1
|
Wang C, Huang W, Chen Q, Yang C, Zhu H, Chen X, He Q, Yu X. Exploring the mechanism of Cynanchum paniculatum (Bunge) Kitag's therapeutic strategy for rheumatoid arthritis: integrating network pharmacology, molecular docking and in vivo experiments. J Biomol Struct Dyn 2025:1-15. [PMID: 40269643 DOI: 10.1080/07391102.2025.2494840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by joint swelling, cartilage degradation, and joint deformity. The traditional Chinese herb Cynanchum paniculatum (Bunge) Kitag has been utilized in the management of RA, but the underlying mechanisms are unknown. This study utilized network pharmacology analysis to identify 26 active compounds associated with RA treatment and elucidate their interactions with 23 critical targets linked to RA. Subsequently, molecular docking studies revealed eight compounds with the capacity to bind to multiple key targets, with butyl isobutyl phthalate and geranyl acetone emerging as the most promising candidates based on their drug-likeness properties. To validate these findings, a rat model of adjuvant-induced arthritis was employed. Oral administration of geranyl acetone led to a significant reduction in paw swelling and pro-inflammatory markers, including TNF-α, IL-6, IL-1β, and MPO. Furthermore, it resulted in histological improvements in ankle tissues, all without adverse effects on weight or immune organs. Mechanistically, geranyl acetone was found to impede the progression of RA by modulating the TLR4/MyD88/NF-κB signaling pathway. In conclusion, C. paniculatum demonstrates substantial therapeutic potential for RA due to its multi-target and multi-pathway activities. Moreover, geranyl acetone, when used as a standalone agent, exhibits significant promise in alleviating RA symptoms, offering a compelling avenue for further research and potential clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Wangxiang Huang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Qianzi Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Chenying Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Haiting Zhu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Xiya Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Wang MM, Truica MI, Gattis BS, Oktawiec J, Sagar V, Basu AA, Bertin PA, Zhang X, Abdulkadir SA, Gianneschi NC. Heterobifunctional proteomimetic polymers for targeted protein degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.641543. [PMID: 40161762 PMCID: PMC11952306 DOI: 10.1101/2025.03.07.641543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The burgeoning field of targeted protein degradation (TPD) has opened new avenues for modulating the activity of previously undruggable proteins of interest. To date, TPD has been dominated by small molecules containing separate linked domains for protein engagement and recruitment of cellular degradation machinery. The process of identifying active compounds has required tedious optimization and has been successful largely against a limited set of targets with well-defined, suitable docking pockets. Here we present a polymer chemistry approach termed the HYbrid DegRAding Copolymer (HYDRAC) to overcome standing challenges associated with the development of TPD. These copolymers densely display either peptide-based or small molecule-derived degradation inducers and target-binding peptide sequences for the selective degradation of disease-associated proteins. HYDRACs are synthesized in a facile manner, are modular in design, and are highly selective. Using the intrinsically disordered transcription factor MYC as an initial proof-of-concept, difficult to drug protein target, HYDRACs containing a MYC-inhibitory peptide copolymerized with a validated degron, showed robust and selective degradation of the target protein. Treatment of tumor-bearing mice with MYC-targeted HYDRACs showed decreased cell proliferation and increased tumor apoptosis, leading to significantly suppressed tumor growth in vivo . The versatility of the platform was demonstrated by substituting the degron for recruiters of three different E3 ligases (VHL, KEAP1, and CRBN), which all maintained MYC degradation. To demonstrate generalizability, HYDRACs were further designed against a second elusive target of clinical interest, KRAS, by employing a consensus RAS binding motif. RAS-targeted HYDRACs showed degradation in two cell lines harboring separate KRAS alleles, suggesting potential pan-KRAS activity. We envision the HYDRAC platform as a generalizable approach to developing degraders of proteins of interest, greatly expanding the therapeutic armamentarium for TPD.
Collapse
|
3
|
Wen L, Lin X, Hu D, Li J, Xie K, Li S, Su S, Duan X, Zhong G, Lin Y, Chen Y, Xu T, Zeng Q. Trimethylamine N-oxide aggravates human aortic valve interstitial cell inflammation by regulating the macrophages polarization through a N6-methyladenosine-mediated pathway. Atherosclerosis 2025; 402:119109. [PMID: 39952076 DOI: 10.1016/j.atherosclerosis.2025.119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/24/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that promotes calcified aortic valve disease (CAVD), but the underlying mechanism remains obscure. Herein, we aim to test the hypothesis that TMAO regulated the inflammatory process in aortic valves via N6-methyladenosine (m6A) RNA methylation-mediated macrophage polarization. METHODS In vitro, we stimulated macrophages (Phorbol-12-Myristate-13-Acetate-induced THP-1) with TMAO and assessed the expression of methyltransferase-like 3 (Mettl3), IL-1 receptor associated kinase M (IRAK-M) and polarization markers. The interaction between YTH domain family protein 2 (YTHDF2) and IRAK-M mRNA was explored by RNA-IP and RNA decay assay. Functionally, the effects of macrophages on human aortic valve interstitial cells (AVICs) were measured via macrophage adhesion assay and co-culture system. In vivo, the influence of IRAK-M on CAVD development was verified using Irak-m-/- mice. RESULT Mettl3 was highly expressed while IRAK-M was decreased in human calcified aortic valves. In vitro, TMAO upregulated the expression of Mettl3, while the expression of IRAK-M, an important negative regulator of the NF-κB pathway, was remarkably decreased in macrophages. TMAO also induced classical macrophage activation (M1 polarization). Mechanistically, IRAK-M was identified as a target of Mettl3-mediated m6A modification, indicating the involvement of m6A methylation in the regulation of NF-κB activation. Moreover, RIP assay revealed the direct interaction between YTHDF2 and IRAK-M mRNA and this process was dependent on Mettl3. TMAO-treated macrophage conditioned medium induced inflammatory responses in human aortic valve interstitial cells (AVICs). In vivo experiments showed that the deletion of IRAK-M significantly accelerated the progression of aortic valve lesion in mice administrated with high-fat and choline diet (HFCD). CONCLUSION TMAO induces the expression of Mettl3 in macrophages. Mettl3 promotes M1 polarization of macrophages by inhibiting IRAK-M through a m6A/YTHDF2 pathway. TMAO-treated macrophages aggravate the inflammation of human AVICs.
Collapse
Affiliation(s)
- Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiangjie Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Juncong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiaolin Duan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Guoheng Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yingwen Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Tianyu Xu
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
4
|
Liu Z, Shi J, Tu K, Ma H, Chen J, Xiang X, Zou P, Liao C, Ding R, Huang Z, Yao X, Chen J, Wang L, Zhang Z. GPx3 Promotes Functional Recovery after Spinal Cord Injury by Inhibiting Microglial Pyroptosis Through IRAK4/ROS/NLRP3 Axis. Antioxid Redox Signal 2025. [PMID: 39895340 DOI: 10.1089/ars.2024.0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aim: Spinal cord injury (SCI) is a catastrophic injury characterized by oxidative stress. Glutathione peroxidase 3 (GPx3) is an antioxidant enzyme that protects against immune responses in various diseases. However, the effects of GPx3 in SCI remains unclear. This study aimed to investigate the role of GPx3 in SCI and its underlying mechanisms. Results: We injected adeno-associated viruses to overexpress GPx3 in mice. Primary microglia and BV2 cells were used as in vitro models. We knocked down or overexpressed GPx3 in BV2 cells. Additionally, BV2 cells transfected with siIRAK4 were used to perform rescue experiments. A series of histological and molecular biological analyses were used to explore the role of GPx3 in SCI. Overexpression of GPx3 inhibited oxidative stress in mice, improving functional recovery after SCI. Similarly, LPS+ATP stimulation decreased GPx3 expression in microglia. Silencing of GPx3 elevated the generation of reactive oxygen species, increased the expression of IRAK4 and pro-inflammatory factors, and promoted pyroptosis in microglia. However, overexpression of GPx3 reversed these results. Moreover, silencing of IRAK4 alleviated these phenomena, which were upregulated by GPx3 deficiency. Innovation and Conclusion: Our results demonstrated that GPx3 plays a critical role in SCI by inhibiting microglial pyroptosis via the IRAK4/ROS/NLRP3 signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawei Shi
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewu Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Ma
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peiqian Zou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinqiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopaedics, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
He L, Li L, Zhao L, Guan X, Guo Y, Han Q, Guo H, Liu H, Zhang C. CircCCT2/miR-146a-5p/IRAK1 axis promotes the development of head and neck squamous cell carcinoma. BMC Cancer 2025; 25:84. [PMID: 39810134 PMCID: PMC11734332 DOI: 10.1186/s12885-025-13464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC. METHODS CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR. CircCCT2 was characterized by Sanger sequencing, qRT-PCR, RNase R & Actinomycin D treatment, nucleoplasmic separation and FISH experiments. CCK-8 and colony formation assays were performed to determine cell proliferation, and Transwell assays were used to determine migration and invasion. A xenograft tumor model was used to study the influence of circCCT2 on HNSCC in vivo. Dual-luciferase gene reporter, RIP, western blotting, and rescue experiments, were used to explore target-binding relationships and regulatory mechanisms. RESULTS CircCCT2 was significantly upregulated in HNSCC tissues and cells. High circCCT2 levels were associated with advanced T stage, N stage, clinical stage and poor prognosis. Functionally, we verified that circCCT2 promotes HNSCC development in vitro and in vivo. Mechanistically, functioning as a competitive endogenous RNA (ceRNA) or miRNA sponge, circCCT2 binds directly to miR-146a-5p and increases interleukin-1 receptor-associated kinase 1 (IRAK1) levels, which enhances the malignant development of HNSCC by driving epithelial-mesenchymal transition (EMT). CONCLUSION CircCCT2 promotes HNSCC development through the miR-146a-5p/IRAK1 axis, revealing that circCCT2 is a potential biomarker and target for HNSCC.
Collapse
Affiliation(s)
- Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Lanruo Li
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Departments of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Pravin N, Jóźwiak K. PROTAC unleashed: Unveiling the synthetic approaches and potential therapeutic applications. Eur J Med Chem 2024; 279:116837. [PMID: 39305635 DOI: 10.1016/j.ejmech.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are a novel class of bifunctional small molecules that alter protein levels by targeted degradation. This innovative approach uses the ubiquitin-proteasome system to selectively eradicate disease-associated proteins, providing a novel therapeutic strategy for a wide spectrum of diseases. This review delineates detailed synthetic approaches involved in PROTAC building blocks, including the ligand and protein binding parts, linker attached structural components of PROTACs and the actual PROTAC molecules. Furthermore, the recent advancements in PROTAC-mediated degradation of specific oncogenic and other disease-associated proteins, such as those involved in neurodegenerative, antiviral, and autoimmune diseases, were also discussed. Additionally, we described the current landscape of PROTAC clinical trials and highlighted key studies that underscore the translational potential of this emerging therapeutic modality. These findings demonstrate the versatility of PROTACs in modulating the levels of key proteins involved in various severe diseases.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
7
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
8
|
Tu W, Guo M, Zhang Z, Li C. Pathogen-induced apoptosis in echinoderms: A review. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109990. [PMID: 39481501 DOI: 10.1016/j.fsi.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Echinoderms possess unique biological traits that make them valuable models in immunology, regeneration, and developmental biology studies. As a class rich in active substances with significant nutritional and medicinal value, echinoderms face threats from marine pathogens, including bacteria, viruses, fungi, protozoa, and parasites, which have caused substantial economic losses in echinoderm aquaculture. Echinoderms counteract pathogen invasion through innate immunity and programmed cell death, in particular, with apoptosis being essential for eliminating infected or damaged cells and maintaining homeostasis in many echinoderm cell types. Despite the importance of this process, there is a lack of comprehensive and updated reviews on this topic. This review underscores that echinoderm apoptotic pathways exhibit a complexity comparable to that of vertebrates, featuring proteins with unique domains that may indicate the presence of novel signaling mechanisms. We synthesize current knowledge on how echinoderms utilize diverse transcriptional and post-transcriptional mechanisms to regulate apoptosis in response to pathogen infections and explore how pathogens have evolved strategies to manipulate echinoderm apoptosis, either by inhibiting it to create survival niches or by inducing excessive apoptosis to weaken the host. By elucidating the primary apoptotic pathways in echinoderms and the host-pathogen interactions that modulate these pathways, this review aims to reveal new mechanisms of apoptosis in animal immune defense and provide insights into the evolutionary arms race between hosts and pathogens.
Collapse
Affiliation(s)
- Weitao Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
9
|
Feng Y, Chen C, Shao A, Wu L, Hu H, Zhang T. Emerging interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors or degraders as therapeutic agents for autoimmune diseases and cancer. Acta Pharm Sin B 2024; 14:5091-5105. [PMID: 39807338 PMCID: PMC11725142 DOI: 10.1016/j.apsb.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer. Consequently, targeting IRAK4-mediated signaling pathways has emerged as a promising therapeutic strategy. Small molecule inhibitors and degraders designed to modulate IRAK4 have shown efficacy in mitigating related diseases. In this paper, we will provide a detailed description of the structure and function of IRAK4, the role of IRAK4 in related diseases, as well as the currently reported small molecule inhibitors and degraders of IRAK4. It is expected to provide new directions for enriching the clinical treatment of inflammation and related diseases.
Collapse
Affiliation(s)
- Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Anqi Shao
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiyu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Shi Y, Wu C, Wang C, Shen Y, Jiang A, Cao K, Liu X, Jiang X, Lv Z. IRAK2 overexpression restrains prostate cancer progression by regulation of TRAF6 ubiquitination. Cell Signal 2024; 125:111508. [PMID: 39549822 DOI: 10.1016/j.cellsig.2024.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Prostate cancer is recognized as one of the most common tumors among men worldwide, yet the molecular mechanisms underlying its progression remain to be fully understood. In this study, we explored the role of interleukin-1 receptor-associated kinase 2 (IRAK2) in the progression of prostate cancer. We discovered that IRAK2 expression is downregulated in prostate cancer tissues and cells. Functional assays, including MTT, transwell assays, wound healing assays, and in vivo xenograft models, demonstrated that upregulation of IRAK2 significantly inhibited prostate cancer cell viability, migration, invasion, and tumor growth. Furthermore, we found that IRAK2 modulates the biological functions of prostate cancer by interacting with TNF receptor-associated factor 6 (TRAF6). Knockdown of TRAF6 reversed the suppressive effects of IRAK2 overexpression on prostate cancer cell progression. Additionally, IRAK2 was found to suppress the ubiquitination and degradation of TRAF6 in prostate cancer cells. IRAK2 also influenced the sensitivity of prostate cancer cells to docetaxel (DTX), and silencing IRAK2 reversed the anti-tumor effects of DTX on prostate cancer cells. Our findings suggest that IRAK2 functions as a tumor suppressor in prostate cancer and may serve as a potential therapeutic target for developing effective treatments for prostate cancer.
Collapse
Affiliation(s)
- Yunfeng Shi
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Chengshuai Wu
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Chengyue Wang
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Ying Shen
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Anqi Jiang
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Kai Cao
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Xiaowu Liu
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Xinying Jiang
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China.
| | - Zhong Lv
- Urology Surgery, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
11
|
Zhong X, Li C, Li Y, Huang Y, Liu J, Jiang A, Chen J, Peng Y. IRAK-M Plays A Role in the Pathology of Amyotrophic Lateral Sclerosis Through Suppressing the Activation of Microglia. Mol Neurobiol 2024; 61:7603-7610. [PMID: 38421467 DOI: 10.1007/s12035-024-04065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Microglial activation plays a crucial role in the disease progression in amyotrophic lateral sclerosis (ALS). Interleukin receptor-associated kinases-M (IRAK-M) is an important negative regulatory factor in the Toll-like receptor 4 (TLR4) pathway during microglia activation, and its mechanism in this process is still unclear. In the present study, we aimed to investigate the dynamic changes of IRAK-M and its protective effects for motor neurons in SOD1-G93A mouse model of ALS. qPCR (Real-time Quantitative PCR Detecting System) were used to examine the mRNA levels of IRAK-M in the spinal cord in both SOD1-G93A mice and their age-matched wild type (WT) littermates at 60, 100 and 140 days of age. We established an adeno-associated virus 9 (AAV9)-based platform by which IRAK-M was targeted mostly to microglial cells to investigate whether this approach could provide a protection in the SOD1-G93A mouse. Compared with age-matched WT mice, IRAK-M mRNA level was elevated at 100 and 140 days in the anterior horn region of spinal cords in the SOD1-G93A mouse. AAV9-IRAK-M treated SOD1-G93A mice showed reduction of IL-1β mRNA levels and significant improvements in the numbers of spinal motor neurons in spinal cord. Mice also showed previously reduction of muscle atrophy. Our data revealed the dynamic changes of IRAK-M during ALS pathological progression and demonstrated that an AAV9-IRAK-M delivery was an effective and translatable therapeutic approach for ALS. These findings may help identify potential molecular targets for ALS therapy.
Collapse
Affiliation(s)
- Xinghua Zhong
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Chuqiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yanran Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yingyi Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jingsi Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Anqi Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jinyu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Ruscitti P, Currado D, Rivellese F, Vomero M, Navarini L, Cipriani P, Pitzalis C, Giacomelli R. Diminished expression of the ubiquitin-proteasome system in early treatment-naïve patients with rheumatoid arthritis and concomitant type 2 diabetes may be linked to IL-1 pathway hyper-activity; results from PEAC cohort. Arthritis Res Ther 2024; 26:171. [PMID: 39342401 PMCID: PMC11437779 DOI: 10.1186/s13075-024-03392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE Based on the recent evidence of IL-1 inhibition in patients with rheumatoid arthritis (RA) and concomitant type 2 diabetes (T2D), we evaluated the synovial tissue expression of IL-1 related genes in relationship to the ubiquitin-proteasome system and the effects of insulin on ubiquitinated proteins in fibroblast-like synoviocytes (FLSs). METHODS The synovial expression of IL-1 pathway genes was compared in early (< 1 year) treatment-naïve RA patients with T2D (RA/T2D n = 16) and age- and sex-matched RA patients without T2D (n = 16), enrolled in the Pathobiology of Early Arthritis Cohort (PEAC). The synovial expression of ubiquitin in macrophages and synovial lining fibroblasts was also assessed by Immunohistochemistry/immunofluorescence and correlated with synovial pathotypes. Finally, FLSs from RA patients (n = 5) were isolated and treated with human insulin (200 and 500 nM) and ubiquitinated proteins were assessed by western blot. RESULTS Synovial tissues of RA/T2D patients were characterised by a consistent reduced expression of ubiquitin-proteasome genes. More specifically, ubiquitin genes (UBB, UBC, and UBA52) and genes codifying proteasome subunits (PSMA2, PSMA6, PSMA7, PSMB1, PSMB3, PSMB4, PSMB6, PSMB8, PSMB9, PSMB10, PSMC1, PSMD9, PSME1, and PSME2) were significantly lower in RA/T2D patients. On the contrary, genes regulating fibroblast functions (FGF7, FGF10, FRS2, FGFR3, and SOS1), and genes linked to IL-1 pathway hyper-activity (APP, IRAK2, and OSMR) were upregulated in RA/T2D. Immunohistochemistry showed a significant reduction of the percentage of ubiquitin-positive cells in synovial tissues of RA/T2D patients. Ubiquitin-positive cells were also increased in patients with a lympho-myeloid pathotype compared to diffuse myeloid or pauci-immune-fibroid. Finally, in vitro experiments showed a reduction of ubiquitinated proteins in RA-FLSs treated with a high concentration of insulin (500 nM). CONCLUSIONS A different IL-1 pathway gene expression was observed in the synovial tissues of early treatment-naïve RA/T2D patients, linked to decreased expression of the ubiquitin-proteasome system. These findings may provide a mechanistic explanation of the observed clinical benefits of IL-1 inhibition in patients with RA and concomitant T2D.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Delta 6 Building, PO box 67100, L'Aquila, Italy.
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust & Barts Biomedical Research Centre (BRC) National Institute for Health and Care Research (NIHR), London, UK
| | - Marta Vomero
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Delta 6 Building, PO box 67100, L'Aquila, Italy
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust & Barts Biomedical Research Centre (BRC) National Institute for Health and Care Research (NIHR), London, UK
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| |
Collapse
|
13
|
Alaklabi S, Maguire O, Pattnaik H, Zhang Y, Chow J, Wang J, Minderman H, Iyer R. Immune Cell Molecular Pharmacodynamics of Lanreotide in Relation to Treatment Response in Patients with Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:3104. [PMID: 39272962 PMCID: PMC11394651 DOI: 10.3390/cancers16173104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.
Collapse
Affiliation(s)
- Sabah Alaklabi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Harsha Pattnaik
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jacky Chow
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
14
|
Watany MM, Elhosary MM, El-Horany HE, El-Horany ME. Methylation of Interleukin-1 receptor-associated kinase-3 and the risk of multiple sclerosis relapse/activity. Clin Immunol 2024; 266:110327. [PMID: 39053866 DOI: 10.1016/j.clim.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.
Collapse
Affiliation(s)
- Mona M Watany
- Clinical pathology department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Marwa M Elhosary
- Msc Immunology from Tanta university, Faculty of Science, Tanta 31527, Egypt
| | - Hemat E El-Horany
- Medical biochemistry department, Faculty of Medicine. Tanta University, Tanta 31527, Egypt; Biochemistry Department, College of Medicine, Ha'il University, Ha'il 55211, Saudi Arabia
| | - Mahmoud E El-Horany
- Neurology department, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| |
Collapse
|
15
|
Xie Y, Chi Y, Tao X, Yu P, Liu Q, Zhang M, Yang N, Liu S, Zhu W. Rabies Virus Regulates Inflammatory Response in BV-2 Cells through Activation of Myd88 and NF-κB Signaling Pathways via TLR7. Int J Mol Sci 2024; 25:9144. [PMID: 39273091 PMCID: PMC11395267 DOI: 10.3390/ijms25179144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Rabies is a fatal neurological infectious disease caused by rabies virus (RABV), which invades the central nervous system (CNS). RABV with varying virulence regulates chemokine expression, and the mechanisms of signaling pathway activation remains to be elucidated. The relationship between Toll-like receptors (TLRs) and immune response induced by RABV has not been fully clarified. Here, we investigated the role of TLR7 in the immune response induced by RABV, and one-way analysis of variance (ANOVA) was employed to evaluate the data. We found that different RABV strains (SC16, HN10, CVS-11) significantly increased CCL2, CXCL10 and IL-6 production. Blocking assays indicated that the TLR7 inhibitor reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). The activation of the Myd88 pathway in BV-2 cells stimulated by RABV was TLR7-dependent, whereas the inhibition of Myd88 activity reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). Meanwhile, the RABV stimulation of BV-2 cells resulted in TRL7-mediated activation of NF-κB and induced the nuclear translocation of NF-κB p65. CCL2, CXCL10 and IL-6 release was attenuated by the specific NF-κB inhibitor used (p < 0.01). The findings above demonstrate that RABV-induced expression of CCL2, CXCL10 and IL-6 involves Myd88 and NF-κB pathways via the TLR7 signal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuqing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.X.); (Y.C.); (X.T.); (P.Y.); (Q.L.); (M.Z.); (N.Y.)
| | - Wuyang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.X.); (Y.C.); (X.T.); (P.Y.); (Q.L.); (M.Z.); (N.Y.)
| |
Collapse
|
16
|
Zhao T, Zhang X, Cui X, Su S, Li L, Chen Y, Wang N, Sun L, Zhao J, Zhang J, Han X, Cao J. Inhibiting the IRAK4/NF-κB/NLRP3 signaling pathway can reduce pyroptosis in hippocampal neurons and seizure episodes in epilepsy. Exp Neurol 2024; 377:114794. [PMID: 38685307 DOI: 10.1016/j.expneurol.2024.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Interleukin-1 receptor-associated kinase 4 (IRAK4) plays an important role in immune modulation in various central nervous system disorders. However, IRAK4 has not been reported in epilepsy models in animal and clinical studies, nor has its involvement in regulating pyroptosis in epilepsy. METHOD First, we performed transcriptome sequencing, quantitative real-time polymerase chain reaction, and western blot analysis on the hippocampal tissues of refractory epilepsy patients to measure the mRNA and protein levels of IRAK4 and pyroptosis-related proteins. Second, we successfully established a pentylenetetrazol (PTZ)-induced seizure mouse model. We conducted behavioral tests, electroencephalography, virus injection, and molecular biology experiments to investigate the role of IRAK4 in seizure activity regulation. RESULTS IRAK4 is upregulated in the hippocampus of epilepsy patients and PTZ-induced seizure model mice. IRAK4 expression is observed in the hilar neurons of PTZ-induced mice. Knocking down IRAK4 in PTZ-induced mice downregulated pyroptosis-related protein expression and alleviated seizure activity. Overexpressing IRAK4 in naive mice upregulated pyroptosis-related protein expression and increased PTZ-induced abnormal neuronal discharges. IRAK4 and NF-κB were found to bind to each other in patient hippocampal tissue samples. Pyrrolidine dithiocarbamate reversed the pyroptosis-related protein expression increase caused by PTZ. PF-06650833 alleviated seizure activity and inhibited pyroptosis in PTZ-induced seizure mice. CONCLUSION IRAK4 plays a key role in the pathological process of epilepsy, and its potential mechanism may be related to pyroptosis mediated by the NF-κB/NLRP3 signaling pathway. PF-06650833 has potential as a therapeutic agent for alleviating epilepsy.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xuefei Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaoxiao Cui
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Songxue Su
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Li
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yanan Chen
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Na Wang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Sun
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jiewen Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Xiong Han
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jing Cao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
17
|
Chen W, Xie X, Liu C, Liao J, Wei Y, Wu R, Hong J. IRAK1 deficiency potentiates the efficacy of radiotherapy in repressing cervical cancer development. Cell Signal 2024; 119:111192. [PMID: 38685522 DOI: 10.1016/j.cellsig.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
IRAK1 has been implicated in promoting development of various types of cancers and mediating radioresistance. However, its role in cervical cancer tumorigenesis and radioresistance, as well as the potential underlying mechanisms, remain poorly defined. In this study, we evaluated IRAK1 expression in radiotherapy-treated cervical cancer tissues and found that IRAK1 expression is negatively associated with the efficacy of radiotherapy. Consistently, ionizing radiation (IR)-treated HeLa and SiHa cervical cancer cells express a lower level of IRAK1 than control cells. Depletion of IRAK1 resulted in reduced activation of the NF-κB pathway, decreased cell viability, downregulated colony formation efficiency, cell cycle arrest, increased apoptosis, and impaired migration and invasion in IR-treated cervical cancer cells. Conversely, overexpressing IRAK1 mitigated the anti-cancer effects of IR in cervical cancer cells. Notably, treatment of IRAK1-overexpressing IR-treated HeLa and SiHa cells with the NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) partially counteracted the effects of excessive IRAK1. Furthermore, our study demonstrated that IRAK1 deficiency enhanced the anti-proliferative role of IR treatment in a xenograft mouse model. These collective observations highlight IRAK1's role in mitigating the anti-cancer effects of radiotherapy, partly through the activation of the NF-κB pathway. SUMMARY: IRAK1 enhances cervical cancer resistance to radiotherapy, with IR treatment reducing IRAK1 expression and increasing cancer cell vulnerability and apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China; Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China.
| | - Xingyun Xie
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Chengying Liu
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Jingrong Liao
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Yuting Wei
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Rongrong Wu
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Jinsheng Hong
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China; National Regional Medical Center, Binhai Campus, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian, PR China; Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China.
| |
Collapse
|
18
|
Two rare UNC93B1 variants contribute to childhood-onset lupus. Nat Immunol 2024; 25:951-952. [PMID: 38831107 DOI: 10.1038/s41590-024-01850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
|
19
|
Zhang L, Kuang G, Gong X, Huang R, Zhao Z, Li Y, Wan J, Wang B. Piperine attenuates hepatic ischemia/reperfusion injury via suppressing the TLR4 signaling cascade in mice. Transpl Immunol 2024; 84:102033. [PMID: 38484898 DOI: 10.1016/j.trim.2024.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Piperine, the major active substance in black pepper, has been shown to have anti-inflammatory and antioxidant effects in several ischemic diseases. However, the role of piperine in hepatic ischemia/reperfusion injury (HIRI) and its underlying mechanisms remain unclear. In this study, the mice were administered piperine (30 mg/kg) intragastric administration before surgery. After 24 h of hepatic ischemia-reperfusion, liver histopathological evaluation, serum transaminase measurements, and TUNEL analysis were performed. The infiltration of inflammatory cells and production of inflammatory mediators in the liver tissue were determined by immunofluorescence and immunohistochemical staining. The protein levels of toll-like receptor 4 (TLR4) and related proteins such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), p65, and p38 were detected by western blotting. The results showed that plasma aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte apoptosis, oxidative stress, and inflammatory cell infiltration significantly increased in HIRI mice. Piperine pretreatment notably repaired liver function, improved the histopathology and apoptosis of liver cells, alleviated oxidative stress injury, and reduced inflammatory cell infiltration. Further analysis showed that piperine attenuated tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) production and reduced TLR4 activation and phosphorylation of IRAK1, p38, and NF-κB in HIRI. Piperine has a protective effect against HIRI through the TLR4/IRAK1/NF-κB signaling pathway and may be a safer option for future clinical treatment and prevention of ischemia-related diseases.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Rui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Cai Z, Yang Z, Li H, Fang Y. Research progress of PROTACs for neurodegenerative diseases therapy. Bioorg Chem 2024; 147:107386. [PMID: 38643565 DOI: 10.1016/j.bioorg.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (NDD) are characterized by the gradual deterioration of neuronal function and integrity, resulting in an overall decline in brain function. The existing therapeutic options for NDD, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, fall short of meeting the clinical demand. A prominent pathological hallmark observed in numerous neurodegenerative disorders is the aggregation and misfolding of proteins both within and outside neurons. These abnormal proteins play a pivotal role in the pathogenesis of neurodegenerative diseases. Targeted degradation of irregular proteins offers a promising avenue for NDD treatment. Proteolysis-targeting chimeras (PROTACs) function via the ubiquitin-proteasome system and have emerged as a novel and efficacious approach in drug discovery. PROTACs can catalytically degrade "undruggable" proteins even at exceptionally low concentrations, allowing for precise quantitative control of aberrant protein levels. In this review, we present a compilation of reported PROTAC structures and their corresponding biological activities aimed at addressing NDD. Spanning from 2016 to present, this review provides an up-to-date overview of PROTAC-based therapeutic interventions. Currently, most protein degraders intended for NDD treatment remain in the preclinical research phase. Overcoming several challenges is imperative, including enhancing oral bioavailability and permeability across the blood-brain barrier, before these compounds can progress to clinical research or eventually reach the market. However, armed with an enhanced comprehension of the underlying pathological mechanisms and the emergence of innovative scaffolds for protein degraders, along with further structural optimization, we are confident that PROTAC possesses the potential to make substantial breakthroughs in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhifang Cai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huilan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| |
Collapse
|
21
|
Al-Azab M, Idiiatullina E, Liu Z, Lin M, Hrovat-Schaale K, Xian H, Zhu J, Yang M, Lu B, Zhao Z, Liu Y, Chang J, Li X, Guo C, Liu Y, Wu Q, Chen J, Lan C, Zeng P, Cui J, Gao X, Zhou W, Zhang Y, Zhang Y, Masters SL. Genetic variants in UNC93B1 predispose to childhood-onset systemic lupus erythematosus. Nat Immunol 2024; 25:969-980. [PMID: 38831104 PMCID: PMC11147776 DOI: 10.1038/s41590-024-01846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Elina Idiiatullina
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
| | - Ziyang Liu
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Meng Lin
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Katja Hrovat-Schaale
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Huifang Xian
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Zhu
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Mandy Yang
- State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Zhao
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China
| | - Yiyi Liu
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jingjie Chang
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiaotian Li
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Caiqin Guo
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Liu
- Clinical Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Qi Wu
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- National Children Medical Center, Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jiazhang Chen
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Chaoting Lan
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Ping Zeng
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jun Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Gao
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Wenhao Zhou
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yan Zhang
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuxia Zhang
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
| | - Seth L Masters
- Department of Immunology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
22
|
Kim KM, Hwang NH, Hyun JS, Shin D. Recent Advances in IRAK1: Pharmacological and Therapeutic Aspects. Molecules 2024; 29:2226. [PMID: 38792088 PMCID: PMC11123835 DOI: 10.3390/molecules29102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin receptor-associated kinase (IRAK) proteins are pivotal in interleukin-1 and Toll-like receptor-mediated signaling pathways. They play essential roles in innate immunity and inflammation. This review analyzes and discusses the physiological functions of IRAK1 and its associated diseases. IRAK1 is involved in a wide range of diseases such as dry eye, which highlights its potential as a therapeutic target under various conditions. Various IRAK1 inhibitors, including Pacritinib and Rosoxacin, show therapeutic potential against malignancies and inflammatory diseases. The covalent IRAK1 inhibitor JH-X-119-01 shows promise in B-cell lymphomas, emphasizing the significance of covalent bonds in its activity. Additionally, the emergence of selective IRAK1 degraders, such as JNJ-101, provides a novel strategy by targeting the scaffolding function of IRAK1. Thus, the evolving landscape of IRAK1-targeted approaches provides promising avenues for increasingly safe and effective therapeutic interventions for various diseases.
Collapse
Affiliation(s)
| | | | - Ja-Shil Hyun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| |
Collapse
|
23
|
Gumkowska-Sroka O, Kotyla K, Kotyla P. Immunogenetics of Systemic Sclerosis. Genes (Basel) 2024; 15:586. [PMID: 38790215 PMCID: PMC11121022 DOI: 10.3390/genes15050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as primarily a "hyperfibrotic" state towards a recognition of systemic sclerosis as an immune-mediated disease. Consequently, the search for genetic markers has transitioned from focusing on fibrotic mechanisms to exploring immune regulatory pathways. Immunogenetics, an emerging field at the intersection of immunology, molecular biology, and genetics has provided valuable insights into inherited factors that influence immunity. Data from genetic studies conducted thus far indicate that alterations in genetic messages can significantly impact disease risk and progression. While certain genetic variations may confer protective effects, others may exacerbate disease susceptibility. This paper presents a comprehensive review of the most relevant genetic changes that influence both the risk and course of systemic sclerosis. Special emphasis is placed on factors regulating the immune response, recognizing their pivotal role in the pathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Medical University of Silesia, Voivodeship Hospital No. 5, 41-200 Sosnowiec, Poland; (O.G.-S.); (K.K.)
| |
Collapse
|
24
|
Huret C, Ferrayé L, David A, Mohamed M, Valentin N, Charlotte F, Savignac M, Goodhardt M, Guéry JC, Rougeulle C, Morey C. Altered X-chromosome inactivation predisposes to autoimmunity. SCIENCE ADVANCES 2024; 10:eadn6537. [PMID: 38701219 PMCID: PMC11068014 DOI: 10.1126/sciadv.adn6537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.
Collapse
Affiliation(s)
- Christophe Huret
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Léa Ferrayé
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Antoine David
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nicolas Valentin
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Frédéric Charlotte
- Sorbonne University, Department of Pathological Anatomy and Cytology, Hôpital Pitié-Salpêtrière Charles Foix, F-75013, Paris, France
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Michele Goodhardt
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Céline Morey
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| |
Collapse
|
25
|
Taraschenko O, Fox HS, Eldridge E, Heliso P, Al-Saleem F, Dessain S, Casale G, Willcockson G, Anderson K, Wang W, Dingledine R. MyD88-mediated signaling is critical for the generation of seizure responses and cognitive impairment in a model of anti-N-methyl-D-aspartate receptor encephalitis. Epilepsia 2024; 65:1475-1487. [PMID: 38470097 PMCID: PMC11087204 DOI: 10.1111/epi.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE We previously demonstrated that interleukin-1 receptor-mediated immune activation contributes to seizure severity and memory loss in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. In the present study, we assessed the role of the myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in Toll-like receptor signaling, in the key phenotypic characteristics of anti-NMDAR encephalitis. METHODS Monoclonal anti-NMDAR antibodies or control antibodies were infused into the lateral ventricle of MyD88 knockout mice (MyD88-/-) and control C56BL/6J mice (wild type [WT]) via osmotic minipumps for 2 weeks. Seizure responses were measured by electroencephalography. Upon completion of the infusion, the motor, anxiety, and memory functions of the mice were assessed. Astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adaptor molecule 1 [Iba-1]) activation and transcriptional activation for the principal inflammatory mediators involved in seizures were determined using immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. RESULTS As shown before, 80% of WT mice infused with anti-NMDAR antibodies (n = 10) developed seizures (median = 11, interquartile range [IQR] = 3-25 in 2 weeks). In contrast, only three of 14 MyD88-/- mice (21.4%) had seizures (0, IQR = 0-.25, p = .01). The WT mice treated with antibodies also developed memory loss in the novel object recognition test, whereas such memory deficits were not apparent in MyD88-/- mice treated with anti-NMDAR antibodies (p = .03) or control antibodies (p = .04). Furthermore, in contrast to the WT mice exposed to anti-NMDAR antibodies, the MyD88-/- mice had a significantly lower induction of chemokine (C-C motif) ligand 2 (CCL2) in the hippocampus (p = .0001, Sidak tests). There were no significant changes in the expression of GFAP and Iba-1 in the MyD88-/- mice treated with anti-NMDAR or control antibodies. SIGNIFICANCE These findings suggest that MyD88-mediated signaling contributes to the seizure and memory phenotype in anti-NMDAR encephalitis and that CCL2 activation may participate in the expression of these features. The removal of MyD88 inflammation may be protective and therapeutically relevant.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Howard S. Fox
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Ember Eldridge
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Priscilla Heliso
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | | | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - George Casale
- Department of Surgery, Division of Vascular Surgery, University of Nebraska Medical Center, Omaha, NE
| | | | - Kayley Anderson
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
26
|
Taruselli MT, Qayum AA, Abebayehu D, Caslin HL, Dailey JM, Kotha A, Burchett JR, Kee SA, Maldonado TD, Ren B, Chao W, Zou L, Haque TT, Straus D, Ryan JJ. IL-33 Induces Cellular and Exosomal miR-146a Expression as a Feedback Inhibitor of Mast Cell Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1277-1286. [PMID: 38381001 PMCID: PMC10984763 DOI: 10.4049/jimmunol.2200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.
Collapse
Affiliation(s)
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L. Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jordan M. Dailey
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Aditya Kotha
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jason R. Burchett
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Sydney A. Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tania D. Maldonado
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Tamara T. Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - David Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
27
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
28
|
Zheng J, Ma Y, Guo X, Wu J. Immunological characterization of stroke-heart syndrome and identification of inflammatory therapeutic targets. Front Immunol 2023; 14:1227104. [PMID: 37965346 PMCID: PMC10642553 DOI: 10.3389/fimmu.2023.1227104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Acute cardiac dysfunction caused by stroke-heart syndrome (SHS) is the second leading cause of stroke-related death. The inflammatory response plays a significant role in the pathophysiological process of cardiac damage. However, the mechanisms underlying the brain-heart interaction are poorly understood. Therefore, we aimed to analysis the immunological characterization and identify inflammation therapeutic targets of SHS. We analyzed gene expression data of heart tissue 24 hours after induction of ischemia stoke by MCAO or sham surgery in a publicly available dataset (GSE102558) from Gene Expression Omnibus (GEO). Bioinformatics analysis revealed 138 differentially expressed genes (DEGs) in myocardium of MCAO-treated compared with sham-treated mice, among which, immune and inflammatory pathways were enriched. Analysis of the immune cells infiltration showed that the natural killer cell populations were significantly different between the two groups. We identified five DIREGs, Aplnr, Ccrl2, Cdkn1a, Irak2, and Serpine1 and found that their expression correlated with specific populations of infiltrating immune cells in the cardiac tissue. RT-qPCR and Western blot methods confirmed significant changes in the expression levels of Aplnr, Cdkn1a, Irak2, and Serpine1 after MCAO, which may serve as therapeutic targets to prevent cardiovascular complications after stroke.
Collapse
Affiliation(s)
- Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin Institute of Cardiovascular Disease, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Yilin Ma
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xukun Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin Institute of Cardiovascular Disease, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Jialing Wu
- Department of Neurology, Department of Rehabilitation Medicine, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| |
Collapse
|
29
|
Kong G, Xiong W, Li C, Xiao C, Wang S, Li W, Chen X, Wang J, Chen S, Zhang Y, Gu J, Fan J, Jin Z. Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861. J Nanobiotechnology 2023; 21:364. [PMID: 37794487 PMCID: PMC10552208 DOI: 10.1186/s12951-023-02089-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
Collapse
Affiliation(s)
- Guang Kong
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Xiong
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyu Xiao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjun Chen
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongjie Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Bhole RP, Kute PR, Chikhale RV, Bonde CG, Pant A, Gurav SS. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem 2023; 139:106720. [PMID: 37480814 DOI: 10.1016/j.bioorg.2023.106720] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.
| | - Payal R Kute
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | | | - C G Bonde
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur Campus 425 405, India.
| | - Amit Pant
- School of Medicine Creighton University, Omaha, Neraska, USA.
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403001, India.
| |
Collapse
|
31
|
Deng Y, Liao Y, Huang P, Yao Y, Liu W, Gu Y, Weng G. IRAK-M deficiency exacerbates dopaminergic neuronal damage in a mouse model of sub-acute Parkinson's disease. Neuroreport 2023; 34:463-470. [PMID: 37161987 DOI: 10.1097/wnr.0000000000001913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging evidence has proved that inflammatory responses aggravate the pathological progression of Parkinson's disease. This study aimed to identify the role of Interleukin-1 receptor-associated kinase-M (IRAK-M) as an important negative regulator of innate immunity, in the pathological progression of Parkinson's disease. In the present study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection was administered to prepare the acute and sub-acute Parkinson's disease mouse models. Western blot analysis was utilized to examine the protein expressions of tyrosine hydroxylase and IRAK-M. The mRNA expression levels of IRAK-M, interleukin (IL)-6, IL-β, and cyclooxygenase-2 were evaluated via using reverse transcription quantitative PCR (RT-qPCR). The expression of tyrosine hydroxylase-positive neurons in corpus striatum and substantia nigra pars compacta (SNc) tissues was detected using immunohistochemistry. The results showed that the protein and mRNA levels of IRAK-M were considerably upregulated in corpus striatum and SNc tissues in the sub-acute Parkinson's disease model. Furthermore, IRAK-M knockout significantly enhanced the MPTP-induced loss of tyrosine hydroxylase-positive fibers in corpus striatum and tyrosine hydroxylase-positive neurons in SNc, and intensified the effect of MPTP on the activation of microglial cells and the expression of inflammatory cytokines. In addition, sub-acute Parkinson's disease mice with IRAK-M deletion exhibited worse motor abilities than those of wild-type littermates. Overall, the present study suggested that IRAK-M reduces dopaminergic neuron damage in sub-acute Parkinson's disease by suppressing inflammation, which may provide a new therapeutic target for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Yidong Deng
- Neurointerventional Department, Hainan General Hospital, Haikou, Hainan
| | - Yuangao Liao
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei
| | | | - Yujian Yao
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| | - Weihua Liu
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| | - Guohu Weng
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| |
Collapse
|
32
|
Kargbo RB. PROTAC Targeted Degradation of IRAK-4 as Potential Treatment in Cancer. ACS Med Chem Lett 2023; 14:539-540. [PMID: 37197458 PMCID: PMC10184306 DOI: 10.1021/acsmedchemlett.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 05/19/2023] Open
Abstract
Toll-like receptors and interleukin-1 receptor directly interact with intracellular interleukin receptor associated kinase (IRAK) family members to initiate innate immune and inflammatory responses following activation by pathogens. The IRAK family members are involved in linking the innate immune response to the pathogenesis of various diseases, including cancers, non-infectious immune disorders, and metabolic disorders. The Patent Highlight showcases exemplary PROTAC compounds that exhibit a broad range of pharmacological activities associated with degradation of protein targets for the treatment of cancer.
Collapse
|
33
|
Gonzales JA, Nortey J, Reddy A, Doan T, Acharya NR. Intraocular Inflammation Associated with IRAK4 Deficiency. Ocul Immunol Inflamm 2023; 31:874-876. [PMID: 35442872 DOI: 10.1080/09273948.2022.2059523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- John A Gonzales
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Jeremy Nortey
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amit Reddy
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Nisha R Acharya
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
34
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
35
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
36
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
37
|
Matis S, Grazia Recchia A, Colombo M, Cardillo M, Fabbi M, Todoerti K, Bossio S, Fabris S, Cancila V, Massara R, Reverberi D, Emionite L, Cilli M, Cerruti G, Salvi S, Bet P, Pigozzi S, Fiocca R, Ibatici A, Angelucci E, Gentile M, Monti P, Menichini P, Fronza G, Torricelli F, Ciarrocchi A, Neri A, Fais F, Tripodo C, Morabito F, Ferrarini M, Cutrona G. MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells. Blood Adv 2022; 6:5593-5612. [PMID: 35819446 PMCID: PMC9647700 DOI: 10.1182/bloodadvances.2021005726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells express the interleukin-23 receptor (IL-23R) chain, but the expression of the complementary IL-12Rβ1 chain requires cell stimulation via surface CD40 molecules (and not via the B-cell receptor [BCR]). This stimulation induces the expression of a heterodimeric functional IL-23R complex and the secretion of IL-23, initiating an autocrine loop that drives leukemic cell expansion. Based on the observation in 224 untreated Binet stage A patients that the cases with the lowest miR-146b-5p concentrations had the shortest time to first treatment (TTFT), we hypothesized that miR-146b-5p could negatively regulate IL-12Rβ1 side chain expression and clonal expansion. Indeed, miR-146b-5p significantly bound to the 3'-UTR region of the IL-12Rβ1 mRNA in an in vitro luciferase assay. Downregulation of miR-146b-5p with specific miRNA inhibitors in vitro led to the upregulation of the IL-12Rβ1 side chain and expression of a functional IL-23R complex similar to that observed after stimulation of the CLL cell through the surface CD40 molecules. Expression of miR-146b-5p with miRNA mimics in vitro inhibited the expression of the IL-23R complex after stimulation with CD40L. Administration of a miR-146b-5p mimic to NSG mice, successfully engrafted with CLL cells, caused tumor shrinkage, with a reduction of leukemic nodules and of IL-12Rβ1-positive CLL cells in the spleen. Our findings indicate that IL-12Rβ1 expression, a crucial checkpoint for the functioning of the IL-23 and IL-23R complex loop, is under the control of miR-146b-5p, which may represent a potential target for therapy since it contributes to the CLL pathogenesis. This trial is registered at www.clinicaltrials.gov as NCT00917540.
Collapse
Affiliation(s)
- Serena Matis
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Grazia Recchia
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Cardillo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Marina Fabbi
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Bossio
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Rosanna Massara
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giannamaria Cerruti
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sandra Salvi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Bet
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Pigozzi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Roberto Fiocca
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Adalberto Ibatici
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Angelucci
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Gentile
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Fortunato Morabito
- Biothecnology Research Unit, AO, Cosenza, Italy
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
38
|
Recent Advances in PROTACs for Drug Targeted Protein Research. Int J Mol Sci 2022; 23:ijms231810328. [PMID: 36142231 PMCID: PMC9499226 DOI: 10.3390/ijms231810328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) is a heterobifunctional molecule. Typically, PROTAC consists of two terminals which are the ligand of the protein of interest (POI) and the specific ligand of E3 ubiquitin ligase, respectively, via a suitable linker. PROTAC degradation of the target protein is performed through the ubiquitin–proteasome system (UPS). The general process is that PROTAC binds to the target protein and E3 ligase to form a ternary complex and label the target protein with ubiquitination. The ubiquitinated protein is recognized and degraded by the proteasome in the cell. At present, PROTAC, as a new type of drug, has been developed to degrade a variety of cancer target proteins and other disease target proteins, and has shown good curative effects on a variety of diseases. For example, PROTACs targeting AR, BR, BTK, Tau, IRAK4, and other proteins have shown unprecedented clinical efficacy in cancers, neurodegenerative diseases, inflammations, and other fields. Recently, PROTAC has entered a phase of rapid development, opening a new field for biomedical research and development. This paper reviews the various fields of targeted protein degradation by PROTAC in recent years and summarizes and prospects the hot targets and indications of PROTAC.
Collapse
|
39
|
Wu J, Wei X, Li J, Gan Y, Zhang R, Han Q, Liang P, Zeng Y, Yang Q. Plasma exosomal IRAK1 can be a potential biomarker for predicting the treatment response to renin-angiotensin system inhibitors in patients with IgA nephropathy. Front Immunol 2022; 13:978315. [PMID: 36091017 PMCID: PMC9459338 DOI: 10.3389/fimmu.2022.978315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Renin-angiotensin system inhibitors (RASi) are the first choice and basic therapy for the treatment of IgA nephropathy (IgAN) with proteinuria. However, approximately 40% of patients have no response to RASi treatment. The aim of this study was to screen potential biomarkers for predicting the treatment response of RASi in patients with IgAN. Methods We included IgAN patients who were treatment-naive. They received supportive treatment, including a maximum tolerant dose of RASi for 3 months. According to the degree of decrease in proteinuria after 3 months of follow-up, these patients were divided into a sensitive group and a resistant group. The plasma of the two groups of patients was collected, and the exosomes were extracted for high-throughput sequencing. The screening of hub genes was performed using a weighted gene co-expression network (WGCNA) and filtering differentially expressed genes (DEGs). We randomly selected 20 patients in the sensitive group and 20 patients in the resistant group for hub gene validation by real-time quantitative polymerase chain reaction (qRT−PCR). A receiver operating characteristic (ROC) curve was used to evaluate hub genes that predicted the efficacy of the RASi response among the 40 validation patients. Results After screening 370 IgAN patients according to the inclusion and exclusion criteria and the RASi treatment response evaluation, there were 38 patients in the sensitive group and 32 patients in the resistant group. IRAK1, ABCD1 and PLXNB3 were identified as hub genes by analyzing the high-throughput sequencing of the plasma exosomes of the two groups through WGCNA and DEGs screening. The sequencing data were consistent with the validation data showing that these three hub genes were upregulated in the resistant group compared with the sensitive group. The ROC curve indicated that IRAK1 was a good biomarker to predict the therapeutic response of RASi in patients with IgAN. Conclusions Plasma exosomal IRAK1 can be a potential biomarker for predicting the treatment response of RASi in patients with IgAN.
Collapse
|
40
|
Xie X, Bai G, Zhang L, Liu H, Qiang D, Li L. Changes in plasma IRAK-M in patients with prediabetes and its relationship with related metabolic indexes: a cross-sectional study. J Int Med Res 2022; 50:3000605221111275. [PMID: 36039603 PMCID: PMC9437484 DOI: 10.1177/03000605221111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate whether IL-1R-associated kinase (IRAK)-M is associated with prediabetes and type 2 diabetes (T2D). METHODS In this cross-sectional study, enrolled subjects were assigned to different groups according to their fasting plasma glucose (FPG) values. IRAK-M and metabolic parameters, including fasting insulin (FINS), glycosylated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-β), and thioredoxin-interacting protein (TXNIP), were evaluated. The area under the receiver operating characteristic curve of IRAK-M and TXNIP for prediabetes and T2D was determined. RESULTS IRAK-M decreased significantly with increasing FPG levels. IRAK-M was negatively correlated with TXNIP, FPG, FINS, HbA1c, and HOMA-IR and positively correlated with HOMA-β. The diagnostic cutoff value of IRAK-M was 3.76 ng/mL for prediabetes and 3.45 ng/mL for T2D. After stratifying by IRAK-M (<3.76 and ≥3.76 ng/mL), patients with a higher TXNIP level showed a greater risk of prediabetes or T2D in the subgroup with low IRAK-M (<3.76 ng/mL). CONCLUSIONS IRAK-M is independently and positively associated with prediabetes and T2D, while TXNIP is independently and negatively associated with prediabetes and T2D. IRAK-M and TXNIP serve as diagnostic factors for prediabetes.
Collapse
Affiliation(s)
- Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Huili Liu
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| |
Collapse
|
41
|
Hoyler T, Bannert B, André C, Beck D, Boulay T, Buffet D, Caesar N, Calzascia T, Dawson J, Kyburz D, Hennze R, Huppertz C, Littlewood-Evans A, Loetscher P, Mertz KD, Niwa S, Robert G, Rush JS, Ruzzante G, Sarret S, Stein T, Touil I, Wieczorek G, Zipfel G, Hawtin S, Junt T. Nonhematopoietic IRAK1 drives arthritis via neutrophil chemoattractants. JCI Insight 2022; 7:149825. [PMID: 35801586 PMCID: PMC9310529 DOI: 10.1172/jci.insight.149825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type–specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1β or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1β–dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Thomas Hoyler
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Cédric André
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Damian Beck
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Boulay
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Buffet
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nadja Caesar
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Calzascia
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Janet Dawson
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Robert Hennze
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christine Huppertz
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Amanda Littlewood-Evans
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pius Loetscher
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Satoru Niwa
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gautier Robert
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - James S Rush
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Giulia Ruzzante
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sophie Sarret
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Stein
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ismahane Touil
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grazyna Wieczorek
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geraldine Zipfel
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stuart Hawtin
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
42
|
Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, Ning Y, Huang P, Xu J, Chen G, Li X, Hu M, Xu J, Wu C, Jin C, Li X, Qian H, Yang Y. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res Ther 2022; 13:289. [PMID: 35799283 PMCID: PMC9264662 DOI: 10.1186/s13287-022-02969-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Bone marrow cells (BMCs), especially mesenchymal stem cells (MSCs), have shown attractive application prospects in acute myocardial infarction (AMI). However, the weak efficacy becomes their main limitation in clinical translation. Based on the anti-inflammation and anti-apoptosis effects of a Chinese medicine-Tongxinluo (TXL), we aimed to explore the effects of TXL-pretreated MSCs (MSCsTXL) in enhancing cardiac repair and further investigated the underlying mechanism. Methods MSCsTXL or MSCs and the derived exosomes (MSCsTXL-exo or MSCs-exo) were collected and injected into the infarct zone of rat hearts. In vivo, the anti-apoptotic and anti-inflammation effects, and cardiac functional and histological recovery were evaluated. In vitro, the apoptosis was evaluated by western blotting and flow cytometry. miRNA sequencing was utilized to identify the significant differentially expressed miRNAs between MSCsTXL-exo and MSCs-exo, and the miRNA mimics and inhibitors were applied to explore the specific mechanism. Results Compared to MSCs, MSCsTXL enhanced cardiac repair with reduced cardiomyocytes apoptosis and inflammation at the early stage of AMI and significantly improved left ventricular ejection fraction (LVEF) with reduced infarct size in an exosome-dependent way. Similarly, MSCsTXL-exo exerted superior therapeutic effects in anti-apoptosis and anti-inflammation, as well as improving LVEF and reducing infarct size compared to MSCs-exo. Further exosomal miRNA analysis demonstrated that miR-146a-5p was the candidate effector of the superior effects of MSCsTXL-exo. Besides, miR-146a-5p targeted and decreased IRAK1, which inhibited the nuclear translocation of NF-κB p65 thus protecting H9C2 cells from hypoxia injury. Conclusions This study suggested that MSCsTXL markedly facilitated cardiac repair via a new mechanism of the exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway, which has great potential for clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02969-y.
Collapse
Affiliation(s)
- Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Ruijie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Zhaoting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Lili Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Mengjin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chunxiao Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiangdong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
43
|
Li W, Huang R, Gong X, Zhao Z, Zhang L, Zhou Q, Jiang X, Tie H, Wan J, Wang B. Allicin attenuated hepatic ischemia/reperfusion injury in mice by regulating PPARγ-IRAK-M-TLR4 signal pathway. Food Funct 2022; 13:7361-7376. [PMID: 35730673 DOI: 10.1039/d2fo00751g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Hepatic ischemia/reperfusion (I/R) injury to the liver is a significant cause of morbidity and mortality following liver surgery, trauma, and hemorrhagic shock. It was reported that allicin, a type of garlic compound, had a protective effect against other hepatic diseases. Allicin's ability to protect against liver injury caused by ischemic reperfusion remains unknown. As a result, we conducted this study to determine allicin's effects and mechanism of action in hepatic I/R injury. Method: The liver I/R injury model was established by clamping the blood supply to the left and middle liver lobes. Three days prior to the hepatic I/R injury, different concentrations of allicin were gavaged. Then, hepatic function, histological changes, apoptosis markers, oxidative stress, and inflammatory cytokines were measured, and the molecular mechanisms were evaluated using western blot. Another separation experiment used IRAK-M knockout mice and peroxisome proliferator-activated receptor-gamma (PPARγ) inhibitor to deduce the molecular mechanisms. Results: Pretreatment with allicin prior to hepatic I/R injury reduced liver damage by inhibiting aminotransferase activity and alleviating liver injury. It significantly decreased cell apoptosis, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) production, and hepatic oxidative stress. Furthermore, this study demonstrated that GW9662 (inhibitor of PPARγ) abrogated allicin's positive effect by inhibiting PPARγ expression while suppressing IRAK-M expression. Thus, the depletion of IRAK-M cannot influence the expression of PPARγ. The down-regulation of PPARγ-IRAK-M disabled the protection of allicin in I/R injury. Conclusion: Allicin protects against hepatic I/R injury via dose-dependent regulation of the PPARγ-IRAK-M-TLR4 signaling pathway, and it may be a potential drug in future clinical treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Rui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. .,Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. .,Department of Anesthesiology, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Xujie Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. .,Department of Anesthesiology, Chengdu Fifth People's Hospital, Sichuan 611130, China
| | - Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
44
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
45
|
Liu M, Que Y, Hong Y, Zhang L, Zhang X, Zhang Y. A Pan-Cancer Analysis of IRAK1 Expression and Their Association With Immunotherapy Response. Front Mol Biosci 2022; 9:904959. [PMID: 35669566 PMCID: PMC9163706 DOI: 10.3389/fmolb.2022.904959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
IRAK1 is an active kinase which plays a critical role in IL-1/TLR signaling pathway involved in inflammation and innate immune response. Recently, increasing evidence supports a potential role of IRAK1 in cancer progression. However, no immunological pan-cancer analysis of IRAK1 is available. We aimed to explore the prognostic value and the immunological functions of IRAK1. A series of datasets including The Cancer Genome Atlas, GEPIA2, cBioPortal, HPA, TIMER2.0 were performed to explore the oncogenic and immunological roles of IRAK1, including the relationship between IRAK1 and prognosis, genetic mutation, GO and KEGG enrichment pathway analysis, immune state of different tumors, The results showed that IRAK1 levels were upregulated in more than 20 types of cancers compared to the normal tissues. IRAK1 expression was associated with poorer prognosis in different cancer types. For the most frequent DNA alteration of IRAK1 is amplification. And the result of the enrichment analysis suggested that IRAK1 related to immune checkpoint pathway in cancer. IRAK1 inhibitor pacritinib inhibit proliferation and upregulate PD-L1 expression in different cancer cell lines. Moreover, the patients who receiving anti-PD-L1 therapy with low IRAK1 expression had a better prognosis, and the objective response rate to anti-PD-L1 therapy was higher in the low IRAK1 group than in the high IRAK1 group in IMvigor210 cohort. Our study reveals that IRAK1 can function as a prognostic marker in various malignant tumors. And pacritinib upregulated PD-L1 expression in several cancer cell lines, which indicating that IRAK1 can be used as a reliable marker to predict the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Mengmeng Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Melanoma and Sarcoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Que
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Melanoma and Sarcoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xing Zhang, ; Yizhuo Zhang,
| | - Yizhuo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xing Zhang, ; Yizhuo Zhang,
| |
Collapse
|
46
|
Liu Y, Sun Y, Bai X, Li L, Zhu G. Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein Endothelial Cell Injury through IRAK1/TAK1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6584645. [PMID: 35601145 PMCID: PMC9122697 DOI: 10.1155/2022/6584645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022]
Abstract
Introduction Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid metabolism disorder and vascular endothelial damage. Albiflorin (AF) has been certified to be effective in the therapy of certain inflammatory diseases, while the therapeutic effect and mechanism of AF on AS have not been fully elucidated. Material and Methods. Model cells for AS were created by inducing oxidized low-density lipoprotein (Ox-LDL) in human umbilical vein endothelial cells (HUVECs). After processing with AF and interleukin-1 receptor-associated kinase 1- (IRAK1-) overexpressed plasmid, cell viability was assessed by CCK-8; cholesterol efflux was tested using liquid scintillation counter; IL-6 and TNF-α levels were determined with ELISA kits; ROS and apoptosis were confirmed using Flow cytometry. Besides, IRAK1-TAK1 pathway and apoptosis- and mitochondrial fusion-related proteins were monitored with western blotting analysis. Results Our results verified that AF could not only dramatically accelerate viability and cholesterol efflux but also attenuate inflammation, ROS production, and apoptosis in Ox-LDL-induced HUVECs. Meanwhile, AF could prominently prevent the activation of IRAK1-TAK1 pathway, downregulate apoptosis-related proteins, and upregulate mitochondrial fusion-related proteins in Ox-LDL-induced HUVECs. Moreover, we testified that IRAK1 overexpression memorably could reverse suppression of AF on inflammation, apoptosis, and IRAK1-TAK1 pathway and enhancement of AF on viability, cholesterol efflux, and mitochondrial fusion in Ox-LDL-induced HUVECs. Conclusions By blocking the IRAK1/TAK1 pathway, AF can significantly slow the course of AS, suggesting that it could be a viable therapeutic option for AS.
Collapse
Affiliation(s)
- Yeling Liu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Yilai Sun
- Department of Pancreatic & Hernial Surgery Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Xue Bai
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Guihua Zhu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| |
Collapse
|
47
|
Li Y, Li X, Chen X, Sun X, Liu X, Wang G, Liu Y, Cui L, Liu T, Wang W, Wang Y, Li C. Qishen Granule (QSG) Inhibits Monocytes Released From the Spleen and Protect Myocardial Function via the TLR4-MyD88-NF-κB p65 Pathway in Heart Failure Mice. Front Pharmacol 2022; 13:850187. [PMID: 35370707 PMCID: PMC8964526 DOI: 10.3389/fphar.2022.850187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Preliminary clinical and basic researches have proved that Qishen granule (QSG) is an effective prescription for treating heart failure (HF) in China, with a characteristic of regulating the ratio of M1/M2 macrophage in the myocardium. However, the regulative mechanism of monocytes targeting the cardio-splenic axis has not been fully elucidated. This study aimed to investigate the effects and mechanism of QSG inhibiting the release of splenic monocytes and the recruitment of myocardial tissue both in vivo and in vitro. Experiments in mice with acute myocardial infarction (AMI)-induced HF demonstrated that QSG could exert anti-inflammatory effects by inhibiting splenic monocytes release and phenotypic changes. Moreover, in vitro experiments indicated QSG could inhibit LPS-stimulated macrophage-conditioned medium (CM)-induced H9C2 cardiomyocyte injury by upregulating the key proteins in TLR4-MyD88-NF-κB p65 pathway. In addition, knockdown or overexpression of TLR4 in H9C2 cells further confirmed that QSG could attenuate inflammatory injury in cardiomyocytes via the TLR4-MyD88-NF-κB p65 pathway. Overall, these data suggested that QSG could improve cardiac function and reduce the inflammatory response in AMI-induced HF by inhibiting splenic monocytes release, and protecting myocardial function via the TLR4-MyD88-NF-κB pathway in heart failure mice.
Collapse
Affiliation(s)
- Yanqin Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Chen
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangning Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gang Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yizhou Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingwen Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
48
|
Xu X, Zhi T, Hua L, Jiang K, Chen C. IRAK4 exacerbates traumatic brain injury via activation of TAK1 signaling pathway. Exp Neurol 2022; 351:114007. [PMID: 35149117 DOI: 10.1016/j.expneurol.2022.114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Although multiple signaling pathways contributing to the pathophysiological process have been investigated, treatments for traumatic brain injury (TBI) against present targets have not acquired significant clinical progress. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important factor involved in regulating immunity and inflammation. However, the role of IRAK4 in TBI still remains largely unknown. Therefore, using a controlled cortical impact model (CCI), we investigated the function and molecular mechanism of IRAK4 in the context of TBI. IRAK4 was found to be activated in a time-dependent manner after TBI and mainly expressed in neurons. Inhibition of IRAK4 by siRNAs could significantly alleviates neuroinflammation, neuron apoptosis, brain edema, brain-blood barrier (BBB) dysfunction and improves neurological deficit in the context of CCI. Mechanistically, IRAK4 exacerbates CCI via activation of TAK1 signaling pathway. Interestingly, PF-0665083, an IRAK4 inhibitor, inhibits phosphorylation of IRAK4 and attenuates CCI-induced secondary injury. It could be conclude that IRAK4 plays a critical role in TBI-induced secondary injury and the underlining mechanism may be related to activation of TAK1 signaling pathway. PF-0665083 may serve as a potential treatment strategy to relieve TBI.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, the Fourth Affiliated Hospital of Nantong University, Yancheng 224006, Jiangsu Province, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing 214200, Jiangsu Province, China
| | - Chen Chen
- Department of Cardiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
49
|
Wang Z, Huang W, Zhou K, Ren X, Ding K. Targeting the Non-Catalytic Functions: a New Paradigm for Kinase Drug Discovery? J Med Chem 2022; 65:1735-1748. [PMID: 35000385 DOI: 10.1021/acs.jmedchem.1c01978] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases have been highly fruitful targets for cancer drug discovery in the past two decades, while most of these drugs bind to the "adenosine triphosphate (ATP)-site" and inhibit kinase catalytic activity. Recently, accumulated evidence suggests that kinases possess functions beyond catalysis through their scaffolds, and the scaffolding functions could play critical roles in multiple cellular signaling and cell fate controls. Small molecules modulating the noncatalytic functions of kinases are rarely reported but emerge as new promising therapeutic strategies for various diseases. Herein, we summarize the characterized noncatalytic functions of kinases, and highlight the recent progress on developing small-molecule modulators of the noncatalytic functions of kinases. Mechanisms and characteristics of different kinds of modulators are also discussed. It is also speculated that targeting the noncatalytic functions would represent a new direction for kinase-based drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Weixue Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Kaijie Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China
| | - Ke Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
50
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|