1
|
Yusuf AO, Danborno B, Bauchi ZM, Sani D, Ndams IS. Aging impaired locomotor and biochemical activities in Drosophila melanogaster Oregon R (fruit fly) model. Exp Gerontol 2024; 197:112593. [PMID: 39326807 DOI: 10.1016/j.exger.2024.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Despite advancements in healthcare and increased lifespan, aging populations face numerous challenges, including declining cognitive function, increased susceptibility to chronic diseases, and reduced quality of life. This study investigated Aging impaired Locomotors and Biochemical Activities in Drosophila melanogaster Oregon R (Fruit Fly) Model with the aim to elucidate the mechanism involved. Adult wild-type Drosophila melanogaster Oregon R was used for this study. Survival assay, antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA)) and total protein (TP) concentration were investigated. Data obtained were analyzed using R studio and GraphPad Prism. The result indicated low survival in male flies compared to female flies and the highest survival rate was observed with both flies reared together in the same vial. There was impaired locomotor activity in the flies with age. There was a significant decrease in the level of SOD, CAT, GSH and TP with age with a corresponding significant increase in the level of MDA. This finding demonstrated that locomotor activity decreased with aging with decrease performance index and also established the involvement of oxidation through the activities of antioxidant enzymes in aging; decreased (p < 0.05) concentration of antioxidant enzymes and increased (p < 0.05) lipid peroxidation. Also, it demonstrated that female species had longer lifespan compared to males while co-habiting of male and female species extended lifespan.
Collapse
Affiliation(s)
- Abdullateef Onoruoiza Yusuf
- Department of Anatomy, Faculty of Basic Medical Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria.
| | - Barnabas Danborno
- Department of Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab M Bauchi
- Department of Human Anatomy, Faculty of Basic Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Dahiru Sani
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Iliya Shehu Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
2
|
Yang D, Jeong Y, Ortinau L, Solidum J, Park D. Mx1 -labeled pulp progenitor cells are main contributors to postnatal odontoblasts and pulp cells in murine molars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586156. [PMID: 38585950 PMCID: PMC10996506 DOI: 10.1101/2024.03.21.586156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regeneration of dentin and odontoblasts from dental pulp stem cells (DPSCs) is essential for permanent tooth maintenance. However, the in vivo identity and role of endogenous DPSCs in reparative dentinogenesis are elusive. Here, using pulp single-cell analysis before and after molar eruption, we revealed that endogenous DPSCs are enriched in Cxcl12- GFP + coronal papilla-like cells with Mx1- Cre labeling. These Mx1 + Cxcl12- GFP + cells are long-term repopulating cells that contribute to the majority of pulp cells and new odontoblasts after eruption. Upon molar injury, Mx1 + DPSCs localize into the injury site and differentiate into new odontoblasts, forming scleraxis -GFP + and osteocalcin -GFP + dentinal tubules and reparative dentin. Single-cell and FACS analysis showed that Mx1 + Cxcl12- GFP + DPSCs are the most primitive cells with stem cell marker expression and odontoblast differentiation. Taken together, our findings demonstrate that Mx1 labels postnatal DSPCs, which are the main source of pulp cells and new odontoblasts with reparative dentinogenesis in vivo .
Collapse
|
3
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
4
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
5
|
Andrianova NV, Buyan MI, Bolikhova AK, Zorov DB, Plotnikov EY. Dietary Restriction for Kidney Protection: Decline in Nephroprotective Mechanisms During Aging. Front Physiol 2021; 12:699490. [PMID: 34295266 PMCID: PMC8291992 DOI: 10.3389/fphys.2021.699490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023] Open
Abstract
Dietary restriction (DR) is believed to be one of the most promising approaches to extend life span of different animal species and to delay deleterious age-related physiological alterations and diseases. Among others, DR was shown to ameliorate acute kidney injury (AKI) and chronic kidney disease (CKD). However, to date, a comprehensive analysis of the mechanisms of the protective effect of DR specifically in kidney pathologies has not been carried out. The protective properties of DR are mediated by a range of signaling pathways associated with adaptation to reduced nutrient intake. The adaptation is accompanied by a number of metabolic changes, such as autophagy activation, metabolic shifts toward lipid utilization and ketone bodies production, improvement of mitochondria functioning, and decreased oxidative stress. However, some studies indicated that with age, the gain of DR-mediated positive remodeling gradually decreases. This may be an obstacle if we seek to translate the DR approach into a clinic for the treatment of kidney diseases as most patients with AKI and CKD are elderly. It is well known that aging is accompanied by impairments in a huge variety of organs and systems, such as hormonal regulation, stress sensing, autophagy and proteasomal activity, gene expression, and epigenome profile, increased damage to macromolecules and organelles including mitochondria. All these age-associated changes might be the reasons for the reduced protective potential of the DR during aging. We summarized the available mechanisms of DR-mediated nephroprotection and described ways to improve the effectiveness of this approach for an aged kidney.
Collapse
Affiliation(s)
- Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Marina I Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia K Bolikhova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
6
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 2021; 67:101260. [PMID: 33516915 DOI: 10.1016/j.arr.2021.101260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.
Collapse
|
8
|
Park YH, Son C, Seo YM, Lee YS, Har A, Park JC. CPNE7-Induced Autophagy Restores the Physiological Function of Mature Odontoblasts. Front Cell Dev Biol 2021; 9:655498. [PMID: 33981704 PMCID: PMC8107363 DOI: 10.3389/fcell.2021.655498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Dentin, which composes most of the tooth structure, is formed by odontoblasts, long-lived post-mitotic cells maintained throughout the entire life of the tooth. In mature odontoblasts, however, cellular activity is significantly weakened. Therefore, it is important to augment the cellular activity of mature odontoblasts to regenerate physiological dentin; however, no molecule regulating the cellular activity of mature odontoblasts has yet been identified. Here, we suggest that copine-7 (CPNE7) can reactivate the lost functions of mature odontoblasts by inducing autophagy. CPNE7 was observed to elevate the expression of microtubule-associated protein light chain 3-II (LC3-II), an autophagy marker, and autophagosome formation in the pre-odontoblast and mature odontoblast stages of human dental pulp cells. CPNE7-induced autophagy upregulated DSP and DMP-1, odontoblast differentiation and mineralization markers, and augmented dentin formation in mature odontoblasts. Furthermore, CPNE7 also upregulated NESTIN and TAU, which are expressed in the physiological odontoblast process, and stimulated the elongation of the odontoblast process by inducing autophagy. Moreover, lipofuscin, which progressively accumulates in long-lived post-mitotic cells and hinders their proper functions, was observed to be removed in recombinant CPNE7-treated mature odontoblasts. Thus, CPNE7-induced autophagy reactivated the function of mature odontoblasts and promoted the formation of physiological dentin in vivo. On the other hand, the well-known autophagy inducer, rapamycin, promoted odontoblast differentiation in pre-odontoblasts but did not properly reactivate the function of mature odontoblasts. These findings provide evidence that CPNE7 functionally reactivates mature odontoblasts and introduce its potential for dentinal loss-targeted clinical applications.
Collapse
Affiliation(s)
- Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea.,Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul, South Korea
| | - Chul Son
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - You-Mi Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Alix Har
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology and Developmental Biology, School of Dentistry, Seoul National University, Seoul, South Korea.,Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul, South Korea
| |
Collapse
|
9
|
Maeda H. Aging and Senescence of Dental Pulp and Hard Tissues of the Tooth. Front Cell Dev Biol 2020; 8:605996. [PMID: 33330507 PMCID: PMC7734349 DOI: 10.3389/fcell.2020.605996] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to consume a meal using one's own teeth influences an individual's quality of life. In today's global aging society, studying the biological changes in aging teeth is important to address this issue. A tooth includes three hard tissues (enamel, dentin, and cementum) and a soft tissue (dental pulp). With advancing age, these tissues become senescent; each tissue exhibits a unique senescent pattern. This review discusses the structural alterations of hard tissues, as well as the molecular and physiological changes in dental pulp cells and dental pulp stem cells during human aging. The significance of senescence in these cells remains unclear. Thus, there is a need to define the regulatory mechanisms of aging and senescence in these cells to aid in preservation of dental health.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Activate or Inhibit? Implications of Autophagy Modulation as a Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186739. [PMID: 32937909 PMCID: PMC7554997 DOI: 10.3390/ijms21186739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.
Collapse
|
11
|
Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019; 13:1352. [PMID: 31920513 PMCID: PMC6928047 DOI: 10.3389/fnins.2019.01352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson’s disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson’s disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson’s disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson’s disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson’s disease is clinically and neuropathologically similar to idiopathic Parkinson’s disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson’s disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.
Collapse
Affiliation(s)
- Federica Albanese
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Murtha LA, Morten M, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Ngo DT, Sverdlov AL, Knight DA, Boyle AJ. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. Aging Dis 2019; 10:419-428. [PMID: 31011486 PMCID: PMC6457057 DOI: 10.14336/ad.2018.0601] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration
Collapse
Affiliation(s)
- Lucy A Murtha
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew Morten
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S Mabotuwana
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Janette K Burgess
- 4University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen and W. J. Kolff Research Institute, The Netherlands.,5Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia.,6Discipline of Pharmacology, The University of Sydney, NSW 2006, Australia
| | - Doan Tm Ngo
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Aaron L Sverdlov
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,7Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada.,8Adjunct Professor, Department of Medicine, University of Western Australia, Australia.,9Research and Innovation Conjoint, Hunter New England Health District, Australia
| | - Andrew J Boyle
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
13
|
Barbosa MC, Grosso RA, Fader CM. Hallmarks of Aging: An Autophagic Perspective. Front Endocrinol (Lausanne) 2019; 9:790. [PMID: 30687233 PMCID: PMC6333684 DOI: 10.3389/fendo.2018.00790] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a major protein turnover pathway by which cellular components are delivered into the lysosomes for degradation and recycling. This intracellular process is able to maintain cellular homeostasis under stress conditions, and its dysregulation could lead to the development of physiological alterations. The autophagic activity has been found to decrease with age, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Interestingly, failure of the autophagic process has been reported to worsen aging-associated diseases, such as neurodegeneration or cancer, among others. Likewise, it has been proposed in different organisms that maintenance of a proper autophagic activity contributes to extending longevity. In this review, we discuss recent papers showing the impact of autophagy on cell activity and age-associated diseases, highlighting the relevance of this process to the hallmarks of aging. Thus, understanding how autophagy plays an important role in aging opens new avenues for the discovery of biochemical and pharmacological targets and the development of novel anti-aging therapeutic approaches.
Collapse
Affiliation(s)
- María Carolina Barbosa
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Rubén Adrián Grosso
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
14
|
Andrianova NV, Jankauskas SS, Zorova LD, Pevzner IB, Popkov VA, Silachev DN, Plotnikov EY, Zorov DB. Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells 2018; 7:cells7100178. [PMID: 30360430 PMCID: PMC6209903 DOI: 10.3390/cells7100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Dietary restriction (DR) is one of the most efficient approaches ameliorating the severity of different pathological conditions including aging. We investigated the protective potential of short-term DR in the model of acute kidney injury (AKI) in young and old rats. In kidney tissue, the levels of autophagy and mitophagy were examined, and proliferative properties of renal cells obtained from rats of different age were compared. DR afforded a significant nephroprotection to ischemic kidneys of young rats. However, in old rats, DR did not provide such beneficial effect. On the assessment of the autophagy marker, the LC3 II/LC3 I ratio, and after staining the tissue with LysoTracker Green, we concluded that in old rats activity of the autophagic-lysosomal system decreased. Mitophagy, as assessed by the levels of PINK-1, was also deteriorated in old animals. Renal cells from old rats showed impaired proliferative capacity, a worse rate of recovery after ischemic injury, increased levels of oxidative stress, accumulation of lipofuscin granules and lower mitochondria membrane potential. The results suggest that the loss of DR benefits in old animals could be due to deterioration in the autophagy/mitophagy flux.
Collapse
Affiliation(s)
- Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Stanislovas S Jankauskas
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Vasily A Popkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia.
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| |
Collapse
|
15
|
Detecting senescent fate in mesenchymal stem cells: a combined cytofluorimetric and ultrastructural approach. Biogerontology 2018; 19:401-414. [PMID: 30101381 DOI: 10.1007/s10522-018-9766-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023]
Abstract
Senescence can impair the therapeutic potential of stem cells. In this study, senescence-associated morphofunctional changes in periosteum-derived progenitor cells (PDPCs) from old and young individuals were investigated by combining cytofluorimetry, immunohistochemistry, and transmission electron microscopy. Cell cycle analysis demonstrated a large number of G0/G1 phase cells in PDPCs from old subjects and a progressive accumulation of G0/G1 cells during passaging in cultures from young subjects. Cytofluorimetry documented significant changes in light scattering parameters and closely correlated with the ultrastructural features, especially changes in mitochondrial shape and autophagy, which are consistent with the mitochondrial-lysosomal axis theory of ageing. The combined morphological, biofunctional, and ultrastructural approach enhanced the flow cytometric study of PDPC ageing. We speculate that impaired autophagy, documented in replicative senescent and old PDPCs, reflect a switch from quiescence to senescence. Its demonstration in a tissue with limited turnover-like the cambium layer of the periosteum, where reversible quiescence is the normal stem cell state throughout life-adds a new piece to the regenerative medicine jigsaw in an ageing society.
Collapse
|
16
|
Mejías-Peña Y, Estébanez B, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, de Paz JA, González-Gallego J, Cuevas MJ. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging (Albany NY) 2017; 9:408-418. [PMID: 28160545 PMCID: PMC5361672 DOI: 10.18632/aging.101167] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
Abstract
Aging is associated with a decline in autophagy and a state of low-grade inflammation which further affects apoptosis and autophagy. Importantly, these alterations could reverse with regular physical activity. This study assessed the effects of a resistance exercise training program on autophagy, NLRP3 inflammasome, and apoptosis in peripheral blood mononuclear cells (PBMCs) from old subjects. Twenty-six healthy women and men (age, 69.6±1.5 yr) were randomized to a training (TG) or a control (CG) group. TG performed an 8-week resistance training program, while CG followed their daily routines. Protein expression of beclin-1, Atg12, Atg16 and LAMP-2 increased following the training program, while expression of p62/SQSTM1 and phosphorylation of ULK-1 at Ser757 were significantly lower. Resistance exercise also induced a decrease in NLRP3 expression and in the caspase-1/procaspase-1 ratio. Expression of Bcl-2 and Bcl-xL, as well as the Bad/BcL-2 ratio were reduced, and there was a significant decrease in the protein content of caspase-3. The results obtained seem to indicate that 8-week resistance training stimulates autophagy, prevents NLRP3 inflammasome activation, and reduces apoptosis in PBMCs from elderly subjects. These data could have a significant impact in prevention and rehabilitation programs currently employed in elderly population.
Collapse
Affiliation(s)
| | | | - Paula Rodriguez-Miguelez
- Division of Clinical Translational Science, Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Rodrigo Fernandez-Gonzalo
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Mar Almar
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
17
|
Gaziev A, Abdullaev S, Minkabirova G, Kamenskikh K. X-rays and metformin cause increased urinary excretion of cell-free nuclear and mitochondrial DNA in aged rats. J Circ Biomark 2017; 5:1849454416670782. [PMID: 28936265 PMCID: PMC5548319 DOI: 10.1177/1849454416670782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Activation of cell death in mammals can be assessed by an increase of an amount of cell-free DNA (cf-DNA) in urine or plasma. We investigated the excretion of cf nuclear DNA (nDNA) and cf mitochondrial DNA (mtDNA) in the urine of rats 3 and 24 months in age after X-irradiation and metformin administration. Analyses showed that prior to treatment, the amount of cf-nDNA was 40% higher and cf-mtDNA was 50% higher in the urine of aged rats compared to that of young animals. At 12 h after irradiation, the content of cf-nDNA and cf-mtDNA in the urine of young rats was increased by 200% and 460%, respectively, relative to the control, whereas in the urine of aged rats, it was 250% and 720% higher. After 6 h following metformin administration, the amount of cf-nDNA and cf-mtDNA in the urine of young rats was elevated by 25% and 55% and by 50% and 160% in the urine of aged rats. Thus, these preliminary data suggest that X-rays and metformin cause a significant increase of cf-DNA in the urine of older rats caused by the active cell death in tissues. These results also suggest that metformin possibly initiates the death of the cells containing structural and functional abnormalities.
Collapse
Affiliation(s)
- Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Gulchachak Minkabirova
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Kristina Kamenskikh
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| |
Collapse
|
18
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Luo L, Dai JR, Guo SS, Lu AM, Gao XF, Gu YR, Zhang XF, Xu HD, Wang Y, Zhu Z, Wood LJ, Qin ZH. Lysosomal Proteolysis Is Associated With Exercise-Induced Improvement of Mitochondrial Quality Control in Aged Hippocampus. J Gerontol A Biol Sci Med Sci 2017; 72:1342-1351. [DOI: 10.1093/gerona/glw242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Li Luo
- School of Physical Education and Sports Science and
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Jia-Ru Dai
- School of Physical Education and Sports Science and
| | | | - A-Ming Lu
- School of Physical Education and Sports Science and
| | | | - Yan-Rong Gu
- School of Physical Education and Sports Science and
| | | | - Hai-Dong Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Zhou Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Lisa J Wood
- School of Nursing, Massachusetts General Hospital Institute of Health Professions, Boston, Massachusetts
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| |
Collapse
|
20
|
Linton PJ, Gurney M, Sengstock D, Mentzer RM, Gottlieb RA. This old heart: Cardiac aging and autophagy. J Mol Cell Cardiol 2014; 83:44-54. [PMID: 25543002 DOI: 10.1016/j.yjmcc.2014.12.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023]
Abstract
Autophagy, a cellular housekeeping process, is essential to maintain tissue homeostasis, particularly in long-lived cells such as cardiomyocytes. Autophagic activity declines with age and may explain many features of age-related cardiac dysfunction. In this review we summarize the current state of knowledge regarding age-related changes in autophagy in the heart. Recent findings from studies in human hearts are presented, including evidence that the autophagic response is intact in the aged human heart. Impaired autophagic clearance of protein aggregates or deteriorating mitochondria will have multiple consequences including increased arrhythmia risk, decreased contractile function, reduced tolerance to ischemic stress, and increased inflammation; thus autophagy represents a potentially important therapeutic target to mitigate the cardiac consequences of aging. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- Phyllis-Jean Linton
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, USA
| | - Michael Gurney
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, USA
| | - David Sengstock
- Division of Geriatric Medicine, Oakwood Hospital, Dearborn, MI, USA; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert M Mentzer
- Cardiovascular Research Institute, Departments of Surgery and Physiology, Wayne State University School of Medicine, Detroit, MI, USA; Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roberta A Gottlieb
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Stacchiotti A, Rovetta F, Ferroni M, Corsetti G, Lavazza A, Sberveglieri G, Aleo MF. Taurine rescues cisplatin-induced muscle atrophy in vitro: a morphological study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:840951. [PMID: 24955211 PMCID: PMC4053152 DOI: 10.1155/2014/840951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/27/2014] [Accepted: 04/17/2014] [Indexed: 12/28/2022]
Abstract
Cisplatin (CisPt) is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h-8 h) before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Rovetta
- Department of Molecular and Translational Medicine, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| | - Matteo Ferroni
- Department of Information Engineering, CNR-IDASC Sensor Laboratory, Brescia University, Via Valotti 9, 25123 Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy
| | - Giorgio Sberveglieri
- Department of Information Engineering, CNR-IDASC Sensor Laboratory, Brescia University, Via Valotti 9, 25123 Brescia, Italy
| | - Maria Francesca Aleo
- Department of Molecular and Translational Medicine, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
22
|
Laha D, Pramanik A, Maity J, Mukherjee A, Pramanik P, Laskar A, Karmakar P. Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta Gen Subj 2013; 1840:1-9. [PMID: 23962629 DOI: 10.1016/j.bbagen.2013.08.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. METHODS In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM. RESULTS This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. CONCLUSIONS A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. GENERAL SIGNIFICANCE CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.
Collapse
Affiliation(s)
- Dipranjan Laha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700 032, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Odontoblasts are dentin-secreting cells that survive for the whole life of a healthy tooth. Once teeth are completely erupted, odontoblasts transform into a mature stage that allows for their functional conservation for decades, while maintaining the capacity for secondary and reactionary dentin secretion. Odontoblasts are also critically involved in the transmission of sensory stimuli from the dentin-pulp complex and in the cellular defense against pathogens. Their longevity is sustained by an elaborate autophagic-lysosomal system that ensures organelle and protein renewal. However, progressive dysfunction of this system, in part caused by lipofuscin accumulation, reduces the fitness of odontoblasts and eventually impairs their dentin maintenance capacity. Here we review the functional activities assumed by mature odontoblasts throughout life. Understanding the biological basis of age-related changes in human odontoblasts is crucial to improving tooth preservation in the elderly.
Collapse
Affiliation(s)
- E. Couve
- Departamento de Biología, Laboratorio de Microscopía Electrónica
- Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - R. Osorio
- Departamento de Biología, Laboratorio de Microscopía Electrónica
- Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - O. Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)
- Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| |
Collapse
|
24
|
Huang J, Xu J, Pang S, Bai B, Yan B. Age-related decrease of the LAMP-2 gene expression in human leukocytes. Clin Biochem 2012; 45:1229-32. [PMID: 22732524 DOI: 10.1016/j.clinbiochem.2012.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/01/2012] [Accepted: 06/13/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Autophagy is a highly conserved degradation pathway in cells, which has been involved in many physiological processes and implicated in human age-related diseases. However, autophagy activities have not been systemically investigated with human tissues and cells. METHODS Lysosomal associated membrane protein-2 (LAMP-2) protein is critical for autophagy and chaperone-mediated autophagy. We examined LAMP-2 gene expression and protein levels in the peripheral leukocytes from healthy subjects over 40 years old. RESULTS Compared to those in group of 40-44 years, the LAMP-2 transcript and protein levels in groups of 65-69 (P<0.01) and over 70 years (P<0.001) were significantly decreased. No significant difference in LAMP-2 transcript and protein levels were observed between male and female groups. CONCLUSIONS Our data revealed that there was a progressive and age-related decrease of the LAMP-2 gene expression in the peripheral leukocytes of healthy subjects, indicating a trend of decreasing autophagy activities with aging.
Collapse
Affiliation(s)
- Jian Huang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical College Affiliated Hospital, Jining Medical College, Jining, Shandong 272029, China
| | | | | | | | | |
Collapse
|
25
|
Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012; 4:166-75. [PMID: 22411934 PMCID: PMC3348477 DOI: 10.18632/aging.100444] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammaging refers to a low-grade pro-inflammatory phenotype which accompanies aging in mammals. The aging process is associated with a decline in autophagic capacity which impairs cellular housekeeping, leading to protein aggregation and accumulation of dysfunctional mitochondria which provoke reactive oxygen species (ROS) production and oxidative stress. Recent studies have clearly indicated that the ROS production induced by damaged mitochondria can stimulate intracellular danger-sensing multiprotein platforms called inflammasomes. Nod-like receptor 3 (NLRP3) can be activated by many danger signals, e.g. ROS, cathepsin B released from destabilized lysosomes and aggregated proteins, all of which evoke cellular stress and are involved in the aging process. NLRP3 activation is also enhanced in many age-related diseases, e.g. atherosclerosis, obesity and type 2 diabetes. NLRP3 activates inflammatory caspases, mostly caspase-1, which cleave the inactive precursors of IL-1β and IL-18 and stimulate their secretion. Consequently, these cytokines provoke inflammatory responses and accelerate the aging process by inhibiting autophagy. In conclusion, inhibition of autophagic capacity with aging generates the inflammaging condition via the activation of inflammasomes, in particular NLRP3. We will provide here a perspective on the current research of the ROS-dependent activation of inflammasomes triggered by the decline in autophagic cleansing of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|