1
|
Hao D, McBride MA, Bohannon JK, Hernandez A, Klein B, Williams DL, Sherwood ER. Metabolic adaptations driving innate immune memory: mechanisms and therapeutic implications. J Leukoc Biol 2025; 117:qiaf037. [PMID: 40138361 DOI: 10.1093/jleuko/qiaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Immune memory is a hallmark of the adaptive immune system. However, recent research reveals that innate immune cells also retain memory of prior pathogen exposure that prompts enhanced responses to subsequent infections. This phenomenon is termed "innate immune memory" or "trained immunity." Notably, remodeling of cellular metabolism, which closely links to epigenetic reprograming, is a prominent feature of innate immune memory. Adaptations in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, glutaminolysis, and lipid synthesis pathways are critical for establishing innate immune memory. This review provides an overview of the current understanding of how metabolic adaptations drive innate immune memory. This understanding is fundamental to understanding innate immune system functions and advancing therapies against infectious diseases.
Collapse
Affiliation(s)
- Dan Hao
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Margaret A McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Benjamin Klein
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - David L Williams
- Department of Surgery, East Tennessee State University, Quillen College of Medicine, P.O. Box 70575, Johnson City, TN 37614, United States
- Center for Inflammation, Infectious Disease and Immunology, Quillen College of Medicine, 1276 Gilbreath Drive, Johnson City, TN 37614, United States
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Department of Surgery, East Tennessee State University, Quillen College of Medicine, P.O. Box 70575, Johnson City, TN 37614, United States
- Center for Inflammation, Infectious Disease and Immunology, Quillen College of Medicine, 1276 Gilbreath Drive, Johnson City, TN 37614, United States
| |
Collapse
|
2
|
Chávez-Cano A, Dawson SC, Guadalupe Ortega-Pierres M. gdSir2.1 and gdSir2.3 are involved in albendazole resistance in Giardia duodenalis via regulation of the oxidative stress response. Int J Parasitol Drugs Drug Resist 2025; 28:100596. [PMID: 40373730 PMCID: PMC12143723 DOI: 10.1016/j.ijpddr.2025.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/09/2025] [Accepted: 04/28/2025] [Indexed: 05/17/2025]
Abstract
Albendazole resistance in Giardia duodenalis includes a complex and multifactorial challenge that potentially involves non-reported pathways such as the participation of metabolic regulators. In this context, sirtuins, known as metabolic sensors in various cellular processes, have emerged as promising candidates for novel anti-parasitic treatments. To investigate their role in albendazole (ABZ) resistance, initially we analyzed the expression of sirtuins in three Giardia strains resistant to 8 μM, 1.5 μM and 250 μM of ABZ that were obtained in our laboratory. Additionally, we used a CRISPRi-based knockdownstrategy to repress several sirtuins in Giardia and analyzed the effect of sirtuins on ABZ resistance. Our findings demonstrated a significant upregulation of sirtuins gdSir2.1, gdSir2.2 and gdSir2.3 in the three distinct albendazole-resistant lines. Knockdown of gdSir2.1 and gdSir2.3 resulted in heightened parasite susceptibility to both albendazole and hydrogen peroxide. Further, our study suggested that sirtuins contribute to the regulation of reactive oxygen species (ROS) levels, oxidative DNA damage, and the expression of oxidative stress response (OSR) genes within the parasite. Collectively, our results demonstrated that gdSir2.1 and gdSir2.3 play a significant role in mediating albendazole resistance, primarily through regulating the oxidative stress response.
Collapse
Affiliation(s)
- Adrián Chávez-Cano
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07360, Mexico
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - M Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07360, Mexico.
| |
Collapse
|
3
|
Belvedere R, Novizio N, Stefanelli B, Sellitto C, Palazzo M, Trucillo M, De Luca A, De Bellis E, Corbi G, Filippelli A, Conti V, Petrella A. SIRT1 Mediates the Effects of Sera from Athletes Who Engage in Aerobic Exercise Training in Activating Cells for Wound Healing. Biomedicines 2025; 13:1041. [PMID: 40426868 PMCID: PMC12108720 DOI: 10.3390/biomedicines13051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Exercise training (ET) can improve wound healing and prevent the recurrence of skin lesions. Aerobic ET stimulates the NAD+-dependent deacetylase sirtuin 1 (SIRT1). The beneficial effects of ET and SIRT1 activation in wound healing have been characterized when considered separately. This study aimed to investigate the potential role of SIRT1 as a mediator of the effects of sera isolated from athletes who regularly participate in aerobic ET (middle-distance running, MDR) on cells primarily involved in wound healing. Methods: Human keratinocytes, fibroblasts and endothelial cells were conditioned with sera from middle-distance runners and age-matched sedentary subjects (sed). Cell motility, angiogenesis and the expression of key biomarkers of cell activation were evaluated in the presence or absence of the selective SIRT1 inhibitor EX-527. Results: Higher SIRT1 activity was detected in all of the cell lines conditioned with the MDR group sera compared with that in the cells in the sed group sera. The involvement of SIRT1 was demonstrated by EX-527's selective inhibition. Alongside the increase in SIRT1 activity, a marked increase in migration, invasion and angiogenesis was observed. The levels of E-cadherin decreased while those of integrin β1 and vinculin increased in the keratinocytes and fibroblasts conditioned with the MDR group sera compared to these values with the sed group sera, respectively. Increased levels of differentiation markers, such as involucrin in the keratinocytes, FAP1α in the fibroblasts and CD31 in the endothelial cells, were observed with the MDR group sera compared to these values using the sed group sera. Conclusions: The ex vivo/in vitro approach used here links aerobic ET-induced SIRT1 activity to proper tissue regeneration.
Collapse
Affiliation(s)
- Raffaella Belvedere
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.B.); (N.N.); (M.P.); (A.P.)
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.B.); (N.N.); (M.P.); (A.P.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (B.S.); (A.F.)
| | - Carmine Sellitto
- Clinical Pharmacology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Mariangela Palazzo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.B.); (N.N.); (M.P.); (A.P.)
| | - Marta Trucillo
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.T.); (A.D.L.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.T.); (A.D.L.)
| | - Emanuela De Bellis
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (B.S.); (A.F.)
- Clinical Pharmacology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Valeria Conti
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (B.S.); (A.F.)
- Clinical Pharmacology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.B.); (N.N.); (M.P.); (A.P.)
| |
Collapse
|
4
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W, Chang SY. NAD + modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother 2025; 185:117938. [PMID: 40022994 DOI: 10.1016/j.biopha.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD+) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies. Here we show an IBD therapeutic candidate LMT503, a substrate that modulates NADH quinone oxidoreductase (NQO1), which induces anti-inflammatory macrophage polarization by NAD+ enhancement. To determine the anti-inflammatory effect of LMT503, a dextran sulfate sodium (DSS)-induced colitis mouse model was used in this study. Treatment of bone marrow-derived macrophages (BMDMs) with LMT503 increased IL-10 and Arg1 levels but decreased levels of TNF-α, iNOS, and IL-6. LMT503 also increased levels of SIRT1, SIRT3, and SIRT6, suggesting that macrophages were driven to an anti-inflammatory character. In a murine DSS-induced colitis model, oral treatment with LMT503 ameliorated colonic inflammation and decreased infiltrating monocytes and neutrophils. Although NAD+ enhancement did not alter CX3CR1intCD206- or CX3CR1hiCD206+ colon macrophage population, it decreased levels of TNF-α and iNOS and increased IL-10 level, with colonic macrophages showing an anti-inflammatory character shift. Depletion of CX3CR1 expressing gut resident macrophages abrogated the immune regulatory effect of LMT503 in the colon. These data suggest that LMT503 is a therapeutic candidate that can target macrophages to drive polarization with an immunosuppressive character and ameliorate IBD.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Korea Initiative for fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Inseok Ko
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea; Department of Chemistry Education, Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Jusik Kim
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Yong Rae Hong
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Wheeseong Lee
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
5
|
Niu YR, Xiang MD, Yang WW, Fang YT, Qian HL, Sun YK. NAD+/SIRT1 pathway regulates glycolysis to promote oxaliplatin resistance in colorectal cancer. World J Gastroenterol 2025; 31:100785. [PMID: 40124268 PMCID: PMC11924001 DOI: 10.3748/wjg.v31.i11.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND Glycolysis provides growth advantages and leads to drug resistance in colorectal cancer (CRC) cells. SIRT1, an NAD+-dependent deacetylase, regulates various cellular processes, and its upregulation results in antitumor effects. This study investigated the role of SIRT1 in metabolic reprogramming and oxaliplatin resistance in CRC cells. AIM To investigate the role of SIRT1 in metabolic reprogramming and overcoming oxaliplatin resistance in CRC cells. METHODS We performed transcriptome sequencing of human CRC parental cells and oxaliplatin-resistant cells to identify differentially expressed genes. Key regulators were identified via the LINCS database. NAD+ levels were measured by flow cytometry, and the effects of SIRT1 on oxaliplatin sensitivity were assessed by MTS assays, colony formation assays, and xenograft models. Glycolytic function was measured using Western blot and Seahorse assays. RESULTS Salermide, a SIRT1 inhibitor, was identified as a candidate compound that enhances oxaliplatin resistance. In oxaliplatin-resistant cells, SIRT1 was downregulated, whereas γH2AX and PARP were upregulated. PARP activation led to NAD+ depletion and SIRT1 inhibition, which were reversed by PARP inhibitor treatment. The increase in SIRT1 expression overcame oxaliplatin resistance, and while SIRT1 inhibition increased glycolysis, the increase in SIRT1 inhibited glycolysis in resistant CRC cells, which was characterized by reduced expression of the glycolytic enzymes PKM2 and LDHA, as well as a decreased extracellular acidification rate. The PKM2 inhibitor shikonin inhibited glycolysis and reversed oxaliplatin resistance induced by SIRT1 inhibition. CONCLUSION SIRT1 expression is reduced in oxaliplatin-resistant CRC cells due to PARP activation, which in turn increases glycolysis. Restoring SIRT1 expression reverses oxaliplatin resistance in CRC cells, offering a promising therapeutic strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mi-Dan Xiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- National Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
6
|
T N, Das R, Kumar R S, Shanavas S, Rangaswamy B, Aatif A M, Mukherjee C, Roy R, Sengupta J, Bose B, Kumar S K A, Paira P. The role of ancillary ligands on benzodipyridophenazine-based Ru(II)/Ir(III) complexes in dark and light toxicity against TNBC cells. Dalton Trans 2025; 54:4888-4902. [PMID: 39998232 DOI: 10.1039/d4dt03456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
In this study, we investigated the impact of ancillary ligands on the anticancer activity of benzodipyridophenazine-based Ru(II) and Ir(III) complexes (Ru1, Ru2, Ir1, and Ir2). These metal complexes displayed three significant absorption bands attributed to the ligand-centered (LC) transitions, ligand-to-ligand charge transfer (LLCT), and metal-to-ligand charge transfer (MLCT). Binding studies of biomolecules were performed with the complexes along with the ligand, and it was found that after binding with Ru(II)/Ir(III), the properties of the ligands were enhanced. In vitro screening revealed that complex [(η5-Cp*)IrIIICl(κ2-N,N-benzo[i]dipyrido[3,2-a:2',3'-c])phenazine] (Ir1) exhibited the highest potency and selectivity (IC50 ∼ 2.14 μM, PI > 13) under yellow light irradiation. The photo-toxicity trend was Ir1 > Ru1 > Ir2 ≫ Ru2, which was found to be directly correlated with the singlet oxygen quantum yield (1O2). Chloro-substituted complexes (Ir1 and Ru1) were effective for hypoxic tumor treatment, particularly Ir1, which could generate high amounts of reactive oxygen species (ROS, type I PDT) in cells under photo irradiation. The high value of fluorescence quantum yield (fφ = 0.26) and significant emission at λ = 571 nm of Ir1 were certainly useful for bio-imaging applications. Colocalisation and DCFDA studies of Ir1 revealed that it can accumulate in the mitochondria, leading to depolarization of the mitochondrial membrane. These studies confirm that the complex Ir1 is a promising candidate for TNBC treatment in hypoxic tumors, with efficacy comparable to the current PDT drug Photofrin.
Collapse
Affiliation(s)
- Nivedya T
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Rishav Das
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Selva Kumar R
- Department of Chemistry, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala - 133207, Haryana, India.
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Bhaskar Rangaswamy
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Mujthaba Aatif A
- PG and Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Melvisharam-632509, Tamil Nadu, India.
| | - Chandrapaul Mukherjee
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Riona Roy
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Jhimli Sengupta
- Department of Chemistry, West Bengal State University, 700126 Barasat, Kolkata, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Ashok Kumar S K
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Pečaver E, Zickuhr GM, Machado TFG, Harrison DJ, da Silva RG. Kinetic and Thermodynamic Characterization of Human 4-Oxo-l-proline Reductase Catalysis. Biochemistry 2025; 64:860-870. [PMID: 39883584 PMCID: PMC11840923 DOI: 10.1021/acs.biochem.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic (R)-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction. Haldane relationships show the reaction equilibrium strongly favors the formation of cis-4-hydroxy-l-proline. Stereospecific deuteration of NADH C4 coupled with mass spectrometry analysis of the reaction established that the pro-S hydrogen is transferred. NADH is co-purified with the enzyme, and a binding kinetics competition assays with NAD+ defined dissociation rate constants for NADH of 0.13 s-1 at 5 °C and 7.2 s-1 at 25 °C. Isothermal titration calorimetry at 25 °C defined equilibrium dissociation constants of 0.48 and 29 μM for the BDH2:NADH and BDH2:NAD+ complexes, respectively. Differential scanning fluorimetry showed BDH2 is highly thermostabilized by NADH and NAD+. The kcat/KM pH-rate profile indicates that a group with a pKa of 7.3 and possibly another with a pKa of 8.7 must be deprotonated and protonated, respectively, for maximum binding of 4-oxo-l-proline and/or catalysis, while the kcat profile is largely insensitive to pH in the pH range used. The single-turnover rate constant is only 2-fold higher than kcat. This agrees with a pre-steady-state burst of substrate consumption, suggesting that a step after chemistry, possibly product release, contributes to limit kcat. A modest solvent viscosity effect on kcat indicates that this step is only partially diffusional. Taken together, these data suggest chemistry does not limit the reaction rate but may contribute to it.
Collapse
Affiliation(s)
- Ennio Pečaver
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United
Kingdom
| | - Greice M. Zickuhr
- School
of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
| | - Teresa F. G. Machado
- EaStCHEM
School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - David J. Harrison
- School
of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
- NuCana
Plc, Edinburgh EH12 9DT, United Kingdom
| | - Rafael G. da Silva
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United
Kingdom
| |
Collapse
|
8
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
9
|
Imai SI. NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control. NPJ AGING 2025; 11:4. [PMID: 39870672 PMCID: PMC11772665 DOI: 10.1038/s41514-025-00192-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Over the past five years, systemic NAD+ (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD+-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.0, was then proposed in 2016, emphasizing the importance of the inter-tissue communications between the hypothalamus and peripheral tissues including adipose tissue and skeletal muscle. There has been significant progress in our understanding of the importance of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, and nicotinamide phosphoribosyltransferase (NAMPT), particularly extracellular NAMPT (eNAMPT). With these exciting developments, the further reformulated version of the concept, the NAD World 3.0, is now proposed, featuring multi-layered feedback loops mediated by NMN and eNAMPT for mammalian aging and longevity control.
Collapse
Affiliation(s)
- Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan.
| |
Collapse
|
10
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
11
|
Kadeer A, Ishikawa Y, Dayarathne K, Miyagi A, Ishikawa T, Yamaguchi M, Kawai-Yamada M. The deficiency of methylglyoxal synthase promotes cell proliferation in Synechocystis sp. PCC 6803 under mixotrophic conditions. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:393-399. [PMID: 40083576 PMCID: PMC11897720 DOI: 10.5511/plantbiotechnology.24.0718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/18/2024] [Indexed: 03/16/2025]
Abstract
Methylglyoxal synthase (MGS), which converts dihydroxyacetone phosphate to methylglyoxal (MG), is found in only prokaryotes. Synechocystis sp. PCC 6803 possesses the gene sll0036, which encodes MGS. To clarify the biological function of MGS, we constructed a gene-disruption strain of Synechocystis sp. PCC 6803. Expression analysis showed that MG metabolic genes (sll0036, sll0067, and slr1167) were upregulated under photoautotrophic conditions compared to mixotrophic conditions. The sll0036-deficient strain (Δ0036) exhibited a higher growth rate than the wild-type (WT) strain under mixotrophic conditions, whereas no significant difference was observed under photoautotrophic conditions. When cells were cultured in a medium supplemented with sorbitol or mannitol instead of glucose, the growth enhancement observed in the Δ0036 strain disappeared. This suggests that the difference in growth between Δ0036 and WT is influenced by glucose-related metabolism rather than osmotic stress. MG contents were found to be decreased in the Δ0036 strain compared to WT under mixotrophic conditions. This suggests that the reduction of MG level might activate the cell proliferation of Synechocystis sp. PCC 6803 under mixotrophic conditions.
Collapse
Affiliation(s)
- Aikeranmu Kadeer
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuuma Ishikawa
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Universitätsstraße 40225, Germany
| | - Kaushalya Dayarathne
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
- Faculty of Agriculture, Yamagata University, 1-23 Wakabacho, Tsuruoka City, Yamagata 997-8555, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| |
Collapse
|
12
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
13
|
Kramar B, Pirc Marolt T, Yilmaz Goler AM, Šuput D, Milisav I, Monsalve M. Aripiprazole, but Not Olanzapine, Alters the Response to Oxidative Stress in Fao Cells by Reducing the Activation of Mitogen-Activated Protein Kinases (MAPKs) and Promoting Cell Survival. Int J Mol Sci 2024; 25:11119. [PMID: 39456900 PMCID: PMC11508229 DOI: 10.3390/ijms252011119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Prolonged use of atypical antipsychotics (AAPs) is commonly associated with increased cardiovascular disease risk. While weight gain and related health issues are generally considered the primary contributors to this risk, direct interference with mitochondrial bioenergetics, particularly in the liver where these drugs are metabolized, is emerging as an additional contributing factor. Here, we compared the effects of two AAPs with disparate metabolic profiles on the response of Fao hepatoma cells to oxidative stress: olanzapine (OLA), which is obesogenic, and aripiprazole (ARI), which is not. Results showed that cells treated with ARI exhibited resistance to H2O2-induced oxidative stress, while OLA treatment had the opposite effect. Despite enhanced survival, ARI-treated cells exhibited higher apoptotic rates than OLA-treated cells when exposed to H2O2. Gene expression analysis of pro- and anti-apoptotic factors revealed that ARI-treated cells had a generally blunted response to H2O2, contrasting with a heightened response in OLA-treated cells. This was further supported by the reduced activation of MAPKs and STAT3 in ARI-treated cells in response to H2O2, whereas OLA pre-treatment enhanced their activation. The loss of stress response in ARI-treated cells was consistent with the observed increase in the mitochondrial production of O2•-, a known desensitizing factor. The physiological relevance of O2•- in ARI-treated cells was demonstrated by the increase in mitophagy flux, likely related to mitochondrial damage. Notably, OLA treatment protected proteasome activity in Fao cells exposed to H2O2, possibly due to the better preservation of stress signaling and mitochondrial function. In conclusion, this study highlights the underlying changes in cell physiology and mitochondrial function by AAPs. ARI de-sensitizes Fao cells to stress signaling, while OLA has the opposite effect. These findings contribute to our understanding of the metabolic risks associated with prolonged AAP use and may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Ayse Mine Yilmaz Goler
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Istanbul, Turkey
- Department of Biochemistry, School of Medicine, Marmara University, 34854 Istanbul, Turkey
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| |
Collapse
|
14
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Ivanov D, Drobintseva A, Rodichkina V, Mironova E, Zubareva T, Krylova Y, Morozkina S, Marasco MGP, Mazzoccoli G, Nasyrov R, Kvetnoy I. Inflammaging: Expansion of Molecular Phenotype and Role in Age-Associated Female Infertility. Biomedicines 2024; 12:1987. [PMID: 39335502 PMCID: PMC11428237 DOI: 10.3390/biomedicines12091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Cellular aging is considered as one of the main factors implicated in female infertility. We evaluated the expression of senescence-associated secretory phenotype (SASP) markers and additional molecular factors in an in vitro model of cellular aging. We induced genotoxic stress (UVB/UVA ray irradiation) in primary human endometrial cells obtained from female subjects of young reproductive age (<35 years of age). We assessed the expression levels of IL-6, IL-8, IL-1α, MMP3, SIRT-1, SIRT-6, TERF-1, and CALR at the mRNA level by RT-qPCR and at the protein level by immunofluorescence and confocal microscopy in primary human endometrial cells upon induction of genotoxic stress and compared them to untreated cells. Statistically significant differences were found for the expression of SIRT-1, SIRT-6, and TERF, which were found to be decreased upon induction of cell senescence through genotoxic stress, while IL-6, IL-8, IL-1α, MMP3, and p16 were found to be increased in senescent cells. We propose that these molecules, in addition to SAS-linked factors, could represent novel markers, and eventually potential therapeutic targets, for the aging-associated dysfunction of the female reproductive system.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Anna Drobintseva
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Valeriia Rodichkina
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Ekaterina Mironova
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Tatyana Zubareva
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Yuliya Krylova
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Svetlana Morozkina
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Maria Greta Pia Marasco
- Fondazione IRCCS Casa Sollievo della Sofferenza, Chronobiology Laboratory, Viale Cappuccini, 71013 San Giovanni Rotondo, FG, Italy; (M.G.P.M.); (G.M.)
| | - Gianluigi Mazzoccoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Chronobiology Laboratory, Viale Cappuccini, 71013 San Giovanni Rotondo, FG, Italy; (M.G.P.M.); (G.M.)
| | - Ruslan Nasyrov
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Igor Kvetnoy
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| |
Collapse
|
16
|
Deng J, Tong X, Huang Y, Du Z, Sun R, Zheng Y, Ma R, Ding W, Zhang Y, Li J, Sun Y, Chen C, Zhang JC, Song L, Liu B, Lin S. Prophylactic nicotinamide mononucleotide (NMN) mitigates CSDS-induced depressive-like behaviors in mice via preserving of ATP level in the mPFC. Biomed Pharmacother 2024; 176:116850. [PMID: 38834006 DOI: 10.1016/j.biopha.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.
Collapse
Affiliation(s)
- Jialin Deng
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohan Tong
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanhua Huang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zean Du
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruizhe Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yantao Zheng
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ruijia Ma
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanzhao Ding
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junfeng Li
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunxiao Chen
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li Song
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
18
|
Divya KP, Kanwar N, Anuranjana PV, Kumar G, Beegum F, George KT, Kumar N, Nandakumar K, Kanwal A. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs. Cardiovasc Toxicol 2024; 24:598-621. [PMID: 38689163 DOI: 10.1007/s12012-024-09858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.
Collapse
Affiliation(s)
- K P Divya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab, Technical University, Bathinda, Punjab, 151005, India
| | - P V Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Educations and Research, Hajipur, Bihar, 844102, India
| | - K Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, 151005, India.
| |
Collapse
|
19
|
Jia Y, Zheng Z, Yang B, Zhang H, Wang Z, Liu Y. A Broad-Spectrum Horizontal Transfer Inhibitor Prevents Transmission of Plasmids Carrying Multiple Antibiotic Resistance Genes. Transbound Emerg Dis 2024; 2024:7063673. [PMID: 40303018 PMCID: PMC12017466 DOI: 10.1155/2024/7063673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/02/2025]
Abstract
The dissemination of antimicrobial resistance (AMR) severely degrades the performance of antibiotics and constantly paralyzes the global health system. In particular, plasmid-mediated transfer of antibiotic resistance genes (ARGs) across bacteria is recognized as the primary driver. Therefore, antiplasmid transfer approaches are urgently warranted to resolve this intractable problem. Herein, we demonstrated the potential of azidothymidine (AZT), an FDA-approved anti-HIV drug, as a broad-spectrum horizontal transfer inhibitor to effectively prevent the transmission of multiple ARGs, including mcr-1, bla NDM-5, and tet(X4), both in vitro and in vivo. It was also noteworthy that the inhibitory effect of AZT was proved to be valid within and across bacterial genera under different mating conditions. Mechanistic studies revealed that AZT dissipated bacterial proton motive force, which was indispensable for ATP synthesis and flagellar motility. In addition, AZT downregulated bacterial secretion systems involving general and type IV secretion systems (T4SS). Furthermore, the thymidine kinase, which is associated with DNA synthesis, turned out to be the potential target of AZT. Collectively, our work demonstrates the broad inhibitory effect of AZT in preventing ARGs transmission, opening new horizons for controlling AMR.
Collapse
Affiliation(s)
- Yuqian Jia
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Zhiwan Zheng
- Department of Pathogenic BiologyWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Haijie Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Institute of Comparative MedicineYangzhou UniversityYangzhouChina
| |
Collapse
|
20
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero Domínguez JM, Talaverón-Rey M, Reche-López D, Suárez-Rivero JM, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, Oliveira MCD, Rodríguez-Sacristan A, Sánchez-Alcázar JA. Polydatin and Nicotinamide Rescue the Cellular Phenotype of Mitochondrial Diseases by Mitochondrial Unfolded Protein Response (mtUPR) Activation. Biomolecules 2024; 14:598. [PMID: 38786005 PMCID: PMC11118892 DOI: 10.3390/biom14050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - José Manuel Romero Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Juan Miguel Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristan
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| |
Collapse
|
21
|
Song A, Zhao N, Hilpert DC, Perry C, Baur JA, Wallace DC, Schaefer PM. Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH. Commun Biol 2024; 7:428. [PMID: 38594590 PMCID: PMC11004000 DOI: 10.1038/s42003-024-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.
Collapse
Affiliation(s)
- Angela Song
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana C Hilpert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Caroline Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Patrick M Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Deliormanlı AM, Rahman B, Atmaca H. In vitro cytotoxicity of magnetic-fluorescent bioactive glasses on SaOS-2, MC3T3-E1, BJ fibroblast cells, their hemolytic activity, and sorafenib release behavior. BIOMATERIALS ADVANCES 2024; 158:213782. [PMID: 38377664 DOI: 10.1016/j.bioadv.2024.213782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
In the study, the fabrication of superparamagnetic-fluorescent bioactive glasses in the form of the particle, nanofiber, and 3D scaffolds was performed by including maghemite (γ-Fe2O3) nanoparticles and photoluminescent rare earth element ions (Eu3+, Gd3+, and Yb3+) using sol-gel, electrospinning, and robocasting techniques, respectively. The in vitro cytotoxicity of the magnetic-fluorescent bioactive glasses on osteosarcoma SaOS-2, pre-osteoblast MC3T3-E1, and BJ fibroblast cells, as well as their hemolytic activity and sorafenib tosylate loading and release behavior, were investigated. The cytotoxicity of the bioactive glass samples was tested using the MTT assay. Additionally, the alkaline phosphatase activity of the studied glasses was examined as a function of time. The mineralization behavior of the pre-osteoblast cell-seeded glass samples was analyzed using Alizarin red S staining. Results revealed that the in vitro cytotoxicity of the studied bioactive glasses in the form of particles and nanofibers depended on the sample concentration, whereas in the case of the 3D scaffolds, no cytotoxic response was observed on the osteosarcoma, pre-osteoblast, and fibroblast cells. Similarly, particle and nanofiber-based glass samples induced dose-dependent hemolysis on red blood cells. Drug loading rates were much lower for the 3D scaffolds compared to the particle and nanofiber-based samples. Drug release rates ranged from 25 % to 90 %, depending on the bioactive glass morphology and the pH of the release medium. It was concluded that the studied bioactive glasses have the potential to be used in tissue engineering applications and cancer therapy.
Collapse
Affiliation(s)
- Aylin M Deliormanlı
- Manisa Celal Bayar University, Department of Metallurgical and Materials Engineering, Biomaterials Laboratory, Yunusemre, Manisa, Turkey.
| | - Begüm Rahman
- Manisa Celal Bayar University, Department of Metallurgical and Materials Engineering, Biomaterials Laboratory, Yunusemre, Manisa, Turkey
| | - Harika Atmaca
- Manisa Celal Bayar University, Department of Biology, Yunusemre, Manisa, Turkey
| |
Collapse
|
23
|
Gindri IDM, Ferrari G, Pinto LPS, Bicca J, Dos Santos IK, Dallacosta D, Roesler CRDM. Evaluation of safety and effectiveness of NAD in different clinical conditions: a systematic review. Am J Physiol Endocrinol Metab 2024; 326:E417-E427. [PMID: 37971292 DOI: 10.1152/ajpendo.00242.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide cofactor that is present in cells and in several important biological processes, including oxidative phosphorylation and production of adenosine triphosphate, DNA repair, calcium-dependent secondary messenger and gene expression. The purpose of this systematic review is to examine whether the coenzyme formulae NAD+ and NADH are safe and effective when acting as a supplement to humans. This systematic review of randomized clinical trials performed a search in six electronic databases: PubMed, MEDLINE (ovid), Embase, Cochrane CENTRAL (clinical trials), Web of Science, and Scopus. Secondary search included the databases (e.g., Clinical trials.gov, Rebec, Google Scholar - advance). Two reviewers assessed and extracted the studies independently. The risk of bias in studies was performed using version 2 of the Cochrane risk of bias tool for randomized trials. This review includes 10 studies, with a total of 489 participants. The studies included different clinical conditions, such as chronic fatigue syndrome (CFS), older adults, Parkinson's disease, overweight, postmenopausal prediabetes, and Alzheimer's disease. Based on studies, the supplementation with NADH and precursors was well tolerated and observed clinical results such as, a decrease in anxiety conditions and maximum heart rate was observed after a stress test, increased muscle insulin sensitivity, insulin signaling. Quality of life, fatigue intensity, and sleep quality among others were evaluated on patients with CFS. All studies showed some side effects, thus, the most common associated with NADs use are muscle pain, nervous disorders, fatigue, sleep disturbance, and headaches. All adverse events cataloged by the studies did not present a serious risk to the health of the participants. Overall, these findings support that the oral administration of NADH can be associated to an increase in general quality of life and improvement on health parameters (e.g., a decrease in anxiety, maximum heart rate, inflammatory cytokines in serum, and cerebrospinal fluid). NADH supplementation is safe and has a low incidence of side effects. Future investigations are needed to evidence the clinical benefits regarding specific diseases and doses administered.
Collapse
Affiliation(s)
| | - Gustavo Ferrari
- Nimma, Federal University of Santa Catarina, Florianópolis, Brazil
- Biomechanical Engineering Laboratory, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Qiao Q, Wang X, Su Z, Han C, Zhao K, Qi K, Xie Z, Huang X, Zhang S. PuNDH9, a subunit of ETC Complex I regulates plant defense by interacting with PuPR1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112009. [PMID: 38316345 DOI: 10.1016/j.plantsci.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
NAD+ and NADH play critical roles in energy metabolism, cell death, and gene expression. The NADH-ubiquinone oxidoreductase complex (Complex I) has been long known as a key enzyme in NAD+ and NADH metabolism. In the present study, we found and analyzed a new subunit of Complex I (NDH9), which was isolated from Pyrus ussuriensis combined with RT-PCR. Following infection with A. alternata, RT-qPCR analysis demonstrated an increase in the expression of PuNDH9. Genetic manipulation of PuNDH9 levels suggested that PuNDH9 plays key roles in NADH/NAD+ homeostasis, defense enzyme activities, ROS generation, cell death, gene expression, energy metabolism, and mitochondrial functions during the pear- A. alternata interaction. Furthermore, Y2H, GST-pull down, and a split-luciferase complementation imaging assays revealed that PuNDH9 interacts with PuPR1. We discover that PuNDH9 and PuPR1 synergistically activate defense enzyme activities, ROS accumulation, cell death, and plant defenses. Collectively, our findings reveal that PuNDH9 is likely important for plant defenses.
Collapse
Affiliation(s)
- Qinghai Qiao
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Su
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaosan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Dhiman S, Mannan A, Taneja A, Mohan M, Singh TG. Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes. Life Sci 2024; 342:122537. [PMID: 38428569 DOI: 10.1016/j.lfs.2024.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor function and is caused by a gradual decline of dopaminergic neurons in the brain's substantia pars compacta (Snpc) region. Multiple molecular pathways are involved in the pathogenesis, which results in impaired cellular functions and neuronal degeneration. However, the role of sirtuins, a type of NAD+-dependent deacetylase, in the pathogenesis of Parkinson's disease has recently been investigated. Sirtuins are essential for preserving cellular homeostasis because they control a number of biological processes, such as metabolism, apoptosis, and DNA repair. This review shed lights on the dysregulation of sirtuin activity in PD, highlighting the role that acetylation and deacetylation processes play in the development of the disease. Key regulators of protein acetylation, sirtuins have been found to be involved in the aberrant acetylation of vital substrates linked to PD pathology when their balance is out of balance. The hallmark characteristics of PD such as neuroinflammation, oxidative stress, and mitochondrial dysfunction have all been linked to the dysregulation of sirtuin expression and activity. Furthermore, we have also explored how the modulators of sirtuins can be a promising therapeutic intervention in the treatment of PD.
Collapse
Affiliation(s)
- Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ayushi Taneja
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
26
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
27
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
28
|
Schiuma G, Lara D, Clement J, Narducci M, Rizzo R. NADH: the redox sensor in aging-related disorders. Antioxid Redox Signal 2024. [PMID: 38366731 DOI: 10.1089/ars.2023.0375] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
SIGNIFICANCE NADH represents the reduced form of NAD+, and together they constitute the two forms of the Nicotinamide adenine dinucleotide whose balance is named as the NAD+/NADH ratio. NAD+/NADH ratio is mainly involved in redox reactions since both the molecules are responsible for carrying electrons to maintain redox homeostasis. NADH acts as a reducing agent and one of the most known processes exploiting NADH function is energy metabolism. The two main pathways generating energy and involving NADH are Glycolysis and Oxidative phosphorylation, occurring in cell cytosol and in the mitochondrial matrix, respectively. RECENT ADVANCES Although NADH is primarily produced through the reduction of NAD+ and consumed by its own oxidation, several are the biosynthetic and consumption pathways, reflecting the NADH role in multiple cellular processes. CRITICAL ISSUES This review gathers all the main current data referring to NADH in correlation with metabolic and cellular pathways, such as its coenzyme activity, effect in cell death and on modulating redox and calcium homeostasis. Data were selected following eligibility criteria accordingly to the reviewed topic. A set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) have been used for a systematic search until January 2024 using MeSH keywords/terms (i.e., NADH, NAD+/NADH and NADH/NAD+ ratio, redox homeostasis, energy metabolism, aging, aging-related disorders, therapies). FUTURE DIRECTION Gene expression control, as well as to the potential impact on neurodegenerative, cardiac disorders and infections suggest NADH application in clinical settings.
Collapse
Affiliation(s)
| | - Djidjell Lara
- University of Ferrara, 9299, Ferrara, FE, Italy
- BetterHumans, Gainesville, Florida, United States;
| | - James Clement
- Betterhumans Inc., Gainesville, Florida, United States
- University of Ferrara, 9299, Ferrara, FE, Italy;
| | - Marco Narducci
- University of Ferrara, 9299, Ferrara, FE, Italy
- BetterHumans, Gainesville, Florida, United States
- Temple University Japan Campus, 83908, Minato-ku, Tokyo, Japan;
| | - Roberta Rizzo
- University of Ferrara, 9299, Via Luigi Borsari 46, Ferrara, Ferrara, FE, Italy, 44121;
| |
Collapse
|
29
|
Ishima T, Kimura N, Kobayashi M, Nagai R, Osaka H, Aizawa K. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology. Int J Mol Sci 2024; 25:2325. [PMID: 38397001 PMCID: PMC10888655 DOI: 10.3390/ijms25042325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor in redox reactions and an essential mediator of energy metabolism. The redox balance between NAD+ and NADH affects various diseases, cell differentiation, and aging, and in recent years there has been a growing need for measurement techniques with improved accuracy. However, NAD(H) measurements, representing both NAD+ and NADH, have been limited by the compound's properties. We achieved highly sensitive simultaneous measurement of NAD+ and NADH under non-ion pairing, mobile phase conditions of water, or methanol containing 5 mM ammonium acetate. These were achieved using a simple pre-treatment and 7-min analysis time. Use of the stable isotope 13C5-NAD+ as an internal standard enabled validation close to BMV criteria and demonstrated the robustness of NAD(H) determination. Measurements using this method showed that brain NAD(H) levels correlate strongly with plasma NAD(H) levels in the same mouse, indicating that NAD(H) concentrations in brain tissue are reflected in plasma. As NAD(H) is involved in various neurodegenerative diseases and cerebral ischemia, as well as brain diseases such as mitochondrial myopathies, monitoring changes in NADH levels in plasma after drug administration will be useful for development of future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan; (T.I.); (N.K.)
| | - Natsuka Kimura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan; (T.I.); (N.K.)
| | - Mizuki Kobayashi
- Department of Pediatrics, Jichi Medical University, Shimotsuke 329-0498, Japan; (M.K.); (H.O.)
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan;
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke 329-0498, Japan; (M.K.); (H.O.)
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan; (T.I.); (N.K.)
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
30
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Corradi F, Masini G, Bucciarelli T, De Caterina R. Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 2023; 119:2405-2420. [PMID: 37722377 DOI: 10.1093/cvr/cvad146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023] Open
Abstract
Systemic iron deficiency (SID), even in the absence of anaemia, worsens the prognosis and increases mortality in heart failure (HF). Recent clinical-epidemiological studies, however, have shown that a myocardial iron deficiency (MID) is frequently present in cases of severe HF, even in the absence of SID and without anaemia. In addition, experimental studies have shown a poor correlation between the state of systemic and myocardial iron. MID in animal models leads to severe mitochondrial dysfunction, alterations of mitophagy, and mitochondrial biogenesis, with profound alterations in cardiac mechanics and the occurrence of a fatal cardiomyopathy, all effects prevented by intravenous administration of iron. This shifts the focus to the myocardial state of iron, in the absence of anaemia, as an important factor in prognostic worsening and mortality in HF. There is now epidemiological evidence that SID worsens prognosis and mortality also in patients with acute and chronic coronary heart disease and experimental evidence that MID aggravates acute myocardial ischaemia as well as post-ischaemic remodelling. Intravenous administration of ferric carboxymaltose (FCM) or ferric dextrane improves post-ischaemic adverse remodelling. We here review such evidence, propose that MID worsens ischaemia/reperfusion injury, and discuss possible molecular mechanisms, such as chronic hyperactivation of HIF1-α, exacerbation of cytosolic and mitochondrial calcium overload, amplified increase of mitochondrial [NADH]/[NAD+] ratio, and depletion of energy status and NAD+ content with inhibition of sirtuin 1-3 activity. Such evidence now portrays iron metabolism as a core factor not only in HF but also in myocardial ischaemia.
Collapse
Affiliation(s)
- Francesco Corradi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Gabriele Masini
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Tonino Bucciarelli
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Raffaele De Caterina
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
- Fondazione VillaSerena per la Ricerca, Viale L. Petruzzi 42, 65013, Città Sant'Angelo, Pescara, Italy
| |
Collapse
|
32
|
Han Y, Liu Y, Zhang Y, Wang W, Lv T, Huang J, Peng X. The Role and Application of the AMPK-Sirtuins Network in Cellular Senescence. FRONT BIOSCI-LANDMRK 2023; 28:250. [PMID: 37919064 DOI: 10.31083/j.fbl2810250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 11/04/2023]
Abstract
Aging and related diseases significantly affect the health and happiness index around the world. Cellular senescence is the basis of physiological aging and is closely related to various senile diseases. AMP-activated protein kinase (AMPK) is associated with both the regulation of cellular energy metabolism and the regulation of cellular senescence. Another set of proteins, sirtuins, has also been demonstrated to play an important role in cell senescence. However, it is not clear how AMPK and sirtuins coordinate to regulate cellular senescence. Herein, we summarized the role of AMPK and sirtuins in regulating metabolism, repairing DNA damage, and even prolonging human life. We have provided a detailed explanation of the clinical trials relating to the AMPK and sirtuins involved in aging. Systematically analyzing individual senescence genes and developing functional reference notes will aid in understanding the potential mechanisms underlying aging and identify therapeutic targets for both anti-aging interventions and age-related illnesses.
Collapse
Affiliation(s)
- Yukun Han
- PET Center of Nuclear Medicine, Department of the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, 434000 Jingzhou, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
| | - Yifan Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
- Department of Oncology, Jingzhou Hospital Affifiliated to Yangtze University, 434023 Jingzhou, Hubei, China
| | - Yanhua Zhang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, 100144 Beijing, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
| | - Jinbai Huang
- PET Center of Nuclear Medicine, Department of the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, 434000 Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 434023 Jingzhou, Hubei, China
| |
Collapse
|
33
|
Singh V, Mujwar S, Singh M, Singh T, Ahmad SF. Computational Studies to Understand the Neuroprotective Mechanism of Action Basil Compounds. Molecules 2023; 28:7005. [PMID: 37894484 PMCID: PMC10609097 DOI: 10.3390/molecules28207005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present a computational protocol to extricate the underlying mechanism of action of basil compounds in neuroprotective effects. Molecular docking-based investigation of the chemical interactions between selected bioactive compounds from basil and key neuroprotective targets, including AChE, GSK3β, γ-secretase, and sirtuin2. Our results demonstrate that basil compound myricerone caffeoyl ester possesses a high affinity of -10.01 and -8.85 kcal/mol against GSK3β and γ-secretase, respectively, indicating their potential in modulating various neurobiological processes. Additionally, molecular dynamics simulations were performed to explore the protein-ligand complexes' stability and to analyze the bound basil compounds' dynamic behavior. This comprehensive computational investigation enlightens the putative mechanistic basis for the neuroprotective effects of basil compounds, providing a rationale for their therapeutic use in neurodegenerative disorders after further experimental validation.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77807, USA;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Xu P, Ren T, Yang Y. PM2.5 mediates mouse testis Sertoli TM4 cell damage by reducing cellular NAD . Toxicol Mech Methods 2023; 33:636-645. [PMID: 37202861 DOI: 10.1080/15376516.2023.2215862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE This study aims to explore the mechanism of PM2.5 damage to the reproductive system of male mice. METHODS Mouse testis Sertoli TM4 cells were divided into four groups: a control group (no additional ingredients except for medium), PM2.5 group (medium containing 100 μg/mL PM2.5), PM2.5 + NAM group (medium containing 100 μg/mL PM2.5 and 5 mM NAM), and NAM group (medium containing 5 mM nicotinamide) and cultured in vitro for 24 or 48 h. The apoptosis rate of TM4 cells was measured using flow cytometry, the intracellular levels of NAD+ and NADH were detected using an NAD+/NADH assay kit, and the protein expression levels of SIRT1 and PARP1 were determined by western blotting. RESULTS Mouse testis Sertoli TM4 cells exposed to PM2.5 demonstrated an increase in the apoptosis rate and PARP1 protein expression, albeit a decrease in NAD+, NADH, and SIRT1 protein levels (p = 0.05). These changes were reversed in the group treated with a combination of PM2.5 and nicotinamide (p = 0.05). CONCLUSION PM2.5 can cause Sertoli TM4 cell damage in mouse testes by decreasing intracellular NAD+ levels.
Collapse
Affiliation(s)
- Peng Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Tiantian Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yang Yang
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
35
|
Pradhan SS, R SS, Kanikaram SP, V M DD, Pargaonkar A, Dandamudi RB, Sivaramakrishnan V. Metabolic deregulation associated with aging modulates protein aggregation in the yeast model of Huntington's disease. J Biomol Struct Dyn 2023; 42:10521-10538. [PMID: 37732342 DOI: 10.1080/07391102.2023.2257322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Huntington's disease is associated with increased CAG repeat resulting in an expanded polyglutamine tract in the protein Huntingtin (HTT) leading to its aggregation resulting in neurodegeneration. Previous studies have shown that N-terminal HTT with 46Q aggregated in the stationary phase but not the logarithmic phase in the yeast model of HD. We carried out a metabolomic analysis of logarithmic and stationary phase yeast model of HD expressing different polyQ lengths attached to N-terminal HTT tagged with enhanced green fluorescent protein (EGFP). The results show significant changes in the metabolic profile and deregulated pathways in stationary phase cells compared to logarithmic phase cells. Comparison of metabolic pathways obtained from logarithmic phase 46Q versus 25Q with those obtained for presymptomatic HD patients from our previous study and drosophila model of HD showed considerable overlap. The arginine biosynthesis pathway emerged as one of the key pathways that is common in stationary phase yeast compared to logarithmic phase and HD patients. Treatment of yeast with arginine led to a significant decrease, while transfer to arginine drop-out media led to a significant increase in the size of protein aggregates in both logarithmic and stationary phase yeast model of HD. Knockout of arginine transporters in the endoplasmic reticulum and vacuole led to a significant decrease in mutant HTT aggregation. Overall our results highlight arginine as a critical metabolite that modulates the aggregation of mutant HTT and disease progression in HD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Swaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Phalguna Kanikaram
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru, Karnataka, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| |
Collapse
|
36
|
Matysek A, Sun L, Kimmantudawage SP, Feng L, Maier AB. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review. Ageing Res Rev 2023; 90:102029. [PMID: 37549873 DOI: 10.1016/j.arr.2023.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Dementia is prevalent in aged populations and is associated with disability and distress for those affected. Therapeutic benefits of drugs targeting dementia are small. Impaired nutrient sensing pathways have been implicated in the pathogenesis of dementia and may offer a novel treatment target. AIMS This systematic review collated evidence for novel therapeutic compounds that modify nutrient sensing pathways, particularly the sirtuin pathway, in preventing cognitive decline or improving cognition in normal ageing, mild cognitive impairment (MCI), and dementia. METHODS PubMed, Embase and Web of Science databases were searched using key search terms. Articles were screened using Covidence systematic review software. The risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE)'s risk of bias tool for animal studies and Cochrane Risk of Bias tool v 2.0 for human studies. RESULTS Out of 3841 articles, 68 were included describing 38 different novel therapeutic compounds that modulate the nutrient sensing pathway via the sirtuin pathway. In animal models (58 studies), all investigated novel therapeutic compounds showed cognitive benefits. Ten studies were human intervention trials targeting normal ageing (1 study) and dementia populations (9 studies). Direct sirtuin (silent mating type information regulation 2 homolog) 1 (SIRT1) activators Resveratrol and Nicotinamide derivatives improved cognitive outcomes among human subjects with normal cognition and MCI. CONCLUSION Animal studies support that modulation of the sirtuin pathway has the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
Affiliation(s)
- Adrian Matysek
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China
| | | | - Lei Feng
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Kang D, Yang HR, Kim DH, Kim KK, Jeong B, Park BS, Park JW, Kim JG, Lee BJ. Sirtuin1-Mediated Deacetylation of Hypothalamic TTF-1 Contributes to the Energy Deficiency Response. Int J Mol Sci 2023; 24:12530. [PMID: 37569904 PMCID: PMC10419861 DOI: 10.3390/ijms241512530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
TTF-1 stimulates appetite by regulating the expression of agouti-related peptide (AgRP) and proopiomelanocortin (POMC) genes in the hypothalamus of starving animals. However, the mechanism underlying TTF-1's response to decreased energy levels remains elusive. Here, we provide evidence that the NAD+-dependent deacetylase, sirtuin1 (Sirt1), activates TTF-1 in response to energy deficiency. Energy deficiency leads to a twofold increase in the expression of both Sirt1 and TTF-1, leading to the deacetylation of TTF-1 through the interaction between the two proteins. The activation of Sirt1, induced by energy deficiency or resveratrol treatment, leads to a significant increase in the deacetylation of TTF-1 and promotes its nuclear translocation. Conversely, the inhibition of Sirt1 prevents these Sirt1 effects. Notably, a point mutation in a lysine residue of TTF-1 significantly disrupts its deacetylation and thus nearly completely hinders its ability to regulate AgRP and POMC gene expression. These findings highlight the importance of energy-deficiency-induced deacetylation of TTF-1 in the control of AgRP and POMC gene expression.
Collapse
Affiliation(s)
- Dasol Kang
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| |
Collapse
|
38
|
Menezes AP, Murillo AM, de Castro CG, Bellini NK, Tosi LRO, Thiemann OH, Elias MC, Silber AM, da Cunha JPC. Navigating the boundaries between metabolism and epigenetics in trypanosomes. Trends Parasitol 2023; 39:682-695. [PMID: 37349193 DOI: 10.1016/j.pt.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Epigenetic marks enable cells to acquire new biological features that favor their adaptation to environmental changes. These marks are chemical modifications on chromatin-associated proteins and nucleic acids that lead to changes in the chromatin landscape and may eventually affect gene expression. The chemical tags of these epigenetic marks are comprised of intermediate cellular metabolites. The number of discovered associations between metabolism and epigenetics has increased, revealing how environment influences gene regulation and phenotype diversity. This connection is relevant to all organisms but underappreciated in digenetic parasites, which must adapt to different environments as they progress through their life cycles. This review speculates and proposes associations between epigenetics and metabolism in trypanosomes, which are protozoan parasites that cause human and livestock diseases.
Collapse
Affiliation(s)
- Ana Paula Menezes
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ana Milena Murillo
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Camila Gachet de Castro
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Natalia Karla Bellini
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | | | - Maria Carolina Elias
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil.
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
39
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
40
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
41
|
Gooz M, Maldonado EN. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Front Oncol 2023; 13:1152553. [PMID: 37427141 PMCID: PMC10326048 DOI: 10.3389/fonc.2023.1152553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
42
|
Lukaszewicz M, Mrozek AF, Bojarska E, Stelmach J, Stepinski J, Darzynkiewicz E. Contribution of Nudt12 enzyme to differentially methylated dinucleotides of 5'RNA cap structure. Biochim Biophys Acta Gen Subj 2023:130400. [PMID: 37301333 DOI: 10.1016/j.bbagen.2023.130400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Aleksandra-Ferenc Mrozek
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Stelmach
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
43
|
Qi H, Zhu D. Oncogenic role of copper‑induced cell death‑associated protein DLD in human cancer: A pan‑cancer analysis and experimental verification. Oncol Lett 2023; 25:214. [PMID: 37123026 PMCID: PMC10131276 DOI: 10.3892/ol.2023.13800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
Copper ions can bind directly to lipoylated components of the tricarboxylic acid (TCA) cycle, triggering the aggregation of mitochondrial lipoylated proteins and the destabilization of Fe-S cluster proteins, resulting in copper-dependent cell death. Dihydrolipoamide dehydrogenase (DLD) is a key protein of the TCA cycle and constitutes the E3 component of the α-ketoglutarate dehydrogenase complex, which is deeply interconnected with the mitochondrial electron transfer chain in the TCA cycle. Tumor cells demonstrate dependency on glutaminolysis fuelling to carry out the TCA cycle and essential biosynthetic processes supporting tumor growth. Therefore, DLD plays an important role in the tumor biological process. However, to the best of our knowledge, no pan-cancer analysis is currently available for DLD. Therefore, the present study first explored the DLD expression profile in 33 tumors in publicly available datasets, including TIMER2, GEPIA2, UALCAN, cBioPortal and STRING. TIMER2, GEPIA2 and UALCAN were used for exploring gene expression; survival prognosis was detected by GEPIA2; genetic alteration was analysed by cBioPortal; immune infiltration data was obtained from TIMER2; interacting proteins of DLD were detected by STRING. DLD was found to be highly expressed in colon, liver, lung, stomach, renal, corpus uteri endometrial and ovarian cancers compared with normal tissues, and its high expression was associated with poorer prognosis in ovarian cancer. To the best of our knowledge, the present study provided the first comprehensive pan-cancer analysis of the oncogenic role of DLD across different tumors types. As the expression of DLD in ovarian cancer was high, and high expression is associated with poor prognosis, experimental verification of DLD in ovarian cancer was conducted. In the present study, DLD expression was found to be high in the ovarian cancer OC3 cell line, compared with the normal ovarian epithelial IOSE80 cell line by reverse transcription-quantitative PCR analysis. After knockdown of DLD expression, it was found that DLD regulated metabolic pathways by suppressing the intracellular NAD+/NADH ratio, which then in turn suppressed tumor cell proliferation detected by MTT assay. In conclusion, the present pan-cancer analysis of DLD demonstrated that DLD expression was associated with the clinical prognosis, immune infiltration and tumor mutational burden in 33 tumor types, and experimental verification in ovarian cancer was conducted. These results may contribute to the understanding of the role of DLD in tumorigenesis.
Collapse
Affiliation(s)
- Han Qi
- Department of Emergency Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
- Dr Han Qi, Department of Emergency Surgery, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu 222000, P.R. China, E-mail:
| | - Dongsheng Zhu
- Department of Paediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
- Correspondence to: Dr Dongsheng Zhu, Department of Paediatric Surgery, The First People's Hospital of Lianyungang, 182 Tongguan North Road, Lianyungang, Jiangsu 222000, P.R. China, E-mail:
| |
Collapse
|
44
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
45
|
Lushchak O, Gospodaryov D, Strilbytska O, Bayliak M. Changing ROS, NAD and AMP: A path to longevity via mitochondrial therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:157-196. [PMID: 37437977 DOI: 10.1016/bs.apcsb.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Lifespan of many organisms, from unicellular yeast to extremely complex human organism, strongly depends on the genetic background and environmental factors. Being among most influential target energy metabolism is affected by macronutrients, their caloric values, and peculiarities of catabolism. Mitochondria are central organelles that respond for energy metabolism in eukaryotic cells. Mitochondria generate reactive oxygen species (ROS), which are lifespan modifying metabolites and a kind of biological clock. Oxidized nicotinamide adenine dinucleotide (NAD+) and adenosine monophosphate (AMP) are important metabolic intermediates and molecules that trigger or inhibit several signaling pathways involved in gene silencing, nutrient allocation, and cell regeneration and programmed death. A part of NAD+ and AMP metabolism is tied to mitochondria. Using substances that able to target mitochondria, as well as allotopic expression of specific enzymes, are envisioned to be innovative approaches to prolong lifespan by modulation of ROS, NAD+, and AMP levels. Among substances, an anti-diabetic drug metformin is believed to increase NAD+ and AMP levels, indirectly influencing histone deacetylases, involved in gene silencing, and AMP-activated protein kinase, an energy sensor of cells. Mitochondrially targeted derivatives of ubiquinone were found to interact with ROS. A mitochondrially targeted non-proton-pumping NADH dehydrogenase may influence both ROS and NAD+ levels. Chapter describes putative how mitochondria-targeted drugs and NADH dehydrogenase extend lifespan, perspectives of creating drugs with similar properties and their usage as senotherapeutic pills are discussed in the chapter.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
46
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
47
|
Golikov MV, Bartosch B, Smirnova OA, Ivanova ON, Ivanov AV. Plasma-Like Culture Medium for the Study of Viruses. mBio 2023; 14:e0203522. [PMID: 36515528 PMCID: PMC9973327 DOI: 10.1128/mbio.02035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viral infections attract more and more attention, especially after the emergence of novel zoonotic coronaviruses and the monkeypox virus over the last 2 decades. Research on viruses is based to a great extent on mammalian cell lines that are permissive to the respective viruses. These cell lines are usually cultivated according to the protocols established in the 1950s to 1970s, although it is clear that classical media have a significant imprint on cell growth, phenotype, and especially metabolism. So, recently in the field of biochemistry and metabolomics novel culture media have been developed that resemble human blood plasma. As perturbations in metabolic and redox pathways during infection are considered significant factors of viral pathogenesis, these novel medium formulations should be adapted by the virology field. So far, there are only scarce data available on viral propagation efficiencies in cells cultivated in plasma-like media. But several groups have presented convincing data on the use of such media for cultivation of uninfected cells. The aim of the present review is to summarize the current state of research in the field of plasma-resembling culture media and to point out the influence of media on various cellular processes in uninfected cells that may play important roles in viral replication and pathogenesis in order to sensitize virology research to the use of such media.
Collapse
Affiliation(s)
- Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
48
|
Both prolonged high-fat diet consumption and calorie restriction boost hepatic NAD+ metabolism in mice. J Nutr Biochem 2023; 115:109296. [PMID: 36849030 DOI: 10.1016/j.jnutbio.2023.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Hepatic NAD+ homeostasis is essential to metabolic flexibility upon energy balance challenges. The molecular mechanism is unclear. This study aimed to determine how the enzymes involved in NAD+ salvage (Nampt, Nmnat1, Nrk1), clearance (Nnmt, Aox1, Cyp2e1), and consumption pathways (Sirt1, Sirt3, Sirt6, Parp1, Cd38) were regulated in the liver upon energy overload or shortage, as well as their relationships with glucose and lipid metabolism. Male C57BL/6N mice were fed ad libitum with the CHOW diet, high-fat diet (HFD), or subjected to 40% calorie restriction (CR) CHOW diet for 16 weeks respectively. HFD feeding increased hepatic lipids content and inflammatory markers, while lipids accumulation was not changed by CR. Both HFD feeding and CR elevated the hepatic NAD+ levels, as well as gene and protein levels of Nampt and Nmnat1. Furthermore, both HFD feeding and CR lowered acetylation of PGC-1α in parallel with the reduced hepatic lipogenesis and enhanced fatty acid oxidation, while CR enhanced hepatic AMPK activity and gluconeogenesis. Hepatic Nampt and Nnmt gene expression negatively correlated with fasting plasma glucose levels concomitant with positive correlations with Pck1 gene expression. Nrk1 and Cyp2e1 gene expression positively correlated with fat mass and plasma cholesterol levels, as well as Srebf1 gene expression. These data highlight that hepatic NAD+ metabolism will be induced for either the down-regulation of lipogenesis upon over nutrition or up-regulation of gluconeogenesis in response to CR, thus contributing to the hepatic metabolic flexibility upon energy balance challenges.
Collapse
|
49
|
Haq MFU, Hussain MZ, Mahjabeen I, Akram Z, Saeed N, Shafique R, Abbasi SF, Kayani MA. Oncometabolic role of mitochondrial sirtuins in glioma patients. PLoS One 2023; 18:e0281840. [PMID: 36809279 PMCID: PMC9943017 DOI: 10.1371/journal.pone.0281840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mitochondrial sirtuins have diverse role specifically in aging, metabolism and cancer. In cancer, these sirtuins play dichotomous role as tumor suppressor and promoter. Previous studies have reported the involvement of sirtuins in different cancers. However, till now no study has been published with respect to mitochondrial sirtuins and glioma risks. Present study was purposed to figure out the expression level of mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) and related genes (GDH, OGG1-2α, SOD1, SOD2, HIF1α and PARP1) in 153 glioma tissue samples and 200 brain tissue samples from epilepsy patients (taken as controls). To understand the role of selected situins in gliomagenesis, DNA damage was measured using the comet assay and oncometabolic role (oxidative stress level, ATP level and NAD level) was measured using the ELISA and quantitative PCR. Results analysis showed significant down-regulation of SIRT4 (p = 0.0337), SIRT5 (p<0.0001), GDH (p = 0.0305), OGG1-2α (p = 0.0001), SOD1 (p<0.0001) and SOD2 (p<0.0001) in glioma patients compared to controls. In case of SIRT3 (p = 0.0322), HIF1α (p = 0.0385) and PARP1 (p = 0.0203), significant up-regulation was observed. ROC curve analysis and cox regression analysis showed the good diagnostic and prognostic value of mitochondrial sirtuins in glioma patients. Oncometabolic rate assessment analysis showed significant increased ATP level (p<0.0001), NAD+ level [(NMNAT1 (p<0.0001), NMNAT3 (p<0.0001) and NAMPT (p<0.04)] and glutathione level (p<0.0001) in glioma patients compared to controls. Significant increased level of damage ((p<0.04) and decrease level of antioxidant enzymes include superoxide dismutase (SOD, p<0.0001), catalase (CAT, p<0.0001) and glutathione peroxidase (GPx, p<0.0001) was observed in patients compared to controls. Present study data suggest that variation in expression pattern of mitochondrial sirtuins and increased metabolic rate may have diagnostic and prognostic significance in glioma patients.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- * E-mail:
| | - Zertashia Akram
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sumaira Fida Abbasi
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
50
|
Altea-Manzano P, Vandekeere A, Edwards-Hicks J, Roldan M, Abraham E, Lleshi X, Guerrieri AN, Berardi D, Wills J, Junior JM, Pantazi A, Acosta JC, Sanchez-Martin RM, Fendt SM, Martin-Hernandez M, Finch AJ. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells. Mol Cell 2022; 82:4537-4547.e7. [PMID: 36327975 DOI: 10.1016/j.molcel.2022.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Joy Edwards-Hicks
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Mar Roldan
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain
| | - Emily Abraham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xhordi Lleshi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Ania Naila Guerrieri
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Domenica Berardi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Jimi Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Jair Marques Junior
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Asimina Pantazi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Miguel Martin-Hernandez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Biochemistry and Molecular Biology I Department, School of Sciences, University of Granada, Avda Fuentenueva, 18071 Granada, Spain.
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK; Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|