1
|
Hoeser F, Saura P, Harter C, Kaila VRI, Friedrich T. A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I. Chem Sci 2025; 16:7374-7386. [PMID: 40151474 PMCID: PMC11938283 DOI: 10.1039/d4sc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the Escherichia coli complex I as a model to biochemically characterize the F124LMT-ND5 mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.
Collapse
Affiliation(s)
- Franziska Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | - Caroline Harter
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | | |
Collapse
|
2
|
Rai NK, Venugopal H, Rajesh R, Ancha P, Venkatesh S. Mitochondrial complex-1 as a therapeutic target for cardiac diseases. Mol Cell Biochem 2025; 480:869-890. [PMID: 39033212 DOI: 10.1007/s11010-024-05074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Mitochondrial dysfunction is critical for the development and progression of cardiovascular diseases (CVDs). Complex-1 (CI) is an essential component of the mitochondrial electron transport chain that participates in oxidative phosphorylation and energy production. CI is the largest multisubunit complex (~ 1 Mda) and comprises 45 protein subunits encoded by seven mt-DNA genes and 38 nuclear genes. These subunits function as the enzyme nicotinamide adenine dinucleotide hydrogen (NADH): ubiquinone oxidoreductase. CI dysregulation has been implicated in various CVDs, including heart failure, ischemic heart disease, pressure overload, hypertrophy, and cardiomyopathy. Several studies demonstrated that impaired CI function contributes to increased oxidative stress, altered calcium homeostasis, and mitochondrial DNA damage in cardiac cells, leading to cardiomyocyte dysfunction and apoptosis. CI dysfunction has been associated with endothelial dysfunction, inflammation, and vascular remodeling, critical processes in developing atherosclerosis and hypertension. Although CI is crucial in physiological and pathological conditions, no potential therapeutics targeting CI are available to treat CVDs. We believe that a lack of understanding of CI's precise mechanisms and contributions to CVDs limits the development of therapeutic strategies. In this review, we comprehensively analyze the role of CI in cardiovascular health and disease to shed light on its potential therapeutic target role in CVDs.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Harikrishnan Venugopal
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ritika Rajesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Pranavi Ancha
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Sundararajan Venkatesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA.
| |
Collapse
|
3
|
Finsterer J. Leigh Syndrome Caused by Compound Heterozygous Variants c.1162A_C and c.1138G_C in the NDUFV1 Gene: A Case Report. Cureus 2024; 16:e71127. [PMID: 39525154 PMCID: PMC11544579 DOI: 10.7759/cureus.71127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Early-onset Leigh syndrome is usually a genetically and phenotypically heterogeneous, severe, rapidly progressive mitochondrial disorder with a fatal outcome. Leigh syndrome is genetically heterogeneous as it is based on mutations in mtDNA or nDNA genes, which mostly encode subunits of respiratory chain complexes or assembly factors. It is phenotypically heterogeneous because it is genetically heterogeneous and due to the peculiarities of mitochondrial genetics. One of the more than 100 mutated genes responsible for Leigh syndrome is NDUFV1. Here we present the case of an infant with Leigh syndrome who suffered from a novel heterozygous variant of the NDUFV1 gene, which is phenotypically characterized by a number of previously unknown features. The patient was a four-month-old girl with Leigh syndrome due to the compound heterozygous variants c.1162+4A>C (previously described, inherited from the mother) and c.1138G>C (novel, inherited from the father) in NDUFV1. The mutation c.1162+4A>C is a non-canonical splice site variant that has been demonstrated to result in loss of function. The bioinformatic analysis supports that the missense variant c. 1138G>C has a deleterious effect on protein structure or function. The mutations manifested phenotypically with typical cerebral lesions on imaging, developmental delay, cognitive decline, epileptiform discharges in the electroencephalography without seizures, atrioventricular (AV) block II, agenesis of a subclavian vein, right heart failure, patent foramen ovale, pulmonary hypertension, hypoaldosteronism, and abdominal hernias. Within five weeks of hospitalization, the disease took a progressive course, and the patient died of infectious complications despite maximum treatment. This case shows that the described new heterozygous variant in NDUFV1 can occur with previously undescribed phenotypic features. It is important to diagnose mitochondrial disorders due to NDUFV1 mutations early in order not to miss the time for appropriate symptomatic treatment.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology, Neurology and Neurophysiology Center, Vienna, AUT
| |
Collapse
|
4
|
Cavestro C, D'Amato M, Colombo MN, Cascone F, Moro AS, Levi S, Tiranti V, Di Meo I. CoA synthase plays a critical role in neurodevelopment and neurodegeneration. Front Cell Neurosci 2024; 18:1458475. [PMID: 39301217 PMCID: PMC11410578 DOI: 10.3389/fncel.2024.1458475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Coenzyme A (CoA), which is widely distributed and vital for cellular metabolism, is a critical molecule essential in both synthesizing and breaking down key energy sources in the body. Inborn errors of metabolism in the cellular de novo biosynthetic pathway of CoA have been linked to human genetic disorders, emphasizing the importance of this pathway. The COASY gene encodes the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of the CoA biosynthetic pathway and serves as one of the rate-limiting components of the pathway. Recessive variants of this gene cause an exceptionally rare and devastating disease called COASY protein-associated neurodegeneration (CoPAN) while complete loss-of-function variants in COASY have been identified in fetuses/neonates with Pontocerebellar Hypoplasia type 12 (PCH 12). Understanding why the different symptoms emerge in these disorders and what determines the development of one syndrome over the other is still not achieved. To shed light on the pathogenesis, we generated a new conditional animal model in which Coasy was deleted under the control of the human GFAP promoter. We used this mouse model to investigate how defects in the CoA biosynthetic pathway affect brain development. This model showed a broad spectrum of severity of the in vivo phenotype, ranging from very short survival (less than 2 weeks) to normal life expectancy in some animals. Surviving mice displayed a behavioral phenotype with sensorimotor defects. Ex vivo histological analysis revealed variable but consistent cerebral and cerebellar cortical hypoplasia, in parallel with a broad astrocytic hyper-proliferation in the cerebral cortex. In addition, primary astrocytes derived from this model exhibited lipid peroxidation, iron dyshomeostasis, and impaired mitochondrial respiration. Notably, Coasy ablation in radial glia and astrocytic lineage triggers abnormal neuronal development and chronic neuroinflammation, offering new insights into disease mechanisms.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Nicol Colombo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Floriana Cascone
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Sonia Levi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
5
|
Berti B, Verrigni D, Nasca A, Di Nottia M, Leone D, Torraco A, Rizza T, Bellacchio E, Legati A, Palermo C, Marchet S, Lamperti C, Novelli A, Mercuri EM, Bertini ES, Pane M, Ghezzi D, Carrozzo R. De Novo DNM1L Mutation in a Patient with Encephalopathy, Cardiomyopathy and Fatal Non-Epileptic Paroxysmal Refractory Vomiting. Int J Mol Sci 2024; 25:7782. [PMID: 39063023 PMCID: PMC11277250 DOI: 10.3390/ijms25147782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.
Collapse
Affiliation(s)
- Beatrice Berti
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Daniela Verrigni
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.V.); (A.N.)
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
- Neuromuscular Disorders Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Daniela Leone
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Concetta Palermo
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Silvia Marchet
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.V.); (A.N.)
| | - Eugenio Maria Mercuri
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Enrico Silvio Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Marika Pane
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| |
Collapse
|
6
|
Liufu T, Zhao X, Yu M, Xie Z, Meng L, Lv H, Zhang W, Yuan Y, Xing G, Deng J, Wang Z. Multiomics analysis reveals serine catabolism as a potential therapeutic target for MELAS. FASEB J 2024; 38:e23742. [PMID: 38865203 DOI: 10.1096/fj.202302286rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
7
|
Mahesan A, Choudhary PK, Kamila G, Rohil A, Meena AK, Kumar A, Jauhari P, Chakrabarty B, Gulati S. NDUFV1-Related Mitochondrial Complex-1 Disorders: A Retrospective Case Series and Literature Review. Pediatr Neurol 2024; 155:91-103. [PMID: 38626668 DOI: 10.1016/j.pediatrneurol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.
Collapse
Affiliation(s)
- Aakash Mahesan
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Puneet Kumar Choudhary
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Gautam Kamila
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Aradhana Rohil
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Kumar Meena
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Atin Kumar
- Department of Radiodiagnosis and Interventional Radiology, AIIMS, New Delhi, India
| | - Prashant Jauhari
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Sala D, Marchet S, Nanetti L, Legati A, Mariotti C, Lamantea E, Ghezzi D, Catania A, Lamperti C. A novel MT-ATP6 variant associated with complicated ataxia in two unrelated Italian patients: case report and functional studies. Orphanet J Rare Dis 2024; 19:200. [PMID: 38755691 PMCID: PMC11100036 DOI: 10.1186/s13023-024-03212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND MT-ATP6 is a mitochondrial gene which encodes for the intramembrane subunit 6 (or A) of the mitochondrial ATP synthase, also known asl complex V, which is involved in the last step of oxidative phosphorylation to produce cellular ATP through aerobic metabolism. Although classically associated with the NARP syndrome, recent evidence highlights an important role of MT-ATP6 pathogenic variants in complicated adult-onset ataxias. METHODS We describe two unrelated patients with adult-onset cerebellar ataxia associated with severe optic atrophy and mild cognitive impairment. Whole mitochondrial DNA sequencing was performed in both patients. We employed patients' primary fibroblasts and cytoplasmic hybrids (cybrids), generated from patients-derived cells, to assess the activity of respiratory chain complexes, oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential. RESULTS In both patients, we identified the same novel m.8777 T > C variant in MT-ATP6 with variable heteroplasmy level in different tissues. We identifed an additional heteroplasmic novel variant in MT-ATP6, m.8879G > T, in the patients with the most severe phenotype. A significant reduction in complex V activity, OCR and ATP production was observed in cybrid clones homoplasmic for the m.8777 T > C variant, while no functional defect was detected in m.8879G > T homoplasmic clones. In addition, fibroblasts with high heteroplasmic levelsof m.8777 T > C variant showed hyperpolarization of mitochondrial membranes. CONCLUSIONS We describe a novel pathogenic mtDNA variant in MT-ATP6 associated with adult-onset ataxia, reinforcing the value of mtDNA screening within the diagnostic workflow of selected patients with late onset ataxias.
Collapse
Affiliation(s)
- Daniele Sala
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Silvia Marchet
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122, Milan, Italy
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy.
| |
Collapse
|
9
|
Dey P, Rajalaxmi S, Saha P, Thakur PS, Hashmi MA, Lal H, Saini N, Singh N, Ramanathan A. Cold-shock proteome of myoblasts reveals role of RBM3 in promotion of mitochondrial metabolism and myoblast differentiation. Commun Biol 2024; 7:515. [PMID: 38688991 PMCID: PMC11061143 DOI: 10.1038/s42003-024-06196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptation to hypothermia is important for skeletal muscle cells under physiological stress and is used for therapeutic hypothermia (mild hypothermia at 32 °C). We show that hypothermic preconditioning at 32 °C for 72 hours improves the differentiation of skeletal muscle myoblasts using both C2C12 and primary myoblasts isolated from 3 month and 18-month-old mice. We analyzed the cold-shock proteome of myoblasts exposed to hypothermia (32 °C for 6 and 48 h) and identified significant changes in pathways related to RNA processing and central carbon, fatty acid, and redox metabolism. The analysis revealed that levels of the cold-shock protein RBM3, an RNA-binding protein, increases with both acute and chronic exposure to hypothermic stress, and is necessary for the enhanced differentiation and maintenance of mitochondrial metabolism. We also show that overexpression of RBM3 at 37 °C is sufficient to promote mitochondrial metabolism, cellular proliferation, and differentiation of C2C12 and primary myoblasts. Proteomic analysis of C2C12 myoblasts overexpressing RBM3 show significant enrichment of pathways involved in fatty acid metabolism, RNA metabolism and the electron transport chain. Overall, we show that the cold-shock protein RBM3 is a critical factor that can be used for controlling the metabolic network of myoblasts.
Collapse
Affiliation(s)
- Paulami Dey
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Srujanika Rajalaxmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Pushpita Saha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Purvi Singh Thakur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Maroof Athar Hashmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Heera Lal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nistha Saini
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Nirpendra Singh
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Arvind Ramanathan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India.
| |
Collapse
|
10
|
Hosseinpour S, Razmara E, Heidari M, Rezaei Z, Ashrafi MR, Dehnavi AZ, Kameli R, Bereshneh AH, Vahidnezhad H, Azizimalamiri R, Zamani Z, Pak N, Rasulinezhad M, Mohammadi B, Ghabeli H, Ghafouri M, Mohammadi M, Zamani GR, Badv RS, Saket S, Rabbani B, Mahdieh N, Ahani A, Garshasbi M, Tavasoli AR. A comprehensive study of mutation and phenotypic heterogeneity of childhood mitochondrial leukodystrophies. Brain Dev 2024; 46:167-179. [PMID: 38129218 DOI: 10.1016/j.braindev.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Morteza Heidari
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Reyhaneh Kameli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghafouri
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Saket
- Iranian Child Neurology Center of Excellence, Pediatric Neurology Research Center, Research Institute for Children Health, Mofid Children's and Shohada-e Tajrish Hospitals, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahani
- Mendel Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Jalal-Al Ahmad Hwy, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
11
|
Nardecchia F, Carrozzo R, Innocenti A, Torraco A, Zaccaria V, Rizza T, Pisani F, Bertini E, Leuzzi V. Biallelic variants in GTPBP3: New patients, phenotypic spectrum, and outcome. Ann Clin Transl Neurol 2024; 11:819-825. [PMID: 38327089 DOI: 10.1002/acn3.51980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION COXPD23 is a rare mitochondrial disease caused by biallelic pathogenic variants in GTPBP3. We report on two siblings with a mild phenotype. CASE REPORTS The young boy presented with global developmental delay, ataxic gait and upper limbs tremor, and the older sister with absence seizures and hypertrophic cardiomyopathy. Respiratory chain impairment was confirmed in muscle. DISCUSSION Reviewed cases point toward clustering around two prevalent phenotypes: an early-onset presentation with severe fatal encephalopathy and a late milder presentation with global developmental delay/ID and cardiopathy, with the latter as, is the main feature. Our patients showed an intermediate phenotype with intrafamilial variability.
Collapse
Affiliation(s)
- Francesca Nardecchia
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alice Innocenti
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valerio Zaccaria
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Enrico Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Zambon AA, Ghezzi D, Baldoli C, Cutillo G, Fontana K, Sofia V, Patricelli MG, Nasca A, Vinci S, Spiga I, Lamantea E, Fanelli GF, Sora MGN, Rovelli R, Poloniato A, Carrera P, Filippi M, Barera G. Expanding the spectrum of neonatal-onset AIFM1-associated disorders. Ann Clin Transl Neurol 2023; 10:1844-1853. [PMID: 37644805 PMCID: PMC10578896 DOI: 10.1002/acn3.51876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVES Pathogenic variants in AIFM1 have been associated with a wide spectrum of disorders, spanning from CMT4X to mitochondrial encephalopathy. Here we present a novel phenotype and review the existing literature on AIFM1-related disorders. METHODS We performed EEG recordings, brain MRI and MR Spectroscopy, metabolic screening, echocardiogram, clinical exome sequencing (CES) and family study. Effects of the variant were established on cultured fibroblasts from skin punch biopsy. RESULTS The patient presented with drug-resistant, electro-clinical, multifocal seizures 6 h after birth. Brain MRI revealed prominent brain swelling of both hemispheres and widespread signal alteration in large part of the cortex and of the thalami, with sparing of the basal nuclei. CES analysis revealed the likely pathogenic variant c.5T>C; p.(Phe2Ser) in the AIFM1 gene. The affected amino acid residue is located in the mitochondrial targeting sequence. Functional studies on cultured fibroblast showed a clear reduction in AIFM1 protein amount and defective activities of respiratory chain complexes I, III and IV. No evidence of protein mislocalization or accumulation of precursor protein was observed. Riboflavin, Coenzyme Q10 and thiamine supplementation was therefore given. At 6 months of age, the patient exhibited microcephaly but did not experience any further deterioration. He is still fed orally and there is no evidence of muscle weakness or atrophy. INTERPRETATION This is the first AIFM1 case associated with neonatal seizures and diffuse white matter involvement with relative sparing of basal ganglia, in the absence of clinical signs suggestive of myopathy or motor neuron disease.
Collapse
Affiliation(s)
- Alberto A. Zambon
- Unit of NeurologySan Raffaele Scientific InstituteMilanItaly
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Daniele Ghezzi
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Cristina Baldoli
- Department of NeuroradiologySan Raffaele Scientific InstituteMilanItaly
| | - Gianni Cutillo
- Unit of NeurologySan Raffaele Scientific InstituteMilanItaly
- Neurophysiology ServiceSan Raffaele Scientific InstituteMilanItaly
| | - Katia Fontana
- Department of NeonatologySan Raffaele Scientific InstituteMilanItaly
| | - Valentina Sofia
- Department of NeonatologySan Raffaele Scientific InstituteMilanItaly
| | | | - Alessia Nasca
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Stefano Vinci
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Ivana Spiga
- Laboratory of Genomics and Clinical GeneticsSan Raffaele Scientific InstituteMilanItaly
| | - Eleonora Lamantea
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | | | | | - Rosanna Rovelli
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Antonella Poloniato
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Paola Carrera
- Laboratory of Genomics and Clinical GeneticsSan Raffaele Scientific InstituteMilanItaly
- Unit of Genomics for Human Disease DiagnosisSan Raffaele Scientific InstituteMilanItaly
| | - Massimo Filippi
- Unit of NeurologySan Raffaele Scientific InstituteMilanItaly
- Neurophysiology ServiceSan Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Graziano Barera
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
13
|
Nasca A, Mencacci NE, Invernizzi F, Zech M, Keller Sarmiento IJ, Legati A, Frascarelli C, Bustos BI, Romito LM, Krainc D, Winkelmann J, Carecchio M, Nardocci N, Zorzi G, Prokisch H, Lubbe SJ, Garavaglia B, Ghezzi D. Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain 2023; 146:2730-2738. [PMID: 36860166 PMCID: PMC10316767 DOI: 10.1093/brain/awad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/31/2022] [Accepted: 02/05/2023] [Indexed: 03/03/2023] Open
Abstract
ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.
Collapse
Affiliation(s)
- Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Chiara Frascarelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, 81675 Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| | - Miryam Carecchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department Neuroscience, University of Padua, 35128 Padua, Italy
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
14
|
Beltrà M, Pöllänen N, Fornelli C, Tonttila K, Hsu MY, Zampieri S, Moletta L, Corrà S, Porporato PE, Kivelä R, Viscomi C, Sandri M, Hulmi JJ, Sartori R, Pirinen E, Penna F. NAD + repletion with niacin counteracts cancer cachexia. Nat Commun 2023; 14:1849. [PMID: 37012289 PMCID: PMC10070388 DOI: 10.1038/s41467-023-37595-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD+ in the pathophysiology of human cancer cachexia. Overall, our results propose NAD+ metabolism as a therapy target for cachectic cancer patients.
Collapse
Affiliation(s)
- Marc Beltrà
- Experimental Medicine and Clinical Pathology Unit, Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Claudia Fornelli
- Experimental Medicine and Clinical Pathology Unit, Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Kialiina Tonttila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| | - Lucia Moletta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Study Centre for Neurodegeneration, University of Padova (CESNE), Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Fabio Penna
- Experimental Medicine and Clinical Pathology Unit, Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
15
|
Amate-García G, Ballesta-Martínez MJ, Serrano-Lorenzo P, Garrido-Moraga R, González-Quintana A, Blázquez A, Rubio JC, García-Consuegra I, Arenas J, Ugalde C, Morán M, Guillén-Navarro E, Martín MA. A Novel Mutation Associated with Neonatal Lethal Cardiomyopathy Leads to an Alternative Transcript Expression in the X-Linked Complex I NDUFB11 Gene. Int J Mol Sci 2023; 24:ijms24021743. [PMID: 36675256 PMCID: PMC9865986 DOI: 10.3390/ijms24021743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
We report a neonatal patient with hypertrophic cardiomyopathy (HCM), lactic acidosis and isolated complex I deficiency. Using a customized next-generation sequencing panel, we identified a novel hemizygous variant c.338G>A in the X-linked NDUFB11 gene that encodes the NADH: ubiquinone oxidoreductase subunit B11 of the mitochondrial respiratory chain (MRC) complex I (CI). Molecular and functional assays performed in the proband’s target tissues—skeletal and heart muscle—showed biochemical disturbances of the MRC, suggesting a pathogenic role for this variant. In silico analyses initially predicted an amino acid missense change p.(Arg113Lys) in the NDUFB11 CI subunit. However, we showed that the molecular effect of the c.338G>A variant, which is located at the last nucleotide of exon 2 of the NDUFB11 gene in the canonical ‘short’ transcript (sized 462 bp), instead causes a splicing defect triggering the up-regulation of the expression of an alternative ‘long’ transcript (sized 492 bp) that can also be detected in the control individuals. Our results support the hypothesis that the canonical ‘short’ transcript is required for the proper NDUFB11 protein synthesis, which is essential for optimal CI assembly and activity, whereas the longer alternative transcript seems to represent a non-functional, unprocessed splicing intermediate. Our results highlight the importance of characterizing the molecular effect of new variants in the affected patient’s tissues to demonstrate their pathogenicity and association with the clinical phenotypes.
Collapse
Affiliation(s)
- Guillermo Amate-García
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - María Juliana Ballesta-Martínez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - Pablo Serrano-Lorenzo
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Rocío Garrido-Moraga
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Adrián González-Quintana
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Alberto Blázquez
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Juan C. Rubio
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Inés García-Consuegra
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Joaquín Arenas
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cristina Ugalde
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Morán
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Encarnación Guillén-Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
- Facultad de Medicina, Universidad de Murcia, 30120 Murcia, Spain
| | - Miguel A. Martín
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Servicio de Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Sánchez-Vázquez VH, Martínez-Martínez E, Gallegos-Gómez ML, Arias JM, Pallafacchina G, Rizzuto R, Guerrero-Hernández A. Heterogeneity of the endoplasmic reticulum Ca 2+ store determines colocalization with mitochondria. Cell Calcium 2023; 109:102688. [PMID: 36538845 DOI: 10.1016/j.ceca.2022.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/14/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Contact sites between the endoplasmic reticulum (ER) and mitochondria play a pivotal role in cell signaling, and the interaction between these organelles is dynamic and finely regulated. We have studied the role of ER Ca2+ concentration ([Ca2+]ER) in modulating this association in HeLa and HEK293 cells and human fibroblasts. According to Manders' coefficient, ER-mitochondria colocalization varied depending on the ER marker; it was the highest with ER-Tracker and the lowest with ER Ca2+ indicators (Mag-Fluo-4, erGAP3, and G-CEPIA1er) in both HeLa cells and human fibroblasts. Only GEM-CEPIA1er displayed a high colocalization with elongated mitochondria in HeLa cells, this ER Ca2+ indicator reveals low Ca2+ regions because this ion quenches its fluorescence. On the contrary, the typical rounded and fragmented mitochondria of HEK293 cells colocalized with Mag-Fluo-4 and, to a lesser extent, with GEM-CEPIA1er. The ablation of the three IP3R isoforms in HEK293 cells increased mitochondria-GEM-CEPIA1er colocalization. This pattern of colocalization was inversely correlated with the rate of ER Ca2+ leak evoked by thapsigargin (Tg). Moreover, Tg and Histamine in the absence of external Ca2+ increased mitochondria-ER colocalization. On the contrary, in the presence of external Ca2+, both Bafilomycin A1 and Tg reduced the mitochondria-ER interaction. Notably, knocking down MCU decreased mitochondria-ER colocalization. Overall, our data suggest that the [Ca2+] is not homogenous within the ER lumen and that mitochondria-ER interaction is modulated by the ER Ca2+ leak and the [Ca2+]i.
Collapse
Affiliation(s)
| | | | | | - Juan M Arias
- Programa de Neurociencias-UIICSE, Facultad de Estudios Superiores Iztacala, UNAM; Tlalnepantla de Baz, Estado de México, 54090, Mexico
| | - Giorgia Pallafacchina
- CNR, Neuroscience Institute, Padua, 35131. Italy; Department of Biomedical Sciences, University of Padua, Padua, 35131. Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, 35131. Italy
| | | |
Collapse
|
17
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
18
|
Clinical Experience of Neurological Mitochondrial Diseases in Children and Adults: A Single-Center Study. Balkan J Med Genet 2022; 24:5-14. [PMID: 36249517 PMCID: PMC9524181 DOI: 10.2478/bjmg-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of the study was to retrospectively evaluate a cohort of children and adults with mitochondrial diseases (MDs) in a single-center experience. Neurological clinical examination, brain magnetic resonance imaging (MRI) and spectroscopy, muscle biopsy, metabolic and molecular-genetic analysis were evaluated in 26 children and 36 adult patients with MD in Slovenia from 2004 to 2018. Nijmegen MD criteria (MDC) were applied to all patients and the need for a muscle biopsy was estimated. Exome-sequencing was used in half of the patients. Twenty children (77.0%) and 12 adults (35.0%) scored a total of ≥8 on MDC, a result that is compatible with the diagnosis of definite MD. Yield of exome-sequencing was 7/22 (31.0%), but the method was not applied systematically in all patients from the beginning of diagnostics. Brain MRI morphological changes, which can be an imaging clue for the diagnosis of MD, were found in 17/24 children (71.0%). In 7/26 (29.0%) children, and in 20/30 (67.0%) adults, abnormal mitochondria were found on electron microscopy (EM) and ragged-red fibers were found in 16/30 (53.0%) adults. Respiratory chain enzymes (RCEs) and/or pyruvate dehydrogenase complex (PDHc) activities were abnormal in all the children and six adult cases. First, our data revealed that MDC was useful in the clinical diagnosis of MD, and second, until the use of NGS methods, extensive, laborious and invasive diagnostic procedures were performed to reach a final diagnosis. In patients with suspected MD, there is a need to prioritize molecular diagnosis with the more modern next-generation sequencing (NGS) method.
Collapse
|
19
|
Measurement of mitochondrial respiratory chain enzymatic activities in Drosophila melanogaster samples. STAR Protoc 2022; 3:101322. [PMID: 35479112 PMCID: PMC9036317 DOI: 10.1016/j.xpro.2022.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) dysfunction is linked to mitochondrial disease as well as other common conditions such as diabetes, neurodegeneration, cancer, and aging. Thus, the evaluation of MRC enzymatic activities is fundamental for diagnostics and research purposes on experimental models. Here, we provide a verified and reliable protocol for mitochondria isolation from various D. melanogaster samples and subsequent measurement of the activity of MRC complexes I–V plus citrate synthase (CS) through UV-VIS spectrophotometry. For complete details on the use and execution of this protocol, please refer to Brischigliaro et al. (2021). A detailed and quick protocol to isolate mitochondria from D. melanogaster samples A step-by-step procedure to measure MRC enzymatic activities in isolated mitochondria A comprehensive guide for data analysis, with examples of validated systems
Collapse
|
20
|
Biallelic Variants in ENDOG Associated with Mitochondrial Myopathy and Multiple mtDNA Deletions. Cells 2022; 11:cells11060974. [PMID: 35326425 PMCID: PMC8946636 DOI: 10.3390/cells11060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
Endonuclease G (ENDOG) is a nuclear-encoded mitochondrial-localized nuclease. Although its precise biological function remains unclear, its proximity to mitochondrial DNA (mtDNA) makes it an excellent candidate to participate in mtDNA replication, metabolism and maintenance. Indeed, several roles for ENDOG have been hypothesized, including maturation of RNA primers during mtDNA replication, splicing of polycistronic transcripts and mtDNA repair. To date, ENDOG has been deemed as a determinant of cardiac hypertrophy, but no pathogenic variants or genetically defined patients linked to this gene have been described. Here, we report biallelic ENDOG variants identified by NGS in a patient with progressive external ophthalmoplegia, mitochondrial myopathy and multiple mtDNA deletions in muscle. The absence of the ENDOG protein in the patient’s muscle and fibroblasts indicates that the identified variants are pathogenic. The presence of multiple mtDNA deletions supports the role of ENDOG in mtDNA maintenance; moreover, the patient’s clinical presentation is very similar to mitochondrial diseases caused by mutations in other genes involved in mtDNA homeostasis. Although the patient’s fibroblasts did not present multiple mtDNA deletions or delay in the replication process, interestingly, we detected an accumulation of low-level heteroplasmy mtDNA point mutations compared with age-matched controls. This may indicate a possible role of ENDOG in mtDNA replication or repair. Our report provides evidence of the association of ENDOG variants with mitochondrial myopathy.
Collapse
|
21
|
Hoeser F, Weiß M, Friedrich T. The clinically relevant triple mutation in the mtND1 gene inactivates Escherichia coli complex I. FEBS Lett 2022; 596:1124-1132. [PMID: 35234296 DOI: 10.1002/1873-3468.14325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in cellular energy metabolism. Complex I deficiencies are the most common cause of mitochondrial dysfunction. Patients suffering from a variety of neurodegenerative diseases carry numerous mutations in the mitochondrially encoded subunits of the complex. The biochemical consequences of these mutations are largely unknown because these genes are difficult to access experimentally. Here, we use Escherichia coli as a model system to characterize the effect of a 7 bp inversion in mtND1 (m.3902-3908inv7) that results in a triple mutation. The triple mutant grew poorly but contained a normal amount of the stably assembled variant. The variant showed no enzymatic activity, which might contribute to the deleterious effect of the mutation in humans.
Collapse
Affiliation(s)
- Franziska Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Maximilian Weiß
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
22
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
23
|
Relationship between oxidative stress and lifespan in Daphnia pulex. Sci Rep 2022; 12:2354. [PMID: 35149730 PMCID: PMC8837783 DOI: 10.1038/s41598-022-06279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored. MT complex I, a component of the electron transport chain (ETC), is a key source of ROS and the NADH dehydrogenase subunit 5 (ND5) is a highly conserved core protein of the subunits that constitute the backbone of complex I. Using Daphnia as a model organism, we explored if the naturally occurring sequence variations in ND5 correlate with a short or long lifespan. Our results indicate that the short-lived clones have ND5 variants that correlate with reduced complex I activity, increased oxidative damage, and heightened expression of ROS scavenger enzymes. Daphnia offers a unique opportunity to investigate the association between inherited variations in components of complex I and ROS generation which affects the rate of aging and lifespan.
Collapse
|
24
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
25
|
Ardissone A, Bruno C, Diodato D, Donati A, Ghezzi D, Lamantea E, Lamperti C, Mancuso M, Martinelli D, Primiano G, Procopio E, Rubegni A, Santorelli F, Schiaffino MC, Servidei S, Tubili F, Bertini E, Moroni I. Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian network of mitochondrial diseases. Orphanet J Rare Dis 2021; 16:413. [PMID: 34627336 PMCID: PMC8501644 DOI: 10.1186/s13023-021-02029-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leigh syndrome (LS) is a progressive neurodegenerative disorder associated with primary or secondary dysfunction of mitochondrial oxidative phosphorylation and is the most common mitochondrial disease in childhood. Numerous reports on the biochemical and molecular profiles of LS have been published, but there are limited studies on genetically confirmed large series. We reviewed the clinical, imaging, biochemical and molecular data of 122 patients with a diagnosis of LS collected in the Italian Collaborative Network of Mitochondrial Diseases database. RESULTS Clinical picture was characterized by early onset of several neurological signs dominated by central nervous system involvement associated with both supra- and sub-tentorial grey matter at MRI in the majority of cases. Extraneurological organ involvement is less frequent in LS than expected for a mitochondrial disorder. Complex I and IV deficiencies were the most common biochemical diagnoses, mostly associated with mutations in SURF1 or mitochondrial-DNA genes encoding complex I subunits. Our data showed SURF1 as the genotype with the most unfavorable prognosis, differently from other cohorts reported to date. CONCLUSION We report on a large genetically defined LS cohort, adding new data on phenotype-genotype correlation, prognostic factors and possible suggestions to diagnostic workup.
Collapse
Affiliation(s)
- Anna Ardissone
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Daria Diodato
- Muscular and Neurodegenerative Disease Unit, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alice Donati
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | | | - Guido Primiano
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Elena Procopio
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | | | | | - Serenella Servidei
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Flavia Tubili
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Enrico Bertini
- Muscular and Neurodegenerative Disease Unit, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| |
Collapse
|
26
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
28
|
Zarate YA, Vernon HJ, Bosanko KA, Ramani PK, Gokden M, Writzl K, Meznaric M, Vipotnik Vesnaver T, Ramakrishnaiah R, Osredkar D. Case Report: SATB2-Associated Syndrome Overlapping With Clinical Mitochondrial Disease Presentation: Report of Two Cases. Front Genet 2021; 12:692087. [PMID: 34234817 PMCID: PMC8257052 DOI: 10.3389/fgene.2021.692087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
SATB2-associated syndrome (SAS) is an autosomal dominant neurogenetic multisystemic disorder. We describe two individuals with global developmental delay and hypotonia who underwent an extensive evaluation to rule out an underlying mitochondrial disorder before their eventual diagnosis of SAS. Although the strict application of the clinical mitochondrial disease score only led to the designation of "possible" mitochondrial disorder for these two individuals, other documented abnormalities included nonspecific neuroimaging findings on magnetic resonance imaging and magnetic resonance spectroscopy, decreased complex I activity on muscle biopsy for patient 2, and variation in the size and relative proportion of types of muscle fibers in the muscle biopsies that were aligned with mitochondrial diseases. SAS should be in the differential diagnoses of mitochondrial disorders, and broad-spectrum diagnostic tests such as exome sequencing need to be considered early in the evaluation process of undiagnosed neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine A Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Praveen K Ramani
- Department of Pediatric Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marija Meznaric
- Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Raghu Ramakrishnaiah
- Division of Neuroradiology and Pediatric Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I. Sci Rep 2021; 11:12641. [PMID: 34135385 PMCID: PMC8209014 DOI: 10.1038/s41598-021-91631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
Collapse
|
30
|
Peverelli L, Catania A, Marchet S, Ciasca P, Cammarata G, Melzi L, Bellino A, Fancellu R, Lamantea E, Capristo M, Caporali L, La Morgia C, Carelli V, Ghezzi D, Bianchi Marzoli S, Lamperti C. Leber's Hereditary Optic Neuropathy: A Report on Novel mtDNA Pathogenic Variants. Front Neurol 2021; 12:657317. [PMID: 34177762 PMCID: PMC8220086 DOI: 10.3389/fneur.2021.657317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is due to missense point mutations affecting mitochondrial DNA (mtDNA); 90% of cases harbor the m.3460G>A, m.11778G>A, and m.14484T>C primary mutations. Here, we report and discuss five families with patients affected by symptomatic LHON, in which we found five novel mtDNA variants. Remarkably, these mtDNA variants are located in complex I genes, though without strong deleterious effect on respiration in cellular models: this finding is likely linked to the tissue specificity of LHON. This study observes that in the case of a strong clinical suspicion of LHON, it is recommended to analyze the whole mtDNA sequence, since new rare mtDNA pathogenic variants causing LHON are increasingly identified.
Collapse
Affiliation(s)
- Lorenzo Peverelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy.,Neuromuscular and Rare Disease Unit, Department of Neuroscience, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Marchet
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Ciasca
- Neuro-Ophthalmology Service and Ocular Electrophysiology Laboratory, Department of Ophthalmology, Scientific Institute Auxologico Capitanio Hospital, Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Service and Ocular Electrophysiology Laboratory, Department of Ophthalmology, Scientific Institute Auxologico Capitanio Hospital, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Service and Ocular Electrophysiology Laboratory, Department of Ophthalmology, Scientific Institute Auxologico Capitanio Hospital, Milan, Italy
| | - Antonella Bellino
- Neuromuscular Disorders Unit, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberto Fancellu
- Neurology Unit, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ospedale Policlinico San Martino, Genoa, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mariantonietta Capristo
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Service and Ocular Electrophysiology Laboratory, Department of Ophthalmology, Scientific Institute Auxologico Capitanio Hospital, Milan, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
31
|
Silva-Pinheiro P, Pardo-Hernández C, Reyes A, Tilokani L, Mishra A, Cerutti R, Li S, Rozsivalova DH, Valenzuela S, Dogan SA, Peter B, Fernández-Silva P, Trifunovic A, Prudent J, Minczuk M, Bindoff L, Macao B, Zeviani M, Falkenberg M, Viscomi C. DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Res 2021; 49:5230-5248. [PMID: 33956154 PMCID: PMC8136776 DOI: 10.1093/nar/gkab282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.
Collapse
Affiliation(s)
- Pedro Silva-Pinheiro
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Carlos Pardo-Hernández
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Aurelio Reyes
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Lisa Tilokani
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Anup Mishra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Raffaele Cerutti
- Department of Neurosciences, University of Padova, via Giustiniani, 2-35128 Padova, Italy
| | - Shuaifeng Li
- Center for Cancer Biology, Life Science of Institution, Zhejiang University, Hangzhou 310058, China
| | - Dieu-Hien Rozsivalova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Sukru A Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Patricio Fernández-Silva
- Biochemistry and Molecular and Cell Biology Department, University of Zaragoza, C/ Pedro Cerbuna s/n 50.009-Zaragoza, and Biocomputation and Complex Systems Physics Institute (BIFI), C/ Mariano Esquillor, 50.018-Zaragoza, Spain
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Julien Prudent
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Michal Minczuk
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Laurence Bindoff
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, via Giustiniani, 2-35128 Padova, Italy
- Venetian Institute of Molecular Medicine, via Orus 2-35128 Padova, Italy
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B-35131 Padova, Italy
| |
Collapse
|
32
|
Torraco A, Nasca A, Verrigni D, Pennisi A, Zaki MS, Olivieri G, Assouline Z, Martinelli D, Maroofian R, Rizza T, Di Nottia M, Invernizzi F, Lamantea E, Longo D, Houlden H, Prokisch H, Rötig A, Dionisi-Vici C, Bertini E, Ghezzi D, Carrozzo R, Diodato D. Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation. Hum Mutat 2021; 42:699-710. [PMID: 33715266 DOI: 10.1002/humu.24195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022]
Abstract
Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Nasca
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Verrigni
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Pennisi
- UNITE INSERM U1163 Imagine Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Giorgia Olivieri
- Department of Pediatric Subspecialties, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Zahra Assouline
- UNITE INSERM U1163 Imagine Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Diego Martinelli
- Department of Pediatric Subspecialties, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Teresa Rizza
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Di Nottia
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Invernizzi
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Longo
- Department of Diagnostic Imaging, Unit of Neuroradiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Agnès Rötig
- UNITE INSERM U1163 Imagine Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Carlo Dionisi-Vici
- Department of Pediatric Subspecialties, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniele Ghezzi
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rosalba Carrozzo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
33
|
Bandara AB, Drake JC, James CC, Smyth JW, Brown DA. Complex I protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion 2021; 58:160-168. [PMID: 33744462 DOI: 10.1016/j.mito.2021.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Complex I is the largest and most intricate of the protein complexes of mitochondrial electron transport chain (ETC). This L-shaped enzyme consists of a peripheral hydrophilic matrix domain and a membrane-bound orthogonal hydrophobic domain. The interfacial region between these two arms is known to be critical for binding of ubiquinone moieties and has also been shown to be the binding site of Complex I inhibitors. Knowledge on specific roles of the ETC interfacial region proteins is scarce due to lack of knockout cell lines and animal models. Here we mutated nuclear encoded NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2), one of three protein subunits of the interfacial region, in a human embryonic kidney cell line 293 using a CRISPR/Cas9 procedure. Disruption of NDUFS2 significantly decreased cell growth in medium, Complex I specific respiration, glycolytic capacity, ATP pool and cell-membrane integrity, but significantly increased Complex II respiration, ROS generation, apoptosis, and necrosis. Treatment with idebenone, a clinical benzoquinone currently being investigated in other indications, partially restored growth, ATP pool, and oxygen consumption of the mutant. Overall, our results suggest that NDUFS2 is vital for growth and metabolism of mammalian cells, and respiratory defects of NDUFS2 dysfunction can be partially corrected with treatment of an established mitochondrial therapeutic candidate. This is the first report to use CRISPR/Cas9 approach to construct a knockout NDUFS2 cell line and use the constructed mutant to evaluate the efficacy of a known mitochondrial therapeutic to enhance bioenergetic capacity.
Collapse
Affiliation(s)
- Aloka B Bandara
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States
| | - Carissa C James
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, United States
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, United States; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States; Mitochondrial Solutions, LLC, 800 Draper Road, Blacksburg VA 24060, United States
| |
Collapse
|
34
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
35
|
Di Meo I, Cavestro C, Pedretti S, Fu T, Ligorio S, Manocchio A, Lavermicocca L, Santambrogio P, Ripamonti M, Levi S, Ayciriex S, Mitro N, Tiranti V. Neuronal Ablation of CoA Synthase Causes Motor Deficits, Iron Dyshomeostasis, and Mitochondrial Dysfunctions in a CoPAN Mouse Model. Int J Mol Sci 2020; 21:ijms21249707. [PMID: 33352696 PMCID: PMC7766928 DOI: 10.3390/ijms21249707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
- Correspondence: (I.D.M.); (V.T.)
| | - Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Tingting Fu
- Institut des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; (T.F.); (S.A.)
| | - Simona Ligorio
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Antonello Manocchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Lucrezia Lavermicocca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Paolo Santambrogio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
| | - Maddalena Ripamonti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sonia Levi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sophie Ayciriex
- Institut des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; (T.F.); (S.A.)
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
- Correspondence: (I.D.M.); (V.T.)
| |
Collapse
|
36
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
37
|
Wen JJ, Cummins CB, Williams TP, Radhakrishnan RS. The Genetic Evidence of Burn-Induced Cardiac Mitochondrial Metabolism Dysfunction. Biomedicines 2020; 8:biomedicines8120566. [PMID: 33287280 PMCID: PMC7761708 DOI: 10.3390/biomedicines8120566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Burn-induced cardiac dysfunction is thought to involve mitochondrial dysfunction, although the mechanisms responsible are unclear. In this study, we used our established model of in vivo burn injury to understand the genetic evidence of burn-induced mitochondrial confusion dysfunction by describing cardiac mitochondrial metabolism-related gene expression after burn. Cardiac tissue was collected at 24 hours after burn injury. An O2K respirometer system was utilized to measure the cardiac mitochondrial function. Oxidative phosphorylation complex activities were determined using enzyme activity assays. RT Profiler PCR array was used to identify the differential regulation of genes involved in mitochondrial biogenesis and metabolism. The quantitative qPCR and Western blotting were applied to validate the differentially expressed genes. Burn-induced cardiac mitochondrial dysfunction was supported by the finding of decreased state 3 respiration, decreased mitochondrial electron transport chain activity in complex I, III, IV, and V, and decreased mitochondrial DNA-encoded gene expression as well as decreased levels of the corresponding proteins after burn injury. Eighty-four mitochondrial metabolism-related gene profiles were measured. The mitochondrial gene profile showed that 29 genes related to mitochondrial energy and metabolism was differentially expressed. Of these 29 genes, 16 were more than 2-fold upregulated and 13 were more than 2-fold downregulated. All genes were validated using qPCR and partial genes were correlated with their protein levels. This study provides preliminary evidence that a large percentage of mitochondrial metabolism-related genes in cardiomyocytes were significantly affected by burn injury.
Collapse
Affiliation(s)
- Jake J. Wen
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-409-772-5666 (J.J.W. & R.S.R.)
| | | | | | | |
Collapse
|
38
|
Dang QCL, Phan DH, Johnson AN, Pasapuleti M, Alkhaldi HA, Zhang F, Vik SB. Analysis of Human Mutations in the Supernumerary Subunits of Complex I. Life (Basel) 2020; 10:life10110296. [PMID: 33233646 PMCID: PMC7699753 DOI: 10.3390/life10110296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 "core" subunits that carry out oxidation-reduction reactions and proton translocation, as well as 31 additional supernumerary (or accessory) subunits whose functions are less well known. Diminished levels of complex I activity are seen in many mitochondrial disease states. This review seeks to tabulate mutations in the supernumerary subunits of humans that appear to cause disease. Mutations in 20 of the supernumerary subunits have been identified. The mutations were analyzed in light of the tertiary and quaternary structure of human complex I (PDB id = 5xtd). Mutations were found that might disrupt the folding of that subunit or that would weaken binding to another subunit. In some cases, it appeared that no protein was made or, at least, could not be detected. A very common outcome is the lack of assembly of complex I when supernumerary subunits are mutated or missing. We suggest that poor assembly is the result of disrupting the large network of subunit interactions that the supernumerary subunits typically engage in.
Collapse
|
39
|
Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, Lamantea E, Meisterknecht J, Spagnolo M, He L, Alameer S, Hakami F, Almehdar A, Ardissone A, Alston CL, McFarland R, Wittig I, Ghezzi D, Taylor RW. Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I. EMBO Mol Med 2020; 12:e12619. [PMID: 32969598 PMCID: PMC7645371 DOI: 10.15252/emmm.202012619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, most commonly observed in paediatric mitochondrial disease, and is often associated with pathogenic variants in complex I structural subunits or assembly factors resulting in isolated respiratory chain complex I deficiency. Clinical heterogeneity has been reported, but key diagnostic findings are developmental regression, elevated lactate and characteristic neuroimaging abnormalities. Here, we describe three affected children from two unrelated families who presented with Leigh syndrome due to homozygous variants (c.346_*7del and c.173A>T p.His58Leu) in NDUFC2, encoding a complex I subunit. Biochemical and functional investigation of subjects’ fibroblasts confirmed a severe defect in complex I activity, subunit expression and assembly. Lentiviral transduction of subjects’ fibroblasts with wild‐type NDUFC2 cDNA increased complex I assembly supporting the association of the identified NDUFC2 variants with mitochondrial pathology. Complexome profiling confirmed a loss of NDUFC2 and defective complex I assembly, revealing aberrant assembly intermediates suggestive of stalled biogenesis of the complex I holoenzyme and indicating a crucial role for NDUFC2 in the assembly of the membrane arm of complex I, particularly the ND2 module.
Collapse
Affiliation(s)
- Ahmad Alahmad
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Kuwait Medical Genetics Centre, Al-Sabah Medical Area, Kuwait
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Juliana Heidler
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jana Meisterknecht
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany
| | - Manuela Spagnolo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Seham Alameer
- Pediatric Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Fahad Hakami
- Section of Molecular Medicine, King Abdulaziz Medical City-WR, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Abeer Almehdar
- Department of Medical Imaging, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City-WR, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Anna Ardissone
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ilka Wittig
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Luna-Sanchez M, Benincá C, Cerutti R, Brea-Calvo G, Yeates A, Scorrano L, Zeviani M, Viscomi C. Opa1 Overexpression Protects from Early-Onset Mpv17 -/--Related Mouse Kidney Disease. Mol Ther 2020; 28:1918-1930. [PMID: 32562616 PMCID: PMC7403474 DOI: 10.1016/j.ymthe.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17-/- mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17-/- animals as a late-onset clinical feature (after 12-18 months of life). In contrast, Mpv17-/- animals from this new "mixed" strain died at 8-9 weeks after birth because of severe kidney failure However, Mpv17-/-::Opa1tg mice lived much longer than Mpv17-/- littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17-/-::Opa1tg than in Mpv17-/- kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17-/-::Opa1tg versus Mpv17-/- kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes.
Collapse
Affiliation(s)
- Marta Luna-Sanchez
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cristiane Benincá
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología de Desarrollo and CIBERER, ISCIII, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Anna Yeates
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Luca Scorrano
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Neurosciences, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
41
|
Brunetti D, Bottani E, Segala A, Marchet S, Rossi F, Orlando F, Malavolta M, Carruba MO, Lamperti C, Provinciali M, Nisoli E, Valerio A. Targeting Multiple Mitochondrial Processes by a Metabolic Modulator Prevents Sarcopenia and Cognitive Decline in SAMP8 Mice. Front Pharmacol 2020; 11:1171. [PMID: 32848778 PMCID: PMC7411305 DOI: 10.3389/fphar.2020.01171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
The age-dependent declines of skeletal muscle and cognitive functions often coexist in elderly subjects. The underlying pathophysiological mechanisms share common features of mitochondrial dysfunction, which plays a central role in the development of overt sarcopenia and/or dementia. Dietary supplementation with formulations of essential and branched-chain amino acids (EAA-BCAA) is a promising preventive strategy because it can preserve mitochondrial biogenesis and function. The senescence-accelerated mouse prone 8 (SAMP8) is considered an accurate model of age-related muscular and cognitive alterations. Hence, we aimed to investigate the progression of mitochondrial dysfunctions during muscular and cognitive aging of SAMP8 mice and to study the effects of a novel EAA-BCAA-based metabolic modulator on these changes. We evaluated body condition, motor endurance, and working memory of SAMP8 mice at 5, 9, 12, and 15 months of age. Parallel changes in protein levels of mitochondrial respiratory chain subunits, regulators of mitochondrial biogenesis and dynamics, and the antioxidant response, as well as respiratory complex activities, were measured in the quadriceps femoris and the hippocampus. The same variables were assessed in 12-month-old SAMP8 mice that had received dietary supplementation with the novel EAA-BCAA formulation, containing tricarboxylic acid cycle intermediates and co-factors (PD-0E7, 1.5 mg/kg/body weight/day in drinking water) for 3 months. Contrary to untreated mice, which had a significant molecular and phenotypic impairment, PD-0E7-treated mice showed preserved healthy body condition, muscle weight to body weight ratio, motor endurance, and working memory at 12 months of age. The PD-0E7 mixture increased the protein levels and the enzymatic activities of mitochondrial complex I, II, and IV and the expression of proliferator-activated receptor γ coactivator-1α, optic atrophy protein 1, and nuclear factor, erythroid 2 like 2 in muscles and hippocampi. The mitochondrial amyloid-β-degrading pitrilysin metallopeptidase 1 was upregulated, while amyloid precursor protein was reduced in the hippocampi of PD-0E7 treated mice. In conclusion, we show that a dietary supplement tailored to boost mitochondrial respiration preserves skeletal muscle and hippocampal mitochondrial quality control and health. When administered at the early onset of age-related physical and cognitive decline, this novel metabolic inducer counteracts the deleterious effects of precocious aging in both domains.
Collapse
Affiliation(s)
- Dario Brunetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Emanuela Bottani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Agnese Segala
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Silvia Marchet
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Fabio Rossi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Michele O Carruba
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Center for Study and Research on Obesity, University of Milan, Milan, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Center for Study and Research on Obesity, University of Milan, Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
42
|
Novel NDUFA13 Mutations Associated with OXPHOS Deficiency and Leigh Syndrome: A Second Family Report. Genes (Basel) 2020; 11:genes11080855. [PMID: 32722639 PMCID: PMC7465247 DOI: 10.3390/genes11080855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023] Open
Abstract
Leigh syndrome (LS) usually presents as an early onset mitochondrial encephalopathy characterized by bilateral symmetric lesions in the basal ganglia and cerebral stem. More than 75 genes have been associated with this condition, including genes involved in the biogenesis of mitochondrial complex I (CI). In this study, we used a next-generation sequencing (NGS) panel to identify two novel biallelic variants in the NADH:ubiquinone oxidoreductase subunit A13 (NDUFA13) gene in a patient with isolated CI deficiency in skeletal muscle. Our patient, who represents the second family report with mutations in the CI NDUFA13 subunit, presented with LS lesions in brain magnetic resonance imaging, mild hypertrophic cardiomyopathy, and progressive spastic tetraparesis. This phenotype manifestation is different from that previously described in the first NDUFA13 family, which was predominantly characterized by neurosensorial symptoms. Both in silico pathogenicity predictions and oxidative phosphorylation (OXPHOS) functional findings in patient’s skin fibroblasts (delayed cell growth, isolated CI enzyme defect, decreased basal and maximal oxygen consumption and as well as ATP production, together with markedly diminished levels of the NDUFA13 protein, CI, and respirasomes) suggest that these novel variants in the NDUFA13 gene are the underlying cause of the CI defect, expanding the genetic heterogeneity of LS.
Collapse
|
43
|
Marchet S, Legati A, Nasca A, Di Meo I, Spagnolo M, Zanetti N, Lamantea E, Catania A, Lamperti C, Ghezzi D. Homozygous mutations in C1QBP as cause of progressive external ophthalmoplegia (PEO) and mitochondrial myopathy with multiple mtDNA deletions. Hum Mutat 2020; 41:1745-1750. [PMID: 32652806 DOI: 10.1002/humu.24081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Biallelic mutations in the C1QBP gene have been associated with mitochondrial cardiomyopathy and combined respiratory-chain deficiencies, with variable onset (including intrauterine or neonatal forms), phenotypes, and severity. We studied two unrelated adult patients from consanguineous families, presenting with progressive external ophthalmoplegia (PEO), mitochondrial myopathy, and without any heart involvement. Muscle biopsies from both patients showed typical mitochondrial alterations and the presence of multiple mitochondrial DNA deletions, whereas biochemical defects of the respiratory chain were present only in one subject. Using next-generation sequencing approaches, we identified homozygous mutations in C1QBP. Immunoblot analyses in patients' muscle samples revealed a strong reduction in the amount of the C1QBP protein and varied impairment of respiratory chain complexes, correlating with disease severity. Despite the original study indicated C1QBP mutations as causative for mitochondrial cardiomyopathy, our data indicate that mutations in C1QBP have to be considered in subjects with PEO phenotype or primary mitochondrial myopathy and without cardiomyopathy.
Collapse
Affiliation(s)
- Silvia Marchet
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Manuela Spagnolo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nadia Zanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
44
|
Di Nottia M, Marchese M, Verrigni D, Mutti CD, Torraco A, Oliva R, Fernandez-Vizarra E, Morani F, Trani G, Rizza T, Ghezzi D, Ardissone A, Nesti C, Vasco G, Zeviani M, Minczuk M, Bertini E, Santorelli FM, Carrozzo R. A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly. Neurobiol Dis 2020; 141:104880. [PMID: 32344152 DOI: 10.1016/j.nbd.2020.104880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial ribosomal protein large 24 (MRPL24) is 1 of the 82 protein components of mitochondrial ribosomes, playing an essential role in the mitochondrial translation process. We report here on a baby girl with cerebellar atrophy, choreoathetosis of limbs and face, intellectual disability and a combined defect of complexes I and IV in muscle biopsy, caused by a homozygous missense mutation identified in MRPL24. The variant predicts a Leu91Pro substitution at an evolutionarily conserved site. Using human mutant cells and the zebrafish model, we demonstrated the pathological role of the identified variant. In fact, in fibroblasts we observed a significant reduction of MRPL24 protein and of mitochondrial respiratory chain complex I and IV subunits, as well a markedly reduced synthesis of the mtDNA-encoded peptides. In zebrafish we demonstrated that the orthologue gene is expressed in metabolically active tissues, and that gene knockdown induced locomotion impairment, structural defects and low ATP production. The motor phenotype was complemented by human WT but not mutant cRNA. Moreover, sucrose density gradient fractionation showed perturbed assembly of large subunit mitoribosomal proteins, suggesting that the mutation leads to a conformational change in MRPL24, which is expected to cause an aberrant interaction of the protein with other components of the 39S mitoribosomal subunit.
Collapse
Affiliation(s)
- Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Marchese
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Daniela Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy
| | | | - Federica Morani
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giulia Trani
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Anna Ardissone
- Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Molecular and Translational Medicine DIMET, University of Milan-Bicocca, Milan, Italy
| | - Claudia Nesti
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gessica Vasco
- Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
45
|
Silva-Pinheiro P, Cerutti R, Luna-Sanchez M, Zeviani M, Viscomi C. A Single Intravenous Injection of AAV-PHP.B- hNDUFS4 Ameliorates the Phenotype of Ndufs4 -/- Mice. Mol Ther Methods Clin Dev 2020; 17:1071-1078. [PMID: 32478122 PMCID: PMC7248291 DOI: 10.1016/j.omtm.2020.04.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Leigh syndrome, or infantile necrotizing subacute encephalopathy (OMIM #256000), is one of the most common manifestations of mitochondrial dysfunction, due to mutations in more than 75 genes, with mutations in respiratory complex I subunits being the most common cause. In the present study, we used the recently described PHP.B serotype, characterized by efficient capacity to cross the blood-brain barrier, to express the hNDUFS4 gene in the Ndufs4 -/- mouse model of Leigh disease. A single intravenous injection of PHP.B-hNDUFS4 in adult Ndufs4 -/- mice led to a normalization of the body weight, marked amelioration of the rotarod performance, delayed onset of neurodegeneration, and prolongation of the lifespan up to 1 year of age. hNDUFS4 protein was expressed in virtually all brain regions, leading to a partial recovery of complex I activity. Our findings strongly support the feasibility and effectiveness of adeno-associated viral vector (AAV)-mediated gene therapy for mitochondrial disease, particularly with new serotypes showing increased permeability to the blood-brain barrier in order to achieve widespread expression in the central nervous system.
Collapse
Affiliation(s)
- Pedro Silva-Pinheiro
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Marta Luna-Sanchez
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, Via Orus, 2, 35128 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| |
Collapse
|
46
|
Yatsuka Y, Kishita Y, Formosa LE, Shimura M, Nozaki F, Fujii T, Nitta KR, Ohtake A, Murayama K, Ryan MT, Okazaki Y. A homozygous variant in NDUFA8 is associated with developmental delay, microcephaly, and epilepsy due to mitochondrial complex I deficiency. Clin Genet 2020; 98:155-165. [PMID: 32385911 DOI: 10.1111/cge.13773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I deficiency is caused by pathogenic variants in mitochondrial and nuclear genes associated with complex I structure and assembly. We report the case of a patient with NDUFA8-related mitochondrial disease. The patient presented with developmental delay, microcephaly, and epilepsy. His fibroblasts showed apparent biochemical defects in mitochondrial complex I. Whole-exome sequencing revealed that the patient carried a homozygous variant in NDUFA8. His fibroblasts showed a reduction in the protein expression level of not only NDUFA8, but also the other complex I subunits, consistent with assembly defects. The enzyme activity of complex I and oxygen consumption rate were restored by reintroducing wild-typeNDUFA8 cDNA into patient fibroblasts. The functional properties of the variant in NDUFA8 were also investigated using NDUFA8 knockout cells expressing wild-type or mutated NDUFA8 cDNA. These experiments further supported the pathogenicity of the variant in complex I assembly. This is the first report describing that the loss of NDUFA8, which has not previously been associated with mitochondrial disease, causes severe defect in the assembly of mitochondrial complex I, leading to progressive neurological and developmental abnormalities.
Collapse
Affiliation(s)
- Yukiko Yatsuka
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihito Kishita
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Kazuhiro R Nitta
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Ohtake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.,Department of Pediatrics and Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
47
|
Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans 2020; 47:1963-1969. [PMID: 31769488 DOI: 10.1042/bst20191042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
Abstract
Mitochondria control vitally important functions in cells, including energy production, cell signalling and regulation of cell death. Considering this, any alteration in mitochondrial metabolism would lead to cellular dysfunction and the development of a disease. A large proportion of disorders associated with mitochondria are induced by mutations or chemical inhibition of the mitochondrial complex I - the entry point to the electron transport chain. Subunits of the enzyme NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and mutations in these genes lead to cardio and muscular pathologies and diseases of the central nervous system. Despite such a clear involvement of complex I deficiency in numerous disorders, the molecular and cellular mechanisms leading to the development of pathology are not very clear. In this review, we summarise how lack of activity of complex I could differentially change mitochondrial and cellular functions and how these changes could lead to a pathology, following discrete routes.
Collapse
|
48
|
Protasoni M, Bruno C, Donati MA, Mohamoud K, Severino M, Allegri A, Robinson AJ, Reyes A, Zeviani M, Garone C. Novel compound heterozygous pathogenic variants in nucleotide-binding protein like protein (NUBPL) cause leukoencephalopathy with multi-systemic involvement. Mol Genet Metab 2020; 129:26-34. [PMID: 31787496 DOI: 10.1016/j.ymgme.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
NUBPL (Nucleotide-binding protein like) protein encodes a member of the Mrp/NBP35 ATP-binding proteins family, deemed to be involved in mammalian complex I (CI) assembly process. Exome sequencing of a patient presenting with infantile-onset hepatopathy, renal tubular acidosis, developmental delay, short stature, leukoencephalopathy with minimal cerebellar involvement and multiple OXPHOS deficiencies revealed the presence of two novel pathogenic compound heterozygous variants in NUBPL (p.Phe242Leu/p.Leu104Pro). We investigated patient's and control immortalised fibroblasts and demonstrated that both the peripheral and the membrane arms of complex I are undetectable in mutant NUBPL cells, resulting in virtually absent CI holocomplex and loss of enzyme activity. In addition, complex III stability was moderately affected as well. Lentiviral-mediated expression of the wild-type NUBPL cDNA rescued both CI and CIII assembly defects, confirming the pathogenicity of the variants. In conclusion, this is the first report describing a complex multisystemic disorder due to NUBPL defect. In addition, we confirmed the role of NUBPL in Complex I assembly associated with secondary effect on Complex III stability and we demonstrated a defect of mtDNA-related translation which suggests a potential additional role of NUBPL in mtDNA expression.
Collapse
Affiliation(s)
- Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Giannina Gaslini Institute, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Maria Alice Donati
- Metabolic Unit, A. Meyer Children's Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Khadra Mohamoud
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Anna Allegri
- Pediatric Clinic Unit, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Aurelio Reyes
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK
| | - Massimo Zeviani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK.
| | - Caterina Garone
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB20XY Cambridge, UK; Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca Biomedica Applicata, Università di Bologna, via Massarenti, 11, 40100 Bologna, Italy.
| |
Collapse
|
49
|
Migliavacca E, Tay SKH, Patel HP, Sonntag T, Civiletto G, McFarlane C, Forrester T, Barton SJ, Leow MK, Antoun E, Charpagne A, Seng Chong Y, Descombes P, Feng L, Francis-Emmanuel P, Garratt ES, Giner MP, Green CO, Karaz S, Kothandaraman N, Marquis J, Metairon S, Moco S, Nelson G, Ngo S, Pleasants T, Raymond F, Sayer AA, Ming Sim C, Slater-Jefferies J, Syddall HE, Fang Tan P, Titcombe P, Vaz C, Westbury LD, Wong G, Yonghui W, Cooper C, Sheppard A, Godfrey KM, Lillycrop KA, Karnani N, Feige JN. Mitochondrial oxidative capacity and NAD + biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun 2019; 10:5808. [PMID: 31862890 PMCID: PMC6925228 DOI: 10.1038/s41467-019-13694-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023] Open
Abstract
The causes of impaired skeletal muscle mass and strength during aging are well-studied in healthy populations. Less is known on pathological age-related muscle wasting and weakness termed sarcopenia, which directly impacts physical autonomy and survival. Here, we compare genome-wide transcriptional changes of sarcopenia versus age-matched controls in muscle biopsies from 119 older men from Singapore, Hertfordshire UK and Jamaica. Individuals with sarcopenia reproducibly demonstrate a prominent transcriptional signature of mitochondrial bioenergetic dysfunction in skeletal muscle, with low PGC-1α/ERRα signalling, and downregulation of oxidative phosphorylation and mitochondrial proteostasis genes. These changes translate functionally into fewer mitochondria, reduced mitochondrial respiratory complex expression and activity, and low NAD+ levels through perturbed NAD+ biosynthesis and salvage in sarcopenic muscle. We provide an integrated molecular profile of human sarcopenia across ethnicities, demonstrating a fundamental role of altered mitochondrial metabolism in the pathological loss of skeletal muscle mass and function in older people.
Collapse
Affiliation(s)
| | - Stacey K H Tay
- KTP-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Harnish P Patel
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Geriatric Medicine, , University of Southampton, Southampton, UK
| | - Tanja Sonntag
- Nestle Research, EPFL Innovation Park, Lausanne, Switzerland
- EPFL school of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Craig McFarlane
- Department of Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Terence Forrester
- UWI Solutions for Developing Countries, UWI SODECO, University of West Indies, Kingston, Jamaica
| | - Sheila J Barton
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Melvin K Leow
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Elie Antoun
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Aline Charpagne
- Nestle Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrice Francis-Emmanuel
- UWI Solutions for Developing Countries, UWI SODECO, University of West Indies, Kingston, Jamaica
| | - Emma S Garratt
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | | | - Curtis O Green
- UWI Solutions for Developing Countries, UWI SODECO, University of West Indies, Kingston, Jamaica
| | - Sonia Karaz
- Nestle Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Julien Marquis
- Nestle Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Sofia Moco
- Nestle Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Gail Nelson
- UWI Solutions for Developing Countries, UWI SODECO, University of West Indies, Kingston, Jamaica
| | - Sherry Ngo
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Tony Pleasants
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Avan A Sayer
- Academic Geriatric Medicine, , University of Southampton, Southampton, UK
- AGE Research Group, Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon-Tyne NHS Foundation Trust and Newcastle University, Newcastle, UK
| | - Chu Ming Sim
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
| | - Jo Slater-Jefferies
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Holly E Syddall
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Pei Fang Tan
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
| | - Philip Titcombe
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Candida Vaz
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
| | - Leo D Westbury
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Gerard Wong
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
| | - Wu Yonghui
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
| | - Cyrus Cooper
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- National Institute for Health Research Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Allan Sheppard
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.
| | - Karen A Lillycrop
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.
- Centre for Biological Sciences, University of Southampton, Southampton, UK.
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jerome N Feige
- Nestle Research, EPFL Innovation Park, Lausanne, Switzerland.
- EPFL school of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
50
|
Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M. Metabolic Alterations in Inherited Cardiomyopathies. J Clin Med 2019; 8:E2195. [PMID: 31842377 PMCID: PMC6947282 DOI: 10.3390/jcm8122195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Claudia Sacchetto
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department of Biology, University of Padova, via Ugo Bassi 58B, 35121 Padova, Italy
| | - Vasco Sequeira
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Edoardo Bertero
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Jan Dudek
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Martina Calore
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|