1
|
Prajapati MK, Mittal A, Panda P. Phytoflavonoids as alternative therapeutic effect for melanoma: Integrative Network pharmacology, molecular dynamics and drug-likeness profiling for lead discovery. Comput Biol Chem 2025; 117:108390. [PMID: 40056707 DOI: 10.1016/j.compbiolchem.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Melanoma, an aggressive skin cancer, poses significant therapeutic challenges due to its resistance to conventional therapies and high metastatic potential. From this perspective, phytoflavonoids from different medicinal and aromatic plants gained attention due to their diverse multimodal anticancer effects with higher antioxidant and anti-inflammatory properties. This study explores phytoflavonoid potency against melanoma via a computer-aided drug design (CADD) platform. Using the core moiety of flavonoids (flavan), four most putative targets, such as cyclin-dependent kinases 1 and 5 (CDK1, CDK5), cell division cycles 25B and 225 C (CDC25B, and CDC225C), have been identified through a network pharmacology approach using TNMplot datasets (GenChip and RNA sequence). Further, 44 phytoflavonoids were selected from extensive literature, and molecular docking studies were carried out against four targets along with standard drugs using AutoDock 4.2 software. Subsequently, physicochemical, toxicity, pharmacokinetics, and drug-ability profiles of phytoflavonoids were predicted. Based on potency and drug-ability, we have selected 'CDK1-naringenin' with the standard drug complex, 'CDK1-dinaciclib,' for molecular dynamic simulation at 100 nanoseconds using GROMACS 2020 software. Based on potency (average docking score: 8.35 kcal/mol.), physicochemical properties (obeyed Lipinski rule of five), toxicity (class-IV), fifty percent lethal dose (2000 mg/kg), bioavailability (0.55), drug-likeness score (0.82), along with ideal pharmacokinetics profiles and higher protein-ligand stability, naringenin is considered as a potential and non-toxic anticancer candidate to be used for melanoma as alternative or complementary agent. The integrative and systematic analyses not only highlight the potential of phytoflavonoids but also select the potential lead from the library within limited resources to accelerate the current anticancer drug discovery process.
Collapse
Affiliation(s)
- Manoj Kumar Prajapati
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India; Kashi Institute of Pharmacy, Mirzamurad, Varanasi, Uttar Pradesh 221307, India.
| | - Abhilasha Mittal
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India
| | - Pritipadma Panda
- School of Pharmacy, Kalinga Institute of Industrial Technology Deemed to be University, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
2
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
3
|
Wang X, Xu T, Ou A, Hu Z, Li M, Wu L, Jiang J, Wang L. Design, synthesis and in vitro and in vivo biological evaluation of matrine derivatives as efficient anticancer agents with the characteristics of endoplasmic reticulum stress induction and apoptosis activation. Bioorg Chem 2025; 160:108482. [PMID: 40273706 DOI: 10.1016/j.bioorg.2025.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Natural products have made significant contributions to the prevention and treatment of malignant tumors. However, natural products often suffer from low efficacy and potential toxicity. Therefore, modifying and optimizing lead compounds derived from natural products is a crucial strategy in drug development. In this study, we used matrine as an ideal lead compound and synthesized 27 matrine derivatives by incorporating indole structures with known antitumor activity. The antiproliferative effects of these derivatives were evaluated against human cancer cell lines (A549, HeLa, and Huh-7) and normal human liver cells (LO2). Compared to matrine, most of the derivatives exhibited superior antiproliferative activity. Notably, compound 9q showed significant antiproliferative activity against HeLa cells, with an IC50 value of 4.48 μM, demonstrating approximately 1500-fold greater potency than matrine (IC50 = 6756 μM). Further mechanistic studies revealed that compound 9q inhibited HeLa cell proliferation by modulating the expression of PI3K/AKT and Activating transcription factor 4 (ATF4) proteins. The upregulation of ATF4 promoted the expression of the key endoplasmic reticulum stress (ER stress) protein C/EBP homologous protein (CHOP). In the HeLa xenograft mouse model, compound 9q demonstrated significant anticancer efficacy. Therefore, compound 9q holds promise as a potential lead compound for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Xingdong Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tingguo Xu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Anqi Ou
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Zhouxing Hu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Manqi Li
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Lichuan Wu
- School of Medicine, Guangxi University, Nanning 530004, China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Wu J, Wang X, Zou J, Qiu R, Mao Z, Liu Z. Screening Anti-Parkinson's Disease Drugs in Living Mouse Brains via a Peroxynitrite-Activated Fluorescent Probe. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:301-309. [PMID: 40443559 PMCID: PMC12117393 DOI: 10.1021/cbmi.4c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 06/02/2025]
Abstract
Screening anti-Parkinson's disease (PD) drugs at in vivo brain level is imperative for managing PD yet currently remains unaccomplished. Peroxynitrite (ONOO-) has been implicated in PD progression. Thus, developing in vivo ONOO--based imaging tools for anti-PD drug screening holds promise for early prognosis and treatment of PD. Consequently, a near-infrared (NIR) fluorescence probe, BOB-Cl-PN, with high specificity, good sensitivity (LOD = 24 nM), and rapid response (<60 s), was devised to investigate ONOO- and PD relationships. Utilizing NIR fluorescence imaging, BOB-Cl-PN effectively monitored ONOO- fluctuations in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD cell models, establishing a cellular high throughput screening (cHTS) system for anti-PD drugs. In live animal imaging, BOB-Cl-PN's ability to penetrate the blood-brain barrier enabled ONOO- flux imaging of PD mouse brains. Moreover, BOB-Cl-PN served as an imaging contrast for in vivo screening of potential traditional Chinese medicines for PD therapy, identifying fisetin as having the best therapeutic index among 10 Chinese medicines. This study constructs a sensitive, efficient imaging contrast for monitoring ONOO- dynamics in PD brains and provides a valuable platform for cellular and in vivo screening of anti-PD drugs.
Collapse
Affiliation(s)
- Jiao Wu
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Xiaoyu Wang
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Jingwen Zou
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Renli Qiu
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Zhiqiang Mao
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| | - Zhihong Liu
- Hubei Province Key Laboratory
of Biotechnology of Chinese Traditional Medicine, College of Health
Science and Engineering, Hubei University, Wuhan430062, China
| |
Collapse
|
5
|
Ni CX, Xu JJ, Pang Y, Xu JJ. Treatment strategies targeting the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin pathway against triple-negative breast cancer. World J Clin Oncol 2025; 16:104623. [DOI: 10.5306/wjco.v16.i5.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 05/19/2025] Open
Abstract
Triple negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer with a poor prognosis. TNBC patients have limited treatment options beyond conventional chemotherapy, and they face significant challenges associated with disease recurrence and resistance to chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway plays a pivotal role in cell proliferation, growth, metabolism, and survival. Its aberrant activation is closely linked to the development and progression of TNBC, as well as treatment response and drug resistance. Currently, numerous targeted drugs specifically inhibiting this signaling pathway are being developed and undergoing clinical trials. These include inhibitors targeting PI3K, AKT, or mTOR individually, as well as dual-target or multi-target inhibitors simultaneously targeting different components of this pathway. Encouragingly, some inhibitors have demonstrated promising potential in clinical trials. This review delves into the therapeutic potential of the PI3K/AKT/mTOR signaling pathway for TNBC and explores prospects for drug discovery.
Collapse
Affiliation(s)
- Chun-Xiao Ni
- Department of Minimally Invasive Oncology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| | - Jia-Ju Xu
- Department of Pediatrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong Province, China
| | - Yu Pang
- Department of Pathology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| | - Jia-Ju Xu
- Department of Medical Oncology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| |
Collapse
|
6
|
Wang H, Chao L, Shen S, You P, Li L, Chen X, Hong Z, Chai Y. Exploring the pharmacological mechanism of Bu-Wang San on Alzheimer's disease through multiple GEO datasets of the human hippocampus, network pharmacology, and metabolomics based on GC-MS and UPLC-Q/TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:119994. [PMID: 40389089 DOI: 10.1016/j.jep.2025.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Wang San (BWS) is a prominent traditional Chinese medicine known for calming the mind and promoting intelligence. It has been reported to improve learning and memory, enhance memory ability, and promote synaptic plasticity. However, the complexity of the material basis and the diversity of therapeutic targets of BWS on Alzheimer's disease (AD) have not been elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic material basis and the mechanism of BWS in AD treatment by comprehensively analyzing multiple GEO datasets of the human hippocampus, network pharmacology, and multi-platform metabolomics validation. MATERIALS AND METHODS Three GEO datasets of the human hippocampus were utilized to identify AD-associated targets using weighted gene co-expression network analysis (WGCNA) and differential analysis. Network pharmacology analyses were performed to investigate BWS's therapeutic material basis and predict the therapeutic targets of BWS on AD. A rat model was induced through the concurrent administration of AlCl3 and D-galactose to validate BWS's therapeutic potential and underlying mechanisms in AD. To validate the results of GEO data mining and network pharmacology, a comprehensive metabolomics approach integrating gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was conducted on rat serum samples to uncover potential metabolic alterations and their associated pathways. RESULTS A total of 6367 genes were selected as AD drug targets through WGCNA analysis and enrichment analysis of disease-associated gene expression profiles in the GEO database. Network pharmacology was performed in this study for the identification of potential interactions between the components of BWS and its targets, TP53, STAT3, EGFR, MAOA, NOS3, PPARG, PRKCA, MAPK8, AChE, ARG1, among others, which were among the top 25 highest probable targets of BWS acting on AD. The multi-platform metabolomics indicated that amino sugar and nucleotide sugar metabolism, glycine, serine and threonine metabolism pathways, and other pathways may be associated with the AD model based on AlCl3 and D-galactose. The comparison of differential metabolites between the AD model group and the BWS intervention group revealed that 66 of the 97 differential metabolites exhibited a pullback trend, indicating a potential therapeutic effect of BWS on these metabolites. CONCLUSION This study builds a systematic strategy combining GEO datasets, network pharmacology, and multi-platform metabolomics and provides valuable insights into the pharmacological mechanism of BWS on AD. The results suggest that BWS may exert its therapeutic effects on AD by modulating the amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, glycine, serine and threonine metabolism pathway and acting on the drug targets of ARG1, MAOA, AChE, XDH, GAD2 et al. This strategy provides a deep understanding of the molecular mechanisms of herbal medicine in treating AD at a systematic level.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Piaoxue You
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Ling Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
7
|
Wang XC, Song L, Wang XH. Efficacy of dietary polyphenol supplement in patients with non-alcoholic fatty liver disease: a network meta-analysis. Front Nutr 2025; 12:1582861. [PMID: 40416369 PMCID: PMC12100629 DOI: 10.3389/fnut.2025.1582861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has become a public health issue worldwide. Dietary polyphenols are naturally occurring plant active ingredients and are widely employed in the treatment of NAFLD. However, the therapeutic effect is still controversial. In this study, a network meta-analysis (NMA) was performed to appraise the effects of various polyphenols on metabolic indices of NAFLD. Methods PubMed, Embase, the Cochrane Library, and Web of Science were retrieved for English studies on dietary polyphenols in the treatment of NAFLD. Outcome measures were extracted from the included studies and compared using a Bayesian NMA model, encompassing body mass index (BMI), alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and necrosis factor alpha (TNF-α). Results In total, 54 randomized controlled trials (RCTs) were included in this study, including 3,132 participants. It involved 13 single (or combined) dietary polyphenols. Naringenin could reduce serum TC (surface under the cumulative ranking curve: 94.59%) and TG (99.00%) in NAFLD patients. Catechin could decrease BMI (77.74%) and serum ALT (94.21%), AST (93.56%), TC (92.26%), and increase HDL-C (93.72%). Dihydromyricetin (DHM) was effective in reducing serum LDL-C (73.22%), and quercetin decreased serum TNF-α (99.47%). Conclusion Catechin may be the most appropriate dietary polyphenol supplement for NAFLD. Future studies should incorporate more RCTs to further validate the efficacy of dietary polyphenols (like DHM and quercetin), which are limited in sample sizes, in treating NAFLD. On the other hand, it is essential to investigate improvements in the bioavailability of these dietary polyphenols and to clarify their safety profiles.
Collapse
Affiliation(s)
- Xiao-cui Wang
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Li Song
- Department of Nephrology, Affiliated Hospital of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xin-han Wang
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Araque I, Vergara R, Mella J, Aránguiz P, Espinoza-Catalán L, Salas CO, Barrero AF, Quílez del Moral J, Villena J, Cuellar MA. New Dimethoxyaryl-Sesquiterpene Derivatives with Cytotoxic Activity Against MCF-7 Breast Cancer Cells: From Synthesis to Topoisomerase I/II Inhibition and Cell Death Mechanism Studies. Int J Mol Sci 2025; 26:4539. [PMID: 40429684 PMCID: PMC12111648 DOI: 10.3390/ijms26104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Breast cancer is a prevalent type of cancer worldwide, leading to both high incidence and mortality, and hence, effective and safe drugs are needed. Because of this, the use of natural products and their derivatives has become a popular strategy for developing new chemotherapeutic agents. In this study, 17 new sesquiterpene-aryl derivatives were synthesized using (-)-drimenol as the starting material. The cytotoxicity of these semi-synthetic derivatives was determined in MCF-7 cells, a breast cancer model, and in a non-tumor cell line, MCF-10, to evaluate selectivity. The results show that five of these sesquiterpene derivatives had IC50 values between 9.0 and 25 µM. Of these, compound 14c stands out for its higher cytotoxicity in MCF-7 cells but lower cytotoxicity in MCF-10 cells, being more selective than daunorubicin (selective index values of 44 and 28, respectively). In addition, compound 14c induced oxidative stress in MCF-7 cells, activated caspases-3/7, and selectively inhibited topoisomerase II (TOP2) versus topoisomerase I (TOP1) in MCF-7 cells. In silico studies allowed us to propose a binding mode for 14c to the TOP2 DNA complex to validate the experimental results. Therefore, this study demonstrated the importance of aryl-sesquiterpene structures and their promising profiles in the search for new bioinspired antitumor drugs in natural products.
Collapse
Affiliation(s)
- Ileana Araque
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2340000, Chile;
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Rut Vergara
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile;
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos (CINBIO), Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Pablo Aránguiz
- Escuela de Ciencias de la Salud, Carrera de Química y Farmacia, Universidad Viña del Mar, Viña del Mar 2520000, Chile;
| | - Luis Espinoza-Catalán
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Alejandro F. Barrero
- Departamento de Química Orgánica, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.F.B.); (J.Q.d.M.)
| | - José Quílez del Moral
- Departamento de Química Orgánica, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.F.B.); (J.Q.d.M.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile;
| | - Mauricio A. Cuellar
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2340000, Chile;
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos (CINBIO), Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
9
|
Geng Q, Zhao P, Cao Z, Wu Z, Shi C, Zhang L, Yan L, Zhang X, Lu P, Shi J, Lu C. Unleashing the potential of traditional Chinese medicine: a computational approach to discovering drug targets utilizing the CSLN and molecular dynamics. Mol Divers 2025:10.1007/s11030-025-11177-8. [PMID: 40317435 DOI: 10.1007/s11030-025-11177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
The diverse chemical components of traditional Chinese medicine (TCM) exhibit significant therapeutic potential; however, the action mechanisms of these compounds often remain unclear. The use of drug-target prediction can aid in identifying the specific targets of TCM, thereby revealing their bioactivity and mechanisms. The efficiency, cost-effectiveness, and powerful predictive capabilities of artificial intelligence algorithms have led to their emergence as effective tools for accelerating drug-target interaction analysis. To systematically investigate TCM interaction mechanisms, we integrated cosine‑correlation and similarity‑comparison of local network (CSLN) and molecular dynamics (MD) simulations. The CSLN algorithm predicts that 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1) serves as a common target for the synergistic effects of triptolide (TP) and glycyrrhizic acid (GA). MD simulations indicate that both TP and GA can maintain stable interactions with HSD11B1 and form a common binding hot region. Surface plasmon resonance (SPR) experiments reveal that both TP and GA can effectively bind to HSD11B1, with binding constants of 29.21 μM and 31.75 μM, respectively. When used in combination, the binding constant is 5.74 μM. The combination of CSLN and MD simulations represents an effective tool for the initial analysis and simulation of interaction patterns between TCM and their targets at the computational level. These findings enhance our understanding of the interaction mechanisms between drugs.
Collapse
Affiliation(s)
- Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Pengcheng Zhao
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, Jiangxi, China
| | - Zhenyi Wu
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jianyu Shi
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
10
|
Zhang W, Wu P, Song Y, Liang D, Meng G, Zeng H. Immunomodulatory mechanism of Huangqi-Guizhi-Wuwu Decoction in alleviating autoimmune arthritis based on network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156644. [PMID: 40339552 DOI: 10.1016/j.phymed.2025.156644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 03/11/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common type of childhood autoimmune arthritis. Huangqi Guizhi Wuwu decoction (HGWD), a traditional Chinese herbal formula, is widely used in China to treat patients with autoimmune arthritis. However, the bioactive ingredients and their complex regulatory mechanisms remain unclear. PURPOSE To investigate the active components of HGWD using a novel comprehensive strategy and clarify the mechanism underlying immunomodulation. METHODS The main active components of HGWD were determined using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UPLCHRMS). The core target and biological immune regulation mechanism of HGWD in alleviating JIA were predicted using combined network pharmacology and molecular docking analyses, followed by in vitro and in vivo experiments. RESULTS A total of 1387 active components were identified by UPLC-MS, of which eight were the main active ingredients. Network pharmacology showed that HGWD acted on core targets, such as STAT3. Further combined analysis revealed that regulation of the Th17 differentiation pathway may be an important mechanism by which HGWD relieves JIA. Molecular docking verification showed that the key component of HGWD can stably bind JAK/STAT-related proteins. The induced differentiation of Th17 and Treg in vitro experiment confirmed the immunoregulatory effects of HGWD. in vivo experiments, HGWD significantly alleviated symptoms of arthritis in a mouse model of collagen-induced arthritis (CIA) and was closely associated with restoring the Th17/Treg balance. CONCLUSION Taken together, serum components/UPLC-MS, network pharmacology, and molecular biology analyses are feasible strategies for exploring the active ingredients in HGWD. This study highlights the clinical potential of HGWD in alleviating JIA and provides evidence of its therapeutic potential through immune regulation.
Collapse
Affiliation(s)
- Wenbo Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; The Joint Center for Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Wu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yue Song
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangxun Meng
- The Joint Center for Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Huasong Zeng
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
11
|
Wang R, Ji C, Chen J, Zhang X, Hu Q, Liu C. Research advances in the treatment of arthritis from natural products (2014-present). Chin J Nat Med 2025; 23:529-540. [PMID: 40383610 DOI: 10.1016/s1875-5364(25)60862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 05/20/2025]
Abstract
Arthritis, encompassing osteoarthritis (OA), rheumatoid arthritis (RA), and gouty arthritis (GA), is a prevalent inflammatory disease that significantly impacts quality of life. Natural products (NPs), derived from animals, plants, marine organisms, and microorganisms, have demonstrated beneficial effects in arthritis treatment both domestically and internationally. These natural compounds offer advantages in drug discovery due to their skeletal diversity, structural complexity, and multi-effect, multi-target, and low-toxicity properties compared to conventional small-molecule medicines. However, unclear mechanisms have hindered the development and clinical application of NPs. This review summarizes recent experimental studies from the past decade on natural medicine for arthritis treatment, emphasizing key NPs with therapeutic effects on OA, RA, and GA. It examines the effects and molecular mechanisms of NPs acting on different cells to treat arthritis. Furthermore, this review provides insights into the future prospects of NP research in this field, which is crucial for advancing NP-based arthritis treatments.
Collapse
Affiliation(s)
- Ruilin Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Cen Ji
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayao Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chunxiao Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Li Y, Liu X, Zhou J, Li F, Wang Y, Liu Q. Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling. Front Pharmacol 2025; 16:1541509. [PMID: 40303920 PMCID: PMC12037568 DOI: 10.3389/fphar.2025.1541509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Traditional Chinese Medicine (TCM) utilizes multi-metabolite and multi-target interventions to address complex diseases, providing advantages over single-target therapies. However, the active metabolites, therapeutic targets, and especially the combination mechanisms remain unclear. The integration of advanced data analysis and nonlinear modeling capabilities of artificial intelligence (AI) is driving the transformation of TCM into precision medicine. This review concentrates on the application of AI in TCM target prediction, including multi-omics techniques, TCM-specialized databases, machine learning (ML), deep learning (DL), and cross-modal fusion strategies. It also critically analyzes persistent challenges such as data heterogeneity, limited model interpretability, causal confounding, and insufficient robustness validation in practical applications. To enhance the reliability and scalability of AI in TCM target prediction, future research should prioritize continuous optimization of the AI algorithms using zero-shot learning, end-to-end architectures, and self-supervised contrastive learning.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Teleb EK, Mehanna RA, Assem NM, Houssen ME. Antitumor effects of dauricine on sorafenib-treated human lung cancer cell lines via modulation of HIF-1α signaling pathways. Med Oncol 2025; 42:157. [PMID: 40205002 DOI: 10.1007/s12032-025-02679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
The majority of lung cancer cases are non-small cell lung cancer (NSCLC) which continues to be a serious global health concern. Hypoxia-inducible factor (HIF-α) pathway is a promising therapeutic target because it has a vital function in advanced non-small cell lung carcinoma. Antiangiogenic multi-kinase inhibitor, sorafenib may have a part in regulating HIF signaling in cancer. As a result, there is now more interest in employing it to target hypoxia-driven pathways in non-small cell lung cancer, especially when paired with natural bioactive products such as dauricine which is a naturally occurring alkaloid molecule targets multiple cellular pathways to provide strong anticancer effects. To examine molecular impacts of combining dauricine with sorafenib on HIF-mediated signaling pathways in human lung cancer cell lines. Cell viability was assessed using MTT assay in A549 and H1975 lung tumor cell lines. Levels of key proteins (AKT, mTORC1, HIF-1 α, ERK, VEGF, Cyclin-D1, BCL2, and E-Cadherin) were measured by ELISA.A colorimetric test was utilized to assess the activity of caspase-3, as a marker of apoptosis. qRT-PCR was employed to identify PI3K and VEGFR2 genes expression. Combination of sorafenib and dauricine significantly enhanced cytotoxicity compared to either agent alone. This combination also led to a marked reduction in VEGFR2, PI3K expression and VEGF, AKT, mTOR, HIF-1α, BCL2, ERK and E-Cadherin, and Cyclin-D1 levels. In addition, there was a significant increase in caspase-3 activity. Dauricine potentiates antitumor effects of sorafenib in human NSCLC by modulating HIF-1α-mediated pathways that are involved in several cancer hallmarks. This combination shows promise as a potential lung cancer treatment approach.
Collapse
Affiliation(s)
- Eman K Teleb
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22511, Egypt
| | - Radwa A Mehanna
- Medical Physiology, Faculty of Medicine, Alexanderia University, Alexanderia, Egypt
- Center of Excellence for Research in Regenerative Medicine and Its Applications, Faculty of Medicine, Alexandria University, Alexanderia, 22511, Egypt
| | - Nagwa M Assem
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexanderia, 22511, Egypt
| | - Maha E Houssen
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
14
|
Zhu J, Liu X, Gao P. Digital intelligence technology: new quality productivity for precision traditional Chinese medicine. Front Pharmacol 2025; 16:1526187. [PMID: 40264673 PMCID: PMC12012302 DOI: 10.3389/fphar.2025.1526187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Traditional Chinese medicine is a complex medical system characterized by multiple metabolites, targets, and pathways, known for its low drug resistance and significant efficacy. However, challenges persist within Traditional Chinese medicine, including difficulties in assessing the quality of Botanical drugs, reliance on experiential knowledge for disease diagnosis and treatment, and a lack of clarity regarding the pharmacological mechanisms of Traditional Chinese medicine. The advancement of digital intelligence technology is driving a shift towards precision medicine within the Traditional Chinese medicine model. This transition propels Traditional Chinese medicine into an era of precision, intelligence, and digitalization. This paper introduces standard digital intelligence technologies and explores the application of digital intelligence technologies in quality control and evaluation of Traditional Chinese medicine, studies the research status of digital intelligence technologies in assisting diagnosis, treatment and prevention of diseases, and further promotes the application and development of digital intelligence technologies in the field of Traditional Chinese medicine.
Collapse
Affiliation(s)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Zhao J, Li J, Xue H, Ma Q. Analysis of Major Chemical Constituents in Jiuwei Decoction Based On Capillary Electrophoresis Coupled With Quadrupole Time-of-Flight Mass Spectrometry. Electrophoresis 2025; 46:322-330. [PMID: 39717909 DOI: 10.1002/elps.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
An analytical method for identifying the chemical constituents in the Chinese herbal combination Jiuwei decoction was established using capillary electrophoresis coupled with quadrupole time-of-flight mass spectrometry. Nine herbs were extracted with a 60:40 (v/v) ethanol/water solution to prepare the Jiuwei decoction. Electrophoretic separation was carried out using a 50 µm i.d., 125 cm bare fused silica capillary at a constant temperature of 25°C for sample injection. The chemical composition was analyzed and identified in both positive and negative ion modes. In the positive separation mode, a separation voltage of 30 kV was applied, with a 1% aqueous formic acid solution serving as the background electrolyte (BGE), along with a 50:50 (v/v) methanol/water solution containing 0.1% formic acid as the sheath liquid. In the negative separation mode, a separation voltage of -30 kV was employed, utilizing a 50 mM ammonium acetate solution (pH 9.0) as the BGE, combined with a 50:50 (v/v) methanol/water solution containing 5 mM ammonium acetate as the sheath liquid. The MassHunter Qualitative Analysis software (version 10.0) was utilized to identify 52 compounds based on accurate mass, isotope abundance, isotopic patterns, and fragmentation information. The data were compared with the Agilent Personal Compound Database and Library of traditional Chinese medicine (TCM), as well as multiple online databases (TCMSP, ChemSpider, PubChem, PubMed, and Web of Science) and relevant literature. The fragmentation pathways of representative compounds were also characterized. This study identified the chemical composition of Jiuwei decoction, providing a molecular basis for further exploration of its pharmacological effects and presenting a robust methodology for the compositional analysis of complex TCM mixtures.
Collapse
Affiliation(s)
- Jiayu Zhao
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Jinhong Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Hongyu Xue
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
16
|
Xu D, Lv X, Yu M, Tan A, Wang J, Tang X, Li M, Wu W, Zhu Y, Zhou J, Ma H. Discovery of toad-derived peptide analogue targeting ARF6 to induce immunogenic cell death for immunotherapy of hepatocellular carcinoma. J Pharm Anal 2025; 15:101038. [PMID: 40123649 PMCID: PMC11930426 DOI: 10.1016/j.jpha.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 03/25/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Dihui Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China
| | - Meng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ao Tan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaojiao Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyi Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyuan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuyu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China
| |
Collapse
|
17
|
Gu Z, Deng M, Luo Q, Lin S, Yu J, Li C, Wang X, Chen L, Liu T, Li Y, He B. Harnessing HDAC-targeted oleanolic acid derivatives for combined anti-cancer and hepatoprotective effects. Int J Biol Macromol 2025; 297:139761. [PMID: 39800013 DOI: 10.1016/j.ijbiomac.2025.139761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The development of anti-tumor drugs with hepatoprotective properties has always been highly valued due to their dual capabilities of safeguarding the liver and combating tumors. Moreover, when used in conjunction with specific chemotherapy drugs, they can enhance the efficacy of cancer treatment while simultaneously reducing liver damage caused by chemotherapeutic agents. Our research focused on oleanolic acid (OA), a natural compound known for its liver-protective effects. By incorporating an HDAC-targeting pharmacophore at the 28-COOH site of OA, we aimed to identify compounds that offer dual benefits of liver protection and anti-tumor activity. Compound 2c demonstrated significant inhibitory effects on the growth of RS4;11, K562, and RPMI8226 cells, showed cytotoxicity against HepG2 liver cancer cells, and exhibited favorable selectivity towards normal liver cells. Moreover, compound 2c induced apoptosis in HepG2 cells and arrested cell cycle progression at the G2 phase. Further investigations revealed that compound 2c could alleviate cisplatin-induced liver cell damage and animal liver injury by activating the NRF2/HO-1 pathway. In a HepG2 xenograft model, intravenous administration of compound 2c effectively suppressed tumor growth without eliciting adverse reactions, while enhanced NRF2 and HO-1 expression was observed in the liver tissues of mice treated with compound 2c. Besides, co-administration of cisplatin with compound 2c could significantly enhance the anti-tumor efficacy of cisplatin but minimize liver injury caused by the treatment of cisplatin. Our study provides a lead compound possessing hepatoprotective and antitumor activity, offering a novel strategy to avoid pharmacological liver injury.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingzhenglong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qinggen Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Cunjiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xingyu Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
18
|
Bayoude A, Zhang J, Shen Y, Tilyek A, Chai C. Ribes diacanthum Pall modulates bile acid homeostasis and oxidative stress in cholestatic mice by activating the SIRT1/FXR and Keap1/Nrf2 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119400. [PMID: 39864603 DOI: 10.1016/j.jep.2025.119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver injury (CLI) is a pathophysiological syndrome characterized by the accumulation of bile acids (BAs), which leads to significant hepatic dysfunction. This condition is frequently associated with disturbances in BAs homeostasis and the induction of oxidative stress. Ribes diacanthum Pall (RDP), a conventional folk medicinal plant, has been employed in Mongolia, the Inner Mongolia region of China, and other areas for the remediation of hepatic disorders. However, the specific mechanism and chemical composition by which RDP exerts its effects remain unknown. AIM OF THE STUDY The aim of this research was to assess the protective impact of RDP on CLI and probe into the underlying mechanism and pinpoint the active constituents of RDP. MATERIALS AND METHODS For this study, a CLI mouse model induced via bile duct ligation (BDL) was used to investigate the hepatoprotective effect of RDP. Mice were administered low, medium, or high doses of RDP for 6 consecutive days, beginning 3 days prior to BDL induction. Subsequently, serum biochemical parameters, hepatic histopathology, and cholestatic markers were analyzed. An HPLC-QTOF-MS/MS analysis was also conducted to identify the prototype constituents in RDP. Furthermore, component-directed network pharmacology was utilized to identify the active constituents, central targets, and signaling cascades of RDP. Eventually, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were adopted to confirm the associated antioxidant enzymes, BAs transporters, and metabolic enzymes. Molecular docking was applied to forecast the binding affinity between the components and core targets. RESULTS RDP effectively ameliorated the pathological liver damage and cholestasis in BDL-induced CLI mice. Moreover, 43 components within RDP were identified through HPLC-QTOF-MS/MS analysis. Altogether 106 potential targets were detected, and the high-affinity targets, namely Keap1 and SIRT1, were located through the PPI network. The results of GO and KEGG analysis indicated that the reaction to oxidative stress and BAs homeostasis are significantly associated with the RDP treatment of CLI. In the in vivo experimental study, the findings revealed that RDP alleviated the BDL-induced oxidative damage. Simultaneously, RDP augmented the expressions of BAs efflux transporters and the metabolic enzymes in liver tissues, thus promoting BAs excretion and metabolism in cholestatic rodents. Mechanically, RDP attenuated hepatic oxidative stress and the accumulation of BAs, protecting the liver from BDL-induced cholestasis via the Keap1/Nrf2 and SIRT1/FXR signaling axis. The molecular docking result indicated that bolusanthol C and 3,6,3',4'-tetrahydroxyflavone possess a superior binding affinity to the two core targets (Keap1, SIRT1). CONCLUSION These results suggest that RDP ameliorate CLI by regulating BAs homeostasis and alleviating oxidative stress through the SIRT1/FXR and Keap1/Nrf2 signaling pathways, presenting a novel therapeutic strategy for cholestasis. Additionally, bolusanthol C and 3,6,3',4'-tetrahydroxyflavone may function as key pharmacological agents in RDP, responsible for its protective effects against CLI.
Collapse
Affiliation(s)
- Alamusi Bayoude
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanjiang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Akhtolkhyn Tilyek
- Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar, 18130, Mongolia
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
19
|
Wang Y, Wei W, Zhang Y, Miao J, Bao X, Lu C. MLKL as an emerging machinery for modulating organelle dynamics: regulatory mechanisms, pathophysiological significance, and targeted therapeutics. Front Pharmacol 2025; 16:1512968. [PMID: 40070567 PMCID: PMC11893596 DOI: 10.3389/fphar.2025.1512968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) is a pseudokinase featured by a protein kinase-like domain without catalytic activity. MLKL was originally discovered to be phosphorylated by receptor-interacting protein kinase 1/3, typically increase plasma membrane permeabilization, and disrupt the membrane integrity, ultimately executing necroptosis. Recent evidence uncovers the association of MLKL with diverse cellular organelles, including the mitochondrion, lysosome, endosome, endoplasmic reticulum, and nucleus. Thus, this review mainly focuses on the regulatory functions, mechanisms, and targets of MLKL in organelles rather than necroptosis and summarize the medical significance in multiple diseases. On this basis, we conclude and analyze the current progress and prospect for the development of MLKL-related drugs, from natural products, small-molecule chemical compounds, to proteolysis-targeting chimera. This review is aimed to propel the development of MLKL as a valid drug target and the discovery of novel MLKL-related drugs, and promote their further applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
21
|
Li S, Xiao W. General expert consensus on the application of network pharmacology in the research and development of new traditional Chinese medicine drugs. Chin J Nat Med 2025; 23:129-142. [PMID: 39986690 DOI: 10.1016/s1875-5364(25)60802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 02/24/2025]
Abstract
The research and development of new traditional Chinese medicine (TCM) drugs have progressively established a novel system founded on the integration of TCM theory, human experience, and clinical trials (termed the "Three Combinations"). However, considering TCM's distinctive features of "syndrome differentiation and treatment" and "multicomponent formulations and complex mechanisms", current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system. Moreover, significant obstacles persist in gathering human experience data, evaluating clinical efficacy, and controlling the quality of active ingredients, which impede the innovation process in TCM drug development. Network pharmacology, centered on the "network targets" theory, transcends the limitations of the conventional "single target" reductionist research model. It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions. This approach aligns with the holistic perspective of TCM, offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs. It is internationally recognized as a "next-generation drug research model". To advance the research of new tools, methods, and standards for TCM evaluation and to overcome fundamental, critical, and cutting-edge technical challenges in TCM regulation, this consensus aims to explore the characteristics, progress, challenges, applicable pathways, and specific applications of network pharmacology as a new theory, method, and tool in TCM drug development. The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products.
Collapse
Affiliation(s)
- Shao Li
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing 100084, China.
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222047, China.
| |
Collapse
|
22
|
Xu Z, Yang J, Hu Y, Wan Q, Wang X, Lu C, Liu Y. Qifu yixin prescription ameliorates cardiac fibrosis by activating soluble guanylate cyclase (sGC) in heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119229. [PMID: 39653101 DOI: 10.1016/j.jep.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear. AIM OF THE STUDY To evaluate the efficacy of QYP in treating HF and the underlying mechanisms. MATERIALS AND METHODS The heart failure (HF) model in mice was established using transverse aortic constriction (TAC), while neonatal rat cardiac fibroblasts (CFs) were utilized for in vitro experiments. The bioactive compounds in QYP were identified through high-performance liquid chromatography (HPLC). Cardiac hypertrophy, function, and fibrosis were assessed using morphological observations, echocardiography, and histomorphometric analyses. To investigate the underlying mechanisms by which QYP alleviates HF, transcriptomic analysis was conducted, and network pharmacology was employed to explore its potential mechanisms of action. Mechanistically, the expression levels of sGC, PKG, ERK, and p-ERK were analyzed using western blotting, immunohistochemistry, and immunofluorescence. Molecular docking was conducted to assess the binding affinity of the compounds of QYP to sGC. Additionally, the effects of QYP on CFs were investigated through cell-based assays. RESULTS We identified 33 bioactive compounds in QYP. Histomorphometric and transcriptomic analyses indicated that QYP alleviates cardiac fibrosis in HF. Network pharmacological analysis suggested that the sGC/cGMP/PKG and MAPK pathways are key mechanisms underlying the effects of QYP on cardiac fibrosis. The findings confirmed that QYP activates sGC, leading to the inhibition of ERK phosphorylation. Molecular docking revealed that the compounds of QYP exhibit strong binding affinity to sGC. Additionally, cell-based experiments demonstrated that QYP effectively suppresses CFs activation by stimulating sGC. CONCLUSIONS These results indicate QYP improves cardiac fibrosis in HF by activating sGC to inhibit ERK phosphorylation. We propose that QYP is a potential treatment for HF with anti-fibrotic properties.
Collapse
Affiliation(s)
- Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China.
| |
Collapse
|
23
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
24
|
Videtta G, Sasia C, Galeotti N. High Rosmarinic Acid Content Melissa officinalis L. Phytocomplex Modulates Microglia Neuroinflammation Induced by High Glucose. Antioxidants (Basel) 2025; 14:161. [PMID: 40002348 PMCID: PMC11851730 DOI: 10.3390/antiox14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic patients experience hyperglycemia, which can affect multiple organs, including brain function, leading to disabling neurological complications. Hyperglycemia plays a key role in promoting neuroinflammation, the most common complication in diabetic individuals, through the activation of microglia. Attenuating hyperglycemia-related neuroinflammation in microglia may reduce diabetes-associated neurological comorbidities. Natural remedies containing phenolic compounds have shown efficacy in mitigating microglia-mediated neuroinflammation. The aim of this study was to investigate the potential of a Melissa officinalis L. (MO) phytocomplex, obtained from plant cell cultures and enriched in its main polyphenolic constituent, rosmarinic acid (RA), in attenuating hyperglycemia-induced neuroinflammation in microglia. A time-course morphological analysis of BV2 microglial cells exposed to high glucose (HG) levels showed a shift towards a proinflammatory phenotype, peaking after 48 h, which was reversed by pretreatment with MO. Biochemical assays revealed increased expression of the microglial marker CD11b (187%), activation of the NF-κB pathway (179%), expression of iNOS (225%), enhanced phosphorylation of ERK1/2 (180%), and increased expression of the proinflammatory cytokine IL-6 (173%). Pretreatment with MO prevented the aberrant expression of these proinflammatory mediators and restored SIRT1 levels. Exposure of neuronal SH-SY5Y cells to the conditioned medium from HG-exposed microglia significantly reduced cell viability. MO counteracted this effect, exhibiting neuroprotective activity. RA showed efficacy comparable to that of MO. In conclusion, MO and RA attenuated microglia-mediated oxidative imbalance and neuroinflammation under HG exposure by inhibiting the morphological shift toward a proinflammatory phenotype induced by HG and abrogating the subsequent activation of the downstream ERK1/2-NF-κB-iNOS pathway.
Collapse
Affiliation(s)
| | | | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (G.V.); (C.S.)
| |
Collapse
|
25
|
Xu H, Li Q, Zhang Y, He C, Zhang X, Wang Z, Zhao M, Chai Y, Zhuang W, Li B. Targeting fucosyltransferase FUT8 as a prospective therapeutic approach for DLBCL. Oncogenesis 2025; 14:1. [PMID: 39881135 PMCID: PMC11779920 DOI: 10.1038/s41389-025-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by its aggressive nature and resistance to standard chemotherapy, necessitating the development of new therapeutic approaches. The emergence of natural products and their derivatives has notably influenced cancer treatment, making morusinol, a medicine-derived monomer, a promising candidate. Here, we showed that morusinol exerted antitumor effects on DLBCL in vitro by inducing apoptosis and cell cycle arrest. Impressively, morusinol treatment exhibited potent tumor growth inhibition in vivo, proving both well-tolerated and safe in mouse models. Moreover, our investigation identified FUT8, a fucosyltransferase, as a potential target for morusinol. FUT8's role as an oncogene in DLBCL and its correlation with poor survival further underscored its significance. Furthermore, our screening efforts involving clinical and preclinical drugs unveiled a compelling synergistic effect between chidamide and morusinol. Additionally, morusinol's ability to hinder M2-like polarization of tumor-associated macrophages suggested its potential in immune response modulation within DLBCL. Collectively, morusinol showcased substantial promise as an anti-tumor agent for potential clinical application in DLBCL management, potentially augmenting established therapeutic strategies. Moreover, our findings offered promising prospects for natural products to effectively leverage its therapeutic advantages. Working model: The role of Morusinol in treating DLBCL.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Medical Oncology, The People's Hospital of Rugao, Nantong, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yali Chai
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
26
|
Dominguez-Gortaire J, Ruiz A, Porto-Pazos AB, Rodriguez-Yanez S, Cedron F. Alzheimer's Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery. Int J Mol Sci 2025; 26:1004. [PMID: 39940772 PMCID: PMC11816687 DOI: 10.3390/ijms26031004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative dementia, with its complex pathophysiology challenging current treatments. Recent advancements have shifted the focus from the traditionally dominant amyloid hypothesis toward a multifactorial understanding of the disease. Emerging evidence suggests that while amyloid-beta (Aβ) accumulation is central to AD, it may not be the primary driver but rather part of a broader pathogenic process. Novel hypotheses have been proposed, including the role of tau protein abnormalities, mitochondrial dysfunction, and chronic neuroinflammation. Additionally, the gut-brain axis and epigenetic modifications have gained attention as potential contributors to AD progression. The limitations of existing therapies underscore the need for innovative strategies. This study explores the integration of machine learning (ML) in drug discovery to accelerate the identification of novel targets and drug candidates. ML offers the ability to navigate AD's complexity, enabling rapid analysis of extensive datasets and optimizing clinical trial design. The synergy between these themes presents a promising future for more effective AD treatments.
Collapse
Affiliation(s)
- Jose Dominguez-Gortaire
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- Faculty of Biological Sciences, Universidad Central del Ecuador, Quito 170136, Ecuador
- Faculty of Odontology, UTE University, Quito 170902, Ecuador
| | - Alejandra Ruiz
- Faculty of Medical Sciences, Universidad Central del Ecuador, Quito 170136, Ecuador
| | - Ana Belen Porto-Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITIC—Research Center of Information and Communication Technologies, Universidade da Coruña, 15008 A Coruña, Spain
| | - Santiago Rodriguez-Yanez
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITEEC—Center for Technological Innovation in Construction and Civil Engineering, Universidade da Coruña, 15008 A Coruña, Spain
| | - Francisco Cedron
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITIC—Research Center of Information and Communication Technologies, Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
27
|
Elsaman T, Mohamed MA, Mohamed MS, Eltayib EM, Abdalla AE. Microbial-based natural products as potential inhibitors targeting DNA gyrase B of Mycobacterium tuberculosis: an in silico study. Front Chem 2025; 13:1524607. [PMID: 39917046 PMCID: PMC11798933 DOI: 10.3389/fchem.2025.1524607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction Since the emergence of Mycobacterium tuberculosis (MBT) strains resistant to most currently used anti-tubercular drugs, there has been an urgent need to develop efficient drugs capable of modulating new therapeutic targets. Mycobacterial DNA gyrase is an enzyme that plays a crucial role in the replication and transcription of DNA in MBT. Consequently, targeting this enzyme is of particular interest in developing new drugs for the treatment of drug-resistant tuberculosis, including multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). Methods In the present study, multiple computational tools were adopted to screen a microbial-based natural products database (NPAtlas) for potential inhibitors of the ATPase activity of MBT DNA gyrase. Results and discussion Twelve hits were initially identified as the top candidates based on their docking scores (ranging from -9.491 to -10.77 kcal/mol) and binding free energies (-60.37 to -73.21 kcal/mol). Following this, computational filters, including ADME-T profiling and pharmacophore modeling, were applied to further refine the selection. As a result, three compounds 1-Hydroxy-D-788-7, Erythrin, and Pyrindolol K2 emerged as the most promising, exhibiting favorable drug-like properties. Notably, 1-Hydroxy-D-788-7, an anthracycline derivative, demonstrated superior binding affinity in molecular dynamics simulations. The RMSD values, ranging from 1.7 to 2.5 Å, alongside RMSF analysis and a detailed evaluation of the established interaction forces, revealed that 1-Hydroxy-D-788-7 was the strongest binder to Mycobacterial DNA Gyrase B. The stable binding and favorable interaction profile highlighted 1-Hydroxy-D-788-7 as a top hit. These comprehensive computational findings strongly support the potential of 1-Hydroxy-D-788-7 as an effective anti-TB lead compound, warranting further experimental validation to confirm its therapeutic efficacy.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
28
|
Zhao Y, Wu J, Liu X, Chen X, Wang J. Decoding nature: multi-target anti-inflammatory mechanisms of natural products in the TLR4/NF-κB pathway. Front Pharmacol 2025; 15:1467193. [PMID: 39877388 PMCID: PMC11772364 DOI: 10.3389/fphar.2024.1467193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Natural products are valuable medicinal resources in the field of anti-inflammation due to their significant bioactivity and low antibiotic resistance. Research has demonstrated that many natural products exert notable anti-inflammatory effects by modulating the Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) signaling pathways. The research on related signal transduction mechanisms and pharmacological mechanisms is increasingly being discovered and validated. However, there is currently a lack of comprehensive reviews focusing on the pharmacological mechanisms of natural products targeting the TLR4/NF-κB pathway for anti-inflammatory effects. In light of these considerations, this review comprehensively synthesizes recent research findings concerning the TLR4/NF-κB signaling pathway, including the translocation of TLR4 activation to lysosomes within the cytoplasm, the assembly of protein complexes mediated by ubiquitin chains K63 and K48, and the deacetylation modification of p65. These discoveries are integrated into the classical TLR4/NF-κB pathway to systematically elucidate the latest mechanisms among various targets. Additionally, we summarize the pharmacological mechanisms by which natural products exert anti-inflammatory effects through the TLR4/NF-κB pathway. This aims to elucidate the multitarget advantages of natural products in the treatment of inflammation and their potential applications, thereby providing theoretical support for molecular pharmacology research on inflammation and the development of novel natural anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Jiacai Wu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Xiaolan Liu
- College of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Juan Wang
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
| |
Collapse
|
29
|
Tian R, Guo S, Chen S, Wu J, Long A, Cheng R, Wang X, Huang L, Li C, Mao W, Xu P, Yu L, Pan H, Liu L. Natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy: Recent progress and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156342. [PMID: 39742572 DOI: 10.1016/j.phymed.2024.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) is a pivotal regulator of redox balance, metabolism, protein homeostasis and inflammation. Nrf2 is critically involved in both ferroptosis and renal diseases, and may serve as a significant target for many natural products in the treatment of renal diseases. However, a comprehensive overview on this topic is still lacking. PURPOSE To review the protective or therapeutic effects of natural products regulating Nrf2-related ferroptosis against various renal diseases. METHODS We systematically searched the electronic databases involving PubMed, Web of Science, Google Scholar, China National Knowledge Internet (CNKI), Wanfang Database and VIP Database. To ensure a comprehensive exploration, keywords including Nrf2, ferroptosis, natural products, phytochemicals, renal disease, kidney disease, kidney injury and nephropathy were employed. RESULTS Ferroptosis is deeply implicated in various kinds of renal diseases, notably including cisplatin-induced acute kidney injury, sepsis-associated acute kidney injury, renal ischemia/reperfusion injury, diabetic nephropathy, kidney stones and renal fibrosis. Nrf2 plays a regulatory role on many important genes related to iron metabolism, antioxidant system and lipid metabolism, thereby modulating ferroptosis. More than twenty natural products exert renoprotective effects by inhibiting ferroptosis via the regulation of Nrf2. This review presents a comprehensive overview of recent advancements in elucidating the ferroptosis involvement in renal diseases, the role of Nrf2 in regulating ferroptosis, and summarizes the renoprotective natural products as Nrf2 modulators for ferroptosis inhibition. CONCLUSION Through the comprehensive insights, this review clarifies the protective or therapeutic effects of natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy, in the pursuit of providing new research ideas and directions for the treatment of renal diseases. Further drug development aimed at discovering more natural products and optimizing their utilization for disease treatment is necessary.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shan Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aoyang Long
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ran Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaowan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Lihua Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chuang Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wei Mao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Peng Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| |
Collapse
|
30
|
Guan R, Yao J, Qi Q, Yu J, Liu R, Gao M. Network Pharmacology and Experimental Verification of Si Shen Decoction Regulating FABP4/PPARγ/NFκB Pathway in the Treatment of Collagen-induced Arthritis. Comb Chem High Throughput Screen 2025; 28:872-882. [PMID: 38584563 DOI: 10.2174/0113862073296957240312090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 04/09/2024]
Abstract
AIM This study aimed to investigate the mechanism of Si Shen Decoction (SSD) in rats with Collagen-Induced Arthritis (CIA). BACKGROUND Rheumatoid arthritis (RA) is a complex immune disease characterized by bilateral symmetrical multi-joint pain and swelling. SSD has shown good results in treating RA in clinical applications, but its mechanism of action remains unclear. OBJECTIVE To investigate the mechanism of SSD in rats with Collagen-Induced Arthritis (CIA). METHODS Bioinformatics and network pharmacology analyses were used to predict the possible treatment targets and signaling pathways. Elisa, Western blotting, and quantitative real-time polymerase chain reaction were used to verify the mechanism of SSD in the treatment of RA. RESULTS FABP4, MMP9, and PTGS2 were the most common predicted therapeutic targets. SSD treatment significantly reduced synovitis, ankle swelling and bone erosion in CIA rats. The SSD group also significantly reduced the serum secretion of CRP, TNFα, and IL1β, decreased mRNA levels of FABP4, IKKα, and p65 in the synovial membrane, but increased PPARγ. Western blot showed that SSD treatment could significantly reduce the expression of FABP4, IKKα, and phosphorylated p65 (p-p65) proteins in the synovium. SSD was found to inhibit the FABP4/PPARγ/NFκB signaling pathway and reduce the inflammatory response in CIA rats. The therapeutic effect of SSD was significant with the increase of dose. CONCLUSION SSD can relieve joint symptoms in CIA rats and alleviate inflammation by inhibiting the FABP4/PPARγ/NFκB signaling pathway. The effect of high-dose SSD was more prominent.
Collapse
Affiliation(s)
- Rui Guan
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiashu Yao
- Rheumatology Department, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qing Qi
- Rheumatology Department, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Yu
- Rheumatology Department, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ruoshi Liu
- Traditional Chinese Medicine Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingli Gao
- Rheumatology Department, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
31
|
Quan Z, Wang Z, Wang Z, Hou Z, Liu B, Guo X, Zhu B, Hu Y. Study on the antioxidant and antiosteoporotic activities of the oyster peptides prepared by ultrasound-assisted enzymatic hydrolysis. ULTRASONICS SONOCHEMISTRY 2025; 112:107211. [PMID: 39729723 PMCID: PMC11733053 DOI: 10.1016/j.ultsonch.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH. In an H2O2-induced oxidative damage model of osteoblastic MC3T3-E1 cells, TOPH-200 significantly attenuated intracellular reactive oxygen species and improved mitochondrial membrane potential. Importantly, TOPH-200 effectively enhanced osteogenic cell proliferation, differentiation, and mineralization in H2O2-treated MC3T3-E1 cells. Additionally, two novel peptides, DSQLAPFRF and HFNPRL, were screened from the TOPH-200 using PeptideRanker and molecular docking. Further cell experiments indicated that both peptides exhibited potent antioxidant and antiosteoporotic activities in oxidatively damaged MC3T3-E1 cells. In summary, mild ultrasound-assisted enzymatic hydrolysis proved effective in producing bioactive peptides from oysters, and these newly identified peptides exhibit potential for osteoporosis prevention.
Collapse
Affiliation(s)
- Zhengze Quan
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zonghan Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zixu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
32
|
Sha Y, Jiang M, Luo G, Meng W, Zhai X, Pan H, Li J, Yan Y, Qiao Y, Yang W, Li K. HerbMet: Enhancing metabolomics data analysis for accurate identification of Chinese herbal medicines using deep learning. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:261-272. [PMID: 39165116 DOI: 10.1002/pca.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Chinese herbal medicines have been utilized for thousands of years to prevent and treat diseases. Accurate identification is crucial since their medicinal effects vary between species and varieties. Metabolomics is a promising approach to distinguish herbs. However, current metabolomics data analysis and modeling in Chinese herbal medicines are limited by small sample sizes, high dimensionality, and overfitting. OBJECTIVES This study aims to use metabolomics data to develop HerbMet, a high-performance artificial intelligence system for accurately identifying Chinese herbal medicines, particularly those from different species of the same genus. METHODS We propose HerbMet, an AI-based system for accurately identifying Chinese herbal medicines. HerbMet employs a 1D-ResNet architecture to extract discriminative features from input samples and uses a multilayer perceptron for classification. Additionally, we design the double dropout regularization module to alleviate overfitting and improve model's performance. RESULTS Compared to 10 commonly used machine learning and deep learning methods, HerbMet achieves superior accuracy and robustness, with an accuracy of 0.9571 and an F1-score of 0.9542 for distinguishing seven similar Panax ginseng species. After feature selection by 25 different feature ranking techniques in combination with prior knowledge, we obtained 100% accuracy and an F1-score for discriminating P. ginseng species. Furthermore, HerbMet exhibits acceptable inference speed and computational costs compared to existing approaches on both CPU and GPU. CONCLUSIONS HerbMet surpasses existing solutions for identifying Chinese herbal medicines species. It is simple to use in real-world scenarios, eliminating the need for feature ranking and selection in classical machine learning-based methods.
Collapse
Affiliation(s)
- Yuyang Sha
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Meiting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Luo
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Weiyu Meng
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Xiaobing Zhai
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Hongxin Pan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Junrong Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| |
Collapse
|
33
|
Qiu W, Zhang Q, Liu J, He X, Cheng G, Chen J, Bai Y, Luo P, Gong P, Shi F, Wang J. Single-cell transcriptomics illustrates the immune inflammatory responses of septic mice spleen after capsaicin treatment. Genes Dis 2025; 12:101256. [PMID: 39376503 PMCID: PMC11456796 DOI: 10.1016/j.gendis.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/28/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Weijin Qiu
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Qian Zhang
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Liu
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Xueling He
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jiayun Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunmeng Bai
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Piao Luo
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Gong
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Fei Shi
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jigang Wang
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
34
|
Oh J, Ha Y, Kwon TW, Jo HS, Moon SK, Lee Y, Nah SY, Kim MS, Cho IH. Non-saponin from Panax ginseng maintains blood-brain barrier integrity by inhibiting NF-κB and p38 MAP kinase signaling pathways to prevent the progression of experimental autoimmune encephalomyelitis. J Ginseng Res 2025; 49:53-63. [PMID: 39872290 PMCID: PMC11764484 DOI: 10.1016/j.jgr.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 01/30/2025] Open
Abstract
Background The non-saponin (NS) fraction is an important active component of Panax ginseng, with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated. Purpose and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Results NSs (p.o.) alleviated movement dysfunctions in EAE mice related to reduced demyelination in the lumbar spinal cord (LSC). NSs attenuated the recruitment of microglia (CD11b+/CD45low) and macrophages (CD11b+/CD45high) in LSCs from EAE model mice, consistent with the decreased mRNA expression levels of the main proinflammatory mediators (IL-1β, COX-2, MCP-1, MIP-1α, and RANTES). NSs blocked the migration of Th17 cells (CD4+/IL17A+) and mRNA expression levels of IL-17A (product of Th17 cells) in LSCs from EAE mice. NSs suppressed alterations in blood-brain barrier (BBB) components, such as astrocytes and cell adhesion molecules, associated with inhibiting NF-κB and p38 MAPK pathways in LSCs of EAE mice and lipopolysaccharide-induced bEND.3 cells. Conclusions NSs could attenuate movement dysfunctions and related pathological/inflammatory changes by reducing BBB permeability through NF-κB and p38 MAPK pathway inhibition in LSCs of EAE model mice. These are the first results suggesting that NSs can be potential therapeutic agents for MS by reducing BBB permeability.
Collapse
Affiliation(s)
- Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujeong Ha
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Kwan Moon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Budiman A, Hafidz NPM, Azzahra RSS, Amaliah S, Sitinjak FY, Rusdin A, Subra L, Aulifa DL. Advancing the Physicochemical Properties and Therapeutic Potential of Plant Extracts Through Amorphous Solid Dispersion Systems. Polymers (Basel) 2024; 16:3489. [PMID: 39771340 PMCID: PMC11679451 DOI: 10.3390/polym16243489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Plant extracts demonstrate significant potential as a rich source of active pharmaceutical ingredients, exhibiting diverse biological activities and minimal toxicity. However, the low aqueous solubility of extracts and their gastrointestinal permeability, as well as their poor oral bioavailability, limit clinical advancements due to drug delivery problems. An amorphous solid dispersion (ASD) delivers drugs by changing an active pharmaceutical ingredient (API) into an amorphous state to increase the solubility and availability of the API to the body. This research aimed to analyze and summarize the successful advancements of ASD systems derived from plant extracts, emphasizing characterization and the effects on dissolution and pharmacological activity. The results show that ASD systems improve phytoconstituent dissolution, bioavailability, and stability, in addition to reducing dose and toxicity. This research demonstrates the significance of ASD in therapeutic formulations to augment the pharmacological activities and efficacy of medicinal plant extracts. The prospects indicate promising potential for therapeutic applications utilizing ASD systems, alongside medicinal plant extracts for clinical therapy.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Nur Parida Mahdhani Hafidz
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (N.P.M.H.); (R.S.S.A.); (D.L.A.)
| | - Raden Siti Salma Azzahra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (N.P.M.H.); (R.S.S.A.); (D.L.A.)
| | - Salma Amaliah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Feggy Yustika Sitinjak
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Laila Subra
- Department of Pharmacy, Faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (N.P.M.H.); (R.S.S.A.); (D.L.A.)
| |
Collapse
|
36
|
Wang Z, Xie S, Li L, Liu Z, Zhou W. Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol 2024; 142:113110. [PMID: 39260306 DOI: 10.1016/j.intimp.2024.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Collapse
Affiliation(s)
| | - Shengyang Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Li Li
- Zhejiang Hospital, Hangzhou 310013, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
37
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
38
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
39
|
Guo X, Liu C, Dong Z, Luo G, Li Q, Huang M. Flavonoids from Rhododendron nivale Hook. f ameliorate alcohol-associated liver disease via activating the PPARα signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156215. [PMID: 39556985 DOI: 10.1016/j.phymed.2024.156215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Flavonoids are increasingly recognized for their potent antioxidant properties and potential therapeutic roles in the management of alcohol-associated liver disease (ALD). Extracts derived from Rhododendron nivale Hook. f. (FRN) have been shown to influence glutathione metabolism in aging animal models, exhibiting notable antioxidant effects. However, the specific impact of FRN on ALD remains insufficiently explored. HYPOTHESIS/PURPOSE This study seeks to elucidate the efficacy of FRN in alleviating the pathology associated with ALD, delving into the underlying molecular mechanisms that facilitate its protective effects. STUDY DESIGN We employed network pharmacology to predict the functional roles and pathway enrichments associated with FRN targets. Both a murine model of ALD and in vitro cellular models were utilized to clarify the mechanistic basis by which FRN mitigates ALD. METHODS FRN was extracted and characterized according to well-established methodologies outlined in our previous studies. Potential functions and pathways implicated by FRN were predicted through network pharmacology analyses. A combination of liver transcriptomics, targeted lipidomics, molecular biology techniques, and antagonists of relevant targets were employed to investigate the mechanisms through which FRN exerts its protective effects in ALD. RESULTS Network pharmacology identified multiple target genes modulated by FRN, particularly those within critical ALD-related signaling pathways, such as PPARα signaling and fatty acids (FAs) degradation. Notably, treatment with FRN in the ALD murine model led to a significant attenuation of hepatic lipid accumulation and a restoration of serum AST and ALT to baseline ranges. Subsequent validation through liver transcriptomics and molecular biology techniques revealed an upregulation of PPARα expression concomitant with a downregulation of ACSL1 in FRN-treated ALD mice. Targeted lipidomic and bioinformatic analyses demonstrated that FRN substantially reduced the accumulation of long-chain fatty acids in hepatocytes. Importantly, the reversal of FRN's protective effects on lipid accumulation through the PPARα antagonist GW6471 provides compelling evidence for the critical role of PPARα signaling modulation in mediating the beneficial impact of FRN on ALD. CONCLUSION Our research highlights FRN's capacity to alleviate ALD through PPARα pathway activation, paving the way for innovative treatment strategies. This underscores the significance of natural compounds in pharmacotherapy, suggesting that FRN may provide an effective alternative for managing ALD.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Chen Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Gang Luo
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qien Li
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Meizhou Huang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
40
|
Zhou Y, Nan F, Zhang Q, Xu W, Fang S, Liu K, Zhao B, Han H, Xie X, Qin C, Pang X. Natural products that alleviate depression: The putative role of autophagy. Pharmacol Ther 2024; 264:108731. [PMID: 39426604 DOI: 10.1016/j.pharmthera.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a common mental disorder that severely disrupts psychosocial function and decreases the quality of life. Although the pathophysiological mechanism underlying MDD is complex and remains unclear, emerging evidence suggests that autophagy dysfunction plays a role in MDD occurrence and progression. Natural products serve as a major source of drug discovery and exert tremendous potential in developing antidepressants. Recently published reports are paying more attention on the autophagy regulatory effect of antidepressant natural products. In this review, we comprehensively discuss the abnormal changes occurred in multiple autophagy stages in MDD patients, and animal and cell models of depression. Importantly, we emphasize the regulatory mechanism of antidepressant natural products on disturbed autophagy, including monomeric compounds, bioactive components, crude extracts, and traditional Chinese medicine formulae. Our comprehensive review suggests that enhancing autophagy might be a novel approach for MDD treatment, and natural products restore autophagy homeostasis to facilitate the renovation of mitochondria, impede neuroinflammation, and enhance neuroplasticity, thereby alleviating depression.
Collapse
Affiliation(s)
- Yunfeng Zhou
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Fengwei Nan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qianwen Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wangjun Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shaojie Fang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ke Liu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bingxin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Xiaobin Pang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
41
|
Ye L, Gao Y, Li X, Liang X, Yang Y, Zhang R. Celastrol attenuates HFD-induced obesity and improves metabolic function independent of adiponectin signaling. Arch Physiol Biochem 2024; 130:642-648. [PMID: 37642392 DOI: 10.1080/13813455.2023.2250929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
BACKGOUND Celastrol, a leptin sensitiser, has been shown to inhibit food intake and reduce body weight in diet-induced obese mice, making it a potential treatment for obesity and metabolic diseases. Adiponectin signalling has been reported to play an important role in the treatment of obesity, inflammation, and non-alcoholic fatty liver disease. MATERIALS AND METHODS Wild-type (WT) and AdipoR1 knockout (AdipoR1-/-) mice were placed on a chow diet or a high-fat diet (HFD) and several metabolic parameters were measured. Celastrol was then administered to the HFD-induced mice and the response of WT and AdipoR1-/- mice to celastrol in terms of body weight, blood glucose, and food intake was also recorded. RESULTS AdipoR1 knockout caused elevated blood glucose and lipids, impaired glucose tolerance and insulin resistance in mice, as well as increased susceptibility to HFD-induced obesity. After 14 days of treatment, WT and AdipoR1-/- mice showed significant reductions in body weight and blood glucose and improvements in glucose tolerance. CONCLUSION The present study demonstrated that AdipoR1 plays a critical role in metabolic regulation and that the improvement of weight and metabolic function by celastrol is independent of the AdipoR1-mediated signalling pathway.
Collapse
Affiliation(s)
- Ling Ye
- Department of Postgraduate, Anhui University of Traditional Chinese Medicine, Hefei, People's Republic of China
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
| | - Yan Gao
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Xuecheng Li
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| | - Xiaoshuang Liang
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| | - Yi Yang
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Rufeng Zhang
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| |
Collapse
|
42
|
Yang Y, Lin L, Zhang S. Preventive Effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene Triazole on Pulmonary Fibrosis through Inhibition of Inflammation and Down-regulation of TGF-b Signaling Pathway. DOKL BIOCHEM BIOPHYS 2024; 519:571-579. [PMID: 39400768 DOI: 10.1134/s1607672924600350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 10/15/2024]
Abstract
In the present study effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene triazole (STT) on plmonary fibrosis development was investigated in vitro in primary lung fibroblasts as well as in vivo in mice model. The results demonstrated that STT treatment effectively inhibited the TGF-β1 induced increase in expression of α-SMA and collagen I proteins in PLFs. STT treatment effectively reversed the TGF-β1 induced increase in expression of LOXL2 protein and phosphorylation of Smad2/3 proteins. Treatment of PLFs with STT reversed the TGF-β1-induced increase in expression of NOX4 and suppression of p-AMPK protein. In mice model of pulmonary fibrosis STT treatment significantly inhibited the BLM-mediated decrease in body weight and survival rate. The BLM induced increase in pulmonary index in mice was also effectively inhibited on treatment with STT. Treatment of the mice with STT inhibited the BLM-induced increase in α-SMA and Col I protein expression in pulmonary tissues. The BLM-induced increase in TGF-β1 protein expression in pulmonary tissues of the mice was inhibited on treatment with STT. Treatment with STT effectively promoted the AMPK activation in lung tissues of the BLM administered mice. In summary, the present study demonstrates that STT treatment prevents TGF-β1 induced up-regulation of α-SMA, collagen I, LOXL2 protein expression and targets phosphorylation of Smad2/3 proteins in PLFs. Moreover, it inhibits TGF-β1-induced increase in expression of NOX4 and reverses TGF-β1-mediated suppression in expression of p-AMPK protein. Therefore, STT inhibits fibrosis development in vitro as well as in vivo and therefore can be investigated further as a therapeutic agent for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Yanping Yang
- School of Health, Shaanxi Fashion Engineering University, 712046, Shaanxi, Xi'an, China.
| | - Lianjun Lin
- School of Health, Shaanxi Fashion Engineering University, 712046, Shaanxi, Xi'an, China
| | - Shanshan Zhang
- School of Health, Shaanxi Fashion Engineering University, 712046, Shaanxi, Xi'an, China
| |
Collapse
|
43
|
Li Q, Zhao X, Yang H, Zhu X, Sui X, Feng J. Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1599. [PMID: 39770441 PMCID: PMC11676909 DOI: 10.3390/ph17121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) play critical roles in tumorigenesis, cancer progression, and drug resistance. Persistent activation of the ER stress system enhances the survival capacities of malignant tumor cells, including increased proliferation, invasion, and resistance to treatment. Dysregulation of ER function and the resultant stress is a common cellular response to cancer therapies and may lead to cancer cell death. Currently, growing evidence suggests that Traditional Chinese medicine (TCM), either as a monotherapy or in combination with other treatments, offers significant advantages in preventing cancer, inhibiting tumor growth, reducing surgical complications, improving drug sensitivity, and mitigating drug-induced damage. Some of these natural products have even entered clinical trials as primary or complementary anticancer agents. In this review, we summarize the anticancer effects of TCM monomers/natural products on the gastrointestinal (GI) tumors and explore their mechanisms through ER stress modulation. We believe that ongoing laboratory research and the clinical development of TCM-based cancer therapies hold considerable potential for advancing future cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Q.L.); (X.Z.); (H.Y.); (X.Z.); (X.S.)
| |
Collapse
|
44
|
Li Y, Yan M, Zhang M, Zhang B, Xu B, Ding X, Wang J, Wang Z. Scutellarin alleviated ulcerative colitis through gut microbiota-mediated cAMP/PKA/NF-κB pathway. Biochem Biophys Res Commun 2024; 735:150837. [PMID: 39423571 DOI: 10.1016/j.bbrc.2024.150837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Ulcerative colitis (UC) is a chronic, non-specific inflammatory condition of the colon, characterized by recurrent episodes and a notable lack of effective pharmacological treatments. Scutellarin, a natural component, exhibits appreciable pharmacological effects and therapeutic potential for various diseases. However, its effects on UC are not fully understood, and the precise mechanisms remain to be deciphered. This study aimed to assess the therapeutic efficacy of scutellarin and elucidate its underlying mechanisms in treating UC. METHODS This study utilized dextran sulfate sodium (DSS)-induced mice to evaluate the therapeutic potential of scutellarin against UC and to elucidate the mechanisms involving the gut microbiota. An antibiotics cocktail (ABX) and fecal microbiota transplantation (FMT) were also used to determine the mechanistic role of the gut microbiota. An integrative approach combining fecal metabolomics and network pharmacology analysis was used to explore the gut microbiota-directed molecular mechanism. RESULTS The results showed that scutellarin provided various therapeutic benefits in UC management, including alleviating weight loss, slowing disease progression, and reducing inflammatory damage in colon structures. The improved gut microbiota after scutellarin administration contributed to these effects. Fecal metabolome revealed that scutellarin selectively mitigated DSS-induced dysregulation of gut microbiota-derived metabolites, including glycolic acid, γ-aminobutyric acid, glutamate, tryptophan, xanthine, and β-hydroxypyruvate. Network pharmacology analysis, along with in vivo experimental verification, implicated the cAMP/PKA/NF-κB pathway in the action of these metabolites in treating UC, which may be the mechanism responsible for scutellarin's curative effects on UC. CONCLUSION This study demonstrates the potential of scutellarin in alleviating UC by activating the cAMP/PKA/NF-κB pathway through gut microbiota-derived metabolites, highlighting scutellarin as a promising therapeutic agent for UC.
Collapse
Affiliation(s)
- Yang Li
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Mengdan Yan
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Miao Zhang
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Bo Zhang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221000, PR China
| | - Bingzhong Xu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Xu Ding
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, Huai'an, 223001, PR China
| | - Jiayu Wang
- Department of Anesthesiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223399, PR China
| | - Zhao Wang
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, Huai'an, 223001, PR China.
| |
Collapse
|
45
|
Lim J, Li J, Zhou M, Xiao X, Xu Z. Machine Learning Research Trends in Traditional Chinese Medicine: A Bibliometric Review. Int J Gen Med 2024; 17:5397-5414. [PMID: 39588057 PMCID: PMC11586268 DOI: 10.2147/ijgm.s495663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background Integrating Traditional Chinese Medicine (TCM) knowledge with modern technology, especially machine learning (ML), has shown immense potential in enhancing TCM diagnostics and treatment. This study aims to systematically review and analyze the trends and developments in ML applications in TCM through a bibliometric analysis. Methods Data for this study were sourced from the Web of Science Core Collection. Data were analyzed and visualized using Microsoft Office Excel, Bibliometrix, and VOSviewer. Results 474 documents were identified. The analysis revealed a significant increase in research output from 2000 to 2023, with China leading in both the number of publications and research impact. Key research institutions include the Shanghai University of Traditional Chinese Medicine and the China Academy of Chinese Medical Sciences. Major research hotspots identified include ML applications in TCM diagnosis, network pharmacology, and tongue diagnosis. Additionally, chemometrics with ML are highlighted for their roles in quality control and authentication of TCM products. Conclusion This study provides a comprehensive overview of ML applications' development trends and research landscape in TCM. The integration of ML has led to significant advancements in TCM diagnostics, personalized medicine, and quality control, paving the way for the modernization and internationalization of TCM practices. Future research should focus on improving model interpretability, fostering international collaborations, and standardized reporting protocols.
Collapse
Affiliation(s)
- Jiekee Lim
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jieyun Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Mi Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinang Xiao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhaoxia Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Health Identification and Assessment, Shanghai, People’s Republic of China
| |
Collapse
|
46
|
Wen Y, Li Y, Li BB, Liu P, Qiu M, Li Z, Xu J, Bi B, Zhang S, Deng X, Liu K, Zhou S, Wang Q, Zhao J. Pyroptosis induced by natural products and their derivatives for cancer therapy. Biomater Sci 2024; 12:5656-5679. [PMID: 39429101 DOI: 10.1039/d4bm01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.
Collapse
Affiliation(s)
- Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bin-Bin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Miaojuan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bo Bi
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Xinyi Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shangbo Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Qiang Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
47
|
Xie X, Li P, Zhao M, Xu B, Zhang G, Wang Q, Ni C, Luo X, Zhou L. Luteolin ameliorates ulcerative colitis in mice via reducing the depletion of NCR +ILC3 through Notch signaling pathway. Chin J Nat Med 2024; 22:991-1002. [PMID: 39510641 DOI: 10.1016/s1875-5364(24)60568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 11/15/2024]
Abstract
The disorder of group 3 innate lymphoid cells (ILC3) subgroup, such as the predominance of NCR-ILC3 but the depletion of NCR+ILC3, is unfavorable to damaged intestinal barrier repair, which leads to the prolongations and obstinacy of ulcerative colitis (UC). Our previous studies had shown that luteolin promoted NCR-ILC3 differentitating into NCR+ILC3 to improving the depletion of NCR+ILC3 in UC mice, while the mechanism is unclear. This article aimed to explore the underlying mechanism of luteolin enhancing the proportion NCR+ILC3. UC mice model was established with 2% DSS and Notch signaling was blocked, then luteolin was used to intervene. The results showed that the effect of luteolin on ameliorating disease symptoms in UC mice, including inhibiting the weight loss, reducing the pathological damage of colon mucosa, etc., was diminished with blocking Notch signaling pathway. In addition, luteolin increased the proportion of NCR+ILC3, NCR+MNK3 and IL-22+ILC3, decreased intestinal permeability, promoted mucin secretion, and promoted ZO-1 and Occludin expression, the above effect of luteolin was neutralized by Notch inhibitor LY-411575. Luteolin activated the abnormally blocked Notch signaling pathway in UC mice. And molecular docking predicted the affinity of luteolin for RBPJ to be -7.5 kcal·mol-1 in mouse, respectively; the affinity of luteolin for Notch1 and RBPJ was respectively scored to be -6.4 kcal·mol-1 and -7.7 kcal·mol-1 homo sapiens. These results proved that luteolin is positive for enhancing the proportion of NCR+ILC3 via Notch signaling, and it provides a basis for targeting NCR+ILC3 for restoring intestinal barrier function to alleviating ulcerative colitis.
Collapse
Affiliation(s)
- Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Pengcheng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Guixing Zhang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Chen Ni
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
48
|
Wang P, Huang B, Liu Y, Tan X, Liu L, Zhang B, Li Z, Kang L, Hu L. Corynoline protects chronic pancreatitis via binding to PSMA2 and alleviating pancreatic fibrosis. J Gastroenterol 2024; 59:1037-1051. [PMID: 39145797 DOI: 10.1007/s00535-024-02145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Pancreatic fibrosis is the main pathological feature of chronic pancreatitis. There is a lack of medications that effectively alleviate or reverse pancreatic fibrosis and thus cure chronic pancreatitis. METHODS We screened drugs that could alleviate pancreatic fibrosis from 80 traditional Chinese medicine monomers and verified their efficacy and mechanisms. RESULTS We preliminarily identified corynoline as an antifibrotic candidate by drug screening among 80 compounds. In vitro, corynoline dose-dependently reduces collagen I synthesis in pancreatic stellate cells induced by TGF-β1 and inhibits its activation. Furthermore, we found that corynoline could alleviate the morphological disruption, such as acinar cell atrophy, collagen deposition etc., as well as reduced pancreatic weight in mice with chronic pancreatitis. We further validated the antifibrotic effect of corynoline in mRNA and protein levels. We also found that corynoline could inhibit NF-κB signaling pathway in vitro and in vivo. Next, we identified PSMA2 as the binding protein of corynoline by Lip-SMap and validated it using DARTS. Moreover, the siRNA of PSMA2 disrupts the anti-fibrotic effect of corynoline. CONCLUSION In conclusion, corynoline is a promising agent for the treatment of pancreatic fibrosis and chronic pancreatitis.
Collapse
Affiliation(s)
- Pengyuan Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Bangwei Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Yu Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- Department of Gastroenterology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xin Tan
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Libo Liu
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
| | - Baoru Zhang
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| |
Collapse
|
49
|
Fujii T, Karasawa K, Takahashi H, Shirai I, Funasaka K, Ohno E, Hirooka Y, Tochio T. Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro, and inhibiting Lachnospiraceae in vivo. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001510. [PMID: 39570663 PMCID: PMC11581127 DOI: 10.1099/mic.0.001510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
Recent studies have linked Ruminococcus gnavus to inflammatory bowel disease and Fusobacterium nucleatum to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of R. gnavus and F. nucleatum at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes (fab genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of R. gnavus cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with R. gnavus and Bifidobacterium longum in 0.2% AOS resulted in B. longum dominating the population, constituting over 96% post-incubation. In vivo studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which R. gnavus belongs, following AOS administration. Quantitative PCR also showed lower levels of the nan gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.
Collapse
Affiliation(s)
- Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| | - Koji Karasawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Research & Development, Ina Food Industry, Co., Ltd., Ina, Nagano, Japan
| | - Hideaki Takahashi
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Ikuya Shirai
- Research & Development, Ina Food Industry, Co., Ltd., Ina, Nagano, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| |
Collapse
|
50
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|