1
|
Xu Y, Zhang X, Zhang Y, Ma H, Zhou Z, Qin H, Liu H, Han X. Integrated multi-omics insight into the molecular networks of oxidative stress in triggering multiple sclerosis. Neurobiol Dis 2025; 210:106929. [PMID: 40280189 DOI: 10.1016/j.nbd.2025.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Oxidative stress (OS) is a key pathophysiological mechanism in multiple sclerosis (MS). However, the underlying mechanisms by which OS triggered MS remain unknown. To identify potential causal targets of 1216 OS-related genes for MS, a summary-data-based Mendelian randomization (SMR) method was applied. Given that genes can exert their biological functions through different omics levels, the multi-omics SMR integrating expression, methylation, and protein quantitative trait loci (eQTL, mQTL, and pQTL) of OS-related genes from blood and brain tissues was utilized. Bayesian colocalization test was conducted to examine potential regulatory mechanisms of QTL risk variation in MS. To verify the robustness of our results, we validated these findings in FinnGen cohort. Furthermore, the QTL evidence levels, colocalization findings, and replication cohort results were integrated and potential target genes were categorized into three levels. Consequently, three genes (BACH2, TRAF3, and MAPK3) were identified as potential contributors to MS in blood, and four genes (HMGCL, TSFM, TRAF3 and HLA-B) were identified as potential contributors to MS in brain tissue. Additionally, HMGCL and TSFM from brain tissue were supported by first-level evidence related to MS and were validated via in vitro experiments. This research not only contributed to fundamental research of OS in MS but also supported the identification of potential targets for clinical interventions in MS.
Collapse
Affiliation(s)
- Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaowei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongxuan Ma
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongzhuo Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huimin Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
2
|
Qiu X, Wu W, Zhang S, Huang C, Lin D. 3-Hydroxybutyrate Promotes Myoblast Proliferation and Differentiation through Energy Metabolism and GPR109a-Mediated Ca 2+-NFAT Signaling Pathways. J Proteome Res 2025; 24:2063-2080. [PMID: 40099866 DOI: 10.1021/acs.jproteome.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Skeletal muscle wasting is a critical clinical problem associated with several diseases that significantly impair patient outcomes due to the progressive loss of muscle mass and function. This study explores the potential of 3-hydroxybutyrate (3-HB) as a therapeutic agent to counteract muscle atrophy by promoting the proliferation and differentiation of C2C12 myoblasts. Using nuclear magnetic resonance (NMR)-based metabolomics analysis, we uncover the underlying mechanisms by which 3-HB exerts its effects. Our findings demonstrate that 3-HB exerts its effects through two distinct mechanisms: as a metabolic substrate and as a signaling molecule. As a metabolic substrate, 3-HB enhances myoblast energy efficiency by stimulating the expression of G protein-coupled receptor 109a (GPR109a), which subsequently upregulates the 3-HB transporters MCT1 and CD147, the utilization enzyme OXCT1, and phosphorylated AMPK, thereby increasing ATP production. As a signaling molecule, 3-HB activates GPR109a, promoting calcium influx, improving calcium homeostasis, and increasing the expression of Ca2+-related proteins such as CAMKK2. This signaling cascade activates calcineurin (CaN), facilitating NFAT translocation to the nucleus and gene expression that drives myoblast proliferation and differentiation. By elucidating the dual regulatory roles of 3-HB in energy metabolism and cellular signaling, this study not only advances our understanding of muscle physiology but also highlights the potential of 3-HB as a novel therapeutic approach for the prevention or treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenfang Wu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuya Zhang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Setoyama D, Han D, Tian J, Lee H, Shin H, Nga H, Nguyen T, Moon J, Jang H, Kim E, Choe S, Ju S, Choi D, Kwon O, Yi H. Comparative Analysis of Primary Sarcopenia and End-Stage Renal Disease-Related Muscle Wasting Using Multi-Omics Approaches. J Cachexia Sarcopenia Muscle 2025; 16:e13749. [PMID: 40207397 PMCID: PMC11982700 DOI: 10.1002/jcsm.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 01/29/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Age-related primary sarcopenia and end-stage renal disease (ESRD)-related muscle wasting are discrete entities; however, both manifest as a decline in skeletal muscle mass and strength. The etiological pathways differ, with aging factors implicated in sarcopenia and a combination of uremic factors, including haemodialysis, contributing to ESRD-related muscle wasting. Understanding these molecular nuances is imperative for targeted interventions, and the integration of proteomic and metabolomic data elucidate these intricate processes. METHODS We generated detailed clinical data and multi-omics data (plasma proteomics and metabolomics) for 78 participants to characterise sarcopenia (n = 28; mean age, 72.6 ± 7.0 years) or ESRD (n = 22; 61.6 ± 5.5 years) compared with controls (n = 28; 69.3 ± 5.7 years). Muscle mass was measured using bioelectrical impedance analysis and handgrip strength. Five-times sit-to-stand test performance was measured for all participants. Sarcopenia was diagnosed in accordance with the 2019 Consensus Guidelines from the Asian Working Group for Sarcopenia. An abundance of 234 metabolites and 722 protein groups was quantified in all plasma samples using liquid chromatography with tandem mass spectrometry. RESULTS Muscle mass, handgrip strength and lower limb muscle function significantly lower in the sarcopenia group and the ESRD group compared with those in the control group. Metabolomics revealed altered metabolites, highlighting exclusive differences in ESRD-related muscle wasting. Metabolite set enrichment analysis revealed the involvement of numerous metabolic intermediates associated with urea cycle, amino acid metabolism and nucleic acid metabolism. Catecholamines, including epinephrine, dopamine and serotonin, are significantly elevated in the plasma of patients within the ESRD group. Proteomics data exhibited a clearer distinction among the three groups compared with the metabolomics data, particularly in distinguishing the control group from the sarcopenia group. The ciliary neurotrophic factor receptor was top-ranked in terms of the variable importance of projection scores. Plasma AHNAK protein levels was higher in the sarcopenia group but was lower in the ESRD group. Proteomic set enrichment analysis revealed enrichment of several pathways related to sarcopenia, such as hemopexin, defence response and cell differentiation, in sarcopenia group. Multi-omic integration analysis revealed associations between relevant metabolites, including catecholamines, and a group of annotated proteins in extracellular exosomes. CONCLUSIONS We identified distinct multi-omic signatures in individuals with ESRD or sarcopenia, providing new insights into the mechanisms underlying ESRD-related muscle wasting, which differ from primary sarcopenia. These findings may support interventions for context-dependent muscle loss and contribute to the development of targeted treatments and preventive strategies for muscle wasting.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
| | - Dohyun Han
- Proteomics Core FacilitySeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Hyun Suk Shin
- Proteomics Core FacilitySeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Evonne Kim
- Department of Biomedical Sciences, BK21 FOUR Biomedical Science ProgramSeoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Kyu Choe
- Department of Medicine, Graduate SchoolWonkwang UniversityIksanSouth Korea
- Sarcopenia Total Solution CenterWonkwang UniversityIksanSouth Korea
| | - Sang Hyeon Ju
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| | - Dae Eun Choi
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| | - Obin Kwon
- Department of Biomedical Sciences, BK21 FOUR Biomedical Science ProgramSeoul National University College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulSouth Korea
- Genomic Medicine Institute, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Hyon‐Seung Yi
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
- Sarcopenia Total Solution CenterWonkwang UniversityIksanSouth Korea
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| |
Collapse
|
4
|
Sun Y, Yang S, Xiao Z, An Y, Zhao H. Risk factors and predictive modeling in a US population with sarcopenia: a propensity score cohort study. Sci Rep 2025; 15:6953. [PMID: 40011668 PMCID: PMC11865546 DOI: 10.1038/s41598-025-91437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Sarcopenia, characterized by loss of muscle mass and strength, particularly affects older adults and is linked to increased morbidity and mortality. The study aimed to investigate the relationship between biomarkers, including hemoglobin (Hb), lactate dehydrogenase (LDH), and Systemic Immune-Inflammation Index (SII), and sarcopenia in the US population. Utilizing NHANES data from 2003 to 2018, the study analyzed 5,615 participants, categorizing them based on quartiles of Hb, SII, and LDH levels. It employed logistic regression models to assess the relationship between these biomarkers and sarcopenia risk, adjusting for various confounders. High levels of LDH, Hb and SII were significantly associated with sarcopenia, with higher risk in the highest quartile. The AUC for all indicators in predicting sarcopenia was 0.925 (sensitivity 0.925; specificity 0.743). The study concludes that elevated Hb, LDH, and SII levels are significant biomarkers associated with sarcopenia, emphasizing the role of inflammation in its development and the potential for these markers in early detection and intervention.
Collapse
Affiliation(s)
- Yao Sun
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Shuguang Yang
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Zengli Xiao
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China.
| |
Collapse
|
5
|
Xue Z, Cao J, Mou J, Wang R, Liu P. Relationship of monocyte to high-density lipoprotein ratio (MHR) and other inflammatory biomarkers with sarcopenia: a population-based study. Lipids Health Dis 2025; 24:42. [PMID: 39923040 PMCID: PMC11806851 DOI: 10.1186/s12944-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVES In previous studies, several inflammatory biomarkers derived from complete blood cell counts (CBC), such as systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and non‑high‑density lipoprotein cholesterol to high‑density lipoprotein cholesterol ratio (NHHR) have been identified as predictors of sarcopenia. However, whether Monocyte to High-Density Lipoprotein Cholesterol Ratio (MHR) can predict the development of sarcopenia has not yet been established. The research first attempts to investigate the association between MHR and low muscle mass and to compare the predictive abilities of MHR, SII, NLR, and NHHR for low muscle mass risk. METHODS The study comprised 10,321 participants aged 20 years and above from the United States. Multiple logistic regression was performed to explore the association between ln-transformed MHR, SII, NLR, NHHR and low muscle mass. Additionally, AUC values and ROC curves were used to assess the predictive effectiveness of ln MHR and other markers (ln SII, ln NLR, ln NHHR, ln MHR + ln SII, ln MHR + ln NHHR, and ln MHR + ln NLR). The bootstrap estimated 95% Cl was shown with the AUC. RESULTS In the fully adjusted model, ln SII, ln NLR, ln NHHR, ln MHR, ln MHR + ln SII, ln MHR + ln NHHR, and ln MHR + ln NLR were positively associated with low muscle mass (ln SII: OR = 1.59 [1.37-1.84]; ln NLR: OR = 1.35 [1.13-1.60]; ln NHHR: OR = 1.49[1.27-1.75]; ln MHR: OR = 1.98 [1.68-2.33]; ln MHR + ln SII: OR = 1.61 [1.46-1.79]; ln MHR + ln NHHR: OR = 1.42 [1.29-1.56]; ln MHR + ln NLR: OR = 1.58 [1.41-1.78]). Compared to the lowest quartile of ln MHR, higher quartiles were significantly associated with increased odds of low muscle mass (P for trend < 0.0001). In ROC analysis, ln MHR + ln SII had a higher AUC value than other indicators (AUC = 0.608). CONCLUSION Ln-transformed MHR, SII, NLR, and NHHR were positively associated with low muscle mass. MHR outperforms SII, NLR, and NHHR in predicting sarcopenia.
Collapse
Affiliation(s)
- Zhiwei Xue
- Department of Orthopaedigs, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Cao
- Department of Orthopaedigs, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jianhui Mou
- Department of Orthopaedigs, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Wang
- Department of Orthopaedigs, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Liu
- Department of Orthopaedigs, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Lin Q, Li K, Li L, Guan L, Zeng Y, Cai D, Zhou J, Xu L. Plasma biomarkers in patients with age-related sarcopenia: a proteomic exploration and experimental validation. Aging Clin Exp Res 2024; 37:13. [PMID: 39725826 DOI: 10.1007/s40520-024-02903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Various biomarkers associated with sarcopenia have been identified. However, there is a scarcity of studies exploring and validating biomarkers in individuals with age-related sarcopenia. AIMS This study aimed to investigate the proteome and identify potential biomarkers for age-related sarcopenia. METHODS Proteomic analysis and experimental validation were conducted using plasma from hospitalized older adults. Sarcopenia diagnosis was based on the Asian Working Group for Sarcopenia 2019 criteria. Data-independent acquisition-based proteomics was performed on plasma from 60 participants, with 30 diagnosed with sarcopenia and 30 without sarcopenia. Differentially expressed proteins (DEPs) were selected and evaluated by Receiver Operating Characteristic (ROC) analysis. Biomarker candidates were further quantitatively validated by enzyme-linked immunosorbent assay (ELISA) utilizing plasma from 6 participants with sarcopenia and 6 without sarcopenia. RESULTS A total of 39 DEPs were identified and 12 DEPs were selected for ROC analysis. 8 DEPs were included for ELISA validation based on their predictive performance. Paraoxonase-3 (PON3) consistently showed down-regulation in the sarcopenic group across both methodologies. Insulin-like growth factor-binding protein-2 (IGFBP2) showed inconsistency in the sarcopenic group, with up-regulation observed in proteomic analysis but down-regulation in ELISA. DISCUSSION Decline in PON3 may result in an overload of oxidative stress in skeletal muscles and contribute to sarcopenia. Protein modifications of IGFBP2 might exhibit during sarcopenia pathogenesis. CONCLUSIONS Plasma proteins are implicated in sarcopenia pathogenesis. PON3 is highlighted as a potential biomarker for patients with age-related sarcopenia. Further studies are imperative to gain an in-depth understanding of PON3 and IGFBP2.
Collapse
Affiliation(s)
- Qinqing Lin
- Department of Geriatric Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kangyong Li
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liwei Li
- Department of Geriatric Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lichang Guan
- Department of Geriatric Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingtong Zeng
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dake Cai
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zhou
- Department of Geriatric Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Lishu Xu
- Department of Geriatric Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Institute of Geriatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Seo JH, Koh J, Cho HJ, Kim H, Lee Y, Kim SJ, Yoon PW, Kim W, Bae SJ, Kim H, Yoo HJ, Lee SH. Sphingolipid metabolites as potential circulating biomarkers for sarcopenia in men. J Cachexia Sarcopenia Muscle 2024; 15:2476-2486. [PMID: 39229927 PMCID: PMC11634516 DOI: 10.1002/jcsm.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and function. Sarcopenia is a multifactorial disorder, including metabolic disturbance; therefore, metabolites may be used as circulating biomarkers for sarcopenia. We aimed to investigate potential biomarkers of sarcopenia using metabolomics. METHODS After non-targeted metabolome profiling of plasma from mice of an aging mouse model of sarcopenia, sphingolipid metabolites and muscle cells from the animal model were evaluated using targeted metabolome profiling. The associations between sphingolipid metabolites identified from mouse and cell studies and sarcopenia status were assessed in men in an age-matched discovery (72 cases and 72 controls) and validation (36 cases and 128 controls) cohort; women with sarcopenia (36 cases and 36 controls) were also included as a discovery cohort. RESULTS Both non-targeted and targeted metabolome profiling in the experimental studies showed an association between sphingolipid metabolites, including ceramides (CERs) and sphingomyelins (SMs), and sarcopenia. Plasma SM (16:0), CER (24:1), and SM (24:1) levels in men with sarcopenia were significantly higher in the discovery cohort than in the controls (all P < 0.05). There were no significant differences in plasma sphingolipid levels for women with or without sarcopenia. In men in the discovery cohort, an area under the receiver-operating characteristic curve (AUROC) of SM (16:0) for low muscle strength and low muscle mass was 0.600 (95% confidence interval [CI]: 0.501-0.699) and 0.647 (95% CI: 0.557-0.737). The AUROC (95% CI) of CER (24:1) and SM (24:1) for low muscle mass in men was 0.669 (95% CI: 0.581-0.757) and 0.670 (95% CI: 0.582-0.759), respectively. Using a regression equation combining CER (24:1) and SM (16:0) levels, a sphingolipid (SphL) score was calculated; an AUROC of the SphL score for sarcopenia was 0.712 (95% CI: 0.626-0.798). The addition of the SphL score to HGS significantly improved the AUC from 0.646 (95% CI: 0.575-0.717; HGS only) to 0.751 (95% CI: 0.671-0.831, P = 0.002; HGS + SphL) in the discovery cohort. The predictive ability of the SphL score for sarcopenia was confirmed in the validation cohort (AUROC = 0.695, 95% CI: 0.591-0.799). CONCLUSIONS SM (16:0), reflecting low muscle strength, and CER (24:1) and SM (16:0), reflecting low muscle mass, are potential circulating biomarkers for sarcopenia in men. Further research on sphingolipid metabolites is required to confirm these results and provide additional insights into the metabolomic changes relevant to the pathogenesis and diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Health Service Medical CenterVeterans Medical Research InstituteSeoulSouth Korea
| | - Jung‐Min Koh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Han Jin Cho
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Hanjun Kim
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Young‐Sun Lee
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Pil Whan Yoon
- Department of Orthopedic SurgerySeoul Now HospitalAnyangSouth Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung Jin Bae
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hong‐Kyu Kim
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hun Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
8
|
Ali SR, Nkembo AT, Tipparaju SM, Ashraf M, Xuan W. Sarcopenia: recent advances for detection, progression, and metabolic alterations along with therapeutic targets. Can J Physiol Pharmacol 2024; 102:697-708. [PMID: 39186818 PMCID: PMC11663012 DOI: 10.1139/cjpp-2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sarcopenia, a disorder marked by muscle loss and dysfunction, is a global health concern, particularly in aging populations. Sarcopenia is intricately related to various health conditions, including obesity, dysphagia, and frailty, which underscores the complexity. Despite recent advances in metabolomics and other omics data for early detection and treatment, the precise characterization and diagnosis of sarcopenia remains challenging. In the present review we provide an overview of the complex metabolic mechanisms that underlie sarcopenia, with particular emphasis on protein, lipid, carbohydrate, and bone metabolism. The review highlights the importance of leucine and other amino acids in promoting muscle protein synthesis and clarifies the critical role played by amino acid metabolism in preserving muscular health. In addition, the review provides insights regarding lipid metabolism on sarcopenia, with an emphasis on the effects of inflammation and insulin resistance. The development of sarcopenia is largely influenced by insulin resistance, especially with regard to glucose metabolism. Overall, the review emphasizes the complex relationship between bone and muscle health by highlighting the interaction between sarcopenia and bone metabolism. Furthermore, the review outlines various therapeutic approaches and potential biomarkers for diagnosing sarcopenia. These include pharmacological strategies such as hormone replacement therapy and anabolic steroids as well as lifestyle modifications such as exercise, nutrition, and dietary changes.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| |
Collapse
|
9
|
Xu Y, Cao L, Chen Y, Zhang Z, Liu W, Li H, Ding C, Pu J, Qian K, Xu W. Integrating Machine Learning in Metabolomics: A Path to Enhanced Diagnostics and Data Interpretation. SMALL METHODS 2024; 8:e2400305. [PMID: 38682615 DOI: 10.1002/smtd.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Metabolomics, leveraging techniques like NMR and MS, is crucial for understanding biochemical processes in pathophysiological states. This field, however, faces challenges in metabolite sensitivity, data complexity, and omics data integration. Recent machine learning advancements have enhanced data analysis and disease classification in metabolomics. This study explores machine learning integration with metabolomics to improve metabolite identification, data efficiency, and diagnostic methods. Using deep learning and traditional machine learning, it presents advancements in metabolic data analysis, including novel algorithms for accurate peak identification, robust disease classification from metabolic profiles, and improved metabolite annotation. It also highlights multiomics integration, demonstrating machine learning's potential in elucidating biological phenomena and advancing disease diagnostics. This work contributes significantly to metabolomics by merging it with machine learning, offering innovative solutions to analytical challenges and setting new standards for omics data analysis.
Collapse
Affiliation(s)
- Yudian Xu
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Linlin Cao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yifan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ziyue Zhang
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wanshan Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chenhuan Ding
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
10
|
Wang J, Xiang Y, Wu L, Zhang C, Han B, Cheng Y, Tong Y, Yan D, Wang L. The association between inflammatory cytokines and sarcopenia-related traits: a bi-directional Mendelian randomization study. Eur J Clin Nutr 2024; 78:1032-1040. [PMID: 39122802 PMCID: PMC11611733 DOI: 10.1038/s41430-024-01486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Sarcopenia is among the most common musculoskeletal illnesses, yet its underlying biochemical mechanisms remain incompletely understood. Identifying the relationship of inflammatory cytokines with sarcopenia components would help understand the etiology of sarcopenia. We performed a bi-directional Mendelian randomization study to explore the causal relationship between 41 inflammatory cytokines and sarcopenia-related traits. METHODS The study was performed in two stages using bidirectional dual-sample Mendelian randomization. We obtained aggregated statistical data on inflammatory factors, low grip strength, and ALM from genome-wide association studies. To explore the causal association between exposure and outcomes, we primarily utilized the inverse variance weighted strategy. Furthermore, we conducted sensitivity analyses through the use of Mendelian randomization (MR) Egger, weighted median and simple mode methods. To evaluate robustness of the results and to identify and adjust for horizontal pleiotropy, we performed the MR Pleiotropy RESidual Sum and Outlier test, the MR Egger intercept test, and a leave-one-out analysis. RESULTS The results displayed a potential association between interleukin-10 (OR: 1.046, 95% CI: 1.002-1.093, p = 0.042) and vascular endothelial growth factor (OR: 1.024, 95% CI: 1.001-1.047, p = 0.038) and the risk of low hand-grip strength. Moreover, interferon gamma-induced protein 10 (OR: 1.010, 95% CI: 1.000-1.019, p = 0.042) and macrophage colony-stimulating factor (OR: 1.010, 95% CI: 1.003-1.017, p = 0.003) were significantly linked to a higher risk of ALM. CONCLUSION We identified a causal relationship between multiple inflammatory factors and sarcopenia-related traits. Our study offers valuable insights into innovative methods for the sarcopenia prevention and treatment by regulating inflammatory factors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Yaoxian Xiang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Lihui Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Baojuan Han
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China.
| | - Li Wang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China.
| |
Collapse
|
11
|
Hsu WH, Wang SY, Chao YM, Chang KV, Han DS, Lin YL. Novel metabolic and lipidomic biomarkers of sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:2175-2186. [PMID: 39169398 PMCID: PMC11446726 DOI: 10.1002/jcsm.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial and has not been fully elucidated. The impact of resistance training and nutritional support (RTNS) on metabolomics and lipodomics in older adults with sarcopenia remains uncertain. This study aimed to explore potential biomarkers of sarcopenia and clinical indicators of RTNS in older sarcopenic adults. METHODS Older individuals diagnosed with sarcopenia through routine health checkups at a community hospital were recruited for a 12-week randomized controlled trial focusing on RTNS. Plasma metabolomic and lipidomic profiles of 45 patients with sarcopenia and 47 matched controls were analysed using 1H-nuclear magnetic resonance (1H-NMR) and liquid chromatography-mass spectrometer (LC-MS). RESULTS At baseline, the patient and control groups had similar age, sex, and height distribution. The patient group had significantly lower weight, BMI, grip strength, gait speed, skeletal muscle index, lean mass of both the upper and lower limbs, and lower limb bone mass. There was a significant difference in 12 metabolites between the control and patient groups. They are isoleucine (patient/control fold change [FC] = 0.86 ± 0.04, P = 0.0005), carnitine (FC = 1.05 ± 0.01, P = 0.0110), 1-methylhistamine/3-methylhistamine (FC = 1.24 ± 0.14, P = 0.0039), creatinine (FC = 0.71 ± 0.04, P < 0.0001), carnosine (FC = 0.71 ± 0.04, P = 0.0007), ureidopropionic acid (FC = 0.61 ± 0.10, P = 0.0107), uric acid (FC = 0.88 ± 0.03, P = 0.0083), PC (18:2/20:0) (FC = 0.69 ± 0.03, P = 0.0010), PC (20:2/18:0) (FC = 0.70 ± 0.06, P = 0.0014), PC (18:1/20:1) (FC = 0.74 ± 0.05, P = 0.0015), PI 32:1 (FC = 4.72 ± 0.17, P = 0.0006), and PI 34:3 (FC = 1.88 ± 0.13, P = 0.0003). Among them, carnitine, 1-methylhistamine/3-methylhistamine, creatinine, ureidopropionic acid, uric acid, PI 32:1, and PI 34:3 were first identified. Notably, PI 32:1 had highest diagnostic accuracy (0.938) for sarcopenia. 1-Methylhistamine/3-methylhistamine, carnosine, PC (18:2/20:0), PI 32:1, and PI 34:3 levels were not different from the control group after RTNS. These metabolites are involved in amino acid metabolism, lipid metabolism, and the PI3K-AKT/mTOR signalling pathway through the ingenuity pathway analysis. CONCLUSIONS These findings provide information on metabolic changes, lipid perturbations, and the role of RTNS in patients with sarcopenia. They reveal new insights into its pathological mechanisms and potential therapies.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang-Ming-Chiao-Tung University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ming Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
- Health Science and Wellness Center, National Taiwan University, Taipei, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Department of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Deng Z, Dong Z, Wang Y, Dai Y, Liu J, Deng F. Identification of TACSTD2 as novel therapeutic targets for cisplatin-induced acute kidney injury by multi-omics data integration. Hum Genet 2024; 143:1061-1080. [PMID: 38369676 DOI: 10.1007/s00439-024-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.
Collapse
Affiliation(s)
- Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiachen Liu
- Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Center of Systems Biology and Data Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Sayer AA, Cooper R, Arai H, Cawthon PM, Ntsama Essomba MJ, Fielding RA, Grounds MD, Witham MD, Cruz-Jentoft AJ. Sarcopenia. Nat Rev Dis Primers 2024; 10:68. [PMID: 39300120 DOI: 10.1038/s41572-024-00550-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
Sarcopenia is the accelerated loss of skeletal muscle mass and function commonly, but not exclusively, associated with advancing age. It is observed across many species including humans in whom it can lead to decline in physical function and mobility as well as to increased risk of adverse outcomes including falls, fractures and premature mortality. Although prevalence estimates vary because sarcopenia has been defined in different ways, even using a conservative approach, the prevalence is between 5% and 10% in the general population. A life course framework has been proposed for understanding not only the occurrence of sarcopenia in later life but also influences operating at earlier life stages with potentially important implications for preventive strategies. Harnessing progress in understanding the hallmarks of ageing has been key to understanding sarcopenia pathophysiology. Considerable convergence in approaches to diagnosis of sarcopenia has occurred over the last 10 years, with a growing emphasis on the central importance of muscle strength. Resistance exercise is currently the mainstay of treatment; however, it is not suitable for all. Hence, adjunctive and alternative treatments to improve quality of life are needed. An internationally agreed approach to definition and diagnosis will enable a step change in the field and is likely to be available in the near future through the Global Leadership Initiative in Sarcopenia.
Collapse
Affiliation(s)
- Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Rachel Cooper
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| | - Peggy M Cawthon
- California Pacific Medical Center, Research Institute, San Francisco, CA, USA
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Marie-Josiane Ntsama Essomba
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Miles D Witham
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
14
|
Pergande MR, Osterbauer KJ, Buck KM, Roberts DS, Wood NN, Balasubramanian P, Mann MW, Rossler KJ, Diffee GM, Colman RJ, Anderson RM, Ge Y. Mass Spectrometry-Based Multiomics Identifies Metabolic Signatures of Sarcopenia in Rhesus Monkey Skeletal Muscle. J Proteome Res 2024; 23:2845-2856. [PMID: 37991985 PMCID: PMC11109024 DOI: 10.1021/acs.jproteome.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
Collapse
Affiliation(s)
- Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katie J. Osterbauer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nina N. Wood
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Morgan W. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Reichelt S, Merle U, Klauss M, Kahlert C, Lurje G, Mehrabi A, Czigany Z. Shining a spotlight on sarcopenia and myosteatosis in liver disease and liver transplantation: Potentially modifiable risk factors with major clinical impact. Liver Int 2024; 44:1483-1512. [PMID: 38554051 DOI: 10.1111/liv.15917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Muscle-wasting and disease-related malnutrition are highly prevalent in patients with chronic liver diseases (CLD) as well as in liver transplant (LT) candidates. Alterations of body composition (BC) such as sarcopenia, myosteatosis and sarcopenic obesity and associated clinical frailty were tied to inferior clinical outcomes including hospital admissions, length of stay, complications, mortality and healthcare costs in various patient cohorts and clinical scenarios. In contrast to other inherent detrimental individual characteristics often observed in these complex patients, such as comorbidities or genetic risk, alterations of the skeletal muscle and malnutrition are considered as potentially modifiable risk factors with a major clinical impact. Even so, there is only limited high-level evidence to show how these pathologies should be addressed in the clinical setting. This review discusses the current state-of-the-art on the role of BC assessment in clinical outcomes in the setting of CLD and LT focusing mainly on sarcopenia and myosteatosis. We focus on the disease-related pathophysiology of BC alterations. Based on these, we address potential therapeutic interventions including nutritional regimens, physical activity, hormone and targeted therapies. In addition to summarizing existing knowledge, this review highlights novel trends, and future perspectives and identifies persisting challenges in addressing BC pathologies in a holistic way, aiming to improve outcomes and quality of life of patients with CLD awaiting or undergoing LT.
Collapse
Affiliation(s)
- Sophie Reichelt
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital of Bonn, Bonn, Germany
| | - Uta Merle
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Klauss
- Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoltan Czigany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Fan S, Chen J, Tian H, Yang X, Zhou L, Zhao Q, Qin Y, Zhang J, Tang C. Selenium maintains intestinal epithelial cells to activate M2 macrophages against deoxynivalenol injury. Free Radic Biol Med 2024; 219:215-230. [PMID: 38636715 DOI: 10.1016/j.freeradbiomed.2024.04.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.
Collapse
Affiliation(s)
- Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaying Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinting Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
17
|
Han P, Chen X, Liang Z, Liu Y, Yu X, Song P, Zhao Y, Zhang H, Zhu S, Shi X, Guo Q. Metabolic signatures and risk of sarcopenia in suburb-dwelling older individuals by LC-MS-based untargeted metabonomics. Front Endocrinol (Lausanne) 2024; 15:1308841. [PMID: 38962681 PMCID: PMC11220188 DOI: 10.3389/fendo.2024.1308841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Background Untargeted metabonomics has provided new insight into the pathogenesis of sarcopenia. In this study, we explored plasma metabolic signatures linked to a heightened risk of sarcopenia in a cohort study by LC-MS-based untargeted metabonomics. Methods In this nested case-control study from the Adult Physical Fitness and Health Cohort Study (APFHCS), we collected blood plasma samples from 30 new-onset sarcopenia subjects (mean age 73.2 ± 5.6 years) and 30 healthy controls (mean age 74.2 ± 4.6 years) matched by age, sex, BMI, lifestyle, and comorbidities. An untargeted metabolomics methodology was employed to discern the metabolomic profile alterations present in individuals exhibiting newly diagnosed sarcopenia. Results In comparing individuals with new-onset sarcopenia to normal controls, a comprehensive analysis using liquid chromatography-mass spectrometry (LC-MS) identified a total of 62 metabolites, predominantly comprising lipids, lipid-like molecules, organic acids, and derivatives. Receiver operating characteristic (ROC) curve analysis indicated that the three metabolites hypoxanthine (AUC=0.819, 95% CI=0.711-0.927), L-2-amino-3-oxobutanoic acid (AUC=0.733, 95% CI=0.598-0.868) and PC(14:0/20:2(11Z,14Z)) (AUC= 0.717, 95% CI=0.587-0.846) had the highest areas under the curve. Then, these significant metabolites were observed to be notably enriched in four distinct metabolic pathways, namely, "purine metabolism"; "parathyroid hormone synthesis, secretion and action"; "choline metabolism in cancer"; and "tuberculosis". Conclusion The current investigation elucidates the metabolic perturbations observed in individuals diagnosed with sarcopenia. The identified metabolites hold promise as potential biomarkers, offering avenues for exploring the underlying pathological mechanisms associated with sarcopenia.
Collapse
Affiliation(s)
- Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Xiaoyu Chen
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhenwen Liang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuewen Liu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xing Yu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Peiyu Song
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Yinjiao Zhao
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Hui Zhang
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Shuyan Zhu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Shi
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
18
|
Lin J, Hu M, Gu X, Zhang T, Ma H, Li F. Effects of cigarette smoking associated with sarcopenia in persons 60 years and older: a cross-sectional study in Zhejiang province. BMC Geriatr 2024; 24:523. [PMID: 38886643 PMCID: PMC11181551 DOI: 10.1186/s12877-024-04993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE Smoking is a risk factor for sarcopenia. Nevertheless, few studies analyzed the independent effects of various smoking dimensions (duration, intensity, cumulative dose) on sarcopenia risk. This is a cross-sectional study based on an older population in Zhejiang Province to determine which smoking dimensions are mainly important for sarcopenia risk and to explore the dose-response relationship between them. METHODS Our study included 783 patients with sarcopenia and 4918 non-sarcopenic individuals. Logistic regression and restricted cubic with logistic regression (for nonlinear dose effects) were used to obtain odds ratios (ORs) and 95% confidence intervals as well as restricted cubic splines (RCS) curves. RESULTS Compared with never-smokers, current smokers had an increased risk of sarcopenia (OR = 1.786; 95% CI 1.387-2.301) after adjusting for confounders such as age, sex, education, alcohol consumption, disease history, etc. There was no significant association between smoking intensity and sarcopenia after more than 20 cigarettes per day (OR = 1.484; 95% CI 0.886-2.487), whereas the risk of sarcopenia increased significantly with increasing duration of smoking after more than 40 years (OR = 1.733; 95% CI 1.214-2.473). Meanwhile, there was a significant non-linear dose-response relationship between smoking duration or intensity and the risk of sarcopenia. However, the risk of sarcopenia increased linearly with the number of pack-years of smoking, which is not a significant nonlinear dose-response relationship. CONCLUSIONS This study indicated the association between smoking and sarcopenia. Both smoking duration and cumulative dose were significantly and positively associated with sarcopenia. These findings reflect the important role of the number of years of smoking in increasing the risk of sarcopenia and provide scientific evidence that different smoking dimensions may influence the risk of the sarcopenia.
Collapse
Affiliation(s)
- Junfen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, Binsheng Road, Hangzhou, 310051, China
| | - Meiyu Hu
- School of Public Health, Hangzhou Normal University, Yuhangtang Road, Yuhang District, Hangzhou, 311121, Zhejiang, China
| | - Xue Gu
- Zhejiang Provincial Center for Disease Control and Prevention, Binsheng Road, Hangzhou, 310051, China
| | - Tao Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Binsheng Road, Hangzhou, 310051, China
| | - Haiyan Ma
- School of Public Health, Hangzhou Normal University, Yuhangtang Road, Yuhang District, Hangzhou, 311121, Zhejiang, China.
| | - Fudong Li
- Zhejiang Provincial Center for Disease Control and Prevention, Binsheng Road, Hangzhou, 310051, China.
| |
Collapse
|
19
|
Zou JF, Li ST, Wang LP, Zhou NL, Ran JJ, Yang X, Tian CH, Liu YT, Liu Y, Peng W. Diagnostic Value of Nutritional Risk Index and Other Indices for Predicting Sarcopenia in the Middle-Aged and Elderly Population of China Without Cancer: A ROC Curve Analysis. Int J Gen Med 2024; 17:2527-2538. [PMID: 38841128 PMCID: PMC11152168 DOI: 10.2147/ijgm.s457252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Background Emerging evidence suggests that systemic inflammatory and nutritional biomarkers, along with derived indices, could serve as predictors for sarcopenia in cancer population. This study aimed to compare these predictors, focusing on the nutritional risk index (NRI) and evaluate its diagnostic value, for sarcopenic patients without cancer. Methods This cross-sectional retrospective study included 1674 participants. Sarcopenia is defined by skeletal muscle mass index (SMI). Laboratory data reflected the values of systemic inflammatory and nutritional biomarkers, from which the derived indices were calculated. Multiple logistic regression analysis, ROC curve analysis, and the Youden index were utilized to assess the association between these markers and sarcopenia and determine the cutoff value for predicting sarcopenia. Results Among all participants (1110 men and 564 women, mean age 61.97 ± 9.83 years), 398 individuals were diagnosed with sarcopenia, indicating a prevalence of 23.78% in China's middle-aged and elderly population without cancer. Logistic regression analysis revealed significant associations between all biomarkers and derived indices with sarcopenia. Following adjustment for potential confounders, lower NRI values were significantly associated with a higher incidence of sarcopenia. For sarcopenia diagnosis, the area under the curve (AUC) for NRI was 0.769 ([95% CI, 0.742, 0.796], P < 0.001), with a cutoff value of 106.016, sensitivity of 75.6% and specificity of 66.1%. NRI demonstrated greater predictive advantage for sarcopenia incidence in men compared to women. Conclusion A lower NRI value was associated with a higher prevalence of sarcopenia. NRI shows promise for early, rapid, and effective sarcopenia screening, particularly in China's middle-aged and elderly male population without cancer.
Collapse
Affiliation(s)
- Jing-Feng Zou
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Shao-Tian Li
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Li-Ping Wang
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Nian-Li Zhou
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Jia-Jia Ran
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Xin Yang
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Chun-Hui Tian
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Yi-Ting Liu
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Yun Liu
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Wen Peng
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| |
Collapse
|
20
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins of organelles, cellular signaling, bioenergetic metabolism and molecular chaperoning. Eur J Transl Myol 2024; 34:12565. [PMID: 38787292 PMCID: PMC11264233 DOI: 10.4081/ejtm.2024.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
21
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins located in the sarcomere, cytoskeleton and the extracellular matrix. Eur J Transl Myol 2024; 34:12564. [PMID: 38787300 PMCID: PMC11264229 DOI: 10.4081/ejtm.2024.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
22
|
Zambrano Chaves JM, Lenchik L, Gallegos IO, Blankemeier L, Liang T, Rubin DL, Willis MH, Chaudhari AS, Boutin RD. Abdominal CT metrics in 17,646 patients reveal associations between myopenia, myosteatosis, and medical phenotypes: a phenome-wide association study. EBioMedicine 2024; 103:105116. [PMID: 38636199 PMCID: PMC11031722 DOI: 10.1016/j.ebiom.2024.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Deep learning facilitates large-scale automated imaging evaluation of body composition. However, associations of body composition biomarkers with medical phenotypes have been underexplored. Phenome-wide association study (PheWAS) techniques search for medical phenotypes associated with biomarkers. A PheWAS integrating large-scale analysis of imaging biomarkers and electronic health record (EHR) data could discover previously unreported associations and validate expected associations. Here we use PheWAS methodology to determine the association of abdominal CT-based skeletal muscle metrics with medical phenotypes in a large North American cohort. METHODS An automated deep learning pipeline was used to measure skeletal muscle index (SMI; biomarker of myopenia) and skeletal muscle density (SMD; biomarker of myosteatosis) from abdominal CT scans of adults between 2012 and 2018. A PheWAS was performed with logistic regression using patient sex and age as covariates to assess for associations between CT-derived muscle metrics and 611 common EHR-derived medical phenotypes. PheWAS P values were considered significant at a Bonferroni corrected threshold (α = 0.05/1222). FINDINGS 17,646 adults (mean age, 56 years ± 19 [SD]; 57.5% women) were included. CT-derived SMI was significantly associated with 268 medical phenotypes; SMD with 340 medical phenotypes. Previously unreported associations with the highest magnitude of significance included higher SMI with decreased cardiac dysrhythmias (OR [95% CI], 0.59 [0.55-0.64]; P < 0.0001), decreased epilepsy (OR, 0.59 [0.50-0.70]; P < 0.0001), and increased elevated prostate-specific antigen (OR, 1.84 [1.47-2.31]; P < 0.0001), and higher SMD with decreased decubitus ulcers (OR, 0.36 [0.31-0.42]; P < 0.0001), sleep disorders (OR, 0.39 [0.32-0.47]; P < 0.0001), and osteomyelitis (OR, 0.43 [0.36-0.52]; P < 0.0001). INTERPRETATION PheWAS methodology reveals previously unreported associations between CT-derived biomarkers of myopenia and myosteatosis and EHR medical phenotypes. The high-throughput PheWAS technique applied on a population scale can generate research hypotheses related to myopenia and myosteatosis and can be adapted to research possible associations of other imaging biomarkers with hundreds of EHR medical phenotypes. FUNDING National Institutes of Health, Stanford AIMI-HAI pilot grant, Stanford Precision Health and Integrated Diagnostics, Stanford Cardiovascular Institute, Stanford Center for Digital Health, and Stanford Knight-Hennessy Scholars.
Collapse
Affiliation(s)
- Juan M Zambrano Chaves
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Leon Lenchik
- Department of Diagnostic Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Isabel O Gallegos
- Department of Computer Science, (IOG), Stanford University, Stanford, CA, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Tie Liang
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel L Rubin
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Marc H Willis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Akshay S Chaudhari
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Robert D Boutin
- Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Wang Y, Xu Y, Zhou C, Cheng Y, Qiao N, Shang Q, Xia L, Song J, Gao C, Qiao Y, Zhang X, Li M, Ma C, Fan Y, Peng X, Wu S, Lv N, Li B, Sun Y, Zhang B, Li T, Li H, Zhang J, Su Y, Li Q, Yuan J, Liu L, Moreno-De-Luca A, MacLennan AH, Gecz J, Zhu D, Wang X, Zhu C, Xing Q. Exome sequencing reveals genetic heterogeneity and clinically actionable findings in children with cerebral palsy. Nat Med 2024; 30:1395-1405. [PMID: 38693247 DOI: 10.1038/s41591-024-02912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.
Collapse
Affiliation(s)
- Yangong Wang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yiran Xu
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ye Cheng
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Niu Qiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine (Shanghai), and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Shang
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Xia
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimeng Qiao
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Ming Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Caiyun Ma
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyi Fan
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Xirui Peng
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Silin Wu
- Department of Neurosurgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Nan Lv
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Yanyan Sun
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Tongchuan Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Hongwei Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jin Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Yu Su
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Qiaoli Li
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Junying Yuan
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Alastair H MacLennan
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Dengna Zhu
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Centre for Perinatal Medicine and Health, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China.
- Shanghai Center for Women and Children's Health, Shanghai, China.
| |
Collapse
|
24
|
Wu J, Chi H, Kok S, Chua JM, Huang XX, Zhang S, Mah S, Foo LX, Peh HY, Lee HB, Tay P, Tong C, Ladlad J, Tan CH, Khoo N, Aw D, Chong CX, Ho LM, Sivarajah SS, Ng J, Tan WJ, Foo FJ, Teh BT, Koh FH. Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery. Ann Coloproctol 2024; 40:3-12. [PMID: 37004990 PMCID: PMC10915526 DOI: 10.3393/ac.2022.01207.0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 04/04/2023] Open
Abstract
Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.
Collapse
Affiliation(s)
- Jingting Wu
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Hannah Chi
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Shawn Kok
- Department of Radiology, Sengkang General Hospital, Singapore
| | - Jason M.W. Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Xi-Xiao Huang
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Shipin Zhang
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore
| | - Shimin Mah
- Department of Physiotherapy, Sengkang General Hospital, Singapore
| | - Li-Xin Foo
- Department of Physiotherapy, Sengkang General Hospital, Singapore
| | - Hui-Yee Peh
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Hui-Bing Lee
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Phoebe Tay
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Cherie Tong
- Department of Dietetics, Sengkang General Hospital, Singapore
| | - Jasmine Ladlad
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | | | - Darius Aw
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | | | | | - Jialin Ng
- Division of Surgery, Sengkang General Hospital, Singapore
| | | | - Fung-Joon Foo
- Division of Surgery, Sengkang General Hospital, Singapore
| | - Bin-Tean Teh
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore
| | | |
Collapse
|
25
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
26
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
27
|
Wang D, Li C, Zhang X, Li Y, He J, Guo X. Leukocyte telomere length and sarcopenia-related traits: A bidirectional Mendelian randomization study. PLoS One 2024; 19:e0296063. [PMID: 38166034 PMCID: PMC10760921 DOI: 10.1371/journal.pone.0296063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Accumulating evidence indicated that leukocyte telomere length (LTL) was related to sarcopenia. However, it is still not clear whether the association of changes in LTL with sarcopenia is likely to be causal, or could be explained by reverse causality. Thus, we carried on bidirectional Mendelian randomization (MR) and multivariable MR analyses to identify the causal relationship between LTL and sarcopenia-related traits. Summary-level data and independent variants used as instruments came from large genome-wide association studies of LTL (472,174 participants), appendicular lean mass (450,243 participants), low grip strength (256,523 participants), and walking pace (450,967 participants). We identified suggestive association of longer LTL with larger appendicular lean mass [odds ratio (OR) = 1.053; 95% confidence interval (CI), 1.009-1.099; P = 0.018], and causal association of longer LTL with a lower risk of low grip strength (OR = 0.915; 95% CI, 0.860-0.974; P = 0.005). In the reverse MR analysis, we also observed a positive causal association between walking pace and LTL (OR = 1.252; 95% CI, 1.121-1.397; P < 0.001). Similar results can be repeated in sensitivity analyses. While in the multivariable MR analysis, the estimate of the impact of walking pace on LTL underwent a transformation after adjusting for T2DM (OR = 1.141; 95%CI: 0.989-1.317; P = 0.070). The current MR analysis supported a causal relationship between shorter telomere length and both low muscle mass and strength. Additionally, walking pace may affect LTL through T2DM.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenhao Li
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinwen Zhang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yihao Li
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
29
|
Qiu X, Wang HY, Yang ZY, Sun LM, Liu SN, Fan CQ, Zhu F. Uncovering the prominent role of satellite cells in paravertebral muscle development and aging by single-nucleus RNA sequencing. Genes Dis 2023; 10:2597-2613. [PMID: 37554180 PMCID: PMC10404979 DOI: 10.1016/j.gendis.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 02/05/2023] Open
Abstract
To uncover the role of satellite cells (SCs) in paravertebral muscle development and aging, we constructed a single-nucleus transcriptomic atlas of mouse paravertebral muscle across seven timepoints spanning the embryo (day 16.5) to old (month 24) stages. Eight cell types, including SCs, fast muscle cells, and slow muscle cells, were identified. An energy metabolism-related gene set, TCA CYCLE IN SENESCENCE, was enriched in SCs. Forty-two skeletal muscle disease-related genes were highly expressed in SCs and exhibited similar expression patterns. Among them, Pdha1 was the core gene in the TCA CYCLE IN SENESCENCE; Pgam2, Sod1, and Suclg1 are transcription factors closely associated with skeletal muscle energy metabolism. Transcription factor enrichment analysis of the 42 genes revealed that Myod1 and Mef2a were also highly expressed in SCs, which regulated Pdha1 expression and were associated with skeletal muscle development. These findings hint that energy metabolism may be pivotal in SCs development and aging. Three ligand-receptor pairs of extracellular matrix (ECM)-receptor interactions, Lamc1-Dag1, Lama2-Dag1, and Hspg2-Dag1, may play a vital role in SCs interactions with slow/fast muscle cells and SCs self-renewal. Finally, we built the first database of a skeletal muscle single-cell transcriptome, the Musculoskeletal Cell Atlas (http://www.mskca.tech), which lists 630,040 skeletal muscle cells and provides interactive visualization, a useful resource for revealing skeletal muscle cellular heterogeneity during development and aging. Our study could provide new targets and ideas for developing drugs to inhibit skeletal muscle aging and treat skeletal muscle diseases.
Collapse
Affiliation(s)
- Xin Qiu
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hao-Yu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100000, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, Shandong 266000, China
| | - Zhen-Yu Yang
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Li-Ming Sun
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Shu-Nan Liu
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Chui-Qin Fan
- China Medical University, Shenyang, Liaoning 110000, China
| | - Feng Zhu
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
30
|
Simon A. [Omics to serve myology]. Med Sci (Paris) 2023; 39 Hors série n° 1:22-27. [PMID: 37975766 DOI: 10.1051/medsci/2023136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Despite efforts in biomedical research, pathophysiological mechanisms and therapeutic targets of diseases remain difficult to identify. The development of high-throughput techniques led to the advent of innovatve technologies called omics. They aim at characterizing as exhaustively as possible a set of molecules: genes, RNAs, proteins, metabolites, etc. These a priori methods allow a precise molecular characterization of diseases and a better understanding of complex pathophysiological mechanisms. In this paper, we will review most omics approaches, their integration and their applications in the context of myology.
Collapse
Affiliation(s)
- Alix Simon
- IGBMC - CNRS UMR 7104 - Inserm U 1258, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| |
Collapse
|
31
|
Cui G, Li S, Ye H, Yang Y, Chu Y, Jia X, Feng Y, Lin M, Zhang X. Association between digestive diseases and sarcopenia among Chinese middle-aged and older adults: a prospective cohort study based on nationally representative survey. Front Nutr 2023; 10:1097860. [PMID: 37476407 PMCID: PMC10354238 DOI: 10.3389/fnut.2023.1097860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Objectives Patients with digestive diseases frequently suffer from dyspepsia and malabsorption, which may lead to muscle loss due to malnutrition. However, it is not clear whether digestive diseases are associated with sarcopenia. This study aims to explore the longitudinal association between digestive diseases and sarcopenia in middle-aged and older adults based on a nationally representative survey from China. Methods We used a prospective cohort study including 7,025 middle-aged and older adults aged ≥45 years from the 2011 to 2015 waves China Health and Retirement Longitudinal Study (CHARLS). Digestive diseases were identified using self-report. The assessment of sarcopenia was based on the Asian Working Group for Sarcopenia 2019 Consensus and included three components of muscle strength, physical performance, and muscle mass. Cox hazards regression was used to examine the association between digestive diseases and sarcopenia. Results The prevalence of digestive diseases and the incidence of sarcopenia in middle-aged and older adults were 22.6% (95% CI = 21.6-23.6%) and 8.5% (95% CI = 7.8-9.1%). After adjusting for 15 covariates composed of three sets (demographic characteristics, lifestyles, and health status), digestive diseases were associated with a higher risk of sarcopenia (HR = 1.241, 95% CI = 1.034-1.490, P < 0.05). The associations were more pronounced among men, older adults aged 60-79, rural residents, and married people. In addition, the association between digestive diseases and sarcopenia was robust in the sensitivity analysis. Conclusion Digestive diseases were associated with an increased risk of sarcopenia in middle-aged and older adults aged ≥45 years. Early intervention of digestive diseases may help to reduce the incidence of sarcopenia in middle-aged and older adults.
Collapse
Affiliation(s)
- Guanghui Cui
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Shaojie Li
- School of Public Health, Peking University, Beijing, China
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Yao Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Yingming Chu
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Xiaofen Jia
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Yue Feng
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Miaomiao Lin
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| |
Collapse
|
32
|
Spanoudaki M, Giaginis C, Mentzelou M, Bisbinas A, Solovos E, Papadopoulos K, Paliokas I, Zidrou C, Cheimaras A, Hassapidou M, Papadopoulos AN, Papadopoulou SK. Sarcopenia and Sarcopenic Obesity and Osteoarthritis: A Discussion among Muscles, Fat, Bones, and Aging. Life (Basel) 2023; 13:1242. [PMID: 37374023 DOI: 10.3390/life13061242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Aging is a physical procedure for people and nature. Our aging world is expanding because of the life span extension. Aging has a crucial relationship with our body composition (muscles, bones, and adipose tissue), which is characterized by an increase in fat mass and a gradual decrease in muscle mass and strength and bone density. These alterations affect physical performance and impact quality of life enhancing the risk for non-communicable diseases, immobilization, and disability. As far we know, osteoarthritis of lower limbs, sarcopenic obesity, and muscle mass and/or strength loss are treated separately. However, bones, muscles, adipose tissue, and aging appear to have an interconnection through a dialogue as they talk to each other. Health disorders are coming into the surface when this relationship is disrupted. The aim of our study is to search deeper into this interconnection, so that when adipose tissue increases, we have to take a look into the condition of muscle mass, bone, and connective tissue and vice versa, through the assessment of physical performance. Consequently, the triad muscle-bone-adipose tissue disorders by aging should be treated as a single entity.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Clinical Dietetics & Nutrition Department, 424 General Military Hospital, New Efkarpia Ring Road, 56429 Thessaloniki, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | | | - Evangelos Solovos
- A Orthopaedic Clinic, 424 General Military Hospital, 56429 Thessaloniki, Greece
| | | | - Ioannis Paliokas
- School of Economics and Business Administration, International Hellenic University, 57001 Thessaloniki, Greece
| | | | - Antonis Cheimaras
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Maria Hassapidou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
33
|
Souza EÁ, Terra AMSV, Santos ATS. Evaluation of functional parameters of the foot and ankle in elderly with sarcopenia. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221638. [PMID: 37222331 PMCID: PMC10204842 DOI: 10.1590/1806-9282.20221638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/24/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE With population aging, the prevalence of sarcopenia has increased. It is a pathology often neglected, with the potential to cause great damage if not diagnosed and treated. The objective of this study was to identify sarcopenic elderly people through the SARC-F score and palm grip test and to evaluate foot and ankle functionality parameters: gait speed, plantar sensitivity, and baropodometry. METHODS This is a descriptive and cross-sectional study. The sample consisted of 20 sarcopenic elderly diagnosed through the SARC-F score and the handgrip strength test, from which demographic data were obtained, and the three functional tests related to the foot and ankle were performed. RESULTS No individual was aware of the term sarcopenia. Regarding gait speed, 20 (100%) presented values compatible with sarcopenia (average of 0.52 m/s). Regarding plantar sensitivity, five (25%) of the patients showed changes in the exam with the detection of insensitivity. Regarding baropodometry, higher pressure values were observed in the right foot (average of 52.9±7.01%) compared to the left (average of 47.10±7.01%) and in the hindfoot (average of 55.85±16.21%) compared to the forefoot (mean 44.15±15.35%). When correlating the analyzed variables with the SARC-F scores, the only association that showed statistical significance (p<0.05) was the dynamometry on the right. CONCLUSION The SARC-F score and the handgrip strength test are easy to apply in the screening of sarcopenia, and the functional parameters of the foot and ankle were shown to be altered in the studied group.
Collapse
|
34
|
Yuan S, Larsson SC. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023:155533. [PMID: 36907247 DOI: 10.1016/j.metabol.2023.155533] [Citation(s) in RCA: 325] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Sarcopenia is a geriatric condition featured by a progressive loss of muscle mass and function and associated with various adverse health outcomes. In this review, we aimed to summarize the epidemiological features of sarcopenia as well as consequences and risk factors of the disease. We performed a systematic review of meta-analysis on sarcopenia to collect data. The prevalence of sarcopenia varied between studies and depending on definition used. Sarcopenia was estimated to influence 10 %-16 % of the elderly worldwide. The prevalence of sarcopenia was higher among patients compared to general populations. The prevalence of sarcopenia ranged from 18 % in diabetic patients to 66 % in patients with unresectable esophageal cancer. Sarcopenia is associated with a high risk of a wide range of adverse health outcomes, including poor overall and disease-progression free survival rate, postoperative complications, and longer hospitalization in patients with different medical situations as well as falls and fracture, metabolic disorders, cognitive impairment, and mortality in general populations. Physical inactivity, malnutrition, smoking, extreme sleep duration, and diabetes were associated with an increased risk of sarcopenia. However, these associations were mainly based on non-cohort observational studies and need confirmation. High-quality cohort, omics, and Mendelian randomization studies are needed to deeply understand the etiological basis of sarcopenia.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
35
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
36
|
Abstract
The gradual loss of skeletal muscle mass during aging and associated decline in contractile strength can result in reduced fitness, frailty, and loss of independence. In order to better understand the molecular and cellular mechanisms that underlie sarcopenia of old age and the frailty syndrome, as well as identify novel therapeutic targets to treat age-related fiber wasting, it is crucial to develop a comprehensive biomarker signature of muscle aging. Fluorescence two-dimensional gel electrophoresis (2D-DIGE) in combination with sensitive mass spectrometry presents an ideal bioanalytical tool for biomarker discovery in biogerontology. This chapter outlines the application of the 2D-DIGE method for the comparative analysis of human biopsy specimens from middle-aged versus senescent individuals using a two-CyDye-based method.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
37
|
Xu Z, Yu Z, Li S, Tian Z, Yuan J, You F. Exploration of the core gene signatures and mechanisms between NAFLD and sarcopenia through transcriptomic level. Front Endocrinol (Lausanne) 2023; 14:1140804. [PMID: 36967768 PMCID: PMC10033966 DOI: 10.3389/fendo.2023.1140804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION The increased prevalence of non-alcoholic fatty liver disease (NAFLD) and sarcopenia among the elderly are facing a significant challenge to the world's health systems. Our study aims to identify the coexpressed genes in NAFLD and sarcopenia patients. METHODS We downloaded the transcriptome data of NAFLD tissue from patients, as well as muscle tissues from sarcopenia patients, from the GEO database in order to investigate the shared transcriptional regulation mechanisms between these two diseases. Then, focusing on the genes that were frequently expressed in these diseases, together with GSVA and WGCNA, we utilized a range of analysis methods to identify the main co-expressed genes in both diseases by taking intersections. We investigated these changes after learning that they mostly affected lipid metabolism and oxidative stress injury pathways. RESULTS By analyzing these genes and their interactions with transcription factors and proteins, we were able to identify 8 genes that share common patterns. From these 8 genes, we were possible to forecast potential future medicines. Our research raises the possibility of NAFLD and sarcopenia transcriptome regulatory pathways in aging populations. DISCUSSION In conclusion, a complete transcription pattern mapping was carried out in order to identify the core genes, underlying biological mechanisms, and possible therapeutic targets that regulate aging in NAFLD and sarcopenia patients. It provides novel insights and proof in favor of decreasing the increased prevalence of sarcopenia in the elderly caused by NAFLD.
Collapse
Affiliation(s)
- Ziying Xu
- School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shang Li
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army of China (PLA), Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- School of Basic Medical Sciences, Peking University, Beijing, China
- *Correspondence: Jing Yuan, ; Fuping You,
| | - Fuping You
- School of Basic Medical Sciences, Peking University, Beijing, China
- *Correspondence: Jing Yuan, ; Fuping You,
| |
Collapse
|
38
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
39
|
Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev 2022; 81:101739. [PMID: 36182084 DOI: 10.1016/j.arr.2022.101739] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/31/2023]
Abstract
Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jin-Ke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
40
|
De Paepe B. The Cytokine Growth Differentiation Factor-15 and Skeletal Muscle Health: Portrait of an Emerging Widely Applicable Disease Biomarker. Int J Mol Sci 2022; 23:ijms232113180. [PMID: 36361969 PMCID: PMC9654287 DOI: 10.3390/ijms232113180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a stress-induced transforming growth factor-β superfamily cytokine with versatile functions in human health. Elevated GDF-15 blood levels associate with multiple pathological conditions, and are currently extensively explored for diagnosis, and as a means to monitor disease progression and evaluate therapeutic responses. This review analyzes GDF-15 in human conditions specifically focusing on its association with muscle manifestations of sarcopenia, mitochondrial myopathy, and autoimmune and viral myositis. The use of GDF-15 as a widely applicable health biomarker to monitor muscle disease is discussed, and its potential as a therapeutic target is explored.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Lynch DH, Spangler HB, Franz JR, Krupenevich RL, Kim H, Nissman D, Zhang J, Li YY, Sumner S, Batsis JA. Multimodal Diagnostic Approaches to Advance Precision Medicine in Sarcopenia and Frailty. Nutrients 2022; 14:1384. [PMID: 35405997 PMCID: PMC9003228 DOI: 10.3390/nu14071384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia, defined as the loss of muscle mass, strength, and function with aging, is a geriatric syndrome with important implications for patients and healthcare systems. Sarcopenia increases the risk of clinical decompensation when faced with physiological stressors and increases vulnerability, termed frailty. Sarcopenia develops due to inflammatory, hormonal, and myocellular changes in response to physiological and pathological aging, which promote progressive gains in fat mass and loss of lean mass and muscle strength. Progression of these pathophysiological changes can lead to sarcopenic obesity and physical frailty. These syndromes independently increase the risk of adverse patient outcomes including hospitalizations, long-term care placement, mortality, and decreased quality of life. This risk increases substantially when these syndromes co-exist. While there is evidence suggesting that the progression of sarcopenia, sarcopenic obesity, and frailty can be slowed or reversed, the adoption of broad-based screening or interventions has been slow to implement. Factors contributing to slow implementation include the lack of cost-effective, timely bedside diagnostics and interventions that target fundamental biological processes. This paper describes how clinical, radiographic, and biological data can be used to evaluate older adults with sarcopenia and sarcopenic obesity and to further the understanding of the mechanisms leading to declines in physical function and frailty.
Collapse
Affiliation(s)
- David H. Lynch
- Division of Geriatric Medicine, Center for Aging and Health, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Hillary B. Spangler
- Division of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Jason R. Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC 27599, USA; (J.R.F.); (R.L.K.); (H.K.)
| | - Rebecca L. Krupenevich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC 27599, USA; (J.R.F.); (R.L.K.); (H.K.)
| | - Hoon Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC 27599, USA; (J.R.F.); (R.L.K.); (H.K.)
| | - Daniel Nissman
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; (D.N.); (J.Z.)
| | - Janet Zhang
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; (D.N.); (J.Z.)
| | - Yuan-Yuan Li
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.-Y.L.); (S.S.)
| | - Susan Sumner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.-Y.L.); (S.S.)
| | - John A. Batsis
- Division of Geriatric Medicine, Center for Aging and Health, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.-Y.L.); (S.S.)
| |
Collapse
|