1
|
De Anna JS, Bieczynski F, Cárcamo JG, Venturino A, Luquet CM. Chlorpyrifos stimulates ABCC-mediated transport in the intestine of the rainbow trout Oncorhynchus mykiss. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105222. [PMID: 36127061 DOI: 10.1016/j.pestbp.2022.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The organophosphorus pesticide chlorpyrifos, detected in water and food worldwide, has also been found in the Río Negro and Neuquén Valley, North Patagonia, Argentina, where the rainbow trout, Oncorhynchus mykiss, is one of the most abundant fish species. We analyzed whether chlorpyrifos affects the transport activity of the ATP-binding cassette protein transporters from the subfamily C (ABCC), which are critical components of multixenobiotic resistance. We exposed ex vivo O. mykiss middle intestine strips (non-polarized) and segments (polarized) for one hour to 0 (solvent control), 3, 10, and 20 μg L-1 and to 0, 10, and 20 μg L-1 chlorpyrifos, respectively. We estimated the Abcc-mediated transport rate by measuring the transport rate of the specific Abcc substrate 2,4-dinitrophenyl-S-glutathione (DNP-SG). In addition, we measured the enzymatic activity of cholinesterase, carboxylesterase, glutathione-S-transferase, and 7-ethoxyresorufin-O-deethylase (EROD, indicative of the activity of cytochrome P450 monooxygenase 1A, CYP1A). We also measured lipid peroxidation using the thiobarbituric acid reactive substances method and the gene expression of Abcc2 and genes of the AhR pathway, AhR, ARNT, and cyp1a, by qRT-PCR. Chlorpyrifos induced the DNP-SG transport rate in middle intestine strips in a concentration-dependent manner (49-71%). In polarized preparations, the induction of the DNP-SG transport rate was observed only in everted segments exposed to 20 μg L-1 chlorpyrifos (40%), indicating that CPF only stimulated the apical (luminal) transport flux. Exposure to chlorpyrifos increased GST activity by 42% in intestine strips and inhibited EROD activity (47.5%). In addition, chlorpyrifos exposure inhibited cholinesterase (34-55%) and carboxylesterase (33-42.5%) activities at all the concentrations assayed and increased TBARS levels in a concentration-dependent manner (71-123%). Exposure to 20 μgL-1 chlorpyrifos did not affect the mRNA expression of the studied genes. The lack of inhibition of DNP-SG transport suggests that chlorpyrifos is not an Abcc substrate. Instead, CPF induces the activity of Abcc proteins in the apical membrane of enterocytes, likely through a post-translational pathway.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (Consejo Nacional de Investigaciones Científicas y Técnicas -Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue), Neuquén, Argentina
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue), Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (Consejo Nacional de Investigaciones Científicas y Técnicas -Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
2
|
Ibrahim AM, Hussein AAA. Toxicological impact of organophosphorus Chlorpyrifos 48%EC pesticide on hemocytes, biochemical disruption, and molecular changes in Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105154. [PMID: 35973759 DOI: 10.1016/j.pestbp.2022.105154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Organophosphorus pesticides like Chlorpyrifos 48%EC were widely used to control agricultural pests. The present study aimed to evaluate the toxic effects of Chlorpyrifos 48%EC on B. alexandrina snails, the intermediate host of Schistosoma mansoni. After exposure of snails to serial concentrations to determine the LC50, thirty snails for each sublethal concentration (LC10 2.1 and LC25 5.6 mg/l) in each group were exposed for 24 h followed by another 24 h for recovery. After recovery random samples were collected from hemolymph and tissue to measure the impacts on Phagocytic index, histological, biochemical, and molecular parameters. The current results showed a toxic effect of Chlorpyrifos 48%EC on adult B. alexandrina snails after 24 h of exposure at LC50 9.6 mg/l. After exposure to the sub-lethal concentrations of this pesticide, it decreased the total number of hemocytes and the percentage of small cells, while increased the percentage of hyalinocytes. The granulocyte percentage was increased after exposure to LC10, while after LC25, it was decreased compared to the control group. Also, the light microscopical examination showed that some granulocytes have plenty of granules, vacuoles and filopodia. Some hyalinocytes were contained shrinked nuclei, incomplete cell division and forming pseudopodia. Besides, the phagocytic index of hemocytes was significantly increased than control in all treated groups. Also, these sub-lethal concentrations increased MDA and SOD activities, while, tissue NO, GST and TAC contents were significantly decreased after exposure. Levels of Testosterone (T) and Estradiol (E) were increased significantly after exposure compared with control group. The present results showed that the concentration of DNA and RNA was highly decreased after exposure to LC10, 25 than the control group. Therefore, B. alexandrina snails could be used as a bio monitor of the chemical pollution. Besides, this pesticide could reduce the transmission of schistosomiasis as it altered the biological system of these snails.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Ahmed A A Hussein
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| |
Collapse
|
3
|
Paredes MG, Bianco KA, Menéndez-Helman RJ, Kristoff G. Aquatic Contamination in Lugano Lake (Lugano Lake Ecological Reserve, Buenos Aires, Argentina) Cause Negative Effects on the Reproduction and Juvenile Survival of the Native Gastropod Biomphalaria straminea. Front Physiol 2022; 13:954868. [PMID: 35910565 PMCID: PMC9329693 DOI: 10.3389/fphys.2022.954868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Lugano Lake is located in an Ecological Reserve of Buenos Aires City. Biomonitoring of its water quality is essential due to its importance as a place for recreation and protection of native species. Biomphalaria straminea is a native hermaphrodite aquatic gastropod that inhabits different freshwater bodies of Argentina and was recently selected as a potential bioindicator. We propose this study as a first approach to assessing specific organisms’ use in biomonitoring of urban wild reserves, and the usefulness of reproduction assays. B. straminea survival, behavior, reproduction success and offspring survival after the exposure to water samples from Lugano Lake (L1, L2, and L3) were evaluated. Temperature, pH, conductivity and dissolved oxygen were registered in situ. Samples were transported to the laboratory and chemical analysis and bioassays were performed using 20 snails per site. A control group with tap water was added. Egg masses were separated, exposed individually and observed daily using a stereoscopic microscope. After hatching, juveniles were placed in tap water and offspring survival was registered at the first, second, third and fourth months after the beginning of the assay. High levels of conductivity, turbidity and nutrients were obtained. Ammonium and nitrite were higher than the guideline level for the protection of aquatic life. During the bioassay 20% of the snails (L2 and L3) showed abnormally protruding of the head-food region. The number of eggs and embryonated eggs per mass did not differ between treatments. Egg masses exposed to water samples from the lake presented overlapping and abnormal eggs and arrested embryos. Besides, low % of hatching (L1: 33%, L2: 42%, and L3: 16%) and juvenile survival after the first (L1:14%; L2:78%) and second month (L1: 60%) were noted. In the control group, 85% of hatching and 100%–90% of survival were observed. Our results suggests the presence of pollutant in the lake. B. straminea seems to be a sensitive local species. Biomphalaria spp. reproduction assays can provide a valuable endpoint for toxicity and risk assessments and a usefulness tool for biomonitoring water quality.
Collapse
Affiliation(s)
- María Gimena Paredes
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Alesia Bianco
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata J. Menéndez-Helman
- Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Gisela Kristoff,
| |
Collapse
|
4
|
Omedes S, Andrade M, Escolar O, Villanueva R, Freitas R, Solé M. B-esterases characterisation in the digestive tract of the common octopus and the European cuttlefish and their in vitro responses to contaminants of environmental concern. ENVIRONMENTAL RESEARCH 2022; 210:112961. [PMID: 35181305 DOI: 10.1016/j.envres.2022.112961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cephalopods are a group of marine invertebrates that have received little attention as sentinel species in comparison to other molluscs, such as bivalves. Consequently, their physiological and biochemical xenobiotic metabolism responses are poorly understood. Here we undertake a comparative analysis of the enzymatic activities involved in detoxification reactions and neural transmission in the digestive tract of two commercial cephalopods: the Common octopus, Octopus vulgaris, and the European cuttlefish, Sepia officinalis. For methodological purposes, several common B-esterases (five carboxylesterase (CE) substrates and three cholinesterase (ChE) determinations) were assayed as a proxy of metabolic and neuronal activities, respectively. Four components of the digestive tract in each species were considered: salivary glands, the stomach, the digestive gland and the caecum. The in vitro responses of digestive gland homogenates to model chemicals and contaminants of environmental concern were contrasted between both cephalopod species. The baseline biochemical activities in the four digestive tract components were also determined. Moreover, in order to validate the protocol, purified proteins, recombinant human CE (CE1 and CE2) and purified eel acetylcholinesterase (AChE) were included in the analysis. Overall, carboxylesterase activities were higher in octopus than in cuttlefish, with the activity quantified in the digestive tract components in the following order: digestive gland ≈ caecum > stomach ≈ salivary glands, with higher hydrolysis rates reached with naphthyl-derived substrates. In contrast, cuttlefish hydrolysis rates with ChE substrates were higher than in octopus. This trend was also reflected in a higher sensitivity to CE inhibitors in octopus and to AChE inhibitors in cuttlefish. Given the detoxification character of CEs and its protective role preventing AChE inhibition, octopus could be regarded as more efficiently protected than cuttlefish from neurotoxic exposures. A full characterisation of B-esterases in the digestive tract of the two common cephalopods is also provided.
Collapse
Affiliation(s)
- S Omedes
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - M Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - O Escolar
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - R Villanueva
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - R Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - M Solé
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain.
| |
Collapse
|
5
|
Subba M, Keough MJ, Kellar C, Long S, Miranda A, Pettigrove VJ. Potamopyrgus antipodarum has the potential to detect effects from various land use activities on a freshwater ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117563. [PMID: 34147782 DOI: 10.1016/j.envpol.2021.117563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Identifying risks to ecosystems from contaminants needs a diversity of bioindicators, to understand the effects of these contaminants on a range of taxa. Molluscs are an ideal bioindicator because they are one of the largest phyla with extremely high ecological and economic importance. The aim of this study was to evaluate if laboratory bred Potamopyrgus antipodarum has the potential to show the impact of contaminants from various land use activities and degree of pollution on a freshwater ecosystem. We assessed the impact of contaminants arising from runoff and direct discharges in Merri Creek by measuring organism level responses (survival, growth, and reproduction), and sub-organism level responses (glutathione S-transferase (GST) activity, lipid peroxidation (LPO) activity and catalase (CAT) activity) in snails after 28-d of deployment at nine sites in Merri Creek and one site in Cardinia Creek. In Merri Creek, the top two sites were reference sites (with low impact from human activities), while the rest were impact sites (impacted by various anthropogenic land uses). Cardinia Creek (an additional reference site) had lower human activity. High concentrations of heavy metals, nutrients, and/or synthetic pyrethroids (bifenthrin) dominated these sites, which are likely to have contributed towards the negative responses observed in the snails. There was little influence from environmental conditions and site location on the endpoints because we found a similar response at an additional reference site compared to the reference sites in Merri Creek. At the organism level, reproduction increased and/or reduced, while CAT was affected at the sub-organism level. Potamopyrgus antipodarum has the potential to be a sensitive bioindicator for Australian conditions because the snails responded to varying concentrations of contaminants across different land use activities and showed similar sensitivity to P. antipodarum found in other regions of the globe and other bioindicators.
Collapse
Affiliation(s)
- Maita Subba
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Keough
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claudette Kellar
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Sara Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Ana Miranda
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Vincent J Pettigrove
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
6
|
Dias R, D'Costa A, Praveen Kumar MK, Shyama SK. DNA damage and biochemical responses in estuarine bivalve Donax incarnatus (Gmelin, 1791) exposed to sub-lethal concentrations of an organophosphate pesticide monocrotophos. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:317. [PMID: 33942176 DOI: 10.1007/s10661-021-09103-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Monocrotophos (MCP) is a highly toxic and broad-spectrum pesticide extensively used for agricultural and household purposes. The present study was aimed to evaluate the genotoxicity and alterations in the biochemical and physiological conditions induced by monocrotophos in a non-target organism, an estuarine bivalve, Donax incarnatus. The bivalves were exposed to three sub-lethal concentrations (6.8, 13.7, and 27.45 ppm) of MCP for a period of 72 h. DNA damage was assessed using the comet assay. Oxidative stress was analyzed using catalase, glutathione peroxidase, and superoxide dismutase. Neurotoxicity was evaluated using the acetylcholinesterase assay (AChE) and the physiological condition was assessed using the condition index (CI). A significant concentration-dependent increase of DNA damage was observed as well as a decline in the activities of the antioxidant enzymes. However, a decrease in DNA damage was observed with advancing time. A significant decrease of AChE activity and CI was observed in the bivalves exposed to MCP. Positive correlations were also observed between DNA damage and the antioxidant enzymes whereas negative correlations were observed between AChE and the antioxidant enzymes indicating MCP toxicity mediated by oxidative stress.
Collapse
Affiliation(s)
- Ruella Dias
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India
| | - Avelyno D'Costa
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India.
| | - M K Praveen Kumar
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India
| | - S K Shyama
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India
| |
Collapse
|
7
|
Herbert LT, Cossi PF, Painefilú JC, Mengoni Goñalons C, Luquet CM, Kristoff G. Acute neurotoxicity evaluation of two anticholinesterasic insecticides, independently and in mixtures, and a neonicotinoid on a freshwater gastropod. CHEMOSPHERE 2021; 265:129107. [PMID: 33288284 DOI: 10.1016/j.chemosphere.2020.129107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Neurotoxic insecticides are ubiquitous in aquatic ecosystems, frequently as part of complex mixtures. Freshwater gastropods are generally underrepresented in neurotoxicity evaluations and cumulative toxicity testing. This study investigates the behavioural and biochemical effects of acute exposures to the carbamate carbaryl, the organophosphate chlorpyrifos, and the neonicotinoid acetamiprid on the freshwater gastropod Chilina gibbosa. First, we evaluated behavioural neurotoxicity and cholinesterase (ChE), carboxylesterase (CE), and glutathione S-transferase (GST) activities in acute (48h) single-chemical exposures to increasing concentrations of carbaryl (0.5-500 μg L-1), chlorpyrifos (10-7500 μg L-1), and acetamiprid (1-10000 μg L-1). We then studied the effects of acute (48h) exposures to binary mixtures of carbaryl and chlorpyrifos equivalent to 0.5, 1, and 1.5 ChE 48h-IC50. None of the insecticides caused severe behavioural neurotoxicity, except for a significant lack of adherence by 5000 μg L-1 chlorpyrifos. Carbaryl caused concentration-dependent inhibition of ChEs (NOEC 5 μg L-1; 48h-IC50 45 μg L-1) and CEs with p-nitrophenyl butyrate as substrate (NOEC 5 μg L-1; 48h-IC50 37 μg L-1). Chlorpyrifos caused concentration-dependent inhibition of ChEs (NOEC 50 μg L-1; 48h-IC50 946 μg L-1) but did not affect CEs (NOEC ≥7500 μg L-1). Carbaryl-chlorpyrifos mixtures inhibited ChEs additively, inhibited CEs with p-nitrophenyl butyrate, and did not affect behaviour. GST activity was not affected by single or mixture exposures. Acute exposure to acetamiprid did not affect any of the endpoints evaluated. This study provides new information on carbaryl, chlorpyrifos, and acetamiprid toxicity on C. gibbosa, relevant to improve gastropod representation in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Lucila Thomsett Herbert
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Paula Fanny Cossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Julio César Painefilú
- Laboratorio de Ecotoxicología Acuática (INIBIOMA, UNCo-CONICET)-CEAN, Junín de Los Andes, Neuquén, Argentina.
| | | | - Carlos Marcelo Luquet
- Laboratorio de Ecotoxicología Acuática (INIBIOMA, UNCo-CONICET)-CEAN, Junín de Los Andes, Neuquén, Argentina.
| | - Gisela Kristoff
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Baag S, Mahapatra S, Mandal S. An Integrated and Multibiomarker approach to delineate oxidative stress status of Bellamya bengalensis under the interactions of elevated temperature and chlorpyrifos contamination. CHEMOSPHERE 2021; 264:128512. [PMID: 33049511 DOI: 10.1016/j.chemosphere.2020.128512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 05/12/2023]
Abstract
Synergistic effects of warming on bioconcentration and receptiveness of pollutants are still poorly unravelled in conjunction with cellular and molecular responses. The present study addressed the impact of an environmental relevant dose of chlorpyrifos (organophosphate pesticide), under control (25 °C) and elevated levels of temperature (30 °C, 35 °C) in Bellamya bengalensis, a freshwater gastropod for 60 days across various endpoints. Multiple levels of biomarkers were measured: growth conditions (organ to flesh weight ratio, condition index), oxidative stress status (SOD, CAT, GST, LPO) and DNA damage (Comet assay-3rd, 30th and 60th days only) after acute (24, 48 and 72 h) and long-term exposures (10th, 20th, 30th, 40th, 50th and 60th days). An integrated biomarker response (IBR) strategy was adapted to amalgamate results generated from various biomarkers to assess organism's vulnerability to pesticide pollution and how it may shift with warming climate. Significant changes were observed in growth conditions under longer exposure periods. Acute as well as long-term exposures enhanced the antioxidant and detoxification enzyme activity. DNA damage was extensive under longer exposure to stress howbeit was also significantly escalated under acute severe warming. Antioxidant and detoxification mechanisms fell short in counteracting cellular level damage. The IBR results indicated long-term acclimation of B. bengalensis to elevated temperatures and pesticide contamination lead to an improved tolerance level howbeit, acute stress was more detrimental. This study provided evidence for the efficiency of employing an integrated biomarker approach for B. bengalensis in future bio-monitoring studies.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sayantan Mahapatra
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
9
|
Solé M, Freitas R, Rivera-Ingraham G. The use of an in vitro approach to assess marine invertebrate carboxylesterase responses to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103561. [PMID: 33307128 DOI: 10.1016/j.etap.2020.103561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Carboxylesterases (CEs) are key enzymes which catalyse the hydrolysis reactions of multiple xenobiotics and endogenous ester moieties. Given their growing interest in the context of marine pollution and biomonitoring, this study focused on the in vitro sensitivity of marine invertebrate CEs to some pesticides, pharmaceuticals, personal care products and plastic additives to assess their potential interaction on this enzymatic system and its suitability as biomarkers. Three bivalves, one gastropod and two crustaceans were used and CEs were quantified following current protocols set for mammalian models. Four substrates were screened for CEs determination and to test their adequacy in the hepatic fraction measures of the selected invertebrates. Two commercial recombinant human isoforms (hCE1 and hCE2) were also included for methodological validation. Among the invertebrates, mussels were revealed as the most sensitive to xenobiotic exposures while gastropods were the least as well as with particular substrate-specific preferences. Among chemicals of environmental concern, the plastic additive tetrabromobisphenol A displayed the highest CE-inhibitory capacity in all species. Since plastic additives easily breakdown from the polymer and may accumulate and metabolise in marine biota, their interaction with the CE key metabolic/detoxification processes may have consequences in invertebrate's physiology, affect bioaccumulation and therefore trophic web transfer and, ultimately, human health as shellfish consumers.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Georgina Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| |
Collapse
|
10
|
Genetic structure and diversity in the freshwater gastropod Chilina dombeiana in the Biobío River, Chile. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Gnatyshyna L, Falfushynska H, Stoliar O, Dallinger R. Preliminary Study of Multiple Stress Response Reactions in the Pond Snail Lymnaea stagnalis Exposed to Trace Metals and a Thiocarbamate Fungicide at Environmentally Relevant Concentrations. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:89-100. [PMID: 32274555 DOI: 10.1007/s00244-020-00728-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/23/2020] [Indexed: 05/24/2023]
Abstract
Gastropod mollusks have achieved an eminent importance as biological indicators of environmental quality. In the present study, we applied a multibiomarker approach to evaluate its applicability for the pond snail Lymnaea stagnalis, exposed to common industrial and agricultural pollutants at environmentally relevant concentrations. The snails were exposed to copper (Cu2+, 10 µg L-1), zinc (Zn2+, 130 µg L-1), cadmium (Cd2+, 15 µg L-1), or the thiocarbamate fungicide "Tattoo" (91 µg L-1) during 14 days. Metal treatment and exposure to "Tattoo" caused variable patterns of increase or decrease of metal levels in the digestive gland, with a clear accumulation of only Cd and Zn after respective metal exposure. Treatment with Cu and "Tattoo" caused an increase of cytochrome P450-related EROD activity. Glutathione S-transferase was inhibited by exposure to Cu, Zn, and "Tattoo." Treatment with the "Tattoo" led to an inhibition of cholinesterase activity, whereas Cu and Cd increased its activity. Caspase-3 activity was enhanced by up to 3.3 times in all treatments. A nearly uniform inhibitory effect for oxidative stress response parameters was observed in all kinds of exposure, revealing an inhibition of superoxide dismutase (Mn-SOD) activity, a depression of glutathione (GSH and GSSG) and of protein carbonyl levels. Pollutant-specific effects were observed for the catalase activity, superoxide anion production, and lipid peroxidation levels. Due to the high response sensitivity of Lymnaea stagnalis to chemical impacts, we suggest our study as a contribution for biomarker studies with this species under field conditions.
Collapse
Affiliation(s)
- Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | |
Collapse
|
12
|
Casu V, Tardelli F, De Marchi L, Monni G, Cuccaro A, Oliva M, Freitas R, Pretti C. Soluble esterases as biomarkers of neurotoxic compounds in the widespread serpulid Ficopomatus enigmaticus (Fauvel, 1923). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:883-891. [PMID: 31311415 DOI: 10.1080/03601234.2019.1640028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The characterization of soluble cholinesterases (ChEs) together with carboxylesterases (CEs) in Ficopomatus enigmaticus as suitable biomarkers of neurotoxicity was the main aim of this study. ChEs of F. enigmaticus were characterized considering enzymatic activity, substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (Km and Vmax) and in vitro response to model inhibitors (eserine hemisulfate, iso-OMPA, BW284C51), and carbamates (carbofuran, methomyl, aldicarb, and carbaryl). CEs were characterized based on enzymatic activity, kinetic parameters and in vitro response to carbamates (carbofuran, methomyl, aldicarb, and carbaryl). Results showed that cholinesterases from F. enigmaticus showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was not hydrolyzed differently from other Annelida species. CE activity was in the same range of cholinesterase activity with acetylthiocholine as substrate; the enzyme activity showed high affinity for the substrate p-nytrophenyl butyrate. Carbamates inhibited ChE activity with propionylthiocholine as substrate to a higher extent than with acetylthiocoline. Also CE activity was inhibited by all tested carbamates except carbaryl. In vitro data highlighted the presence of active forms of ChEs and CEs in F. enigmaticus that could potentially be inhibited by pesticides at environmentally relevant concentration.
Collapse
Affiliation(s)
- Valentina Casu
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
| | - Federica Tardelli
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
| | - Lucia De Marchi
- Departamento de Biologia & CESAM, University of Aveiro, Aveiro, Portugal
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
| | - Alessia Cuccaro
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci", Leghorn, Italy
| | - Matteo Oliva
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci", Leghorn, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), Italy
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci", Leghorn, Italy
| |
Collapse
|
13
|
Perić L, Burić P. The effect of copper and chlorpyrifos co-exposure on biomarkers in the marine mussel Mytilus galloprovincialis. CHEMOSPHERE 2019; 225:126-134. [PMID: 30870629 DOI: 10.1016/j.chemosphere.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 05/04/2023]
Abstract
Metals and organophosphorous pesticides commonly co-occur in marine environment, but the effect of their mixtures on non-target organisms is still poorly understood. This study investigated the combined effect of the essential metal copper (Cu) and organophosphorous pesticide chlorpyrifos (Chp) in mussels (Mytilus galloprovincialis) after short-term exposure to their sublethal concentrations. Mussels were exposed for four days to 5 and 15 μg L-1 Cu and 0.05 and 5 μg L-1 Chp, and to their binary mixtures. The investigated biomarkers, namely acetylcholinesterase activity (AChE), glutathione S-transferase activity (GST), metallothioneins content (MTs) and lipid peroxide levels (LPO) displayed unspecific and inconsistent response patterns that varied depending on the concentration of chemicals and composition of mixtures. The exposure to Cu or Chp alone did not induce AChE activity changes, whereas only Cu provoked a significant GST activity increase. Exposure to lower and higher concentration of Chp resulted in MTs content and LPO level increase, respectively. Response of biomarkers to mixtures was generally inconsistent. Data integration by IBR index and PCA revealed different stress levels for given exposure conditions, but no explicit differentiation between single and joint exposures was found. The present results showed that low and environmentally relevant concentrations of Cu and Chp in mixtures may result in a detectable biological response, stressing the need for further investigation of joint effects of widespread marine contaminants in sentinel organisms.
Collapse
Affiliation(s)
- Lorena Perić
- Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, 52210, Rovinj, Croatia.
| | - Petra Burić
- Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, 52210, Rovinj, Croatia; Marine Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
14
|
Agrelo M, Rivadeneira PR, Cossi PF, Cacciatore LC, Kristoff G. Azinphos-methyl causes in Planorbarius corneus toxic effects on reproduction, offspring survival and B-esterases depending on the exposure time. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:114-121. [PMID: 30528701 DOI: 10.1016/j.cbpc.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/30/2022]
Abstract
This work aimed to study in the freshwater gastropod Planorbarius corneus the effects of acute (2 days) and subchronic (14 days) exposures to an environmental concentration of the organophosphate azinphos-methyl on different reproductive parameters, offspring survival and B-esterase activities in gonads and in the whole organism soft tissue. The acute exposure inhibited only carboxylesterase activity in both tissues while the subchronic exposure also inhibited cholinesterase activity, decreased the number of hatched-eggs and increased offspring lethality (92%). On the other hand, B-esterases in gonads were more effective biomarkers than B-esterases in the whole organism due their inhibition appeared earlier in time (cholinesterase activity) and their activity remained inhibited for a longer time (carboxylesterase activity) when recovery studies were performed. We concluded that B-esterases and reproductive parameters can be used as effect biomarkers of aquatic contamination with azinphos-methyl. Our studies showed that a 14 days exposure to an environmental concentration of azinphos-methyl produced severe signs of toxicity in adult organisms, egg masses and juveniles that could cause negative effects at the population level in contaminated environments.
Collapse
Affiliation(s)
- Macarena Agrelo
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Laboratório de Mamíferos Aquáticos, Universidade Federal de Santa Catarina, SC, Brazil; Programa de Pós-graduação em Ecologia, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, SC, Brazil
| | - Pamela R Rivadeneira
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Laboratorio de Ecosistemas Costeros, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Buenos Aires, Argentina
| | - Paula F Cossi
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Luis C Cacciatore
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Morón, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Solé M, Bonsignore M, Rivera-Ingraham G, Freitas R. Exploring alternative biomarkers of pesticide pollution in clams. MARINE POLLUTION BULLETIN 2018; 136:61-67. [PMID: 30509842 DOI: 10.1016/j.marpolbul.2018.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Acetylcholinesterase (AChE) is a reliable biomarker of pesticide exposure although in clams this activity is often very low or undetectable. Carboxylesterases (CEs) exhort several physiological roles, but also respond to pesticides. Searching for an AChE alternative, baseline CE activities were characterised in Ruditapes decussatus gills and digestive glands using five substrates suggestive of different isozymes. The long chain p-nitrophenyl butyrate and 1-naphthyl butyrate were the most sensitive. In the digestive gland, their kinetic parameters (Vmax and Km) and in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon (CPX) were calculated. IC50 values, in the pM-nM range, suggest a high protection efficiency of CE-related enzymes towards CPX neurotoxicity. Other targeted enzymes were: activities of glutathione reductase, glutathione peroxidase, catalase, glutathione S-transferases (GSTs) and lactate dehydrogenase in gills and digestive glands. The high GSTs activity and CE/AChE ratio suggests that R. decussatus has a great capacity for enduring pesticide exposure.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Martina Bonsignore
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Cossi PF, Herbert LT, Yusseppone MS, Pérez AF, Kristoff G. Environmental concentrations of azinphos-methyl cause different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:287-295. [PMID: 30005401 DOI: 10.1016/j.ecoenv.2018.06.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate insecticides (OPs) are commonly used in Argentina and around the world for pest control in food crops. They exert their toxicity through the inhibition of the enzyme acetylcholinesterase. In the present study, we aimed to evaluate biochemical and reproductive effects in Biomphalaria straminea, a freshwater gastropod naturally distributed in Argentina, of subchronic exposures to environmental azinphos-methyl concentrations (20 and 200 µg L-1). For biochemical parameters, adult organisms were exposed for 14 days and the activity of cholinesterases (ChEs), carboxylesterases (CEs), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), the production of reactive oxygen species (ROS), the total antioxidant capacity (TAC), glycogen and proteins were determined. For reproductive parameters, the egg masses of B. straminea were exposed to azinphos-methyl for one month, and the hatching time and success as well as the offspring survival were registered. We found different toxic effects elicited by the insecticide on the studied biomarkers. CEs activity was significantly inhibited while CAT and GST activities, ROS production and TAC were significantly increased, with respect to the solvent control group. ChE and SOD activities and protein and glycogen contents were not altered by azinphos-methyl. The hatching time and success were not statistically different from control. Nevertheless, the offspring survival was severely affected by the insecticide. Our results show that the primary target of the insecticide (ChE) was not inhibited but CEs, GST, CAT, ROS, TAC and offspring survival were sensitive biomarkers and valuable endpoints for subchronic toxicity assessments in this species.
Collapse
Affiliation(s)
- Paula Fanny Cossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina; Universidad Maimónides. CEBBAD, Laboratorio de Invertebrados Marinos. Buenos Aires, Argentina
| | - Lucila Thomsett Herbert
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - María Soledad Yusseppone
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Enzimología, Estrés Oxidativo, y Metabolismo. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Analía Fernanda Pérez
- Universidad Maimónides. CEBBAD, Laboratorio de Invertebrados Marinos. Buenos Aires, Argentina
| | - Gisela Kristoff
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina.
| |
Collapse
|
17
|
Solé M, Rivera-Ingraham G, Freitas R. The use of carboxylesterases as biomarkers of pesticide exposure in bivalves: A methodological approach. Comp Biochem Physiol C Toxicol Pharmacol 2018; 212:18-24. [PMID: 29902568 DOI: 10.1016/j.cbpc.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 12/13/2022]
Abstract
Bivalves are worldwide sentinels of anthropogenic pollution. The inclusion of biomarker responses in chemical monitoring is a recommended practise that has to overcome some difficulties. One of them is the time frame between sample collection and sample processing in order to ensure the preservation of enzymatic activities. In the present study, three bivalve species of commercial interest (mussel, Mytilus galloprovincialis, razor shell, Solen marginatus, and cockle, Cerastoderma edule) were processed within <2 h after being retrieved from their natural habitat, and 24 h after being transported in air under cold conditions (6-8 °C) to laboratory facilities. The enzymatic activities were compared in the three species submitted to both conditions revealing no differences in terms of carboxylesterase dependent activities (CEs) using different substrates: p-nitrophenyl acetate (pNPA), p-nitrophenyl butyrate (pNPB), 1-naphthyl acetate (1-NA), 1-naphthyl butyrate (1-NB) and 2-naphthyl acetate (2-NA). In mussels, three tissues were selected (haemolymph, gills and digestive gland). For comparative purposes, in razor shell and cockle only digestive gland was considered as it is the main metabolic organ. Baseline enzymatic activities for CEs were characterised in the digestive gland of the three bivalves using four out of the five selected CE substrates as well as the kinetic parameters (Vmax and Km) and catalytic efficiency. The in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon was also calculated. IC50 values (pM-nM range) were lower than those obtained for vertebrate groups which suggest that bivalves have high protection efficiency against this pesticide as well as species dependent particularities.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Herbert LT, Castro JM, Bianchi VA, Cossi PF, Luquet CM, Kristoff G. Effects of azinphos-methyl on enzymatic activity and cellular immune response in the hemolymph of the freshwater snail Chilina gibbosa. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:71-77. [PMID: 30195390 DOI: 10.1016/j.pestbp.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The use of a battery of biomarkers, especially those more closely related to species integrity, is desired for more complete ecotoxicological assessments of the effects of pesticide contamination on aquatic organisms. The phosphorodithioate azinphos-methyl has been intensively used in agriculture worldwide and have been found in the habitat of Chilina gibbosa, a freshwater snail endemic to South America. This snail has been proposed as a good model organism for ecotoxicity bioassays on the basis of studies focused mainly on enzymatic responses in whole tissue homogenates. Our aim was to evaluate the effect of an acute 48 h exposure to an environmental concentration of azinphos-methyl on C. gibbosa hemolymph enzymatic activity and cellular immune response. Our results show that cholinesterase activity was strongly inhibited (94%) in hemolymph of exposed snails. Carboxylesterase activity measured with p-nitrophenyl butyrate and glutathione S-transferase activity were augmented 47% and 89% respectively after exposure. No differences were found for hemolymph carboxylesterase activity measured with p-nitrophenyl acetate. These results differ from those reported for whole tissue homogenates and reveal that tissue-specific responses of enzymatic biomarkers exist in this species. Regarding immune cell response, hemocytes were identified for the first time for C. gibbosa. Their viability and phagocytic activity decreased after azinphos-methyl exposure although total number of circulating cells did not differ between treatments. We conclude that concentrations of azinphos-methyl that can be found in the environment can compromise both hemolymph cholinesterase activity and the immune system of C. gibbosa. Furthermore, we propose that carboxylesterase and glutathione S-transferase activities measured in hemolymph and hemocyte viability and phagocytic activity could be incorporated as sensitive biomarkers to evaluate the effects of pesticide exposure on this and related species.
Collapse
Affiliation(s)
- Lucila Thomsett Herbert
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina.; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Juan Manuel Castro
- Laboratorio de Ecotoxicología Acuática, INIBIOMA, UNCo-CONICET-CEAN, Junín de los Andes, Neuquén, Argentina
| | - Virginia Angélica Bianchi
- Laboratorio de Ecotoxicología Acuática, INIBIOMA, UNCo-CONICET-CEAN, Junín de los Andes, Neuquén, Argentina
| | - Paula Fanny Cossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina.; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Carlos Marcelo Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA, UNCo-CONICET-CEAN, Junín de los Andes, Neuquén, Argentina
| | - Gisela Kristoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina.; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina..
| |
Collapse
|
19
|
Xu Y, Li AJ, Li K, Qin J, Li H. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:136-143. [PMID: 29078071 DOI: 10.1016/j.aquatox.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study.
Collapse
Affiliation(s)
- Yanggui Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fish Breeding & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Castro JM, Bianchi VA, Pascual M, Venturino A, Luquet CM. Modulation of immune and antioxidant responses by azinphos-methyl in the freshwater mussel Diplodon chilensis challenged with Escherichia coli. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1785-1794. [PMID: 27600597 DOI: 10.1002/etc.3612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/04/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to characterize the immune response-total hemocyte number, cell type proportion, hemocyte viability, lysosomal membrane stability, phagocytic activity, cellular acid and alkaline phosphatase activity, and humoral bacteriolytic and phenoloxidase activity--in Diplodon chilensis exposed to 0.2 mg/L of azinphos-methyl (AZM), using Escherichia coli as immunological and pro-oxidant challenges. In addition, glutathione-S-transferase and lipid peroxidation thiobarbituric acid reactive substances were analyzed in gill tissue. Mussels from an unpolluted site were treated for 3 d as follows: 1) experimental control; 2) solvent effects control (acetone 0.01%); 3) bacterial challenge effects control (E. coli, 5 cells/mL × 104 cells/mL); 4) pesticide effects control (AZM in acetone); 5) control for combined effects of solvent and bacterial challenge; and 6) exposed to AZM, then challenged with E. coli. The results showed increased granulocyte proportion and phagocytic activity. Partial reversion of deleterious effects of E. coli on lysosomal membranes was observed in mussels exposed to AZM and then challenged with E. coli. Total hemocyte number and humoral bacteriolytic activity were increased only by E. coli challenge. Acid phosphatase activity was increased by both E. coli and AZM, whereas the stimulating effect of E. coli on alkaline phosphatase activity was negatively modulated by AZM. Azinphos-methyl inhibited phenoloxidase activity regardless of the E. coli challenge. Gill glutathione-S-transferase activity was increased by E. coli treatment either alone or pretreated with acetone or AZM and by AZM alone. Thiobarbituric acid reactive substance levels were reduced by AZM alone or combined with the E. coli challenge and by acetone followed by the E. coli challenge. Both acetone and AZM seem to be important modulators of immune and antioxidant responses in D. chilensis. Environ Toxicol Chem 2017;36:1785-1794. © 2016 SETAC.
Collapse
Affiliation(s)
- Juan Manuel Castro
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo)-CEAN, Neuquén, Argentina
| | - Virginia Angélica Bianchi
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC, UNCo-CONICET, Instituto de Biotecnología Agropecuaria del Comahue, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Río Negro, Argentina
| | - Mariano Pascual
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo)-CEAN, Neuquén, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC, UNCo-CONICET, Instituto de Biotecnología Agropecuaria del Comahue, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Río Negro, Argentina
| | - Carlos Marcelo Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo)-CEAN, Neuquén, Argentina
| |
Collapse
|
21
|
Nunes B, Resende ST. Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12155-12167. [PMID: 28353098 DOI: 10.1007/s11356-017-8761-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Biomonitoring of chemical contamination requires the use of well-established and validated tools, including biochemical markers that can be potentially affected by exposure to important environmental toxicants. Cholinesterases (ChEs) are present in a large number of species and have been successfully used for decades to discriminate the environmental presence of specific groups of pollutants. The success of cholinesterase inhibition has been due to their usefulness as a biomarker to address the presence of organophosphate (OP) and carbamate (CB) pesticides. However, its use in ecotoxicology has not been limited to such chemicals, and several other putative classes of contaminants have been implicated in cholinesterasic impairment. Nevertheless, the use of cholinesterases as a monitoring tool requires its full characterization in species to be used as test organisms. This study analyzed and differentiated the various cholinesterase forms present in two autochthonous organisms from the Ria de Aveiro (Portugal) area, namely the polychaete Diopatra neapolitana and the bivalve Solen marginatus, to be used in subsequent monitoring studies. In addition, this study also validated the putative use of the now characterized cholinesterasic forms by analyzing the in vitro effects of common anthropogenic contaminants, such as detergents, pesticides, and metals. The predominant cholinesterasic form found in tissues of D. neapolitana was acetylcholinesterase, while homogenates of S. marginatus were shown to possess an atypical cholinesterasic form, with a marked preference for propionylthiocholine. Cholinesterases from D. neapolitana were generally non-responsive towards the majority of the selected chemicals. On the contrary, strong inhibitory effects were reported for ChEs of S. marginatus following exposure to the selected pesticides.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Sara Teixeira Resende
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
22
|
Otero S, Kristoff G. In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:186-195. [PMID: 27723570 DOI: 10.1016/j.aquatox.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14days in the digestive gland and after 21days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination.
Collapse
Affiliation(s)
- Sofía Otero
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428, Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Guerreño M, López Armengol MF, Luquet CM, Venturino A. Comparative study of toxicity and biochemical responses induced by sublethal levels of the pesticide azinphosmethyl in two fish species from North-Patagonia, Argentina. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:365-372. [PMID: 27376960 DOI: 10.1016/j.aquatox.2016.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
Biochemical effects of azinphosmethyl (AZM), an organophosphate pesticide, were determined in gill, brain and muscle tissues of Odontesthes hatcheri and Jenynsia multidentata. The 96-h toxicity was first assessed, estimating lethal concentrations fifty (LC50) of 7 and 30μgL(-1) AZM for O. hatcheri and J. multidentata, respectively. Considering the LC50, sublethal 96-h static exposures were designed for O. hatcheri (0.1-0.5μgL(-1) AZM) and J. multidentata (5-10μgL(-1)AZM) to determine biochemical endpoints. Brain acetylcholinesterase (AchE) was inhibited by AZM in both species, while the buffer enzyme carboxylesterase (CarbE) was not affected in this tissue. Conversely, muscular AchE was not affected but CarbE was augmented by AZM. The enzymes glutathione reductase, glutathione-S-transferase and CarbE were significantly inhibited in O. hatcheri gills but none of them was affected by AZM in J. multidentata gills compared to control. GSH levels were augmented in gills of both species in exposed fish compared to controls and in addition, lipid peroxidation was significantly increased in O. hatcheri gills. Ex vivo histochemical analysis of ROS by fluorescence microscopy was also performed in J. multidentata gills, indicating a significant increase upon exposure to 10μgL(-1) AZM. Principal component analyses (PCA) were applied, both to the species together or separately. The general analysis demonstrated a clear separation of responses in the two species. For O. hatcheri, the variable that explains the major variation in PC1 is gill catalase and brain AchE in PC2. In J. multidentata in turn, the variable that explains the major variation in PC1 is brain AchE and total oxyradical scavenging capacity in PC2. The toxicity data and biomarker responses obtained for both species were compared to environmental concentrations of AZM detected in superficial water from different points in the Alto Valle region and risk quotients (RQ) were calculated. This approach indicated probable acute effects for O. hatcheri in river and irrigation channels (RQ>0.1), while the risk was unacceptable in drainage superficial water (RQ>1). In contrast, J. multidentata showed minimal risk in river or channel water (RQ<0.1) and probable risk in drainage water (RQ=0.75). We conclude that not only the differential susceptibility of both species to AZM is environmentally relevant, but also that the different biomarkers responding in each case underlie particular pathways stressed by this agrochemical.
Collapse
Affiliation(s)
- Mariana Guerreño
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC, UNCo-CONICET, Instituto de Biotecnología Agropecuaria del Comahue, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 151, km 12, 8303 Cinco Saltos, Río Negro, Argentina
| | - María Fernanda López Armengol
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC, UNCo-CONICET, Instituto de Biotecnología Agropecuaria del Comahue, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 151, km 12, 8303 Cinco Saltos, Río Negro, Argentina
| | - Carlos Marcelo Luquet
- INIBIOMA, UNCo-CONICET- Laboratorio de Ecotoxicología Acuática, CEAN, Ruta provincial 61, km 3, 8371, Junín de los Andes, Neuquén, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC, UNCo-CONICET, Instituto de Biotecnología Agropecuaria del Comahue, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 151, km 12, 8303 Cinco Saltos, Río Negro, Argentina.
| |
Collapse
|
24
|
Cossi PF, Beverly B, Carlos L, Kristoff G. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:248-256. [PMID: 26364254 DOI: 10.1016/j.aquatox.2015.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
Azinphos-methyl belongs to the class of organophosphate insecticides which are recognized for their anticholinesterase action. It is one of the most frequently used insecticides in the Upper Valley of Río Negro and Río Neuquén in Argentina, where agriculture represents the second most important economic activity. It has been detected in water from this North Patagonian region throughout the year and the maximum concentration found was 22.48 μg L(-1) during the application period. Chilina gibbosa is a freshwater gastropod widely distributed in South America, particularly in Patagonia, Argentina and in Southern Chile. Toxicological studies performed with C. gibbosa in our laboratory have reported neurotoxicity signs and cholinesterase inhibition after exposure to azinphos-methyl for 48 h. Recovery studies together with characterization of the enzyme and sensitivity of the enzyme to pesticides can improve the toxicological evaluation. However, little is known about recovery patterns in organisms exposed to organophosphates. The aim of the present work was to evaluate the recovery capacity (during 21 days in pesticide-free water) of cholinesterase activity and neurotoxicity in C. gibbosa after 48 h of exposure to azinphos-methyl. Also, lethality and carboxylesterase activity were registered during the recovery period. Regarding enzyme activities, after a 48-h exposure to 20 μg L(-1) of azinphos-methyl, cholinesterases showed an inhibition of 85% with respect to control, while carboxylesterases were not affected. After 21 days in pesticide-free water, cholinesterases continued to be inhibited (70%). Severe neurotoxicity signs were observed after exposure: 82% of the snails presented lack of adherence to vessels, 11% showed weak adherence, and 96% exhibited an abnormal protrusion of the head-foot region from shell. After 21 days in pesticide-free water, only 15% of the snails presented severe signs of neurotoxicity. However, during the recovery period significant lethality (30%) was registered in treated snails. C. gibbosa is a very sensitive organism to azinphos-methyl. These snails play an important role in the structure and function of aquatic food webs in this region. Thus, a decline of this species' population would probably have an impact on aquatic and non-aquatic communities. Our results show that C. gibbosa is a relevant sentinel species for studying exposure and effects of azinphos-methyl using behavioral and biochemical biomarkers. Neurotoxic behavioral signs are very sensitive, non-destructive biomarkers, which can be easily detected for about one week after acute exposure. Cholinesterse activity is a very useful biomarker showing a high sensitivity and a slow recovery capacity increasing the possibility to indirectly detect organophosphates for long periods after a contaminant event.
Collapse
Affiliation(s)
- Paula Fanny Cossi
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina
| | - Boburg Beverly
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina
| | - Luquet Carlos
- Laboratorio de Ecotoxicología Acuática (INBIOMA, CONICET-UNCo), Junín de los Andes, Neuquén, Argentina
| | - Gisela Kristoff
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160 CABA, Argentina.
| |
Collapse
|
25
|
Basopo N, Ngabaza T. Pollutants, Snails, Oxidative-Stress, Organophosphates, Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abc.2015.56019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Bianco K, Otero S, Oliver AB, Nahabedian D, Kristoff G. Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:85-92. [PMID: 25173743 DOI: 10.1016/j.ecoenv.2014.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/17/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Organophosphorous and carbamates insecticides are ones of the most popular classes of pesticides used in agriculture. Its success relies on their high acute toxicity and rapid environmental degradation. These insecticides inhibit cholinesterase and cause severe effects on aquatic non-target species, particularly in invertebrates. Since the properties of cholinesterases may differ between species, it is necessary to characterize them before their use as biomarkers. Also organophosphorous and carbamates inhibit carboxylesterases and the use of both enzymes for biomonitoring is suggested. Azinphos-methyl is an organophosphorous insecticide used in several parts of the word. In Argentina, it is the most applied insecticide in fruit production in the north Patagonian region. It was detected with the highest frequency in superficial and groundwater of the region. This work aims to evaluate the sensitivity of B. straminea cholinesterases and carboxylesterases to the OP azinphos-methyl including estimations of 48 h NOEC and IC50 of the pesticide and subchronic effects at environmentally relevant concentrations. These will allow us to evaluate the possibility of using cholinesterase and carboxylesterase of B. straminea as sensitive biomarkers. Previously a partial characterization of these enzymes will be performed. As in most invertebrates, acetylthiocholine was the preferred hydrolyzed substrate of B. straminea ChE, followed by propionylthiocholine and being butyrylthiocholine hydrolysis very low. Cholinesterase activity of B. straminea was significantly inhibited by the selective cholinesterases inhibitor (eserine) and by the selective inhibitor of mammalian acethylcholinesterase (BW284c51). In contrast, iso-OMPA, a specific inhibitor of butyrylcholinesterase, did not inhibit cholinesterase activity. These results suggest that cholinesterase activity in total soft tissue of B. straminea corresponds to acethylcholinesterase. Carboxylesterases activity was one order of magnitude higher than cholinesterase. A greater efficiency (Vmax/Km) was obtained using acetylthiocholine and p-nitrophenyl butyrate. Acute exposure to azinphos-methyl did not cause inhibition of cholinesterase activity until 10 mg L(-1) used. Carboxylesterases towards p-nitrophenyl butyrate was inhibited by azinphos-methyl being the IC502.20±0.75 mg L(-1) of azinphos-methyl. Subchronic exposure to environmental concentrations of azinphos-methyl (0.02 and 0.2 mg L(-1)) produced a decrease in survival, protein content and carboxylesterases activity despite no inhibition of cholinesterase activity was observed. B. straminea cholinesterase is not a sensible biomarker. On the contrary, carboxylesterases activity was inhibited by azinphos-methyl. Carboxylesterases could be protecting cholinesterase activity and therefore, protecting the organism from neurotoxicity. This work confirms the advantages of measuring cholinesterases and carboxylesterases jointly in aquatic biomonitoring of pesticide contamination. This becomes relevant in order to find more sensitive biomarkers and new strategies to protect non-target aquatic organisms from pesticide contamination.
Collapse
Affiliation(s)
- Karina Bianco
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Sofía Otero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Agustina Balazote Oliver
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Daniel Nahabedian
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina y CONICET, Argentina
| | - Gisela Kristoff
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; IQUIBICEN-CONICET, Argentina.
| |
Collapse
|
27
|
Pestana JLT, Novais SC, Lemos MFL, Soares AMVM. Cholinesterase activity in the caddisfly Sericostoma vittatum: Biochemical enzyme characterization and in vitro effects of insecticides and psychiatric drugs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:263-268. [PMID: 24726938 DOI: 10.1016/j.ecoenv.2014.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Sericostoma vittatum is a caddisfly species, endemic to the Iberian Peninsula, proposed as a biomonitor species for lotic ecosystems. Since inhibition of cholinesterases׳ (ChE) activity has been used to evaluate the exposure of macroinvertebrates to organophosphates and carbamate pesticides, this work intended to characterize the ChE present in this species so their activity can be used as a potential biomarker of exposure. Biochemical and pharmacological properties of ChE were characterized in this caddisfly species using different substrates (acetylthiocholine iodide, propionylthiocholine iodide, and butyrylthiocholine iodide) and selective inhibitors (eserine sulfate, BW284c51, and iso-OMPA). Also, the in vitro effects of two insecticides (carbaryl and chlorantraniliprole) and two psychiatric drugs (fluoxetine and carbamazepine) on ChE activity were investigated. The results suggest that S. vittatum possess mainly AChE able to hydrolyze both substrates acetylthiocholine and propionylthiocholine since: (1) it hydrolyzes the substrate acetylthiocholine and propionylcholine at similar rates and butyrylthiocholine at a much lower rate; (2) it is highly sensitive to eserine sulfate and BW284c51, but not to iso-OMPA; and (3) its activity is inhibited by excess of substrate, a characteristic of typical AChE. in vitro inhibitions were observed only for carbaryl exposure while exposure to chlorantraniliprole and to relevant environmental concentrations of psychiatric drugs did not cause any significant effect on AChE activity. This study suggests that AChE activity in caddisflies can indeed be used to discriminate the effects of specific insecticides in monitoring programs. The use of non-target species such as caddisflies in ecotoxicological research in lotic ecosystems is also discussed.
Collapse
Affiliation(s)
- João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara C Novais
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; ESTM & GIRM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - Marco F L Lemos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; ESTM & GIRM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
28
|
Zou CS, Cao CW, Zhang GC, Wang ZY. Purification, characterization, and sensitivity to pesticides of carboxylesterase from Dendrolimus superans (Lepidoptera: Lasiocampidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu122. [PMID: 25525114 PMCID: PMC5634022 DOI: 10.1093/jisesa/ieu122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/20/2014] [Indexed: 06/04/2023]
Abstract
Through a combination of steps including centrifugation, ammonium sulfate gradient precipitation, sephadex G-25 gel chromatography, diethylaminoethyl cellulose 52 ion-exchange chromatography and hydroxyapatite affinity chromatography, carboxylesterase (CarE, EC3.1.1.1) from sixth instar larch caterpillar moth, Dendrolimus superans (Lepidoptera: Lasiocampidae) larvae was purified and its biochemical properties were compared between crude homogenate and purified CarE. The final purified CarE after hydroxyapatite chromatography had a specific activity of 52.019 μmol/(min·mg protein), 138.348-fold of crude homogenate, and the yield of 2.782%. The molecular weight of the purified CarE was approximately 84.78 kDa by SDS-PAGE. Three pesticides (dichlorvos, lambda-cyhalothrin, and avermectins) showed different inhibition to crude CarE and purified CarE, respectively. In vitro median inhibitory concentration indicated that the sensitivity of CarE (both crude homogenate and final purified CarE) to pesticides was in decreasing order of dichlorvos > avermectins > lambda-cyhalothrin. By the kinetic analysis, the substrates alpha-naphthyl acetate (α-NA) and beta-naphthyl acetate (β-NA) showed lesser affinity to crude extract than purified CarE. The results also indicated that both crude homogenate and purified CarE had more affinity to α-NA than to β-NA, and the Kcat and Vmax values of crude extract were lower than purified CarE using α-NA or β-NA as substrate.
Collapse
Affiliation(s)
- Chuan-shan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, P.R. China
| | - Chuan-wang Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, P.R. China
| | - Guo-cai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, P.R. China
| | - Zhi-ying Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, P.R. China
| |
Collapse
|