1
|
Chen LR, Zhou SS, Yang JX, Liu XQ. Effect of hypoxia on the mucus system and intragastric microecology in the gastrointestinal tract. Microb Pathog 2025; 205:107615. [PMID: 40355054 DOI: 10.1016/j.micpath.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Digestive diseases have a high incidence worldwide, with various geographic, age, and gender factors influencing the occurrence and development of the diseases. The main etiologic factors involve genetics, environment, lifestyle, and dietary habits. In a low-oxygen environment, however, the body's tissue cells activate hypoxia-inducible factor (HIF), which produces different inflammatory mediators. Hypoxia impacts health at the molecular level by modulating cellular stress responses, metabolic pathways, and immune functions. It also alters gene expression and cellular behavior, thereby affecting gastrointestinal function. Under normal physiological conditions, the gastrointestinal mucus system serves as a crucial protective barrier, defending against mechanical injury, pathogenic invasion, and exposure to harmful chemicals. The integrity and functionality of this barrier are dependent on the synthesis and regulation of mucins and mucus, which are influenced by multiple factors. Additionally, the composition and diversity of the gastric microbiota are shaped by factors such as Helicobacter pylori infection, diet, and lifestyle. A balanced gastric microbiota supports gastrointestinal health and fortifies the mucus barrier. However, hypoxia can disrupt this equilibrium, leading to inflammation, alterations in the mucus layer, and destabilization of the gastric microbiota. Understanding the interplay between hypoxia, the mucus system, and the gastric microbiota is essential for identifying novel therapeutic strategies. Future research should elucidate the mechanisms through which hypoxia influences these systems and develop interventions to mitigate its adverse effects on gastrointestinal health. We examined the impact of hypoxia on the gastrointestinal mucus system and gastric microbiota, highlighting its implications for human health and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Rong Chen
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Si Si Zhou
- Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China; Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810001, PR China; Qinghai Provincial Clinical Medical Research Center for Digestive Diseases, Xining, 810001, PR China.
| | - Ji Xiang Yang
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Xiao Qian Liu
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| |
Collapse
|
2
|
Tian R, Li X, Su J, Yu H, Fei J, Xu C, Du X, Yu B, Cao Y, Yin Z. Regional uterine contractility differences during pregnancy: The role of hypoxia and ferroptosis in vitro. Life Sci 2025; 371:123603. [PMID: 40185467 DOI: 10.1016/j.lfs.2025.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Regional variations in uterine contractility during pregnancy have been well-documented. However, the molecular mechanisms underlying these differences remain unclear. To address this, isotonic contraction experiments were conducted on pregnant rat uteri, revealing significantly lower contractility on the placenta-attached side compared to the non-attached side. Interestingly, lactic acid accumulation was higher in the placenta-attached tissue, suggesting metabolic differences between these regions. Muscle contraction requires substantial energy, with adenosine triphosphate (ATP) serving as the direct source of energy, which is predominantly supplied by mitochondria, the cellular energy production centers. Mitochondrial energy generation relies heavily on oxygen availability. To explore the impact of oxygen conditions on uterine smooth muscle cell (USMC) contraction, we cultured these cells under hypoxic conditions. Hypoxia was found to reduce cell contraction and disrupt mitochondrial integrity. Specifically, mitochondria exhibited shrinkage and deformation, characterized by reduced cristae and a collapse of the mitochondrial membrane potential. These structural and functional changes align with hallmarks of ferroptosis. Furthermore, hypoxia stimulated the translocation of dynamic related protein 1 (Drp1) to mitochondria, a process linked to mitochondrial fragmentation. Ferroptosis was downregulated when Drp1 activity was inhibited, highlighting its regulatory role in this process. Collectively, these findings demonstrate that hypoxia induced-ferroptosis impairs mitochondria, leading to reduced energy production and cell viability. This ultimately decreases the contractility of pregnant USMC, providing new insights into the molecular mechanisms underlying regional differences in uterine contractility during pregnancy.
Collapse
Affiliation(s)
- Ruixian Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Jingjing Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Huihui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Jiajia Fei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Chenyi Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Xue Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; Center for Big Data and Population Health of IHM, Hefei 230022, Anhui, China
| | - Biao Yu
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China.
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China; Center for Big Data and Population Health of IHM, Hefei 230022, Anhui, China.
| |
Collapse
|
3
|
Sharma NK, Srivastava M, Dakal TC, Ranga V, Maurya PK. Acute Hypobaric Hypoxia Causes Alterations in Acetylcholine-Mediated Signaling Through Varying Expression of Muscarinic Receptors in the Prefrontal Cortex and Cerebellum of Rats' Brain. High Alt Med Biol 2025; 26:156-164. [PMID: 39379070 DOI: 10.1089/ham.2023.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Sharma, Narendra Kumar, Mansi Srivastava, Tikam Chand Dakal, Vipin Ranga, and Pawan Kumar Maurya. Acute hypobaric hypoxia causes alterations in acetylcholine-mediated signaling through varying expression of muscarinic receptors in the prefrontal cortex and cerebellum of rats' brain. High Alt Med Biol. 26:156-164, 2025. Background: Muscarinic receptor (CHRM) proteins are G-protein-associated acetylcholine receptors found in neuronal membranes. Five major subtypes, CHRM1-CHRM5, modulate acetylcholine in central nervous system signaling cascades. CHRM1, CHRM3, and CHRM5 are linked to Gαq/Gα11 proteins, whereas CHRM2 and CHRM4 are linked to Gαi/Gαo proteins. Objective: Limited research has been conducted to explore the impact of HH on CHRM gene expressions. It is caused by low oxygen availability at high altitudes, which impairs neurotransmission, cognitive performance, and physiological functions. Previous studies have shown that exposure to hypoxia leads to a reduction in CHRM receptors, which in turn causes alteration in signal transduction, physiological responses, cognitive deficits, and mood alterations. Method: In the present study, we have used semiquantitative PCR to measure muscarinic receptor gene expression after 6, 12, and 24 hours of HH exposure at 25,000 feet using a decompression chamber in rat brain's PFC and cerebellum. Result: We have found that CHRM1-CHRM5 downregulated after acute exposure to hypoxia until 12 hours, and then, the expression level of these receptors increased to 24 hours when compared with 12 hours in PFC. All subtypes have shown a similar pattern in PFC regions under hypoxia exposure. On the other hand, these receptors have shown altered expression at different time points in the cerebellum. CHRM1 and CHRM4 acutely downregulated, CHRM2 and CHRM5 downregulated, while CHRM3 upregulated after hypoxia exposure. Conclusion: Our study, for the first time, has shown the altered expressions of muscarinic receptors under temporal hypoxia exposure. The altered expression pattern has shown an association with acclimatization and protection against necrosis due to hypoxia. This study may pave further investigations for understanding and addressing the cognitive, behavioral, and physiological impacts of hypoxia and therapeutic development.
Collapse
Affiliation(s)
| | - Mansi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| | - Tikam Chand Dakal
- Department of Biotechnology, Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
4
|
Burtscher J, Motl RW, Berek K, Ehrenreich H, Kopp M, Hohenauer E. Hypoxia in multiple sclerosis. Redox Biol 2025; 83:103666. [PMID: 40347693 DOI: 10.1016/j.redox.2025.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Low oxygen availability (hypoxia) is a prominent but poorly understood feature in multiple sclerosis (MS). Whether hypoxia causes or drives MS pathology and symptoms or whether it is a consequence of other pathological events, such as inflammation and vascular dysfunction, is unknown. Here, we summarize the available literature on the interplay between hypoxia and both pathological and symptomatic features of MS. Severe environmental hypoxia (i.e., altitude) may trigger or facilitate MS-related events, possibly by exacerbating tissue hypoxia in the central nervous system. Accordingly, increasing oxygen supply can mitigate pathological and clinical parameters in MS models. In contrast, stimulating the endogenous hypoxia response and adaptation systems by controlled exposure to hypoxia (hypoxia conditioning) renders the central nervous system more resistant to hypoxic insults, thereby attenuating pathology and symptomatology in MS models. Overlapping mechanisms likely play a role in the benefits conferred by physical activity in MS. We provide an integrative model to explain the paradoxically beneficial outcomes of both increased and decreased ambient oxygen conditions. In conclusion, controlled exposure to hypoxia, perhaps in combination with exercise, is a promising, possibly disease-course modifying therapeutic approach for MS. However, many open questions remain.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannelore Ehrenreich
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Wan Y, Ge RL, Cao Y, Luo L, Ji W. Chronic Hypobaric Hypoxia Stimulates Differential Expression of Cognitive Proteins in Hippocampal Tissue. High Alt Med Biol 2025; 26:175-186. [PMID: 39602167 DOI: 10.1089/ham.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Wan, Yaqi, Ri-li Ge, Yaxin Cao, Lan Luo, and Weizhong Ji. Chronic hypobaric hypoxia stimulates differential expression of cognitive proteins in hippocampal tissue. High Alt Med Biol. 26:175-186, 2025. Objective: We aimed to determine changes in cognitive function resulting from chronic hypobaric hypoxia through proteomic analysis of hippocampal tissue. We screened cognition-related proteins to provide ideas and directions that could help prevent and treat hypoxia-associated cognitive impairment. Methods: We analyzed hippocampal tissues from mice exposed to high altitudes and control mice using 4 D label-free quantitative proteomics. The data were analyzed by protein quantitative analysis, functional annotation, differential protein screening, clustering analyses, and functional classification and enrichment. Differential protein expression was investigated using targeted quantitative omics based on parallel response monitoring. Results: We identified and quantified 20 target proteins in 12 samples, of which 18 were significant validated proteins that were or might be related to cognitive functions. Signaling pathways that were significantly enriched in differentially expressed proteins were pyrimidine metabolism, 5'-Adenosine Triphosphate-activated protein kinase signaling, phospholipase D signaling, purine metabolism, inflammatory mediator regulation of transient receptor potential channels, hedgehog signaling pathways, dilated cardiomyopathy, platelet activation, insulin resistance, mRNA surveillance pathways, drug metabolism-other enzymes, and drug metabolism-cytochrome P450. Conclusion: Chronic hypoxia alters protein expression in murine hippocampal tissues. Eighteen differentially expressed cognition-related proteins might be related to cognitive impairment in mice exposed to chronic high-altitude hypoxia.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Ri-Li Ge
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Yaxin Cao
- Tang Du hospital of Air Force Military Medical University, Xi'an, China
| | - Lan Luo
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Weizhong Ji
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
6
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
7
|
Tian P, Zhao J, Guo J, Guo G, Zeng L, Lei Q, Chen W, Fu X, Shi X, Xu Z, Zhao D, Zhang Z, Zhang H. Lnc-HZ06 down-regulates HIF1α protein levels in CoCl 2-exposed hypoxic trophoblast cells and villous tissues of miscarriage patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179477. [PMID: 40262219 DOI: 10.1016/j.scitotenv.2025.179477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Hypoxia plays significant roles in various biological processes. In recent study, we have found that a novel lnc-HZ06 promotes the SUMOylation of HIF1α in hypoxic human trophoblast cells. Since environmental cobalt (Co) exposure causes trophoblast cell hypoxia, whether and how lnc-HZ06 might regulate the protein levels of HIF1α, an important biomarker of hypoxia, in CoCl2-exposed hypoxic trophoblast cells is still unexplored. In this study, we find that lnc-HZ06 is highly expressed in CoCl2-exposed trophoblast cells; and lnc-HZ06 further down-regulates HIF1α protein levels. In details, (1) lnc-HZ06 up-regulates METTL14 (methyltransferase-like 14) and increases m6A (N6-methyladenosine) RNA modification levels on VHL (a ubiquitin E3 ligase of HIF1α) mRNA, and thus enhances its mRNA stability and up-regulates VHL mRNA levels. (2) VHL interacts with the SUMOylated HIF1α and promotes the ubiquitination of HIF1α, and finally lnc-HZ06 promotes the ubiquitination degradation of HIF1α protein in CoCl2-exposed hypoxic trophoblast cells. Therefore, lnc-HZ06 promotes VHL-mediated HIF1α protein degradation and down-regulates HIF1α protein levels. The cellular mechanisms in hypoxic trophoblast cells were partially consistent to those in villous tissues of patients with unexplained miscarriage (UM), expect for no significantly different Co content in UM and healthy control (HC) villous tissues. Collectively, this study discovers novel regulatory roles of lnc-HZ06 and m6A modification and post-translational modification (SUMO/Ubiquitin) in HIF1α protein levels in hypoxic human trophoblast cells.
Collapse
Affiliation(s)
- Peng Tian
- Department of Pathology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563003, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jiarong Guo
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Geng Guo
- Department of Emergency, Cerebrovascular Disease Center, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Liqin Zeng
- Department of Obstetrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Qiong Lei
- Department of Obstetrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xia Fu
- Department of Nursing, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Xianjie Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhongyan Xu
- Clinical Laboratory, Bethune International Peace Hospital, 398 Zhongshan Road, Shijiazhuang, Hebei 050082, China.
| | - Depeng Zhao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Zhihong Zhang
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
Kumari M, Sharma D, Kumari A, Eslavath MR, Rai C, Reddy MPK, Ganju L, Varshney R, Meena RC. Urine metabolite profiling in Indian males exposed to high-altitude: a longitudinal pilot study. Sci Rep 2025; 15:16981. [PMID: 40374771 PMCID: PMC12081625 DOI: 10.1038/s41598-025-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
People who visit high-altitude for research and development work, pilgrimage, recreational purposes and deployments are exposed to different environmental conditions such as low temperature and atmospheric pressure, leading to hypoxia, high radiation, dry air, and non-availability of fresh food and vegetables. These environmental stressors have significant physiological effects on the human body. Among these challenges, hypobaric hypoxia at high-altitude affects aerobic metabolism and thereby reduces the supply of metabolic energy. Metabolic alterations may further lead to extreme environment related maladaptation as evidenced by alterations in the levels of metabolites and metabolic pathways. To investigate the variation in the metabolite profile, urine samples were collected from 16 individuals at baseline (BL, 210 m) and high-altitude (HA, 4200 m). Untargeted urinary metabolic profiling was performed by liquid chromatography-mass spectrometry (LC-MS) in conjunction with statistical analysis. Univariate and multivariate statistical analyses revealed 33 differentially abundant metabolites based on fold change, VIP score and p value. These distinct metabolites were primarily associated with pathways related to phenylalanine, tyrosine and tryptophan biosynthesis; metabolism of phenylalanine, biotin, tyrosine, cysteine and methionine along with alanine, aspartate and glutamate metabolism. Thes pathways are also linked with pentose and glucuronate interconversions, citrate cycle, vitamin B6 and porphyrin metabolism. Furthermore, receiver operating characteristic curve analysis detected five metabolites namely, 2-Tetrahydrothiopheneacetic acid, 1-Benzyl-7,8-dimethoxy-3-phenyl-3H-pyrazolo [3,4-c] isoquinoline, Abietin, 4,4'-Thiobis-2-butanone, and Hydroxyisovaleroyl carnitine with high range of sensitivity and specificity. In summary, this longitudinal study demonstrated novel metabolic variations in humans exposed to high-altitude, utilising the potential of LC-MS based metabolomics. Thus, the present findings shed light on the impact of hypoxic exposure on metabolic adaptation and provide a better understanding about the pathophysiological mechanisms underlying high-altitude illnesses correlated to tissue hypoxia.
Collapse
Affiliation(s)
- Manisha Kumari
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Dolly Sharma
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Anu Kumari
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Mallesh Rao Eslavath
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Chhavi Rai
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Maramreddy Prasanna Kumar Reddy
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Research and Development, Malwanchal University, Indore, Madhya Pradesh, India
| | - Rajeev Varshney
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Chand Meena
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
9
|
Khandayataray P, Murthy MK. Exploring the nexus: Sleep disorders, circadian dysregulation, and Alzheimer's disease. Neuroscience 2025; 574:21-41. [PMID: 40189132 DOI: 10.1016/j.neuroscience.2025.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
We reviewed the connections among Alzheimer's disease (AD), sleep deprivation, and circadian rhythm disorders. Evidence is mounting that disrupted sleep and abnormal circadian rhythms are not merely symptoms of AD, but are also involved in accelerating the disease. Amyloid-beta (Aβ) accumulates, a feature of AD, and worsens with sleep deprivation because glymphatic withdrawal is required to clear toxic proteins from the brain. In addition, disturbances in circadian rhythm can contribute to the induction of neuroinflammation and oxidative stress, thereby accelerating neurodegenerative processes. While these interactions are bidirectional, Alzheimer's pathology further disrupts sleep and circadian function in a vicious cycle that worsens cognitive decline, which is emphasized in the review. The evidence that targeting sleep and circadian mechanisms may serve as therapeutic strategies for AD was strengthened by this study through the analysis of the molecular and physiological pathways. Further work on this nexus could help unravel the neurobiological mechanisms common to the onset of Alzheimer's and disrupted sleep and circadian regulation, which could result in earlier intervention to slow or prevent the onset of the disease.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India.
| |
Collapse
|
10
|
Chatgilialoglu C. Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders. Antioxidants (Basel) 2025; 14:578. [PMID: 40427460 PMCID: PMC12108456 DOI: 10.3390/antiox14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Most DNA damage caused by oxidative metabolism consists of single lesions that can accumulate in tissues. This review focuses on two classes of lesions: the two 8-oxopurine (8-oxo-Pu) lesions that are repaired by the base excision repair (BER) enzyme and the four 5',8-cyclopurine (cPu) lesions that are repaired exclusively by the nucleotide excision repair (NER) enzyme. The aim is to correlate the simultaneous quantification of these two classes of lesions in the context of neurological disorders. The first half is a summary of reactive oxygen species (ROS) with particular attention to the pathways of hydroxyl radical (HO•) formation, followed by a summary of protocols for the quantification of six lesions and the biomimetic chemistry of the HO• radical with double-stranded oligonucleotides (ds-ODN) and calf thymus DNA (ct-DNA). The second half addresses two neurodegenerative diseases: xeroderma pigmentosum (XP) and Cockayne syndrome (CS). The quantitative data on the six lesions obtained from genomic and/or mitochondrial DNA extracts across several XP and CS cell lines are discussed. Oxidative stress contributes to oxidative DNA damage by resulting in the accumulation of cPu and 8-oxo-Pu in DNA. The formation of cPu is the postulated culprit inducing neurological symptoms associated with XP and CS.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Center for Advanced Technologies, Adam Mickiewicz University, 61614 Poznań, Poland; or
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| |
Collapse
|
11
|
Zhao HM, Mu LQ, Wang J, Chen RZ, Li Y, Zhao L, Zhao Y, Liu LN. Vitamin D Activates Nrf2 to Prevent Nerve Injury and Reduce Brain Damage in Acute Cerebral Infarction. Curr Med Sci 2025:10.1007/s11596-025-00043-1. [PMID: 40332737 DOI: 10.1007/s11596-025-00043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVE This study aimed to investigate the neuroprotective effects of cholecalciferol cholesterol emulsion (CCE), a vitamin D (VD) precursor, in a murine model of acute cerebral infarction (ACI) and to elucidate the role of the Nrf2 signaling pathway in mediating these effects. METHODS Forty C57BL/6J mice (male and female) were divided into five groups (n = 10 per group): control, control + CCE, ACI, ACI + CCE, and ACI + CCE + ML385 (an Nrf2 inhibitor). ACI was induced by middle cerebral artery occlusion (MCAO). CCE was administered for three weeks prior to ACI induction, and ML385 was administered intravenously to inhibit Nrf2. Neurological function, brain edema, and infarct size, as well as inflammatory and apoptotic marker levels, were assessed post-ACI. Statistical analyses were conducted via one-way ANOVA and Student's t test, with P < 0.05 considered significant. RESULTS Compared to ACI group, CCE significantly reduced neurological deficits, brain edema, and infarct size (P < 0.01). The ACI + CCE group presented improved short-term memory retention, as evidenced by shorter avoidance latency in shuttle avoidance tests (P < 0.01). CCE administration attenuated the expression of inflammatory markers (IL-6, MIF, Lp-PLA2) while increasing IL-10 levels (P < 0.001). Furthermore, CCE increased Nrf2 and HO-1 expression and reduced apoptosis by decreasing the Bax/Bcl-2 ratio in brain tissue (P < 0.001). ML385 abolished these neuroprotective effects, confirming the role of the Nrf2 pathway in mediating the benefits of VD. CONCLUSION VD, via VD receptor-mediated activation of the Nrf2/HO-1 pathway, reduces inflammation, apoptosis, and neurological damage following ACI. These findings support the therapeutic potential of VD in the treatment of ischemic stroke and highlight the importance of Nrf2 in mediating these effects.
Collapse
Affiliation(s)
- Hong-Min Zhao
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Li-Qin Mu
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Jing Wang
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Run-Zhi Chen
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Yang Li
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Lin Zhao
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Yu Zhao
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Li-Na Liu
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China.
| |
Collapse
|
12
|
Peng LL, Qi FL, Tan K, Xiao W. The altitudinal patterns of global human gut microbial diversity. BMC Microbiol 2025; 25:267. [PMID: 40320537 PMCID: PMC12051316 DOI: 10.1186/s12866-025-03974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND The human gut microbiota is closely associated with human health, influencing not only overall well-being but also the incidence and treatment outcomes of diseases. Altitudinal gradients are considered to impact gut microbial community characteristics through factors such as environmental temperature, humidity, and lifestyle. While previous studies have reported altitudinal variations in human gut microbiota in specific regions, a comprehensive exploration of these patterns at a global scale is still lacking. In this study, we analyzed 16S rRNA amplicon sequencing data from healthy human gut microbiota, spanning altitudes from 3 m to 3850 m, obtained from multiple open-access databases. The analysis focused on elucidating the altitudinal patterns of microbial diversity, community composition, and functional profiles. RESULTS After screening, a total of 6702 sequences from 15 countries were obtained. The diversity of human gut microbiota decreased with increasing altitude (R = -0.047, P < 0.001), but no consistent results were acquired among continents. The relative abundances of the genera Faecalibacterium and Blautia decreased with rising altitude (R = -0.131 and R = -0.135, respectively, P < 0.001 for both), while the relative abundance of the genus Prevotella increased with altitude (R = 0.336, P < 0.001). However, taxa such as Bacilliota, Bacteroides, and Bifidobacterium exhibit no consistent trends across different continents. The abundance of genes associated with the metabolism of terpenoids and polyketides, lipid metabolism, neurodegenerative diseases, and aging increased with altitude (R = 0.146, 0.037, 0.366, and 0.317, respectively; lipid metabolism P = 0.003, others P < 0.001). Conversely, the abundance of genes related to the immune system and carbohydrate metabolism decreased with increasing altitude (R = -0.166 and R = -0.219, respectively; P < 0.001 for both). CONCLUSION Altitude significantly influences diversity, composition, and functional attributes of the human gut microbiota.
Collapse
Affiliation(s)
- Lu-Lu Peng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Fu-Liang Qi
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Institute of Natural Antioxidants and Anti-inflammation, Dali University, Dali, 671003, Yunnan, China
| | - Kun Tan
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China.
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- International Centre of Biodiversity and Primates Conservation, Dali University, Dali, 671003, Yunnan, China
| |
Collapse
|
13
|
Gaspar LS, Pyakurel S, Xu N, D'Souza SP, Koritala BSC. Circadian Biology in Obstructive Sleep Apnea-Associated Cardiovascular Disease. J Mol Cell Cardiol 2025; 202:116-132. [PMID: 40107345 DOI: 10.1016/j.yjmcc.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A dysregulated circadian system is independently associated with both Obstructive Sleep Apnea (OSA) and cardiovascular disease (CVD). OSA and CVD coexistence is often seen in patients with prolonged untreated OSA. However, the role of circadian dysregulation in their relationship is unclear. Half of the human genes, associated biological pathways, and physiological functions exhibit circadian rhythms, including blood pressure and heart rate regulation. Mechanisms related to circadian dysregulation and heart function are potentially involved in the coexistence of OSA and CVD. In this article, we provide a comprehensive overview of circadian dysregulation in OSA and associated CVD. We also discuss feasible animal models and new avenues for future research to understand their relationship. Oxygen-sensing pathways, inflammation, dysregulation of cardiovascular processes, oxidative stress, metabolic regulation, hormone signaling, and epigenetics are potential clock-regulated mechanisms connecting OSA and CVD.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Santoshi Pyakurel
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Na Xu
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Bala S C Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| |
Collapse
|
14
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
15
|
Hu P, Song D, Heng T, Yang LL, Bai CC, He R, Liu T, Luo YX, Yao XQ. Interactions of physical activity and lung function on cognitive health in older adults: Joint association and mediation analysis. J Prev Alzheimers Dis 2025; 12:100090. [PMID: 39966021 DOI: 10.1016/j.tjpad.2025.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Maintaining cognitive health in old adults has become a significant public health challenge, with lung function and physical activity (PA) as essential modifiable factors. However, the joint and mediation effects of these two factors with cognition remain unclear. OBJECTIVES This study assesses the joint association and mediation effects of lung function and PA with cognition. DESIGN, SETTING, AND PARTICIPANTS We utilized cross-sectional data from the 2011-2012 U.S. National Health and Nutrition Examination Survey, including adults aged 60-79 assessed for lung function, PA, and cognition. MAIN OUTCOMES AND MEASURES Lung function included forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and FEV1/FVC. PA was assessed using the Global Physical Activity Questionnaire, covering occupational PA (OPA), transportation-related PA (TPA), and leisure-time PA (LTPA). Cognition was evaluated using the Digit Symbol Substitution Test, Animal Fluency Test, Delayed Recall Test and Immediate Recall Test. Weighted multiple linear regression models were used to analyze the separate and joint associations of lung function and PA with cognition, while also exploring potential mediation effects between these factors. RESULTS A total of 927 participants, representing 35,525,782 U.S. residents, were included, with a weighted median age of 65 (IQR, 63 -71) years, and 53.6 % were female. The results showed a significant positive association between lung function and cognitive function, with FEV1, FVC, and PEF all positively correlated, while the FEV1/FVC showed no notable link. Further analysis revealed the best cognitive performance observed in participants with active LTPA and the highest quartile of lung function, indicating a joint association of LTPA and lung function with cognition. Mediation analysis indicated that lung function mediated 24.1 % (95 %CI: 6.3 % - 47.0 %, P = 0.03) of the relationship between LTPA and cognition, while cognition mediated 10.2 % (95 %CI: 0.5 % - 27.0 %, P = 0.04) of the relationship between LTPA and lung function. CONCLUSION Lung function and cognition may have a bidirectional relationship. The combination of active LTPA and better lung function was strongly associated with higher cognition, highlighting the need to strengthen exercise focused on lung function to maintain cognitive health in older adults.
Collapse
Affiliation(s)
- Peng Hu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Song
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Heng
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan-Chuan Bai
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Rehabilitation, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Rui He
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Geriatrics, Chongqing Mental Health Centre, Chongqing, China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
| |
Collapse
|
16
|
Wu Y, Jin Y, Deng L, Wang Y, Wang Y, Chen J, Gao R, Wei S, Ni G, Zhou X, Zhang Z, Zeng B, Wei C, Huang W, Qiu S, Dong B. Long-Term High-Altitude Exposure, Accelerated Aging, and Multidimensional Aging-Related Changes. JAMA Netw Open 2025; 8:e259960. [PMID: 40358947 PMCID: PMC12076175 DOI: 10.1001/jamanetworkopen.2025.9960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 05/15/2025] Open
Abstract
Importance Exposure to high altitudes elicits multiple adaptive mechanisms that intricately impact the entire body, causing deleterious health outcomes. However, high-altitude exposure effects on accelerated aging and aging-related changes remain uncertain. Objective To comprehensively assess the associations of high-altitude exposure with overall aging and related changes and to provide insights into the treatment and prevention of aging-associated deficits in populations living in high-altitude areas. Design, Setting, and Participants This population-based cross-sectional study used data from 2 prospective studies in Western China: West China Natural Population Cohort (WCNPCS) and West China Health and Aging Trend (WCHAT). The WCNPCS cohort was constructed from May 2019 to June 2021. Data were collected from participants aged 18 years and older in 4 populous regions (Mianzhu, Longquan, Pidu, and Ganzi) in Sichuan Province. The WCHAT was initiated in 2018 and recruited participants aged 50 years and older from various regions (Sichuan, Yunnan, Guizhou, and Xinjiang). Participants were selected via sequential cluster sampling from the permanent residents of the participating community. Data for the present study were analyzed between March and October 2024. Exposure The participants' altitudes were determined using the global Shuttle Radar Topography Mission 4 data based on residential addresses. High-altitude areas refer to regions with altitudes of greater than or equal to 1500 m (4921 feet) above the mean sea level. Main Outcomes and Measures Biological aging (BA) and aging acceleration (AA) were measured through the Klemera-Doubal Biological Age (KDM-BA) and PhenoAge methods. Multidimensional aging-related metrics were based on questionnaire, measurement, and self-report. Results A total of 9846 participants from the WCNPCS cohort (mean [SD] age, 55.73 [11.06] years; 6730 women [68.35%]) and 3593 participants from the WCHAT cohort (mean [SD] age, 62.27 [8.40] years; 2253 women [62.71%]) were included. The participants living at high altitudes presented increased KDM-BA acceleration by 0.85 years for the WCNPCS cohort and 0.71 years for the WCHAT cohort. The PhenoAge results were similar, with even larger effect sizes (WCNPCS, β, 2.08 years; 95% CI, 1.77-2.39 years; WCHAT, β, 2.23 years; 95% CI, 1.91-2.54 years). The association between high-altitude exposure and biologically accelerated aging was particularly pronounced among smokers. Associations between high-altitude exposure and various multidimensional aging-related metrics were also observed. Conclusions and Relevance These findings suggest that extended periods at high altitudes may hasten BA and contribute to the onset of aging-related illnesses. Implementing public health interventions for individuals residing in high-altitude regions may aid in alleviating the disease burden within these communities.
Collapse
Affiliation(s)
- Yuwei Wu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Linghui Deng
- Department of Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yinlong Wang
- West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yurui Wang
- West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Junhan Chen
- West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ruohan Gao
- West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Shichao Wei
- West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Guohua Ni
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Chuzhong Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weichao Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- Department of Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Bu Y, Li S, Ye T, Wang Y, Song M, Chen J. Volatile oil of Acori tatarinowii rhizoma: potential candidate drugs for mitigating dementia. Front Pharmacol 2025; 16:1552801. [PMID: 40337511 PMCID: PMC12055781 DOI: 10.3389/fphar.2025.1552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aims to elucidate the mitigating effects of the volatile oil of Acori tatarinowii rhizoma (ATR) on dementia, in order to provide a reference for future research and applications of the volatile oil of ATR in the field of dementia. Materials and methods A search strategy was developed using terms such as "Acori tatarinowii rhizoma," "Acorus tatarinowii Schott," "Asarone," and "Dementia." The literature search was conducted in PubMed, Web of Science, and Google Scholar, and studies not meeting the inclusion criteria were excluded. This study summarizes the main metabolites, active ingredients, toxicological properties, and pharmacokinetic characteristics of the volatile oil from ATR in mitigating dementia, with a particular focus on its potential mechanisms of action. Furthermore, the study highlights the limitations of existing research and offers insights into future research directions. Results The volatile oil of ATR mitigates dementia through multiple pathways, including reducing abnormal protein aggregation, promoting neurogenesis, inhibiting neuronal apoptosis, regulating neurotransmitters, improving synaptic function, modulating autophagy, countering cellular stress, reducing neuroinflammation, and alleviating vascular risk factors. Conclusion The multi-pathway pharmacological effects of the volatile oil of ATR are well-aligned with the complex mechanisms of dementia progression, highlighting its significant therapeutic potential for anti-dementia applications. This provides new perspectives for the development of more effective anti-dementia drugs. Nonetheless, further rigorous and high-quality preclinical and clinical investigations are required to address key issues, including the chemical characterization of the volatile oil of ATR, potential synergistic effects among active ingredients, toxicity profiles, and definitive clinical efficacy.
Collapse
Affiliation(s)
- Yifan Bu
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingrong Song
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Sharma V, Verma R, Singh TG. Targeting hypoxia-related pathobiology in Alzheimer's disease: strategies for prevention and treatment. Mol Biol Rep 2025; 52:416. [PMID: 40266407 DOI: 10.1007/s11033-025-10520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION Alzheimer's Disease (AD) is a neurodegenerative condition characterised by cognitive decline and memory impairment. Recent research highlights the important role of hypoxia, a state of insufficient oxygen availability, in exacerbating AD pathogenesis. MATERIALS AND METHODS Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the role of hypoxia mediated pathobiology in AD. Only peerreviewed articles published in reputable journals in English language were included. Conversely, non-peer-reviewed articles, conference abstracts, and editorials were excluded, along with studies lacking experimental or clinical relevance or those unavailable in full text. CONCLUSION Hypoxia exacerbates core pathological features such as oxidative stress, neuroinflammation, mitochondrial dysfunction, amyloid-beta (Aβ) dysregulation, and hyperphosphorylation of tau protein. These interlinked mechanisms establish a self-perpetuating cycle of neuronal damage, accelerating disease progression. Addressing hypoxia as a modifiable risk factor offers potential for both prevention and treatment of AD. Exploring hypoxia and the HIF signalling pathway may help counteract the neuropathological and symptomatic effects of neurodegeneration.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Reet Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
19
|
Onkar A, Sheshadri D, Nagarajan K, Ganesh S. Inactivation of Laforin Phosphatase and Increased Glucose Uptake Underlie Glycogen Synthase-Mediated Neuronal Survival Under Oxidative Stress. Mol Neurobiol 2025:10.1007/s12035-025-04955-w. [PMID: 40261604 DOI: 10.1007/s12035-025-04955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Recent studies demonstrate that exposure of neurons to physiological stressors triggers glycogen synthase (GS) activation and glycogen synthesis as a transient cell survival mechanism. However, the mechanisms that regulate glycogen synthesis during stress and its role in neuronal physiology remain unclear. This study investigated the mechanisms that guide GS activation and glycogen accumulation under oxidative stress conditions as a model stressor. We use neuronal cell lines to demonstrate that hydrogen peroxide-induced oxidative stress activates GS and glycogen synthesis in neuronal cells. We further demonstrate that the stress-induced glycogen accumulation is dependent on the membrane localization of the Glut3 glucose transporters and increased glucose uptake during stress. The stress-induced activation of glycogen synthesis, however, is independent of intracellular glucose level, suggesting a parallel mechanism for activating GS and glucose uptake in neurons under physiological stress. We demonstrate that oxidative stress results in the inactivation of laforin phosphatase, leading to the membrane localization of Glut3 and activation of GS. Using the Drosophila model, we demonstrate that increased GS activity and concomitant glycogen accumulation are pro-survival mechanisms for neurons under oxidative stress. Our study thus offers novel insights into the pathways that regulate glycogen metabolism in neurons under oxidative stress and underscores their importance for neuronal survival.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Current address: Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Deepashree Sheshadri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kamali Nagarajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Current address: Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
20
|
Tofigh N, Agahi S, Riazi G, Ghalamkar Moazzam M, Shahpasand K. A Novel Phosphorylated Tau Conformer Implicated in the Tauopathy Pathogenesis of Human Neurons. Biomolecules 2025; 15:585. [PMID: 40305319 PMCID: PMC12025006 DOI: 10.3390/biom15040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no effective treatments. Hyperphosphorylation of tau protein contributes to neurodegeneration in AD. Previous studies have identified pT231-tau in the cis conformation as an early driver of neurodegeneration in tauopathy models. Here, we identify a novel neurotoxic pT231-tau conformer in human AD neurons, distinct from both cis and trans conformations, which we propose as the gauche pT231-tau conformer. Notably, levels of this conformer were elevated in neurons subjected to aging-associated stress. In order to confirm the stress, we examined p21 accumulation in both human iPSC-derived and mouse cortical neurons under aging stress. Targeted elimination of the gauche pT231-tau conformer mitigated neurodegeneration in human AD cultures. These findings suggest the gauche pT231-tau conformer plays a key role in tau-mediated neurodegeneration and may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Nahid Tofigh
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 13561-457, Iran;
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
| | - Sadaf Agahi
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran 14768-211, Iran;
| | - Gholamhossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 13561-457, Iran;
| | - Mahboobeh Ghalamkar Moazzam
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
21
|
Marengo A, Tejada M, Zirena IH, Molina S. Neurological Manifestations Associated with Exercise at Altitude. Curr Neurol Neurosci Rep 2025; 25:29. [PMID: 40202557 DOI: 10.1007/s11910-025-01418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW The effects that exercise at altitude has on the neurological system are diverse and still not well studied, and range from metabolic adaptations to modification of cerebral blood flow and neurotransmitters. In this review we summarise changes with exercise intensity, the implications of ascent, cognitive impairment, psychosis-like symptoms, the role of exercise in the development and prevention of AMS, and use of free radical scavengers to enhance sports performance and acclimatization. RECENT FINDINGS We discuss the impact of oxidative stress in hypobaric hypoxia and reactive oxygen species (ROS) production and its consequences, with special focus on exercise at altitude. Finally we consider how moderate intensity exercise could help prevent AMS, and the necessity of research on high intensity exercise with elevated rate of ascent, the development of specific tools of cognitive assessment, and the role of free-radical scavengers in the prevention of AMS and neurological symptoms.
Collapse
Affiliation(s)
- A Marengo
- Servicio de Neurología. Hospital Perrupato, San Martin, Mendoza, Argentina.
- Càtedra de Neurología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, 5500, Argentina.
| | - M Tejada
- Unidad de Cuidados Críticos, Hospital Santa Caterina, Girona, España.
| | - I Hancco Zirena
- Facultad de Medicina Humana, Centro de Investigación en Medicina de Altura (CIMA), Universidad de San Martín de Porres, Lima, Perú
| | - S Molina
- Psg Medicina Urgencia en Montaña, Diplomatura Medicina de Urgencia en Montaña EUCS-Universidad nacional de San Juan, San Juan, Argentina
| |
Collapse
|
22
|
Song Y, Chen Y, Li J, Sun W, Jin F. Manual acupuncture enhanced therapeutic efficacy in vascular dementia rat model: systematic review and network meta-analysis. Syst Rev 2025; 14:80. [PMID: 40186311 PMCID: PMC11971794 DOI: 10.1186/s13643-025-02821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE This study aimed to systematically evaluate the efficacy of electroacupuncture and manual acupuncture for treating vascular dementia and to determine the optimal acupuncture point combination scheme for efficacy. METHODS The PubMed, Embase, Web of Science, Cochrane, CNKI, VIP, and Wanfang electronic databases were searched up to July 2024 to identify relevant randomized controlled trials. RevMan 5.4 software and Addis software were used to assess the risk of bias for each study, determine subgroup classifications, and conduct meta-analyses. RESULTS A total of 29 RCTs involving 659 animals were ultimately included. The meta-analysis results revealed that acupuncture treatment had a significant effect compared with the vascular dementia model group [mean difference (MD) = - 21.68, 95% confidence interval (CI) (- 25.77, - 17.59), P < 0.00001]. Manual acupuncture demonstrated better efficacy than electroacupuncture did [MD = - 0.42, 95% CI (- 12.72, 12.27)]. Among the different acupuncture point combinations, the Baihui (GV20) + Dazhui (GV14) combination yielded the best efficacy [MD = - 23.03, 95% CI (- 30.02, - 16.04), P < 0.00001]. Compared with other acupuncture protocols, the experiment conducted by Caiyu Peng et al. exhibited superior efficacy [MD = - 24.96, 95% CI (- 92.68, - 40.76)]. CONCLUSION Acupuncture significantly improves cognitive function in rats with vascular dementia. Manual acupuncture is more effective than electroacupuncture. Among the different acupuncture point combinations, manual acupuncture at GV20 and GV14 yields the best results. Compared with other acupuncture protocols, the best efficacy was observed when the two-vessel occlusion (2VO) model was used in 230 ± 10 g SD rats; when the Mingmen (GV4), Dazhui (GV14), Fengfu (GV16), Baihui (GV20), Shenting (GV24), Shuigou (GV26), Neiguan (PC6), Dalin (PC7), and Laogong (PC8) acupoints were selected; and when manual acupuncture with reinforcing and reducing methods was used for 30 min per day for 14 days. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42024551402.
Collapse
Affiliation(s)
- Yuanyu Song
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Yinghua Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150006, China.
| | - Junfeng Li
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Wei Sun
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Fangfang Jin
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| |
Collapse
|
23
|
Shao J, Liu S, Chen C, Chen W, Zhu Z, Li L. Aging Impairs Implant Osseointegration Through a Novel Reactive Oxygen Species-Hypoxia-Inducible Factor 1α/p53 Axis. Tissue Eng Part A 2025. [PMID: 40171686 DOI: 10.1089/ten.tea.2024.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Enhancing bone-vessel coupling to form high-quality vascular-rich peri-implant bone is crucial for improving implant prognosis in elder patients. Notably, hypoxia-inducible factor 1α (HIF1α) is known to promote osteogenesis-angiogenesis coupling; however, this effect remains to be investigated in aged bone owing to the dual effect of HIF1α in different aged organs. In this study, HIF1α inhibitor or activator was applied to aged mice and their bone mesenchymal stem cells (BMSCs) to investigate the effects and inner mechanism of HIF1α on the peri-implant osteogenesis and angiogenesis in senescent status. Cell senescence, along with osteogenic and angiogenic abilities of aged BMSCs, was detected, respectively. Meanwhile, a femur implant implantation model was constructed on aged mice, and the bone-vessel coupling of peri-implant bone was observed. Mandibular bone morphology was also detected to further provide evidence for clinical oral implantation. Furthermore, p53 expression was examined in vivo and in vitro following HIF1α intervention. A reactive oxygen species (ROS) scavenger was also adopted to further investigate the roles of ROS in the HIF1α-p53 axis. Results showed that the suppression of HIF1α alleviated senescence and osteogenesis-angiogenesis coupling of aged BMSCs, while its activation aggravated these effects. The mandible phenotype and bone-vessel coupling in aged peri-implant bone also changed accordingly upon regulation of HIF1α. Mechanistically, p53 changed in the same direction as HIF1α in vivo and in vitro. Moreover, the ROS scavenger reversed the HIF1α-p53 relationship and weakened the effect of HIF1α inhibitor on peri-implant bone improvement. In conclusion, in aged mice, highly expressed HIF1α impaired peri-implant bone-vessel coupling and implant osseointegration through p53, and accumulated ROS was a prerequisite for HIF1α to positively regulate p53. These findings provide new insights into the role of HIF1α and the ROS-HIF1α/p53 signaling axis, offering potential therapeutic targets to improve implant outcomes in elderly patients.
Collapse
Affiliation(s)
- Jingjing Shao
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Feng X, Peng J, Cao X, Lai L, Huang D, Tao P, Pan X, Pan Q, Fan D, Lu S, Li C, Pan Y, Dong P, Wu H, Chai Y, Huang P, Huang H. Number of chronic diseases and cognitive function among the elderly in China: a moderated mediation model. Front Psychol 2025; 16:1491382. [PMID: 40099025 PMCID: PMC11913165 DOI: 10.3389/fpsyg.2025.1491382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/20/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Despite the wealth of data on the role of chronic disease comorbidity in shaping cognitive dysfunction in older adults, a comprehensive view of this dynamic interplay remains a frontier. This study will reveal the intricate interactions between the number of chronic diseases and cognitive function in the elderly, based on the perspective of cognitive function in patients with multiple chronic diseases. Methods Our study was based on the data from the 2023 China Psychological Care for the Elderly Action Survey, and the SPSS 26.0 (IBM Corp., Armonk, NY, United States) software package was used for mediation model analysis. The approach encompassed descriptive analysis of variables, Spearman's correlation analyses to explore associations between variables, and a moderated mediation analysis. Results The study found that the number of chronic diseases (r = 0.183, p < 0.001) was positively correlated with cognitive function. Anxiety and depression partially mediated the relationship between the number of chronic diseases and cognitive function (β = 0.227, 0.235, both p < 0.001). Age moderated the association between the number of chronic diseases and depression (β = 0.010, p < 0.001). Conclusion This study provides a comprehensive mediation model that establishes a new association between the number of chronic diseases and cognitive function in older adults. It suggests that we should pay attention to the negative impact of multiple chronic diseases on cognitive function of the elderly and improve their psychological coping ability, so as to ensure the stable development of healthy aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Huiqiao Huang
- Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Choi HN, Kim SH, Jo MG, Lee B, Kim YJ, Lee SE, Lee JH, Seong HM, Kim SJ, Park SW, Kim HJ, Kang H, Lee CH, Lee MY, Yun SP, Kim M. A2-Astrocyte Activation by Short-Term Hypoxia Rescues α-Synuclein Pre-Formed-Fibril-Induced Neuronal Cell Death. Biomedicines 2025; 13:604. [PMID: 40149582 PMCID: PMC11940376 DOI: 10.3390/biomedicines13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a neuro-degenerative disease for which a radical cure is not available, only symptomatic control. Studies have shown that hypoxia may have disease-modifying effects on PD. Methods: Herein, we investigated whether short-term hypoxia activates astrocytes and whether it has a protective effect on pre-formed fibril (PFF)-treated primary cortical neurons. Results: Long-term hypoxia suppresses astrocyte activation and induces cell death, whereas short-term hypoxia activates astrocytes without affecting cellular apoptosis or viability. Short-term hypoxia restored the cellular apoptosis and viability of PFF-treated neurons and reduced toxic phospho-α-synuclein (p-α-syn) aggregation. Similarly, the short-term hypoxia-exposed astrocyte-conditioned medium rescued cellular apoptosis and the viability of PFF-treated neurons and p-α-syn expression. Quantitative polymerase chain reaction revealed that short-term hypoxia promotes protective A2 astrocytes and suppresses toxic A1 astrocytes. Conclusions: Our findings suggest that short-term hypoxia has a neuro-protective effect against PD by activating protective A2 astrocytes, which rescue PFF-induced neuronal cell death. This provides insights into the clinical implications of short-term hypoxia as a disease-modifying PD strategy.
Collapse
Affiliation(s)
- Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong Hyun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Hye Min Seong
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.M.S.); (S.J.K.)
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.M.S.); (S.J.K.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
- Department of Neurology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chan Hyun Lee
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
| |
Collapse
|
26
|
Boulares A, Jdidi H, Douzi W. Cold and longevity: Can cold exposure counteract aging? Life Sci 2025; 364:123431. [PMID: 39884345 DOI: 10.1016/j.lfs.2025.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Aging is a multifaceted biological process characterized by a progressive decline in physiological functions and heightened vulnerability to diseases, shaped by genetic, environmental, and lifestyle factors. Among these, cold exposure has garnered interest for its potential anti-aging benefits. This review examines the impact of cold exposure on aging, focusing on key physiological processes such as inflammation, oxidative stress, metabolic regulation, and cardiovascular health. Cold exposure has been shown to reduce chronic inflammation, enhance antioxidant defenses, and improve metabolic health by activating brown adipose tissue. Furthermore, findings from hibernating mammals and model organisms suggest a connection between lower environmental temperatures and increased longevity. However, the potential long-term health risks of extended cold exposure, particularly in older adults, remain a significant concern. Epidemiological studies reveal increased rates of mortality and morbidity in populations living in cold climates, emphasizing the complexity of the relationship between cold exposure and aging. This review underscores the need for further research to elucidate the long-term effects of cold exposure on aging and to establish guidelines for leveraging its benefits while mitigating cold-induced risks.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), University of Poitiers, Faculty of Sport Sciences, STAPS, Poitiers, France.
| | - Hela Jdidi
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), University of Poitiers, Faculty of Sport Sciences, STAPS, Poitiers, France
| | - Wafa Douzi
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), University of Poitiers, Faculty of Sport Sciences, STAPS, Poitiers, France
| |
Collapse
|
27
|
Wang J, Xu W, Dove A, Salami A, Yang W, Ma X, Bennett DA, Xu W. Influence of lung function on macro- and micro-structural brain changes in mid- and late-life. Int J Surg 2025; 111:2467-2477. [PMID: 39869397 DOI: 10.1097/js9.0000000000002228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life. METHODS The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline. After 2.5 years, a subsample (n = 3895) underwent a second MRI scan. Lung function was assessed using a composite score based on forced expiratory volume in 1 second, forced vital capacity, and peak expiratory flow, and divided into tertiles (i.e., low, moderate, and high). Structural brain volumes (including total brain, gray matter, white matter, hippocampus, and white matter hyperintensities) and diffusion markers (fractional anisotropy [FA] and mean diffusivity [MD]) were assessed. Data were analyzed using linear regression and mixed-effects models. RESULTS Compared to high lung function, low lung function was associated with smaller total brain, gray matter, white matter, and hippocampal volume, as well as lower white matter integrity. Over the 2.5-year follow-up, low lung function was associated with reduced white matter and hippocampal volume, reduced FA, and increased white matter hyperintensity volume and MD. After stratification by age, the associations remained significant among adults aged 40-60 years and 60+ years. CONCLUSION Low lung function is associated with macro- and micro-structural brain changes involving both neurodegenerative and vascular pathologies. This association is significant in both mid- and late-life.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Epidemiology, College of Preventive Medicine,Third Military Medical University, Chongqing, China
| | - Weige Xu
- Department of Radiology, Tianjin Gongan Hospital, Tianjin, China
| | - Abigail Dove
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Alireza Salami
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Wenzhe Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine,Third Military Medical University, Chongqing, China
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Weili Xu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Obert DP, Park GH, Strong K, Schreier D, Korn E, Troyas C, Vincent KF, Solt K. Repeated High-dose Fentanyl Administration in Rats Reveals Minimal Tolerance to Unconsciousness, Bradycardia, Muscle Rigidity, and Respiratory Depression. Anesthesiology 2025; 142:465-475. [PMID: 39705671 PMCID: PMC11813677 DOI: 10.1097/aln.0000000000005324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
BACKGROUND Fentanyl is a synthetic opioid that is widely used in anesthesiology, but its illicit use is rapidly increasing. At high doses, fentanyl induces unconsciousness and muscle rigidity, the mechanisms of which are poorly understood. Since animal models are needed to study these effects, the aim of this study was to establish a rat model of fentanyl abuse and investigate the effects of repeated high-dose fentanyl injections on loss of righting reflex, heart rate, respiratory depression, muscle, and brain activity. METHODS Male and female Sprague-Dawley rats were studied (n = 40). A bolus of 100 µg/kg fentanyl was administered intravenously twice a week for 5 consecutive weeks. Time to return of righting reflex after fentanyl injection and changes in electromyography/electroencephalography activity as well as heart rate were analyzed. Additionally, arterial blood gas analysis for evaluation of ventilation was performed. Mixed-effect models with Dunnett test and effect sizes were used for statistical analysis. RESULTS Repeated injections resulted in a U-shaped change in time to return of righting reflex with the longest latency after the first exposure (median, 50 [first to third quartile, 36 to 56] min) and the shortest after the fifth exposure (16 [13 to 33] min). After fentanyl administration, heart rate dropped immediately by 225 beats/min (95% CI, 179 to 271; F = 3,952.16; P < 0.001), while electromyography activity increased by 291% (95% CI, 212 to 370; F = 27.51; P < 0.001) and partial pressure of arterial carbon dioxide increased by 49.4 mmHg (95% CI, 40.6 to 58.2; F = 75.97; P < 0.001) within 5 min after injection. Additionally, pH decreased by 0.48 (95% CI, 0.41 to 0.54; F = 142.00; P < 0.01), and partial pressure of arterial oxygen decreased by 50.4 mmHg (40.8 to 60.0; F = 57.90; P < 0.001). Repeated fentanyl exposures did not significantly affect the extent of these changes (EMG, F = 1.63, P = 0.237; partial pressure of arterial carbon dioxide, F = 1.23, P = 0.312; heart rate, F = 1.05, P = 0.400; pH, F = 3.05, P = 0.066; arterial partial pressure of oxygen, F = 3.35, P = 0.052). Electroencephalography analysis revealed that repeated fentanyl exposures elicited significantly higher absolute power in frequencies greater than 20 Hz as indicated by an area under the receiver operator characteristics curve greater than 0.7. CONCLUSIONS The authors established a rodent model of repeated high-dose fentanyl administration. Overall, significant evidence of tolerance was not observed after 10 exposures of high-dose fentanyl for any of the analyzed parameters. These results suggest that tolerance does not develop for fentanyl-induced unconsciousness, muscle rigidity, or respiratory depression.
Collapse
Affiliation(s)
- David P. Obert
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Gwi H. Park
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kaitlyn Strong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Brigham Young University, Provo, UT, USA
| | - David Schreier
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth Korn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carla Troyas
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Kathleen F. Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Liang J, Hussainy S, Lee SM, Wu G, Bautista N, Ding M, Wang H, LaFleur B, Perry G, Wang X. Association of Polygenic Risk Score for 5 Diseases With Alzheimer Disease Progression, Biomarkers, and Amyloid Deposition. Neurology 2025; 104:e210250. [PMID: 39836940 PMCID: PMC11748256 DOI: 10.1212/wnl.0000000000210250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/01/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder influenced by genetic and environmental factors. Conditions such as type 2 diabetes (T2D), cardiovascular disease, obesity, depression, and obstructive sleep apnea (OSA) increase AD risk and progression. This study aimed to examine the genetic predisposition to these conditions and their effect on AD pathophysiology, risk, and progression. METHODS A retrospective analysis was conducted using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a North American prospective cohort. Polygenic risk scores (PRSs) for OSA, T2D, coronary artery disease (CAD), major depression, and body mass index (BMI) were generated for 752 non-Hispanic White participants with whole-genome sequencing data. Logistic regression was used to evaluate associations between PRSs and progression from mild cognitive impairment (MCI) to AD. Time to progression across PRS quartiles was analyzed using Cox proportional hazards models. PET amyloid and tau deposition rates, regional neocortical atrophy, and cognitive composite score declines were compared across OSA PRS quartiles using analysis of variance (ANOVA). RESULTS Among 463 ADNI participants with baseline MCI (mean age 72.6 ± 7.3 years, 43.4% female), the OSA PRS, adjusted for BMI, was significantly associated with MCI-to-AD progression. The highest OSA PRS quartile had an odds ratio of 1.86 (95% CI 1.03-3.37) at 3 years and 2.02 (95% CI 1.16-3.51) at 5 years, compared with the lowest quartile. PRSs for T2D, CAD, major depression, and BMI were not associated with MCI-to-AD progression. Participants in the highest OSA PRS quartile had higher PET amyloid deposition and greater cognitive decline. In 752 participants (mean age 74.1 ± 7.3 years, 43.6% female), OSA PRS was significantly associated with baseline levels of PET amyloid, CSF amyloid-β 42, phosphorylated tau (p-tau), visinin-like protein 1, tumor necrosis factor receptor 1, and plasma neurofilament light after multiple testing adjustments. DISCUSSION Individuals with high polygenic susceptibility to OSA exhibited an increased risk of MCI-to-AD progression and a higher amyloid deposition rate, suggesting potential modifier effects of OSA or OSA-associated genes on AD progression and pathophysiology. However, the small sample size and lack of objective OSA diagnosis limit interpretation of these genetic effects.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pharmacy Practice and Science, University of Arizona, Tucson
| | - Sadiya Hussainy
- Department of Pharmacy Practice and Science, University of Arizona, Tucson
| | - Sara Michelle Lee
- Department of Pharmacy Practice and Science, University of Arizona, Tucson
| | - Gray Wu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson
| | - Natalie Bautista
- Department of Pharmacology and Toxicology, University of Arizona, Tucson
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA; and
| | - Bonnie LaFleur
- Department of Pharmacy Practice and Science, University of Arizona, Tucson
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson
| |
Collapse
|
30
|
Horvath CM, Drangova H, Stefela J, Schäfer C, Zubler F. Refuting a Temporal Correlation: Interictal Epileptic Discharges Do Not Preferentially Occur During Respiratory Events in Patients With Sleep-Related Breathing Disorder and Epilepsy. J Sleep Res 2025:e70021. [PMID: 39987914 DOI: 10.1111/jsr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
The bidirectional interaction between sleep and epilepsy is well known. In particular, it has been established that sleep apnea can worsen epilepsy, whereas sleep apnea (SA) treatment has a beneficial effect on seizure control. However, the exact mechanisms whereby SA promotes epileptic seizures are unknown. We set out to examine whether interictal epileptic discharges (IED), one of the hallmarks of epilepsy, occur predominantly during respiratory events (RE, apnea or hypopnea) or desaturations in patients with obstructive SA (OSA) and epilepsy. Adult patients (> 18) who underwent a video-polysomnography at the Bern University Hospital between 2012 and 2020 with an apnea-hypopnea-index (AHI) ≥ 10/h and IED were included in this retrospective study. IED density (per hour) was computed during and outside RE and oxygen desaturations (3%) using the AASM criteria and an extended definition. A total of 27 patients (9 females) met the inclusion criteria. The median age was 49 years and the median AHI was 17.4/h. There was no statistically significant difference in IED density in phases of sleep with RE compared to sleep without (median 3.6 [IQR 0.2-8.0] vs. 6.3 [3.7-19.7], p = 0.055). In the extended definition of RE, IED density was significantly lower during RE: 2.6 [0.3-6.6] versus 6.7 [3.9-20.5], p = 0.017. Desaturations were similarly associated with lower IED density in both analyses: 2.2 [0-7.4] versus 6.4 [3.4-18.4], p = 0.009 and 2.6 [0-6.7] versus 6.8 [3.4-18.5], p = 0.012. Our study shows that the influence of OSA on epileptic activity is probably indirect and does not result solely from immediate hypoxemia.
Collapse
Affiliation(s)
- Christian M Horvath
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hristina Drangova
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakub Stefela
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Carolin Schäfer
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Frederic Zubler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Neurology, Spitalzentrum Biel, University of Bern, Biel/Bienne, Switzerland
| |
Collapse
|
31
|
Puech C, Badran M, Barrow MB, Gozal D. Cognitive Function, Sleep, and Neuroinflammatory Markers in Mice Exposed to Very Long-Term Intermittent Hypoxia. Int J Mol Sci 2025; 26:1815. [PMID: 40076441 PMCID: PMC11899729 DOI: 10.3390/ijms26051815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic intermittent hypoxia (IH) is one of the hallmark features of obstructive sleep apnea (OSA) and adversely affects neurocognitive and behavioral functioning. However, how the duration of IH correlates with its deleterious effects remains unexplored. We aimed to assess the effects of IH over a prolonged period of time mimicking untreated OSA. Male C57Bl/6J mice were exposed to IH for 96 weeks. Sleep activity was acquired using a piezoelectric system. Novel object recognition (NOR) and the elevated plus maze test (EPMT) were conducted as measures of cognitive function and anxiety, respectively. Brain inflammation was evaluated by a panel of inflammation marker assays. All tests were performed after 16 and 96 weeks of IH exposure. After 96 weeks, sleep percentages during the dark phase decreased in both IH and room air (RA) compared to 16-week exposure (RA: p = 0.0214; IH: p = 0.0188). In addition to age-dependent declines in NOR performance, the mice after 96 weeks of IH exposure had lower NOR preference scores than RA controls (p = 0.0070). The time spent in open arms of the EPMT was reduced in mice exposed to IH compared to RA. Inflammatory marker expression increased in IH-exposed mice. Thus, aging and IH induce similar alterations in sleep, cognition, and neuroinflammation. However, the effects of aging are exacerbated by concurrent IH, suggesting that OSA is a disease associated with an acceleration in biological aging.
Collapse
Affiliation(s)
- Clementine Puech
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - Mohammad Badran
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - Max B. Barrow
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
32
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
33
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
34
|
Burtscher J, Gatterer H, Niederseer D, Vonbank K, Burtscher M. Flying to high-altitude destinations. Minerva Med 2025; 116:43-61. [PMID: 39101381 DOI: 10.23736/s0026-4806.24.09286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Every year millions of people fly to high-altitude destinations. They thereby expose themselves to specific high-altitude conditions. The hypoxic environment (low ambient oxygen availability) constitutes a major factor affecting health and well-being at high altitude. While the oxygen availability is already moderately reduced inside the aircraft cabin, this reduction becomes aggravated when leaving the plane at high-altitude destinations. Especially if not pre-acclimatized, the risk of suffering from high-altitude illnesses, e.g., acute mountain sickness, high-altitude cerebral or pulmonary edema, increases with the level of altitude. In addition, diminished oxygen availability impairs exercise tolerance, which not only limits physical activity at high altitude but may also provoke symptomatic exacerbation of pre-existing diseases. Moreover, the cold and dry ambient air and increased levels of solar radiation may contribute to adverse health effects at higher altitude. Thus, medical pre-examination and pre-flight advice, and proper preparation (pre-acclimatization, exercise training, and potentially adaptation of pharmacological regimes) are of utmost importance to reduce negative health impacts and frustrating travel experiences.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - David Niederseer
- Hochgebirgsklink Davos, Medicine Campus Davos, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education, Medicine Campus Davos, Davos, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Martin Burtscher
- Department Sport Science, University of Innsbruck, Innsbruck, Austria -
| |
Collapse
|
35
|
Xiao Q, Zhang X, Chen ZL, Zou YY, Tang CF. An Evidence-Based Narrative Review of Scleral Hypoxia Theory in Myopia: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:332. [PMID: 39796188 PMCID: PMC11719898 DOI: 10.3390/ijms26010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological mechanism of myopia can provide a scientific basis for developing measures to delay the progression of myopia or even treat it. Recent advances highlight that scleral hypoxia could be an important factor in promoting myopia. In this review, we summarized the role of scleral hypoxia in the pathology of myopia and also provided interventions for myopia that target scleral hypoxia directly or indirectly. We hope this review will aid in the development of novel therapeutic strategies and drugs for myopia.
Collapse
Affiliation(s)
- Qin Xiao
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
- College of Physical Education, Hunan First Normal University, Changsha 410205, China
| | - Xiang Zhang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Zhang-Lin Chen
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Yun-Yi Zou
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Chang-Fa Tang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| |
Collapse
|
36
|
Șovrea AS, Boșca AB, Dronca E, Constantin AM, Crintea A, Suflețel R, Ștefan RA, Ștefan PA, Onofrei MM, Tschall C, Crivii CB. Non-Drug and Non-Invasive Therapeutic Options in Alzheimer's Disease. Biomedicines 2025; 13:84. [PMID: 39857667 PMCID: PMC11760896 DOI: 10.3390/biomedicines13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches. Singly or as an applied technique to change the permeability of the blood-brain-barrier (BBB), FUS and TPS have demonstrated the benefits of use in treating AD in animal and human studies. Adipose-derived stem Cells (ADSCs), gene therapy, and many other alternative methods (diet, sleep pattern, physical exercise, nanoparticle delivery) are also new potential treatments since multimodal approaches represent the modern trend in this disorder research therapies.
Collapse
Affiliation(s)
- Alina Simona Șovrea
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Adina Bianca Boșca
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Eleonora Dronca
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Anne-Marie Constantin
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Andreea Crintea
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Rada Suflețel
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Roxana Adelina Ștefan
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Paul Andrei Ștefan
- Radiology and Imaging Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Christoph Tschall
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Carmen-Bianca Crivii
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| |
Collapse
|
37
|
Ramírez-delaCruz M, Ortiz-Sánchez D, Bravo-Sánchez A, Portillo J, Esteban-García P, Abián-Vicén J. Effects of different exposures to normobaric hypoxia on cognitive performance in healthy young adults.: Normobaric hypoxia and cognitive performance. Physiol Behav 2025; 288:114747. [PMID: 39547435 DOI: 10.1016/j.physbeh.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Normobaric hypoxia has become an innovative non-pharmacological therapy to treat cognitive dysfunction. Nevertheless, the acute effects of exposure to hypoxia on cognitive performance remain unclear. We aimed to determine the effects of different normobaric hypoxic exposures on cognitive function in healthy young adults. Nineteen participants (13 men and 6 women; 23.7 ± 3.9 years; 172.0 ± 8.4 cm; 69.1 ± 12.2 kg) completed a cross-over randomized control trial with the following doses of fraction of inspired oxygen (FiO2): a) 21 %, b) 15 %, c) 13 % or d) 11 %. During experimental trials, the physiological response (blood oxygen saturation and heart rate) and the following cognitive abilities were evaluated: memory, sustained attention, anticipation, and reaction time. Sustained attention improved under hypoxia at 15 % FiO2 (mean difference (MD) 0.024, 95 % confidence intervals (CI) 0.005 to 0.044 s; p = 0.018) compared to 11 % and 21 % FiO2. During 11 % and 15 % FiO2, participants showed improved anticipation ability compared to normoxia (MD -0.023, 95 % CI -0.042 to -0.003 s, p = 0.020, and MD -0.009, 95 % CI -0.016 to -0.001 s, p = 0.022, respectively). However, reaction time was impaired under 11 % compared to 21 % FiO2 (MD 0.033, 95 % CI 0.008 to 0.059 s, p = 0.013). Finally, we did not find significant effects of hypoxia on memory (p > 0.05). Severe normobaric hypoxic exposure (11 % FiO2) produces detrimental effects on reaction time, although anticipation seems to be improved, compared to normoxia. In addition, cognitive processes of attention and anticipation appear to improve with moderate hypoxic exposure (15 % FiO2).
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - David Ortiz-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Spain.
| | - Javier Portillo
- Motor Competence and Excellence in Sport, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071. Toledo, Spain.
| | - Paula Esteban-García
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| |
Collapse
|
38
|
Zhang Q, Wang Q, Jin F, Huang D, Ji X, Wang Y. Intermittent hypoxia training improves cerebral blood flow without cognitive impairment. Ann Clin Transl Neurol 2025; 12:86-96. [PMID: 39543930 PMCID: PMC11752099 DOI: 10.1002/acn3.52248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE Brief exposure to intermittent hypoxia has been shown to potentially induce protective effects in the body. Animal studies suggest that intermittent hypoxia could increase cerebral blood flow and confer resistance to subsequent hypoxic-ischemic injury, yet clinical investigations are limited. This study aimed to evaluate the impact of a moderate short-term intermittent hypoxia protocol on cerebral blood flow and cognitive performance. METHODS Subjects who met the inclusion criteria were recruited to this study and randomized into the intermittent hypoxia group or the control group, which receives intermittent hypoxia training and sham-intermittent hypoxia training, respectively. Cerebral hemodynamics, cognitive performance, cerebral perfusion pressure, and oxygen saturation were assessed before and after the intervention. RESULTS A total of 100 healthy participants were included in this study. Compared to the control group, the intermittent hypoxia group exhibited higher peak systolic blood flow velocity (108.64 ± 22.53 vs. 100.21 ± 19.06, p = 0.049) and cerebrovascular conduction index (0.74 ± 0.17 vs. 0.66 ± 0.21, p = 0.027), and lower cerebrovascular resistance index (1.41 ± 0.29 vs. 1.54 ± 0.36, p = 0.044) following intermittent hypoxia training. Additionally, within-group comparisons revealed that intermittent hypoxia training led to increased cerebral blood flow velocity, elevated cerebrovascular conductance index, and decreased cerebrovascular resistance index (p < 0.05). Other indicators including cognitive function, cerebral perfusion pressure, and oxygen saturation did not exhibit significant differences between groups. INTERPRETATION These findings revealed that intermittent hypoxia may represent a safe and effective strategy for improving cerebral blood flow.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Feiyang Jin
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dan Huang
- Development Coordination OfficeBeijing Xiaotangshan HospitalBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuan Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
39
|
Hadidchi R, Pakan R, Alamuri T, Cercizi N, Al-Ani Y, Wang SH, Henry S, Duong TQ. Long COVID-19 outcomes of patients with pre-existing dementia. J Alzheimers Dis 2025; 103:605-615. [PMID: 39686622 DOI: 10.1177/13872877241303934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND Although COVID-19 has been linked to worse acute outcomes in patients with some neurodegenerative disorders, its long-term impact on dementia remains unclear. OBJECTIVE To investigate the outcomes of COVID-19 survivors with dementia. METHODS This retrospective study evaluated 9806 patients with dementia in the Montefiore Health System (January 2016 to July 2023). Comparisons were made between dementia patients with and without a positive SARS-CoV-2 polymerase-chain-reaction test who had a follow-up at least two weeks post-infection. Outcomes included all-cause mortality, major adverse cardiovascular events (MACE), new-onset dysphagia, dyspnea, fatigue, new-onset sleep disturbances, altered mental status, first-time fall, headache, new-onset depression, and new-onset anxiety. Adjusted hazard ratios (aHR) were computed adjusting for age, sex, race, ethnicity, and pre-existing comorbidities. RESULTS Dementia patients with COVID-19 were younger, more likely to be male, and had a higher prevalence of major pre-existing comorbidities compared to those without COVID-19. Patients who survived acute COVID-19 were more likely to die than non-COVID controls after adjusting for covariates (aHR = 1.65 [1.43, 1.91]). COVID-19 was significantly associated with higher risk of MACE (aHR = 1.58 [1.41, 1.78]), new-onset dysphagia (aHR = 1.64 [1.42, 1.91]), dyspnea (aHR = 1.27 [1.12, 1.44]), fatigue (aHR = 1.42 [1.22, 1.65]), new-onset sleep disturbances (aHR = 1.36 [1.15, 1.60]), altered mental status (aHR = 1.36 [1.16, 1.59]), and first-time fall (aHR = 1.34 [1.09, 1.65]). CONCLUSIONS COVID-19 increases the risk of mortality and other adverse health outcomes in dementia patients. These findings highlight the need for closer follow-up and management strategies for dementia patients post-COVID-19.
Collapse
Affiliation(s)
- Roham Hadidchi
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Rachel Pakan
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Tharun Alamuri
- Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Noel Cercizi
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Yousef Al-Ani
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Stephen H Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
40
|
Xue X, Zhao Z, Zhao LB, Gao YH, Xu WH, Cai WM, Chen SH, Li TJ, Nie TY, Rui D, Ma Y, Qian XS, Lin JL, Liu L. U-Shaped Relationship Between MSpO 2 Levels and the Incidence of Frailty in Elderly OSA Patients: Findings from a Multicenter Cohort Study. Clin Interv Aging 2024; 19:2109-2119. [PMID: 39687032 PMCID: PMC11648552 DOI: 10.2147/cia.s489962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Previous studies have demonstrated a significant correlation between obstructive sleep apnea (OSA) and frailty. However, the association of mean pulse oxygen saturation (MSpO2) with frailty among OSA patients remains unconfirmed. This study aimed to explore this potential association using data from a multicenter, prospective cohort. Methods A total of 1006 elderly patients diagnosed with OSA through polysomnography (PSG) from January 2015 to October 2017 were enrolled. Patients were stratified into four groups according to their MSpO2 levels to assess differences in frailty onset. Multivariate Cox regression analysis, Kaplan-Meier curves, restricted cubic splines, and subgroup analyses were employed to evaluate variations in frailty onset across different MSpO2 levels. Results Over a median follow-up period of 52 months, 275 patients developed frailty. Analysis using restricted cubic splines revealed a U-shaped trend between MSpO2 and frailty risk (non-linear p-value = 0.028). Patients in the lowest quartile (MSpO2 < 91.6%) exhibited a higher risk of frailty (hazard ratio [HR] = 1.43, 95% confidence interval [CI] 1.03-1.97, P = 0.029) compared to those in the third quartile (MSpO2 93-95%). Subgroup and sensitivity analyses confirmed the robustness of the U-shaped relationship. Conclusion There is a U-shaped association between MSpO2 and frailty among patients with OSA. Enhancing MSpO2 levels may mitigate the risk of frailty and improve prognosis in this population.
Collapse
Affiliation(s)
- Xin Xue
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhe Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li-Bo Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ying-Hui Gao
- PKU-Upenn Sleep Center, Peking University International Hospital, Beijing, People’s Republic of China
| | - Wei-Hao Xu
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei-Meng Cai
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Shao-Hua Chen
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tian-Jiao Li
- Medical College, Yan’ an University, Yan’ an, People’s Republic of China
| | - Ting-Yu Nie
- Medical College, Yan’ an University, Yan’ an, People’s Republic of China
| | - Dong Rui
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yao Ma
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiao-Shun Qian
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jun-Ling Lin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, People’s Republic of China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
41
|
Cheng R, Bai N, Liu S, Zhao X, Jiang B, Guo W, Cao S, Liu J, Li N, Li X, Wu X, Yi F, Wang Z, Guo Q, Wei J, Bai M, Jiang X, Song X, Wang Z, Miao Q, Wang D, Di Y, Liu H, Cao L. The deacetylase SIRT6 reduces amyloid pathology and supports cognition in mice by reducing the stability of APP in neurons. Sci Signal 2024; 17:eado1035. [PMID: 39656860 DOI: 10.1126/scisignal.ado1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder that results in progressively impaired memory and is often associated with amyloid plaques. Previous studies implicate the deacetylases SIRT1 and SIRT2 in regulating the processing of amyloid precursor protein (APP). Here, we investigated whether APP is regulated by the related deacetylase SIRT6, which shows aging-associated decreases in activity. We found that the abundance of SIRT6 was reduced in the cortex and hippocampus of aged and AD model mice and negatively correlated with that of APP. In mouse hippocampal neurons and transfected human cells, SIRT6 interacted with and deacetylated APP at three consecutive Lys residues (Lys649, Lys650, and Lys651). This deacetylation, in turn, increased the ubiquitylation of APP, leading to its proteasomal degradation. SIRT6 abundance in neurons was reduced by oxidative stress and DNA damage, both of which are implicated in neurodegenerative pathology. Systemic pharmacological activation of SIRT6 ameliorated both amyloid pathology and cognitive deficits in APP/PS1 mice, a mouse model of AD. The findings demonstrate that the activity of SIRT6 destabilizes APP and suggest that activating SIRT6 has therapeutic potential to reduce amyloid-associated pathology in patients with AD.
Collapse
Affiliation(s)
- Rong Cheng
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Ning Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiong Zhao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Sunrun Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingwei Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoman Li
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jiayi Wei
- Department of Developmental Cell Biology, School of Life Sciences; Key Laboratory of Cell Biology, Ministry of Public Health; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ming Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyou Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Song
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qi Miao
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Hua Liu
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Liu Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
42
|
Martínez-López S, Tabone M, Clemente-Velasco S, González-Soltero MDR, Bailén M, de Lucas B, Bressa C, Domínguez-Balmaseda D, Marín-Muñoz J, Antúnez C, Gálvez BG, Larrosa M. A systematic review of lifestyle-based interventions for managing Alzheimer's disease: Insights from randomized controlled trials. J Alzheimers Dis 2024; 102:943-966. [PMID: 39584279 DOI: 10.1177/13872877241292829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge in healthcare, prompting exploration into non-pharmacological interventions to complement traditional treatments. OBJECTIVE This systematic review explores the efficacy of lifestyle-based interventions in managing AD. METHODS A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus between 2018 and 2023, selecting randomized controlled trials examining factors such as exercise, diet, stress, and cognitive training in AD patients. RESULTS The review revealed physical exercise as the predominant non-pharmacological intervention, accompanied by dietary modifications, cognitive training, and therapies such as mindfulness and music. While exercise demonstrated improvements in quality of life, its cognitive benefits were limited. Modified diets, such as Atkins and ketogenic, displayed inconsistent effects on cognitive function but influenced other health-related parameters. Additionally, probiotic therapy and novel cognitive training technologies were explored. CONCLUSIONS Despite some interventions showing promise in enhancing cognitive function and slowing disease progression, uncertainties remain regarding the dose-response relationship, underlying mechanisms, and potential synergistic effects. Moreover, consideration of genetic and sex-based disparities is warranted. This synthesis underscores the need for further research to elucidate the nuances of non-pharmacological interventions in managing AD effectively. PROSPERO REGISTRATION NUMBER CRD42023432823.
Collapse
Affiliation(s)
- Sara Martínez-López
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Masmicrobiota Research group, Madrid, Spain
| | - Mariangela Tabone
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Biomédicas y Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Sara Clemente-Velasco
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Biomédicas y Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Maria Del Rocío González-Soltero
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Biomédicas y Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María Bailén
- Masmicrobiota Research group, Madrid, Spain
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz de Lucas
- Masmicrobiota Research group, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, Pozuelo de Alarcón, Madrid, Spain
| | - Diego Domínguez-Balmaseda
- Masmicrobiota Research group, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Real Madrid Graduate School, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Juan Marín-Muñoz
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Larrosa
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Masmicrobiota Research group, Madrid, Spain
| |
Collapse
|
43
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
44
|
Camacho-Cardenosa A, Camacho-Cardenosa M, Burtscher J, Olivares PR, Olcina G, Brazo-Sayavera J. Intermittent Hypoxic Training Increases and Prolongs Exercise Benefits in Adult Untrained Women. High Alt Med Biol 2024; 25:274-284. [PMID: 38717184 DOI: 10.1089/ham.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024] Open
Abstract
Camacho-Cardenosa, Alba, Marta Camacho-Cardenosa, Johannes Burtscher, Pedro R. Olivares, Guillermo Olcina, and Javier Brazo-Sayavera. Intermittent hypoxic training increases and prolongs exercise benefits in adult untrained women. High Alt Med Biol. 25:274-284, 2024. Background: Exercising in hypoxia may confer multiple health benefits, but the evidence for specific benefits is scarce. Methods: We investigated effects of intermittent hypoxic training (IHT) on the quality of life and functional fitness of healthy adult women, in a double-blind, randomized, placebo-controlled study. Subjects performed 36 sessions of IHT (experimental group, n = 41; fraction of inspired oxygen [FIO2]: 0.17) or the same training in normoxia (control group, n = 41; FIO2: 0.21). Health-related quality of life, fitness tests, and hemoglobin levels were assessed before (T1), directly after (T2), and 4 weeks after (T3) cessation. Results: At T2, upper body strength (+14.96%), lower body strength (+26.20%), and agility (-4.94%) increased significantly in the experimental group compared to baseline but not in controls. The experimental group improved lower body strength more (by 9.85%) than controls at T2 and performed significantly better in walking (by 2.92%) and upper body strength testing (by 16.03%), and agility (by 4.54%) at T3. Perceived general health and vitality was significantly greater in the experimental group at T2 and T3 compared with T1. None of these improvements were observed in the control group. Conclusions: IHT is a promising strategy to induce long-lasting fitness benefits in healthy adult women.
Collapse
Affiliation(s)
- Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | | | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pedro R Olivares
- Faculty of Education, Psychology and Sport Sciences, University of Huelva, Huelva, Spain
- Universidad Autónoma de Chile, Talca, Chile
| | - Guillermo Olcina
- Faculty of Sports Sciences, University of Extremadura, Cáceres, Spain
| | - Javier Brazo-Sayavera
- Department of Sports and Computer Science, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
45
|
Zuo Q, Song L, Gao X, Cen M, Fu X, Qin S, Wu J. Associations of metabolic syndrome with cognitive function and dementia risk: Evidence from the UK Biobank cohort. Diabetes Obes Metab 2024; 26:6023-6033. [PMID: 39360436 DOI: 10.1111/dom.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
AIM To investigate the associations of metabolic syndrome (MetS) with cognitive function, dementia and its subtypes. METHODS Based on the participants recruited by UK Biobank, this study aims to investigate the associations of MetS with cognitive function, dementia and its subtypes. Generalized estimating equations, Cox proportional risk models, and multiple linear regression models were respectively used to assess associations between MetS and dementia-related outcomes. RESULTS Among the 363,231 participants, 95,713 had MetS at baseline. The results showed that MetS was significantly associated with cognitive function related to fluid intelligence and prospective memory at follow-up. Among participants aged ≥60 years, MetS was correlated with elevated risk of all-cause dementia, particularly vascular dementia (VaD) [hazard ratio 1.115 (95% confidence interval: 1.047, 1.187), hazard ratio 1.393 (95% confidence interval: 1.233, 1.575), respectively]. With increasing MetS components, the risk of all-cause dementia and VaD tended to be elevated. MetS has also been associated with dementia-related structural changes in the brain, including alterations in overall brain volume, white matter volume, grey matter volume and white matter integrity. CONCLUSION MetS was associated with poorer cognitive performance and might increase the risk of all-cause dementia as well as VaD, but the effect on Alzheimer's disease was not significant. Holistic control of the MetS may benefit the prevention and control of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Qianlin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manqiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shifan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Kanli G, Boudissa S, Jirik R, Adamsen T, Espedal H, Rolfsnes HO, Thorsen F, Pacheco-Torres J, Janji B, Keunen O. Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET. Methods Cell Biol 2024; 191:289-328. [PMID: 39824561 DOI: 10.1016/bs.mcb.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Georgia Kanli
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Selma Boudissa
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tom Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Heidi Espedal
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Western Australia National Imaging Facility, The University of Western Australia, Perth, Australia
| | - Hans Olav Rolfsnes
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Frits Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, China
| | - Jesus Pacheco-Torres
- Institute for Biomedical Research Sols-Morreale (IIBM), Spanish National Research Council-Universidad Autónoma de Madrid, Madrid, Spain
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| | - Olivier Keunen
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
47
|
Millet GP. Letter to the Editor: Solastalgia and Serendipity-at Altitude and in Academia. High Alt Med Biol 2024. [PMID: 39540205 DOI: 10.1089/ham.2024.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Affiliation(s)
- Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
49
|
Winter-Hjelm N, Sikorski P, Sandvig A, Sandvig I. Engineered cortical microcircuits for investigations of neuroplasticity. LAB ON A CHIP 2024; 24:4974-4988. [PMID: 39264326 DOI: 10.1039/d4lc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent advances in neural engineering have opened new ways to investigate the impact of topology on neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit motifs that promote both segregation and integration of information processing in the engineered neural networks, similar to those observed in vivo. However, the impact of the underlying topologies on network dynamics and response to pathological perturbation remains largely unresolved. In this work, we demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular, cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics across layers, mirroring key elements of the feedforward, hierarchical information processing observed in the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such perturbations induce ablation of information flow across the hypoxic node, while enabling the study of plasticity and information processing adaptations in neighboring nodes and neural communication pathways. In summary, our presented model system recapitulates fundamental attributes of the microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical neuroscience research. This model system holds promise for yielding new insights into the development, topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and mesoscale level, in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| |
Collapse
|
50
|
Matheoudakis K, O'Connor JJ. Modulatory and protective effects of prolyl hydroxylase domain inhibitors in the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:211-235. [PMID: 39929580 DOI: 10.1016/bs.apha.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Oxygen is essential for all mammalian species, with complex organs such as the brain requiring a large and steady supply to function. During times of low or inadequate oxygen supply (hypoxia), adaptation is required in order to continue to function. Hypoxia inducible factors (HIF) are transcription factors which are activated during hypoxia and upregulate protective genes. Normally, when oxygen levels are sufficient (normoxia) HIFs are degraded by oxygen sensing prolyl hydroxylase domain proteins (PHD), but during hypoxia PHDs no longer exert influence on HIFs allowing their activation. Given that PHDs regulate the activity of HIFs, their pharmacological inhibition through PHD inhibitors (PHDIs) is believed to be the basis of their neuroprotective benefits. This review discusses some of the potential therapeutic benefits of PHDIs in a number of neurological disorders which see hypoxia as a major pathophysiological mechanism. These include stroke, Parkinson's disease, and amyotrophic lateral sclerosis. We also explore the potential neuroprotective benefits and limitations of PHDIs in a variety of disorders in the central nervous system (CNS). Additionally, the activation of HIFs by PHDIs can have modulatory effects on CNS functions such as neurotransmission and synaptic plasticity, mechanisms critical to cognitive processes such as learning and memory.
Collapse
Affiliation(s)
- Konstantinos Matheoudakis
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|