Se bioavailability was increased in chicken meat emulsions that are enriched with Hydroxytyrosol (HXT), a phenolic compound obtained from olive leaf. Six different chicken emulsions were elaborated. Three were made with broiler chicken meat supplemented with inorganic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and Extra Virgin Olive Oil (EVOO) (9.5%) added; and, three were made with chicken meat from chickens fed a diet that was supplemented with organic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and EVOO (9.5%) added. The samples were digested in vitro and the percent decomposition of phenolic compounds was measured by HPLC. Mineral availability (Fe, Zn and Se) was measured by cell culture of the Caco-2 cell line and the results were compared with mineral standards (Fe, Zn, and Se). The data obtained showed that neither HXT resistance to digestion nor Fe availability was affected by the presence of organic Zn and Se or phenolic compounds. Zn uptake increased in the presence of HXT, but not when its organic form was used, while Se uptake increased but it was not affected by the presence of HXT. It was concluded that the enrichment of meat—endogenously with organic minerals and exogenously with phenolic compounds—could be considered an interesting strategy for future research and applications in the current meat industry.
Collapse
|
45
|
Cemin H, Vieira S, Stefanello C, Kindlein L, Ferreira T, Fireman A. Broiler responses to increasing selenium supplementation using Zn-L-selenomethionine with special attention to breast myopathies. Poult Sci 2018; 97:1832-1840. [DOI: 10.3382/ps/pey001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 12/27/2022] Open
|
46
|
Xiao Z, Li S, Guo J, Rao Z, Liu C, Jia Z, Suo D, Wang S, Li Y, Fan X. Application of enzymatic probe sonication for selenium speciation in animal feeds. J Chromatogr A 2017; 1530:51-58. [PMID: 29169645 DOI: 10.1016/j.chroma.2017.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023]
Abstract
Enzymatic probe sonication (EPS) was investigated as a novel and alternative technology for the extraction of five Se species SeCys2, MeSeCys, Se (IV), SeMet and Se (VI) from animal feeds. The critical parameters of EPS such as enzyme types, ultrasonic power, sample/enzyme ratio, extraction time and temperature were carefully optimized. Under current conditions, one sample can be extracted in 60s, in contrast to several hours required by the conventional enzymatic methods Moreover, the extraction is performed in pure water, no further temperature control or pH adjustment is needed, and therefore the risk of species interconvertion is drastically reduced or inhibited. The Se species were separated and quantitatively determined by high-performance liquid chromatography-hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS), which allows the separation of organic and inorganic Se species in a single chromatographic run. The newly developed method was successfully applied to the determination of Se species in 18 feed samples collected from markets and local farms. Concerning the feed samples studied, the results of this work suggest that stricter measures should be taken to control the Se-enriched feed supplements in terms of Se species.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Li
- Shaanxi Provincial Feed Testing Institute, Xi'an 710016, China
| | - Jiangpeng Guo
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zhenghua Rao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Jia
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
47
|
Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Vet Res 2017; 13:254. [PMID: 28821244 PMCID: PMC5562980 DOI: 10.1186/s12917-017-1159-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Background Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers. Results Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite. Conclusions The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.
Collapse
Affiliation(s)
- A M Dalia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A Q Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M F Jahromi
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
48
|
Ilham I, Siddik MAB, Fotedar R. Effects of Organic Selenium Supplementation on Growth, Accumulation, Haematology and Histopathology of Juvenile Barramundi (Lates calcarifer) Fed High Soybean Meal Diets. Biol Trace Elem Res 2016; 174:436-447. [PMID: 27106539 DOI: 10.1007/s12011-016-0708-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
Abstract
Soybean meal (SBM) has been commonly utilised as a substitute for fishmeal (FM) in the diets of several fish species. However, little is known regarding their effects on trace element availability and thus their importance to fish. The present study employed two feeding trials to evaluate the implications of dietary selenium (Se) on the growth, accumulation, antioxidant, and histopathological responses of juvenile barramundi (Lates calcarifer). In the first trial, each of three basal diets containing 0, 15 and 43 % SBM as replacements for 0, 25 and 75 % of FM protein on an isoproteic and isocalorific basis were either supplemented or not supplemented with 2 mg kg-1 organic Se (OS). In the second trial, the potential effect of OS supplementation in a high SBM diet was investigated in a feeding trial with five experimental diets: 75 % SBM protein as replacement of FM was supplemented with 2, 3, 4, 5 or 7 mg OS kg-1. Growth was independently influenced by the SBM level and the OS supplementation level but not by their interaction. Glutathione peroxidase (GPx) activity, haematocrit, Se accumulation and muscle tissue integrity were significantly enhanced in fish fed on OS-supplemented diets. Furthermore, when high SBM was included in diets, elevated Se tended to lower the barramundi's performance. These findings suggest that dietary supplementation of OS at 2-3 g kg-1 diet is necessary when high plant protein ingredients are incorporated in the diet, in order to maintain better growth and to afford protection against oxidative stress.
Collapse
Affiliation(s)
- Ilham Ilham
- Department of Environment and Agriculture, Curtin University, 1 Turner Ave Technology Park, Bentley, WA, 6102, Australia.
- Department of Aquatic Resources Management & Technology, Jakarta Fisheries University, Jl. AUP Pasar Minggu, Jakarta Selatan, 12520, Indonesia.
| | - Muhammad Abu Bakar Siddik
- Department of Environment and Agriculture, Curtin University, 1 Turner Ave Technology Park, Bentley, WA, 6102, Australia
| | - Ravi Fotedar
- Department of Environment and Agriculture, Curtin University, 1 Turner Ave Technology Park, Bentley, WA, 6102, Australia
| |
Collapse
|
49
|
Chen F, Zhu L, Qiu H, Qin S. Selenium-enrichedSaccharomyces cerevisiaeimproves growth, antioxidant status and selenoprotein gene expression in Arbor Acres broilers. J Anim Physiol Anim Nutr (Berl) 2016; 101:259-266. [DOI: 10.1111/jpn.12571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
Affiliation(s)
- F. Chen
- Institute of Animal Nutritional and Metabolic Disorders; College of Animal Science and Veterinary Medicine; Qingdao Agricultural University; Qingdao China
| | - L. Zhu
- Institute of Animal Nutritional and Metabolic Disorders; College of Animal Science and Veterinary Medicine; Qingdao Agricultural University; Qingdao China
| | - H. Qiu
- College of Veterinary Medicine; Nanjing Agricultural University; Nanjing China
| | - S. Qin
- Department of Animal Science; Tianjin Agricultural University; Tianjin China
| |
Collapse
|
50
|
Effects of Dietary Nano-Selenium Supplementation on Growth Performance, Antioxidative Status, and Immunity in Broiler Chickens under Thermoneutral and High Ambient Temperature Conditions. J Poult Sci 2016; 53:274-283. [PMID: 32908394 PMCID: PMC7477162 DOI: 10.2141/jpsa.0150133] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of the present study was to examine the effects of nano-selenium on growth performance, antioxidative status, and immune function in broiler chickens reared under thermoneutral (22±1°C) or high ambient temperature (35±1°C) conditions. Thirty-six broiler chicks at 15d old were randomly divided into 6 treatments in a 3×2 factorial design. The main factors included the dietary supplementation (basal diet without Se supplementation [control], basal diet with 0.3 mg of nano-elemental Se per kilogram of diet [nano-Se], and basal diet with 0.3 mg of sodium selenite per kilogram of diet [SSe]) and the ambient temperature challenge (22±1°C or 35±1°C). The birds were given the experimental diets from 15 to 30 d of age. High ambient temperature significantly depressed body weight gain, feed intake, feed conversion ratio, breast muscle weight, and abdominal fat weight, while feeding nano-Se clearly alleviated these negative effects of high ambient temperature. In addition, feeding nano-Se increased glutathione peroxidase mRNA expression in liver and alleviated the negative effects of high ambient temperature via reducing the malondialdehyde content in liver and breast muscle. Furthermore, feeding nano-Se increased mRNA expression of cytokine genes (interleukins 2 and 6) under both thermoneutral and high ambient temperature conditions. Under both thermoneutral and high-temperature conditions, broiler chickens fed nano-Se had higher Se and vitamin E concentrations in breast muscle than broiler chickens fed the control diet. In contrast, feeding SSe at the same dose as nano-Se did not alleviate the negative effects of high ambient temperature on broiler chickens. In conclusion, dietary supplementation with nano-Se at 0.3 mg/kg diet might enhance growth performance by improving antioxidative or immune properties in broilers reared under high ambient temperature.
Collapse
|