1
|
Watts A, Szabo-Reed A, Baker J, Morris JK, Vacek J, Clutton J, Mahnken J, Key MN, Vidoni ED, Burns JM. LEAP! Rx: A randomized trial of a pragmatic approach to lifestyle medicine. Alzheimers Dement 2024; 20:8374-8386. [PMID: 39376152 DOI: 10.1002/alz.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Clinicians lack the tools to incorporate physical activity into clinical care for Alzheimer's disease prevention. We tested a 52-week exercise and health education program (Lifestyle Empowerment for Alzheimer's Prevention [LEAP! Rx]) that integrates clinician referrals and community-based fitness resources. METHODS We randomized 219 participants to the LEAP! Rx (ie, exercise and monthly brain health education) or a standard-of-care control group and tested the effects on cardiorespiratory fitness, insulin resistance, body composition, lipids, and cognitive performance. RESULTS Physicians were able to connect their patients to a community lifestyle intervention. The intervention group increased in cardiorespiratory fitness at 12 and 52 weeks (p = 0.005). We observed no effects on secondary measures. Participants meeting 80% of weekly goals (150 min, moderate to vigorous activity) saw greater fitness improvements than those with less than 80% (p < 0.001). DISCUSSION These results hold promise for broad implementation of exercise interventions into larger healthcare systems and have implications for improved research recruitment strategies. TRIAL REGISTRATION NCT No. NCT03253341. HIGHLIGHTS Our community-based exercise program increased cardiorespiratory fitness. Our digital physician referral method increased the diversity of the participant sample. Our findings have implications for personalized dementia risk reduction strategies.
Collapse
Affiliation(s)
- Amber Watts
- Department of Psychology, University of Kansas, Lawrence, Kansas, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| | - Amanda Szabo-Reed
- Physical Activity & Weight Management, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jordan Baker
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| | - James Vacek
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jonathan Clutton
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| | - Jonathan Mahnken
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mickeal N Key
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| |
Collapse
|
2
|
Szabo-Reed AN, Watts A, Vidoni ED, Mahnken J, Van Sciver A, Finley K, Clutton J, Holden R, Key MN, Burns JM. Lifestyle Empowerment for Alzheimer's Prevention Prescribed by Physicians: Methods and Adaptations to COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311181. [PMID: 39132486 PMCID: PMC11312674 DOI: 10.1101/2024.07.29.24311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The health care system is insufficiently capitalizing on the benefits of physical exercise in America's aging population. Few tools exist to help clinicians incorporate physical activity into their clinical care, while barriers limit older adults from initiating and maintaining exercise programs. The Lifestyle Empowerment for Alzheimer's Prevention (LEAP! Rx) Program has been designed to support providers and participants in lifestyle change. LEAP! Rx uses two forms of participant enrollment: physician referrals through electronic health records and self-referrals to test the efficacy of delivering a community-based exercise and healthy lifestyle program to older adults. After referral into the program, participants are randomized to receive the LEAP! Rx Program or are placed in a standard-of-care group to receive the program later. The LEAP! Rx program consists of a personalized and structured exercise program, lifestyle education, and mobile health monitoring. This includes a 12-week Empowerment phase with coaching and supervised exercise training, followed by a 40-week Lifestyle phase with intermittent supervised exercise and coaching. Lifestyle education includes monthly, evidence-based classes on optimal aging. The evaluation of LEAP! Rx focuses on 1) the assessment of implementation and scalability of the LEAP!Rx Program for clinicians and patients 2) the effect of the LEAP! Rx Program on cardiorespiratory fitness, 3) the impact of the LEAP! Rx Program on secondary intervention outcome measures of chronic disease risk factors, including insulin resistance, body composition, and lipids. If successful, this study's findings could advance future healthcare practices, providing a new and practical approach to aging and chronic disease prevention.
Collapse
|
3
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
4
|
Norgren J, Sindi S, Matton A, Kivipelto M, Kåreholt I. APOE-Genotype and Insulin Modulate Estimated Effect of Dietary Macronutrients on Cognitive Performance: Panel Analyses in Nondiabetic Older Adults at Risk of Dementia. J Nutr 2023; 153:3506-3520. [PMID: 37778510 DOI: 10.1016/j.tjnut.2023.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The apolipoprotein E gene (APOE ε-2/3/4, combined as 6 different genotypes: ε-22/23/24/33/34/44) and insulin status modulate dementia risk and play a role in the metabolism of macronutrients. OBJECTIVES We aimed to examine APOE-genotype and fasting insulin as effect modifiers of the slopes between dietary macronutrients and cognitive performance among older adults at risk of dementia. METHODS Panel analyses-with diet and cognition measured at baseline and follow-up at years 1 and 2-were performed in a sub-sample from the FINGER (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability) trial (n = 676, 60-77 y, 46% females, all nondiabetics). The associations between macronutrients (3-d food records, z-scores) and global cognition (modified Neuropsychological Test Battery, z-score) were analyzed in mixed regression models adjusted for confounders selected a priori. After a gradient was implied by the point estimates in categorical APOE analyses, we investigated a continuous APOE variable [APOE-gradient, coded -1 (for ε-23), -0.5 (ε-24), 0 (ε-33), 1 (ε-34), 2 (ε-44)] as an effect-modifier. RESULTS At increasing levels of the APOE-gradient, a relatively more favorable slope between diet and cognition was observed for a lower carbohydrate/fat ratio [β = -0.040, 95% confidence interval (CI): -0.074, -0.006; P = 0.020 for interaction diet × APOE-gradient), and higher protein (β = 0.075, 95% CI: 0.042, 0.109; P = 9.4 × 10-6). Insulin concentration (log-linear) modulated the association between the carbohydrate/fat ratio and cognition by a quadratic interaction (β = -0.016, P = 0.039). Coherent findings for exploratory predictors (fiber, fat subtypes, composite score, metabolic biomarkers) were compatible with published hypotheses of differential dietary adaptation by APOE, with cognition among ε-33 being relatively independent of dietary parameters-implying "metabolic flexibility." Antagonistic slopes to cognition for ε-23 (positive) compared with ε-34 and ε-44 (negative) were found for a Higher-carbohydrates-fiber-Lower-fat-protein composite score, even as within-subjects effects. CONCLUSIONS APOE-based precision nutrition appears conceptually promising, but replications in wider samples are warranted, as well as support from trials. Both relative hyper- and hypoinsulinemia might modulate the effect of diet on cognition.
Collapse
Affiliation(s)
- Jakob Norgren
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden; Stockholms Sjukhem, Research and Development Unit, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden; Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Bousquet A, Sanderson K, O’Shea TM, Fry RC. Accelerated Aging and the Life Course of Individuals Born Preterm. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1683. [PMID: 37892346 PMCID: PMC10605448 DOI: 10.3390/children10101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Individuals born preterm have shorter lifespans and elevated rates of chronic illness that contribute to mortality risk when compared to individuals born at term. Emerging evidence suggests that individuals born preterm or of low birthweight also exhibit physiologic and cellular biomarkers of accelerated aging. It is unclear whether, and to what extent, accelerated aging contributes to a higher risk of chronic illness and mortality among individuals born preterm. Here, we review accelerated aging phenotypes in adults born preterm and biological pathways that appear to contribute to accelerated aging. We highlight biomarkers of accelerated aging and various resiliency factors, including both pharmacologic and non-pharmacologic factors, that might buffer the propensity for accelerated aging among individuals born preterm.
Collapse
Affiliation(s)
- Audrey Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| | - Keia Sanderson
- Department of Internal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| |
Collapse
|
6
|
Yamashima T, Seike T, Oikawa S, Kobayashi H, Kido H, Yanagi M, Yamamiya D, Li S, Boontem P, Mizukoshi E. Hsp70.1 carbonylation induces lysosomal cell death for lifestyle-related diseases. Front Mol Biosci 2023; 9:1063632. [PMID: 36819480 PMCID: PMC9936620 DOI: 10.3389/fmolb.2022.1063632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease, type 2 diabetes, and non-alcoholic steatohepatitis (NASH) constitute increasingly prevalent disorders. Individuals with type 2 diabetes are well-known to be susceptible to Alzheimer's disease. Although the pathogenesis of each disorder is multifactorial and the causal relation remains poorly understood, reactive oxygen species (ROS)-induced lipid and protein oxidation conceivably plays a common role. Lipid peroxidation product was recently reported to be a key factor also for non-alcoholic steatohepatitis, because of inducing hepatocyte degeneration/death. Here, we focus on implication of the representative lipid-peroxidation product 'hydroxynonenal' for the cell degeneration/death of brain, pancreas, and liver. Since Hsp70.1 has dual roles as a chaperone and lysosomal membrane stabilizer, hydroxynonenal-mediated oxidative injury (carbonylation) of Hsp70.1 was highlighted. After intake of high-fat diets, oxidation of free fatty acids in mitochondria generates ROS which enhance oxidation of ω-6 polyunsaturated fatty acids (PUFA) involved within biomembranes and generate hydroxynonenal. In addition, hydroxynonenal is generated during cooking deep-fried foods with vegetable oils especially containing linoleic acids. These intrinsic and exogenous hydroxynonenal synergically causes an increase in its serum and organ levels to induce Hsp70.1 oxidation. As it is amphiphilic; being water-soluble but displays strong lipophilic characteristics, hydroxynonenal can diffuse within the cells and react with targets like senile and/or atheromatous plaques outside the cells. Hydroxynonenal can deepen and expand lysosomal injuries by facilitating 'calpain-mediated cleavage of the carbonylated Hsp70.1'. Despite the unique anatomical, physiological, and biochemical characteristics of each organ for its specific disease, there should be a common cascade of the cell degeneration/death which is caused by hydroxynonenal. This review aims to implicate hydroxynonenal-mediated Hsp70.1 carbonylation for lysosomal membrane permeabilization/rupture and the resultant cathepsin leakage for inducing cell degeneration/death. Given the tremendous number of worldwide people suffering various lifestyle-related diseases, it is valuable to consider how ω-6 PUFA-rich vegetable oils is implicated for the organ disorder.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,*Correspondence: Tetsumori Yamashima,
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Kido
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahiro Yanagi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Daisuke Yamamiya
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
7
|
Ho AMC, Peyton MP, Scaletty SJ, Trapp S, Schreiber A, Madden BJ, Choi DS, Matthews DB. Chronic Intermittent Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to Adult Rats and Modifies Protein and Protein Pathways Related to Alzheimer's Disease. ACS OMEGA 2022; 7:46260-46276. [PMID: 36570296 PMCID: PMC9774340 DOI: 10.1021/acsomega.2c04528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Mina P. Peyton
- Bioinformatics
and Computational Biology Program, University
of Minnesota, Minneapolis, Minnesota55455, United States
| | - Samantha J. Scaletty
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Sarah Trapp
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Areonna Schreiber
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Benjamin J. Madden
- Mayo
Clinic Proteomics Core, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Doo-Sup Choi
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Douglas B. Matthews
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| |
Collapse
|
8
|
Valenzuela T, Coombes JS, Liu-Ambrose T, Mavros Y, Kochan N, Sachdev PS, Hausdorff J, Smith EC, Hollings M, Hawkins TC, Ashley NJ, Feter N, Wilson GC, Shih IHE, Guerrero Y, Jiang J, Wen W, Bailey T, Stensvold D, Wisløff U, Falck RS, Fiatarone Singh M. Study protocol for the BRAIN Training Trial: a randomised controlled trial of Balance, Resistance, And INterval training on cognitive function in older adults with mild cognitive impairment. BMJ Open 2022; 12:e062059. [PMID: 36600421 PMCID: PMC9772642 DOI: 10.1136/bmjopen-2022-062059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Epidemiological evidence suggests that both poor cardiovascular fitness and low muscle mass or strength markedly increase the rate of cognitive decline and incident dementia in older adults. Results from exercise trials for the improvement of cognition in older adults with mild cognitive impairment (MCI) have reported mixed results. This is possibly due to insufficient exercise intensities. The aim of the Balance, Resistance, And INterval (BRAIN) Training Trial is to determine the effects of two forms of exercise, high-intensity aerobic interval training (HIIT) and high-intensity power training (POWER) each compared with a sham exercise control group on cognition in older adults with MCI. METHODS AND ANALYSIS One hundred and sixty community-dwelling older (≥ 60 years) people with MCI have been randomised into the trial. Interventions are delivered supervised 2-3 days per week for 12 months. The primary outcome measured at baseline, 6 and 12 months is performance on a cognitive composite score measuring the executive domain calculated from a combination of computerised (NeuroTrax) and paper-and-pencil tests. Analyses will be performed via repeated measures linear mixed models and generalised linear mixed models of baseline, 6-month and 12-month time points, adjusted for baseline values and covariates selected a priori. Mixed models will be constructed to determine the interaction of GROUP × TIME. ETHICS AND DISSEMINATION Ethical approval was obtained from the University of Sydney (HREC Ref.2017/368), University of Queensland (HREC Ref. 2017/HE000853), University of British Columbia (H16-03309), and Vancouver Coastal Health Research Institute (V16-03309) Human Research Ethics. Dissemination will be via publications, conference presentations, newsletter articles, social media, talks to clinicians and consumers and meetings with health departments/managers.It is expected that communication of results will allow for the development of more effective evidence-based exercise prescription guidelines in this population while investigating the benefits of HIIT and POWER on subclinical markers of disease. TRIAL REGISTRATION NUMBER ACTRN12617001440314 Australian New Zealand Clinical Trials Registry.
Collapse
Affiliation(s)
- Trinidad Valenzuela
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jeff S Coombes
- Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Yorgi Mavros
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeffrey Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Department of Physical Therapy, Faculty of Medicine, Tel Aviv University Sackler, Tel Aviv, Israel
| | - Emily C Smith
- Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Matthew Hollings
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tess C Hawkins
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas J Ashley
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natan Feter
- Postgraduate Program of Physical Education, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Guy C Wilson
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Isabel Hui En Shih
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yareni Guerrero
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Tom Bailey
- Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
- School of Nursing Midwifery and Social Work, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ryan S Falck
- School of Biomedical Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria Fiatarone Singh
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Cui Y, Tang TY, Lu CQ, Ju S. Insulin Resistance and Cognitive Impairment: Evidence From Neuroimaging. J Magn Reson Imaging 2022; 56:1621-1649. [PMID: 35852470 DOI: 10.1002/jmri.28358] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Muneeb M, Mansou SM, Saleh S, Mohammed RA. Vitamin D and rosuvastatin alleviate type-II diabetes-induced cognitive dysfunction by modulating neuroinflammation and canonical/noncanonical Wnt/β-catenin signaling. PLoS One 2022; 17:e0277457. [PMID: 36374861 PMCID: PMC9662739 DOI: 10.1371/journal.pone.0277457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Type-II diabetes mellitus (T2DM) is a major risk factor for cognitive impairment. Protecting the brain environment against inflammation, and neurodegeneration, as well as preservation of the BBB veracity through modulating the crosstalk between insulin/AKT/GSK-3β and Wnt/β-catenin signaling, might introduce novel therapeutic targets. Purpose This study aimed at exploring the possible neuroprotective potential of vitamin D3 (VitD) and/or rosuvastatin (RSV) in T2DM-induced cognitive deficits. Methods T2DM was induced by a high-fat sucrose diet and a single streptozotocin (STZ) dose. Diabetic rats were allocated into a diabetic control and three groups treated with RSV (15 mg/kg/day, PO), VitD (500 IU/kg/day, PO), or their combination. Results Administration of VitD and/or RSV mitigated T2DM-induced metabolic abnormalities and restored the balance between the anti-inflammatory, IL 27 and the proinflammatory, IL 23 levels in the hippocampus. In addition, they markedly activated both the canonical and noncanonical Wnt/β-catenin cassettes with stimulation of their downstream molecular targets. VitD and/or RSV upregulated insulin and α7 nicotinic acetylcholine (α7nACh) receptors gene expression, as well as blood-brain barrier integrity markers including Annexin A1, claudin 3, and VE-cadherin. Also, they obliterated hippocampal ApoE-4 content, Tau hyperphosphorylation, and Aβ deposition. These biochemical changes were reflected as improved behavioral performance in Morris water maze and novel object recognition tests and restored hippocampal histological profile. Conclusion The current findings have accentuated the neuroprotective potential of VitD and RSV and provide new incentives to expand their use in T2DM-induced cognitive and memory decline. This study also suggests a superior benefit of combining both treatments over either drug alone.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Suzan M. Mansou
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail: ,
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Gentreau M, Reynes C, Sabatier R, Maller JJ, Meslin C, Deverdun J, Le Bars E, Raymond M, Berticat C, Artero S. Glucometabolic Changes Are Associated with Structural Gray Matter Alterations in Prodromal Dementia. J Alzheimers Dis 2022; 89:1293-1302. [PMID: 36031896 DOI: 10.3233/jad-220490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glucometabolic changes, such as high glycemic load (GL) diet and insulin resistance (IR), are potential risk factor of Alzheimer's disease (AD). Yet, the effect of these factors on brain alterations that contribute to AD pathology has not been clearly demonstrated. OBJECTIVE We aimed to assess the relationship of GL and IR with gray matter volumes involved in prodromal dementia. METHODS GL and Triglyceride-Glucose (TyG) index, an IR surrogate marker, were calculated in 497 participants who underwent magnetic resonance imaging (MRI). The gray matter volumes most related to prodromal dementia/mild cognitive impairment (diagnosed in 18/158 participants during the 7-year follow-up) were identified using a data-driven machine learning algorithm. RESULTS Higher GL diet was associated with reduced amygdala volume. The TyG index was negatively associated with the hippocampus, amygdala, and putamen volumes. CONCLUSION These results suggest that GL and IR are associated with lower gray matter volumes in brain regions involved in AD pathology.
Collapse
Affiliation(s)
- Mélissa Gentreau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Robert Sabatier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia.,General Electric Healthcare, Richmond, Melbourne, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jeremy Deverdun
- I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Emmanuelle Le Bars
- I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Michel Raymond
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Claire Berticat
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Sylvaine Artero
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
12
|
Lanz M, Janeiro MH, Milagro FI, Puerta E, Ludwig IA, Pineda-Lucena A, Ramírez MJ, Solas M. Trimethylamine N-Oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model. Mech Ageing Dev 2022; 204:111668. [PMID: 35341897 DOI: 10.1016/j.mad.2022.111668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
It has been established that ageing is the major risk factor for cognitive deficiency and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. In the present study, peripheral and central insulin resistance was found in SAMP8 mice (aging mouse model) accompanied by cognitive deficiencies. Furthermore, a marked peripheral inflammatory state was observed in SAMP8 mice, followed by neuroinflammation that could be due to a higher cytokine leaking into the brain across an aging-disrupted blood brain barrier. Moreover, aging-induced gut dysbiosis produces higher TMAO that could also contribute to the peripheral and central inflammatory tone as well as to the cognitive deficiencies observed in SAMP8 mice. All those alterations were reversed by DMB, a treatment that decreases TMAO levels. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between aging, insulin resistance and dementia. Thus, pharmacological intervention that leads to decreased TMAO levels, such as DMB, could open a new avenue for the future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- María Lanz
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Manuel H Janeiro
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fermin I Milagro
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iziar A Ludwig
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII 55, E-31008 Pamplona, Spain
| | - Antonio Pineda-Lucena
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII 55, E-31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
13
|
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer's Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer's Disease and Type 2 Diabetes. Int J Mol Sci 2022; 23:2687. [PMID: 35269827 PMCID: PMC8910482 DOI: 10.3390/ijms23052687] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022] Open
Abstract
Globally, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) epidemics is increasing rapidly and has huge financial and emotional costs. The purpose of the current review article is to discuss the shared pathophysiological connections between AD and T2DM. Research findings are presented to underline the vital role that insulin plays in the brain's neurotransmitters, homeostasis of energy, as well as memory capacity. The findings of this review indicate the existence of a mechanistic interplay between AD pathogenesis with T2DM and, especially, disrupted insulin signaling. AD and T2DM are interlinked with insulin resistance, neuroinflammation, oxidative stress, advanced glycosylation end products (AGEs), mitochondrial dysfunction and metabolic syndrome. Beta-amyloid, tau protein and amylin can accumulate in T2DM and AD brains. Given that the T2DM patients are not routinely evaluated in terms of their cognitive status, they are rarely treated for cognitive impairment. Similarly, AD patients are not routinely evaluated for high levels of insulin or for T2DM. Studies suggesting AD as a metabolic disease caused by insulin resistance in the brain also offer strong support for the hypothesis that AD is a type 3 diabetes.
Collapse
Affiliation(s)
- Michalis Michailidis
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina A. Tata
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
14
|
Honea RA, John CS, Green ZD, Kueck PJ, Taylor MK, Lepping RJ, Townley R, Vidoni ED, Burns JM, Morris JK. Relationship of fasting glucose and longitudinal Alzheimer's disease imaging markers. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12239. [PMID: 35128029 PMCID: PMC8804928 DOI: 10.1002/trc2.12239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Fasting glucose increases with age and is linked to modifiable Alzheimer's disease risk factors such as cardiovascular disease and Type 2 diabetes (T2D). METHODS We leveraged available biospecimens and neuroimaging measures collected during the Alzheimer's Prevention Through Exercise (APEx) trial (n = 105) to examine the longitudinal relationship between change in blood glucose metabolism and change in regional cerebral amyloid deposition and gray and white matter (WM) neurodegeneration in older adults over 1 year of follow-up. RESULTS Individuals with improving fasting glucose (n = 61) exhibited less atrophy and regional amyloid accumulation compared to those whose fasting glucose worsened over 1 year (n = 44). Specifically, while individuals with increasing fasting glucose did not yet show cognitive decline, they did have regional atrophy in the hippocampus and inferior parietal cortex, and increased amyloid accumulation in the precuneus cortex. Signs of early dementia pathology occurred in the absence of significant group differences in insulin or body composition, and was not modified by apolipoprotein E ε4 carrier status. DISCUSSION Dysregulation of glucose in late life may signal preclinical brain change prior to clinically relevant cognitive decline. Additional work is needed to determine whether treatments specifically targeting fasting glucose levels may impact change in brain structure or cerebral amyloid in older adults.
Collapse
Affiliation(s)
- Robyn A. Honea
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Casey S. John
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Zachary D. Green
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Paul J. Kueck
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Matthew K. Taylor
- Department of Dietetics and NutritionUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Rebecca J. Lepping
- Hoglund Biomedical Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ryan Townley
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Eric D. Vidoni
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Jeffery M. Burns
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Jill K. Morris
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
15
|
Ennis GE, Kohli A, Jonaitis EM, Betthauser TJ, Oh JM, Taylor CE, Chin N, Koscik RL, Christian BT, Asthana S, Johnson SC, Bendlin BB. The relationship of glucose-stimulated insulin secretion to cerebral glucose metabolism and cognition in healthy middle-aged and older adults. Neurobiol Aging 2021; 105:174-185. [PMID: 34091125 PMCID: PMC8338794 DOI: 10.1016/j.neurobiolaging.2021.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/04/2020] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Insulin resistance (IR) has been related to reduced cerebral glucose metabolism in regions identified as hypometabolic in Alzheimer's clinical syndrome. Insulin secretion (IS) has been less studied than IR despite findings that decreased IS is an early indicator of future type 2 diabetes and a potential predictor of Alzheimer's clinical syndrome. We investigated whether higher IR and lower IS would be associated with greater age-related reductions in regional cerebral glucose metabolism and worse cognitive performance. Two-hour oral glucose tolerance testing and 18F-fluorodeoxyglucose positron emission tomography were performed on 1-2 occasions on a sample of healthy middle-aged and older adults from the Wisconsin Alzheimer's Disease Research Center. Neuropsychological tests were completed during Alzheimer's Disease Research Center Clinical Core visits. Pattern of findings suggested that lower (not higher) IS was related to higher regional cerebral glucose metabolism in middle aged but not older adults, and lower (not higher) IS was also related to better immediate recall. In the context of healthy insulin sensitivity, lower IS may be beneficial to brain health.
Collapse
Affiliation(s)
- Gilda E Ennis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Akshay Kohli
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer M Oh
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Chase E Taylor
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| |
Collapse
|
16
|
Wang Y, Dykes GA. Direct modulation of the gut microbiota as a therapeutic approach for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:14-25. [PMID: 34365962 DOI: 10.2174/1871527320666210806165751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by a progressive decline in memory and cognitive functions. It is a multifactorial disease involving a wide range of pathological factors that are not fully understood. As supported by a growing amount of evidence in recent years, the gut microbiota plays an important role in the pathogenesis of Alzheimer's disease through the brain-gut-microbiota axis. This suggests that direct modulation of the gut microbiota can be a potential therapeutic target for Alzheimer's disease. This review summarizes recent research findings on the modulation of the gut microbiota by probiotic therapies and faecal microbiota transplantation for controlling the pathologies of Alzheimer's disease. Current limitations and future research directions of this field are also discussed.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| |
Collapse
|
17
|
Femminella GD, Livingston NR, Raza S, van der Doef T, Frangou E, Love S, Busza G, Calsolaro V, Carver S, Holmes C, Ritchie CW, Lawrence RM, McFarlane B, Tadros G, Ridha BH, Bannister C, Walker Z, Archer H, Coulthard E, Underwood B, Prasanna A, Koranteng P, Karim S, Junaid K, McGuinness B, Passmore AP, Nilforooshan R, Macharouthu A, Donaldson A, Thacker S, Russell G, Malik N, Mate V, Knight L, Kshemendran S, Tan T, Holscher C, Harrison J, Brooks DJ, Ballard C, Edison P. Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer's subjects? ALZHEIMERS RESEARCH & THERAPY 2021; 13:47. [PMID: 33597002 PMCID: PMC7890851 DOI: 10.1186/s13195-021-00784-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Background Type 2 diabetes is a risk factor for Alzheimer’s disease (AD), and AD brain shows impaired insulin signalling. The role of peripheral insulin resistance on AD aetiopathogenesis in non-diabetic patients is still debated. Here we evaluated the influence of insulin resistance on brain glucose metabolism, grey matter volume and white matter lesions (WMLs) in non-diabetic AD subjects. Methods In total, 130 non-diabetic AD subjects underwent MRI and [18F]FDG PET scans with arterial cannula insertion for radioactivity measurement. T1 Volumetric and FLAIR sequences were acquired on a 3-T MRI scanner. These subjects also had measurement of glucose and insulin levels after a 4-h fast on the same day of the scan. Insulin resistance was calculated by the updated homeostatic model assessment (HOMA2). For [18F]FDG analysis, cerebral glucose metabolic rate (rCMRGlc) parametric images were generated using spectral analysis with arterial plasma input function. Results In this non-diabetic AD population, HOMA2 was negatively associated with hippocampal rCMRGlc, along with total grey matter volumes. No significant correlation was observed between HOMA2, hippocampal volume and WMLs. Conclusions In non-diabetic AD, peripheral insulin resistance is independently associated with reduced hippocampal glucose metabolism and with lower grey matter volume, suggesting that peripheral insulin resistance might influence AD pathology by its action on cerebral glucose metabolism and on neurodegeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00784-w.
Collapse
Affiliation(s)
- Grazia Daniela Femminella
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nicholas R Livingston
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sanara Raza
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Thalia van der Doef
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | | | - Gail Busza
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Valeria Calsolaro
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Stefan Carver
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | | | - Robert M Lawrence
- South West London and St George's Mental Health NHS Trust, London, UK
| | | | - George Tadros
- Heart of England NHS Foundation Trust, Birmingham, UK
| | - Basil H Ridha
- Brighton and Sussex University Hospital Trust, Brighton, UK
| | | | - Zuzana Walker
- Mental Health Unit, St. Margaret's Hospital, Epping, Essex, UK
| | | | | | - Ben Underwood
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Aparna Prasanna
- Black Country Partnership NHS Foundation Trust, Wolverhampton, UK
| | - Paul Koranteng
- Northamptonshire Healthcare NHS Foundation Trust, Northampton, UK
| | - Salman Karim
- Lancashire Care NHS Foundation Trust, Preston, UK
| | - Kehinde Junaid
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | | | | | | | | | | | - Simon Thacker
- Derbyshire Healthcare NHS Foundation Trust, Derby, UK
| | - Gregor Russell
- Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Naghma Malik
- North West Boroughs Partnership NHS Foundation Trust, Warrington, UK
| | - Vandana Mate
- Cornwall Partnership NHS Foundation Trust, Redruth, UK
| | - Lucy Knight
- Somerset Partnership NHS Foundation Trust, South Petherton, UK
| | - Sajeev Kshemendran
- South Staffordshire and Shropshire Healthcare NHS Foundation Trust, Shrewsbury, UK
| | - Tricia Tan
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christian Holscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - John Harrison
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Paul Edison
- Division of Neurology, Neurology Imaging Unit, Department of Brain Sciences, Imperial College London, 1st Floor B Block, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
18
|
Morris JK, John CS, Green ZD, Wilkins HM, Wang X, Kamat A, Swerdlow RS, Vidoni ED, Petersen ME, O’Bryant SE, Honea RA, Burns JM. Characterization of the Meal-Stimulated Incretin Response and Relationship With Structural Brain Outcomes in Aging and Alzheimer's Disease. Front Neurosci 2020; 14:608862. [PMID: 33328877 PMCID: PMC7734152 DOI: 10.3389/fnins.2020.608862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Individuals with Alzheimer's Disease (AD) are often characterized by systemic markers of insulin resistance; however, the broader effects of AD on other relevant metabolic hormones, such as incretins that affect insulin secretion and food intake, remains less clear. METHODS Here, we leveraged a physiologically relevant meal tolerance test to assess diagnostic differences in these metabolic responses in cognitively healthy older adults (CH; n = 32) and AD (n = 23) participants. All individuals also underwent a comprehensive clinical examination, cognitive evaluation, and structural magnetic resonance imaging. RESULTS The meal-stimulated response of glucose, insulin, and peptide tyrosine tyrosine (PYY) was significantly greater in individuals with AD as compared to CH. Voxel-based morphometry revealed negative relationships between brain volume and the meal-stimulated response of insulin, C-Peptide, and glucose-dependent insulinotropic polypeptide (GIP) in primarily parietal brain regions. CONCLUSION Our findings are consistent with prior work that shows differences in metabolic regulation in AD and relationships with cognition and brain structure.
Collapse
Affiliation(s)
- Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Casey S. John
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Zachary D. Green
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Ashwini Kamat
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Russell S. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Melissa E. Petersen
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United states
| | - Sid E. O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United states
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robyn A. Honea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| |
Collapse
|
19
|
Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. Nutrients 2020; 12:nu12092644. [PMID: 32872655 PMCID: PMC7551340 DOI: 10.3390/nu12092644] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Intermittent fasting (IF) refers to various dietary regimens that cycle between a period of non-fasting and a period of total fasting. This study aimed to determine the effects of IF on cognitive function among elderly individuals who practice IF who have mild cognitive impairment (MCI). A total of 99 elderly subjects with MCI of Malay ethnicity without any terminal illness were recruited from a larger cohort study, LRGS TUA. The subjects were divided into three groups, comprising those who were regularly practicing IF (r-IF), irregularly practicing IF (i-IF), and non-fasters (n-IF). Upon 36 months of follow-up, more MCI subjects in the r-IF group reverted to successful aging with no cognitive impairment and diseases (24.3%) compared to those in i-IF (14.2%) and n-IF groups (3.7%). The r-IF group’s subjects exhibited significant increment in superoxide dismutase (SOD) activity and reduction in body weight, levels of insulin, fasting blood glucose, malondialdehyde (MDA), C-reactive protein (CRP), and DNA damage. Moreover, metabolomics analysis showed that IF may modulate cognitive function via various metabolite pathways, including the synthesis and degradation of ketone bodies, butanoate metabolism, pyruvate metabolism, and glycolysis and gluconeogenesis pathways. Overall, the MCI-afflicted older adults who practiced IF regularly had better cognitive scores and reverted to better cognitive function at 36 months follow-up.
Collapse
|
20
|
Malin SK, Stewart NR. Metformin May Contribute to Inter-individual Variability for Glycemic Responses to Exercise. Front Endocrinol (Lausanne) 2020; 11:519. [PMID: 32849302 PMCID: PMC7431621 DOI: 10.3389/fendo.2020.00519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Metformin and exercise independently improve glycemic control. Metformin traditionally is considered to reduce hepatic glucose production, while exercise training is thought to stimulate skeletal muscle glucose disposal. Collectively, combining treatments would lead to the anticipation for additive glucose regulatory effects. Herein, we discuss recent literature suggesting that metformin may inhibit, enhance or have no effect on exercise mediated benefits toward glucose regulation, with particular emphasis on insulin sensitivity. Importantly, we address issues surrounding the impact of metformin on exercise induced glycemic benefit across multiple insulin sensitive tissues (e.g., skeletal muscle, liver, adipose, vasculature, and the brain) in effort to illuminate potential sources of inter-individual glycemic variation. Therefore, the review identifies gaps in knowledge that require attention in order to optimize medical approaches that improve care of people with elevated blood glucose levels and are at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, United States
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Nathan R. Stewart
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Zhou J, Zhang Z, Zhou H, Qian G. Diabetic Cognitive Dysfunction: From Bench to Clinic. Curr Med Chem 2020; 27:3151-3167. [PMID: 30727866 DOI: 10.2174/1871530319666190206225635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes increases the risk of developing cognitive dysfunction in the elderly in the form of short-term memory and executive function impairment. Genetic and diet-induced models of type 2 diabetes further support this link, displaying deficits in working memory, learning, and memory performance. The risk factors for diabetic cognitive dysfunction include vascular disease, hypoglycaemia, hyperlipidaemia, adiposity, insulin resistance, lifestyle factors, and genetic factors. Using neuronal imaging technologies, diabetic patients with cognitive dysfunction show atrophy of the whole brain, particularly the grey matter, hippocampus and amygdala; increased volume of the ventricular and white matter; brain infarcts; impaired network integrity; abnormal microstructure; and reduced cerebral blood flow and amplitude of low-frequency fluctuations. The pathogenesis of type 2 diabetes with cognitive dysfunction involves hyperglycaemia, macrovascular and microvascular diseases, insulin resistance, inflammation, apoptosis, and disorders of neurotransmitters. Large clinical trials may offer further proof of biomarkers and risk factors for diabetic cognitive dysfunction. Advanced neuronal imaging technologies and novel disease animal models will assist in elucidating the precise pathogenesis and to provide better therapeutic interventions and treatment.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Guisheng Qian
- Institute of Respiratory Diseases, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
22
|
Deme P, Rojas C, Slusher BS, Rais R, Afghah Z, Geiger JD, Haughey NJ. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp Neurol 2020; 327:113181. [PMID: 31930991 PMCID: PMC7233457 DOI: 10.1016/j.expneurol.2020.113181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Collapse
Affiliation(s)
- Pragney Deme
- The Johns Hopkins University School of Medicine, Department of Neurology, United States
| | - Camilo Rojas
- The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Raina Rais
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Zahra Afghah
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Jonathan D Geiger
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
23
|
Williams VJ, Trombetta BA, Jafri RZ, Koenig AM, Wennick CD, Carlyle BC, Ekhlaspour L, Ahima RS, Russell SJ, Salat DH, Arnold SE. Task-related fMRI BOLD response to hyperinsulinemia in healthy older adults. JCI Insight 2019; 5:129700. [PMID: 31211691 DOI: 10.1172/jci.insight.129700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is growing evidence to suggest that the brain is an important target for insulin action, and that states of insulin resistance may extend to the CNS with detrimental effects on cognitive functioning. Although the effect of systemic insulin resistance on peripheral organs is well-studied, the degree to which insulin impacts brain function in vivo remains unclear. METHODS This randomized, single-blinded, 2-way-crossover, sham-controlled, pilot study determined the effects of hyperinsulinemia on fMRI brain activation during a 2-back working memory task in 9 healthy older adults (aged 57-79 years). Each participant underwent two clamp procedures (an insulin infusion and a saline placebo infusion, with normoglycemia maintained during both conditions), to examine the effects of hyperinsulinemia on task performance and associated blood-oxygen-level dependent (BOLD) signal using fMRI. RESULTS Hyperinsulinemia (compared to saline control) was associated with an increase in both the spatial extent and relative strength of task-related BOLD signal during the 2-back task. Further, the degree of increased task-related activation in select brain regions correlated with greater systemic insulin sensitivity, as well as decreased reaction times and performance accuracy between experimental conditions. CONCLUSION Together, these findings provide evidence of insulin action in the CNS among older adults during periods of sustained cognitive demand, with the greatest effects noted for individuals with highest systemic insulin sensitivity. FUNDING This work was funded by the National Institutes of Health (5R21AG051958, 2016).
Collapse
Affiliation(s)
- Victoria J Williams
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rabab Z Jafri
- Diabetes Research Center and Pediatric Endocrine Unit and.,Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron M Koenig
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Chase D Wennick
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Laya Ekhlaspour
- Diabetes Research Center and Pediatric Endocrine Unit and.,Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Steven J Russell
- Diabetes Research Center and Pediatric Endocrine Unit and.,Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- Brain Aging and Dementia Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Smith PJ, Blumenthal JA, Hinderliter AL, Mabe SM, Schwartz JE, Avorgbedor F, Sherwood A. Neurocognition in treatment-resistant hypertension: profile and associations with cardiovascular biomarkers. J Hypertens 2019; 37:1040-1047. [PMID: 30921110 PMCID: PMC7279118 DOI: 10.1097/hjh.0000000000002002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertension in midlife has been associated with increased risk of stroke and neurocognitive decline. Few studies, however, have examined neurocognition among individuals with treatment-resistant hypertension or potential mechanisms by which treatment-resistant hypertension may impair neurocognition. METHODS We examined the pattern of neurocognitive impairment and potential mechanisms in a sample of 96 overweight adults with treatment-resistant hypertension, aged 41-81 years. Neurocognitive function was assessed using a 45-min test battery consisting of executive function and memory. Vascular and metabolic mechanisms examined included cerebrovascular risk factors (CVRFs: Framingham Stroke Risk Profile), insulin sensitivity (homeostatic model assessment of insulin resistance), waist-to-hip ratio, microvascular function (hyperemic response), and peak oxygen consumption from an exercise treadmill test. Simple path analyses were used to assess the association between potential vascular and metabolic mechanisms and neurocognition. RESULTS Neurocognitive impairments were common, with 70% of the sample exhibiting impaired performance on at least one executive function subtest and 38% on at least one measure of memory. Higher levels of aerobic fitness, greater insulin sensitivity, and better microvascular function, as well as lower CVRFs and waist-to-hip ratio were associated with better neurocognition. In path analyses, aerobic fitness, microvascular function, and CVRFs all were independently associated with neurocognitive performance. Insulin resistance associated with worse executive function but better memory performance among older participants. CONCLUSION Neurocognitive impairments are common in adults with treatment-resistant hypertension, particularly on tests of executive function. Better neurocognition is independently associated with aerobic fitness, microvascular function, and CVRFs.
Collapse
Affiliation(s)
- Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham
| | - James A. Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham
| | - Alan L. Hinderliter
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie M. Mabe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham
| | - Jeanne E. Schwartz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham
| | - Forgive Avorgbedor
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham
| |
Collapse
|
25
|
Abstract
Given current lack of therapies for dementia, there is substantial interest in identifying potentially modifiable risk factors. Clarifying the potential of these factors to mitigate risk as well as determining the mechanisms that link these factors to dementia is expected to lead to new approaches for both preventing and treating neurodegenerative diseases such as Alzheimer disease. Modifiable factors include cardiovascular risks as well as related lifestyle-centric factors such as diet and physical activity (reviewed in this issue). Given reports that type 2 diabetes and associated features increase the risk for developing dementia, there has been tremendous interest in exploring whether use of antidiabetic medications may impact the risk of dementia, as well as whether antidiabetic medications could be used to prevent or treat dementia, particularly Alzheimer disease. This review will briefly cover the known links between diabetes and risk for dementia, the state of evidence linking antidiabetic treatments with either protection against dementia or possibly increased risk for cognitive dysfunction, and provide a brief overview of what has been learned from clinical trials testing antidiabetic treatments in Alzheimer disease.
Collapse
|
26
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer's disease. Exp Neurol 2019; 313:79-87. [PMID: 30576640 PMCID: PMC6370304 DOI: 10.1016/j.expneurol.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.
Collapse
Affiliation(s)
- Hilaree N Frazier
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Adam O Ghoweri
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Katie L Anderson
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Ruei-Lung Lin
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Nada M Porter
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Olivier Thibault
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| |
Collapse
|
27
|
Giau VV, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer's Disease. Nutrients 2018; 10:nu10111765. [PMID: 30441866 PMCID: PMC6266223 DOI: 10.3390/nu10111765] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
The bidirectional communication between the central nervous system (CNS) and the gut microbiota plays a pivotal role in human health. Increasing numbers of studies suggest that the gut microbiota can influence the brain and behavior of patients. Various metabolites secreted by the gut microbiota can affect the cognitive ability of patients diagnosed with neurodegenerative diseases. Nearly one in every ten Korean senior citizens suffers from Alzheimer’s disease (AD), the most common form of dementia. This review highlights the impact of metabolites from the gut microbiota on communication pathways between the brain and gut, as well as the neuroinflammatory roles they may have in AD patients. The objectives of this review are as follows: (1) to examine the role of the intestinal microbiota in homeostatic communication between the gut microbiota and the brain, termed the microbiota–gut–brain (MGB) axis; (2) to determine the underlying mechanisms of signal dysfunction; and (3) to assess the impact of signal dysfunction induced by the microbiota on AD. This review will aid in understanding the microbiota of elderly people and the neuroinflammatory roles they may have in AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Si Ying Wu
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seoul 100-011, Korea.
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| |
Collapse
|
28
|
Lee J, Kim J, Shin SA, Park S, Yoon DH, Kim H, Kim YK, Moon MK, Koo BK, Lee JY. Moderating Effect of Insulin Resistance on the Relationship between Gray Matter Volumes and Cognitive Function. J Clin Med 2018; 7:jcm7110413. [PMID: 30400348 PMCID: PMC6262494 DOI: 10.3390/jcm7110413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022] Open
Abstract
Background: It is controversial whether exposure to insulin resistance accelerates cognitive deterioration. The present study aimed to investigate the association between insulin resistance and gray matter volume loss to predict the cognitive decline. Methods: We recruited 160 participants (78 with Alzheimer’s disease and 82 without Alzheimer’s disease). Insulin resistance, regional gray matter volume, and cognitive function were assessed. A hierarchical moderated multiple regression (MMR) model was used to determine any associations among insulin resistance, structural changes in the brain, and cognitive decline. Results: The volumes of 7 regions in the gray matter were negatively related to insulin resistance in Alzheimer’s disease (p =0.032). Hierarchical MMR analysis indicated that insulin resistance did not directly affect the cognitive decline but moderated the cognitive decline through the decrease in gray matter volume in the key brain regions, i.e., inferior orbitofrontal gyrus (left), middle cingulate gyrus (right), hippocampus (right), and precuneus (right) (p < 0.05 in each case). Conclusion: Insulin resistance appears to exacerbate the cognitive decline associated with several gray matter volume loss.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea.
| | - Jihyeon Kim
- College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Seong A Shin
- Department of Biomedical Sciences, Seoul National University, Seoul 08826, Korea.
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul 07061, Korea.
| | - Soowon Park
- Department of Education, Sejong University, Seoul 05006, Korea.
| | - Dong Hyun Yoon
- Department of Psychiatry and Behavioral Science, SMG-SNU Boramae Medical Center, Seoul 07061, Korea.
| | - Hongrae Kim
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul 07061, Korea.
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul 07061, Korea.
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul 07061, Korea.
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul 07061, Korea.
| |
Collapse
|
29
|
Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM. A Systematic Review of Longitudinal Studies Which Measure Alzheimer's Disease Biomarkers. J Alzheimers Dis 2018; 59:1359-1379. [PMID: 28759968 PMCID: PMC5611893 DOI: 10.3233/jad-170261] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative disease, with no effective treatment or cure. A gold standard therapy would be treatment to slow or halt disease progression; however, knowledge of causation in the early stages of AD is very limited. In order to determine effective endpoints for possible therapies, a number of quantitative surrogate markers of disease progression have been suggested, including biochemical and imaging biomarkers. The dynamics of these various surrogate markers over time, particularly in relation to disease development, are, however, not well characterized. We reviewed the literature for studies that measured cerebrospinal fluid or plasma amyloid-β and tau, or took magnetic resonance image or fluorodeoxyglucose/Pittsburgh compound B-positron electron tomography scans, in longitudinal cohort studies. We summarized the properties of the major cohort studies in various countries, commonly used diagnosis methods and study designs. We have concluded that additional studies with repeat measures over time in a representative population cohort are needed to address the gap in knowledge of AD progression. Based on our analysis, we suggest directions in which research could move in order to advance our understanding of this complex disease, including repeat biomarker measurements, standardization and increased sample sizes.
Collapse
Affiliation(s)
- Emma Lawrence
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Carolin Vegvari
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Alison Ower
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | | | - Frank De Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.,Janssen Prevention Center, Leiden, The Netherlands
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
30
|
Pan QX, Li XJ, Liu YY, Wang FF, Hou YJ, Bian QL, Qiu WQ, Yan ZY, Jiang YM, Chen JX. Relationship between Insulin Levels and Nonpsychotic Dementia: A Systematic Review and Meta-Analysis. Neural Plast 2017; 2017:1230713. [PMID: 29445549 PMCID: PMC5763205 DOI: 10.1155/2017/1230713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Objectives To explore the relationship between insulin levels and nonpsychotic dementia. Methods Six electronic databases (PubMed, Cochrane, SCI, CNKI, VIP, and Wanfang) were searched from January 1, 2007, to March 1, 2017. Experimental or observational studies that enrolled people with nonpsychotic dementia or abnormal insulin levels in which insulin levels or MMSE scores (events in nonpsychotic dementia) were the outcome measures. Random-effects models were chosen for this meta-analysis. Sample size, mean, s.d., and events were primarily used to generate effect sizes (with the PRIMA registration number CRD42017069860). Results 50 articles met the final inclusion criteria. Insulin levels in cerebrospinal fluid were lower (Hedges' g = 1.196, 95% CI = 0.238 to 2.514, and P = 0.014), while the levels in peripheral blood were higher in nonpsychotic dementia patients (Hedges' g = 0.853 and 95% CI = 0.579 to 1.127), and MMSE scores were significantly lower in the high insulin group than in the healthy control group (Hedges' g = 0.334, 95% CI = 0.249 to 0.419, and P = 0.000). Conclusions Our comprehensive results indicate that blood insulin levels may increase in patients with nonpsychotic dementia.
Collapse
Affiliation(s)
- Qiu-xia Pan
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Xiao-juan Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Yue-yun Liu
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Fang-fang Wang
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Ya-jing Hou
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Qing-lai Bian
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Wen-qi Qiu
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Zhi-yi Yan
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - You-ming Jiang
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Jia-xu Chen
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| |
Collapse
|
31
|
Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Djalali M, Sharifzadeh M, Vafa M. Probiotics improve insulin resistance status in an experimental model of Alzheimer's disease. Med J Islam Repub Iran 2017; 31:103. [PMID: 29951404 PMCID: PMC6014785 DOI: 10.14196/mjiri.31.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Nowadays, Alzheimer's disease (AD) is considered as Type 3 diabetes in which insulin resistance is the common cause of both diseases. Disruption of insulin signaling cascade and insulin resistance can induce AD; and central insulin resistance causes systemic alterations in serum insulin, FBS levels, and lipid profile. Studies have shown that probiotics (Lactobacillus and Bifidobacterium species) can be used as a nutritional approach to improve these metabolic changes. We assessed the probiotic effect (4 species of Lactobacillus and Bifidobacterium) on insulin resistance biomarkers in an experimental model of AD. Methods: A total of 60 rats were divided into 5 groups: (1) a control group without surgical and dietary intervention; (2) a controlprobiotics group receiving probiotics for 8 weeks, but not receiving any surgical intervention; (3) a group receiving a sham operation in which PBS was injected intrahippocampus but without dietary intervention; (4) an Alzheimer group for which Amyloid-ß (Aß) 1- 42 was injected intrahippocampus but without dietary intervention; (5) and an Alzheimer-probiotics group for which Aß1-42 was injected intrahippocampus and given 2g probiotics for 8 weeks. The FBS levels and lipid profile were measured by a calorimetric method, insulin levels were detected by an ELISA kit, and HOMA-IR was calculated using a formula. ANOVA (one way analysis of variance followed by Bonferroni comparisons post hoc) was used to compare all the variables between groups. Results: Serum glucose, insulin levels, and HOMA-IR index increased in the Alzheimer group compared to the control (p<0.001), while probiotics decreased only insulin level and HOMA-IR index in AP group compared to Alzheimer group (p<0.001). Also, TG levels increased in the Alzheimer group (p<0.001), but no significant difference was detected between Alzheimer and Alzheimerprobiotics group. Conclusion: It seems that probiotics play an effective role in controlling glycemic status of Alzheimer's disease.
Collapse
Affiliation(s)
- Somayeh Athari Nik Azm
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghassem Djazayeri
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Cellular and Molecular Research Center and Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Kian Azami
- Department of Pharmacology, Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular-Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Byun MS, Kim HJ, Yi D, Choi HJ, Baek H, Lee JH, Choe YM, Sohn BK, Lee JY, Lee Y, Ko H, Kim YK, Lee YS, Sohn CH, Woo JI, Lee DY. Differential effects of blood insulin and HbA1c on cerebral amyloid burden and neurodegeneration in nondiabetic cognitively normal older adults. Neurobiol Aging 2017; 59:15-21. [DOI: 10.1016/j.neurobiolaging.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
33
|
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer's disease. Transl Res 2017; 183:26-40. [PMID: 28034760 PMCID: PMC5393926 DOI: 10.1016/j.trsl.2016.12.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
The links between systemic insulin resistance (IR), brain-specific IR, and Alzheimer's disease (AD) have been an extremely productive area of current research. This review will cover the fundamentals and pathways leading to IR, its connection to AD via cellular mechanisms, the most prominent methods and models used to examine it, an introduction to the role of extracellular vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical studies on the subject. To provide additional context, we also present a novel analysis of the spatial correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. Ultimately, examining the relation between IR and AD can be seen as a means of advancing the understanding of both disease states, with IR being a promising target for therapeutic strategies in AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD and the main strategies to pursue this goal.
Collapse
Affiliation(s)
- Thomas Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Roger Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD.
| |
Collapse
|
34
|
Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017; 26:542-560. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Recently, chronic degenerative diseases have become one of the main health problems worldwide. That is the case of Alzheimer's disease (AD) and metabolic syndrome (MetS), whose expression can be influenced by different risk factors. Recent Advances: In recent decades, it has been widely described that MetS increases the risk of cognitive impairment and dementia. MetS pathogenesis involves several vascular risk factors such as diabetes, dyslipidemia, hypertension, and insulin resistance (I/R). CRITICAL ISSUES Reported evidence shows that vascular risk factors are associated with AD, particularly in the development of protein aggregation, inflammation, oxidative stress, neuronal dysfunction, and disturbances in signaling pathways, with insulin receptor signaling being a common alteration between MetS and AD. FUTURE DIRECTIONS Insulin signaling has been involved in tau phosphorylation and amyloid β (Aβ) metabolism. However, it has also been demonstrated that Aβ oligomers can bind to insulin receptors, triggering their internalization, decreasing neuron responsiveness to insulin, and promoting insulin I/R. Thus, it could be argued that Aβ could be a convergent factor in the development of both pathologies. Antioxid. Redox Signal. 26, 542-560.
Collapse
Affiliation(s)
| | - Danira Toral-Rios
- 2 Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Carmen Sánchez-Torres
- 4 Departamento of Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Elimar Torres-Ossorio
- 6 Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Karla Carvajal
- 7 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría , Mexico City, Mexico
| |
Collapse
|
35
|
Starks EJ, Patrick O'Grady J, Hoscheidt SM, Racine AM, Carlsson CM, Zetterberg H, Blennow K, Okonkwo OC, Puglielli L, Asthana S, Dowling NM, Gleason CE, Anderson RM, Davenport-Sis NJ, DeRungs LM, Sager MA, Johnson SC, Bendlin BB. Insulin Resistance is Associated with Higher Cerebrospinal Fluid Tau Levels in Asymptomatic APOEɛ4 Carriers. J Alzheimers Dis 2016; 46:525-33. [PMID: 25812851 DOI: 10.3233/jad-150072] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin resistance (IR) is linked with the occurrence of pathological features observed in Alzheimer's disease (AD), including neurofibrillary tangles and amyloid plaques. However, the extent to which IR is associated with AD pathology in the cognitively asymptomatic stages of preclinical AD remains unclear. OBJECTIVE To determine the extent to which IR is linked with amyloid and tau pathology in late-middle-age. METHOD Cerebrospinal fluid (CSF) samples collected from 113 participants enrolled in the Wisconsin Registry for Alzheimer's Prevention study (mean age = 60.6 years), were assayed for AD-related markers of interest: Aβ₄₂, P-Tau181, and T-Tau. IR was determined using the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). Linear regression was used to test the effect of IR, and APOEɛ4, on tau and amyloid pathology. We hypothesized that greater IR would be associated with higher CSF P-Tau181 and T-Tau, and lower CSF Aβ₄₂. RESULTS No significant main effects of HOMA-IR on P-Tau181, T-Tau, or Aβ₄₂ were observed; however, significant interactions were observed between HOMA-IR and APOEɛ4 on CSF markers related to tau. Among APOEɛ4 carriers, higher HOMA-IR was associated with higher P-Tau181 and T-Tau. Among APOEɛ4 non-carriers, HOMA-IR was negatively associated with P-Tau181 and T-Tau. We found no effects of IR on Aβ₄₂ levels in CSF. CONCLUSION IR among asymptomatic APOEɛ4 carriers was associated with higher P-Tau181 and T-Tau in late-middle age. The results suggest that IR may contribute to tau-related neurodegeneration in preclinical AD. The findings may have implications for developing prevention strategies aimed at modifying IR in mid-life.
Collapse
Affiliation(s)
- Erika J Starks
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Patrick O'Grady
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Siobhan M Hoscheidt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Annie M Racine
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,The Torsten Söderberg Professorship at the Royal Swedish Academy of Sciences, Sweden
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Luigi Puglielli
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - N Maritza Dowling
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carey E Gleason
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Nancy J Davenport-Sis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - LeAnn M DeRungs
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
36
|
Watts A, Honea RA, Billinger SA, Rhyner KT, Hutfles L, Vidoni ED, Burns JM. A combined measure of vascular risk for white matter lesions. J Alzheimers Dis 2016; 45:187-93. [PMID: 25690663 DOI: 10.3233/jad-142085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Though hypertension is a commonly studied risk factor for white matter lesions (WMLs), measures of blood pressure may fluctuate depending on external conditions resulting in measurement error. Indicators of arterial stiffening and reduced elasticity may be more sensitive indicators of risk for WMLs in aging; however the interdependent nature of vascular indicators creates statistical complications. OBJECTIVE The purpose of the study was to determine whether a factor score comprised of multiple vascular indicators would be a stronger predictor of WMLs than traditional measures of blood pressure. METHODS In a sample of well-characterized nondemented older adults, we used a factor analytic approach to account for variance common across multiple vascular measures while reducing measurement error. The result was a single factor score reflecting arterial stiffness and reduced elasticity. We used this factor score to predict white matter lesion volumes acquired via fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging. RESULTS The combined vascular factor score was a stronger predictor of deep WML (β = 0.42, p < 0.001) and periventricular WML volumes (β = 0.49, p < 0.001). After accounting for the vascular factor, systolic and diastolic blood pressure measurements were not significant predictors. CONCLUSIONS This suggests that a combined measure of arterial elasticity and stiffening may be a stronger predictor of WMLs than systolic and diastolic blood pressure accounting for the multicollinearity associated with a variety of interrelated vascular measures.
Collapse
Affiliation(s)
- Amber Watts
- Department of Clinical Psychology, University of Kansas, Lawrence, KS, USA
| | - Robyn A Honea
- Alzheimer's Disease Center, University of Kansas, Fairway, KS, USA
| | - Sandra A Billinger
- Department of Physical Therapy & Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kathleen T Rhyner
- Department of Clinical Psychology, University of Kansas, Lawrence, KS, USA
| | - Lewis Hutfles
- Alzheimer's Disease Center, University of Kansas, Fairway, KS, USA
| | - Eric D Vidoni
- Alzheimer's Disease Center, University of Kansas, Fairway, KS, USA
| | - Jeffrey M Burns
- Alzheimer's Disease Center, University of Kansas, Fairway, KS, USA
| |
Collapse
|
37
|
Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin. Neurobiol Aging 2015; 39:19-24. [PMID: 26923398 DOI: 10.1016/j.neurobiolaging.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/20/2022]
Abstract
Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND (p = 0.0002) but not in cognitively impaired (p = 0.884) subjects, indicating potentially important physiological differences between these cohorts.
Collapse
|
38
|
Duarte JMN. Metabolic Alterations Associated to Brain Dysfunction in Diabetes. Aging Dis 2015; 6:304-21. [PMID: 26425386 DOI: 10.14336/ad.2014.1104] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022] Open
Abstract
From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer's disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been investigated in experimental models that display phenotypes of the disease. The present article reviews the impact of diabetes and AD on brain structure and function, and discusses recent findings from translational studies in animal models that link insulin resistance to metabolic alterations that underlie brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers detectable by magnetic resonance spectroscopy (MRS).
Collapse
Affiliation(s)
- João M N Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Kim TE, Lee DH, Kim YJ, Mok JO, Kim CH, Park JH, Lee TK, Yoo K, Jeong Y, Lee Y, Park SA. The relationship between cognitive performance and insulin resistance in non-diabetic patients with mild cognitive impairment. Int J Geriatr Psychiatry 2015; 30:551-7. [PMID: 25060738 DOI: 10.1002/gps.4181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/02/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Insulin resistance (IR) is a distinct and early feature of type 2 diabetes mellitus and metabolic syndrome. IR is thought to play a vital role in cognitive impairment. We conducted this study to understand the early characteristics of cognitive dysfunctions attributable to IR. METHODS This study included 85 consecutive non-diabetic elderly participants with mild cognitive impairment (MCI). IR was estimated with the homeostasis model assessment of insulin resistance (HOMA-IR). Cognitive performances were analyzed as a function of scores on the HOMA-IR. RESULTS The group analysis those with and without IR did not show any differences in the cognitive performance although higher HOMA-IR was closely associated with lower performances in immediate recall on the Seoul Verbal Learning Test (SVLT-I) (r = -0.244, p = 0.026) and Controlled Oral Word Association Test (COWAT) (r = -0.270, p = 0.013). In subgroup analysis by APOE status, SVLT-delayed (p = 0.027) and COWAT (p = 0.016) scores were found to be significantly lower in the IR than the non-IR among those with APOE ε4 allele. In multiple regression analysis, impairment on the COWAT remained significantly correlated with scores on HOMA-IR (β = -0.271, t = -2.340, p = 0.022). However, IR status was identified to interact with APOE ε4 carriership toward poor performances in the COWAT (β = -0.335, t = -2.285, p = 0.026). CONCLUSION This study found a domain-specific impact of HOMA-IR scores on cognitive performances in non-diabetic patients with MCI. This association was profound only in APOE ε4carriers.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Willette AA, Modanlo N, Kapogiannis D. Insulin resistance predicts medial temporal hypermetabolism in mild cognitive impairment conversion to Alzheimer disease. Diabetes 2015; 64:1933-40. [PMID: 25576061 PMCID: PMC4439566 DOI: 10.2337/db14-1507] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive hypometabolism on [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) scans. Peripheral insulin resistance (IR) increases AD risk. No studies have examined associations between FDG metabolism and IR in mild cognitive impairment (MCI) and AD, as well as MCI conversion to AD. We studied 26 cognitively normal (CN), 194 MCI (39 MCI-progressors, 148 MCI-stable, 2 years after baseline), and 60 AD subjects with baseline FDG-PET from the Alzheimer's Disease Neuroimaging Initiative. Mean FDG metabolism was derived for AD-vulnerable regions of interest (ROIs), including lateral parietal and posteromedial cortices, medial temporal lobe (MTL), hippocampus, and ventral prefrontal cortices (vPFC), as well as postcentral gyrus and global cerebrum control regions. The homeostasis model assessment of IR (HOMA-IR) was used to measure IR. For AD, higher HOMA-IR predicted lower FDG in all ROIs. For MCI-progressors, higher HOMA-IR predicted higher FDG in the MTL and hippocampus. Control regions showed no associations. Higher HOMA-IR predicted hypermetabolism in MCI-progressors and hypometabolism in AD in medial temporal regions. Future longitudinal studies should examine the pathophysiologic significance of the shift from MTL hyper- to hypometabolism associated with IR.
Collapse
Affiliation(s)
- Auriel A Willette
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | | | | | | |
Collapse
|
41
|
Akintola AA, van den Berg A, van Buchem MA, Jansen SW, Slagboom EP, Westendorp RG, van der Grond J, van Heemst D. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age. Front Aging Neurosci 2015; 7:92. [PMID: 26074813 PMCID: PMC4446544 DOI: 10.3389/fnagi.2015.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/03/2015] [Indexed: 11/13/2022] Open
Abstract
Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated the association between parameters of glucose metabolism and microstructural brain integrity in offspring of long-lived families (“offspring”) and controls; and age categories thereof. From the Leiden Longevity Study (LLS), 132 participants underwent an oral glucose tolerance test (OGTT) to assess glycemia [fasted glucose and glucose area-under-the-curve (AUC)], insulin resistance [fasted insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR)], and pancreatic Beta cell secretory capacity (insulinogenic index). 3 Tesla MRI and Magnetization Transfer (MT) imaging MT-ratio (MTR) peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age. In the full offspring group only, reduced MTR peak-height in gray and white matter was inversely associated with AUCinsulin, fasted insulin, HOMA-IR and insulinogenic-index (all p < 0.01). When dichotomized for age (≤65 years and >65 years): in younger controls, significantly stronger inverse associations were observed between MTR peak-height and fasted glucose, AUCglucose, fasted insulin, AUCinsulin and HOMA-IR in gray matter; and for AUCglucose, fasted insulin and HOMA-IR in white matter (all P-interaction < 0.05). Although the strength of the associations tended to attenuate with age in the offspring group, the difference between age groups was not statistically significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age.
Collapse
Affiliation(s)
- Abimbola A Akintola
- Department of Gerontology and Geriatrics, Leiden University Medical Centre Leiden, Netherlands
| | | | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Centre Leiden, Netherlands ; Netherlands Consortium for Healthy Ageing Leiden, Netherlands ; Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Steffy W Jansen
- Department of Gerontology and Geriatrics, Leiden University Medical Centre Leiden, Netherlands
| | - Eline P Slagboom
- Netherlands Consortium for Healthy Ageing Leiden, Netherlands ; Department of Molecular Epidemiology, Leiden University Medical Centre Leiden, Netherlands
| | - Rudi G Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Centre Leiden, Netherlands ; Department of Public Health, University of Copenhagen Copenhagen, Denmark
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre Leiden, Netherlands ; Netherlands Consortium for Healthy Ageing Leiden, Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Centre Leiden, Netherlands ; Netherlands Consortium for Healthy Ageing Leiden, Netherlands
| |
Collapse
|
42
|
Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms. Neuroimage 2014; 103:334-348. [PMID: 25264227 DOI: 10.1016/j.neuroimage.2014.09.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/29/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.
Collapse
|
43
|
Selfridge JE, Wilkins HM, E L, Carl SM, Koppel S, Funk E, Fields T, Lu J, Tang EP, Slawson C, Wang W, Zhu H, Swerdlow RH. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr 2014; 47:1-11. [PMID: 25104046 DOI: 10.1007/s10863-014-9570-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
Abstract
Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain's aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated.
Collapse
Affiliation(s)
- J Eva Selfridge
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for cognitive dysfunction and dementia in the elderly. T2DM has been thought to be associated with vascular diseases, eventually leading to vascular dementia, but recent studies have established that T2DM is also associated with Alzheimer's disease (AD). With the increase in the number of elderly individuals with T2DM, the number of diabetic patients with cognitive dysfunction has been increasing. T2DM may accelerate AD-associated pathologies through insulin resistance. Vascular pathologies may also be associated with cognitive dysfunction and dementia in T2DM subjects. Several other mechanisms also seem to be involved in T2DM-related cognitive dysfunction. More investigations to clarify the association of T2DM with cognitive impairment are warranted. These investigations may help to increase our understanding of AD and open a new door to the development of therapeutics. Recent pharmaceutical advancement in T2DM treatment has resulted in the availability of a wide range of antidiabetics. Some evidence has suggested that antidiabetic therapies help to prevent cognitive dysfunction. At present, however, the optimal level of blood glucose control and the best combination of medications to achieve it in terms of cognitive preservation have not been established. More investigation is warranted. Cognitive dysfunction is an emerging new complication of T2DM that requires further study.
Collapse
Affiliation(s)
- Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
45
|
Volume of the hippocampal subfields in healthy adults: differential associations with age and a pro-inflammatory genetic variant. Brain Struct Funct 2014; 220:2663-74. [PMID: 24947882 DOI: 10.1007/s00429-014-0817-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/05/2014] [Indexed: 12/14/2022]
Abstract
The hippocampus is one of the most age-sensitive brain regions, yet the mechanisms of hippocampal shrinkage remain unclear. Recent studies suggest that hippocampal subfields are differentially vulnerable to aging and differentially sensitive to vascular risk. Promoters of inflammation are frequently proposed as major contributors to brain aging and vascular disease but their effects on hippocampal subfields are unknown. We examined the associations of hippocampal subfield volumes with age, a vascular risk factor (hypertension), and genetic polymorphisms associated with variation in pro-inflammatory cytokines levels (IL-1β C-511T and IL-6 C-174G) and risk for Alzheimer's disease (APOEε4) in healthy adult volunteers (N = 80; age = 22-82 years). Volumes of three hippocampal subfields, cornu ammonis (CA) 1-2, CA3-dentate gyrus, and the subiculum were manually measured on high-resolution magnetic resonance images. Advanced age was differentially associated with smaller volume of CA1-2, whereas carriers of the T allele of IL-1β C-511T polymorphism had smaller volume of all hippocampal subfields than CC homozygotes did. Neither of the other genetic variants, nor diagnosis of hypertension, was associated with any of the measured volumes. The results support the notion that volumes of age-sensitive brain regions may be affected by pro-inflammatory factors that may be targeted by therapeutic interventions.
Collapse
|
46
|
Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer's disease a systemic disease? Biochim Biophys Acta Mol Basis Dis 2014; 1842:1340-9. [PMID: 24747741 DOI: 10.1016/j.bbadis.2014.04.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Although Alzheimer's disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease-modifying therapies.
Collapse
Affiliation(s)
- Jill K Morris
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Robyn A Honea
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Eric D Vidoni
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Russell H Swerdlow
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Jeffrey M Burns
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| |
Collapse
|
47
|
Morris JK, Vidoni ED, Perea RD, Rada R, Johnson DK, Lyons K, Pahwa R, Burns JM, Honea RA. Insulin resistance and gray matter volume in neurodegenerative disease. Neuroscience 2014; 270:139-47. [PMID: 24735819 DOI: 10.1016/j.neuroscience.2014.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
Abstract
The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n=21) and neurodegenerative disease (Alzheimer's disease (AD), n=20; Parkinson's disease (PD), n=22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. We found that HOMA2 was increased in both AD and PD compared to the HC group (HC vs. AD, p=0.002, HC vs. PD, p=0.003), although only AD subjects exhibited increased fasting glucose (p=0.005). Furthermore, our voxel-based morphometry analysis revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p<0.001, uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.
Collapse
Affiliation(s)
- J K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - E D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R D Perea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R Rada
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - D K Johnson
- Department of Psychology, University of Kansas, Lawrence, KS, United States.
| | - K Lyons
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R Pahwa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States.
| | - J M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R A Honea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
48
|
Abstract
Epidemics of obesity, diabetes, nonalcoholic fatty liver disease, and cognitive impairment/Alzheimer disease have emerged over the past 3 to 4 decades. These diseases share in common target-organ insulin resistance with a constellation of molecular and biochemical abnormalities that lead to organ/tissue degeneration over time. This article discusses the fundamental links among these diseases and how peripheral organ insulin resistance diseases contribute to cognitive impairment and neurodegeneration. A future role of endocrinologists and diabetologists could be to provide integrative diagnostic and treatment approaches for this collection of diseases that seem to share pathophysiological and pathogenetic bases.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology (Neuropathology), Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
49
|
Nazaribadie M, Amini M, Ahmadpanah M, Asgari K, Jamlipaghale S, Nazaribadie S. Executive functions and information processing in patients with type 2 diabetes in comparison to pre-diabetic patients. J Diabetes Metab Disord 2014; 13:27. [PMID: 24495302 PMCID: PMC3938133 DOI: 10.1186/2251-6581-13-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/04/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Diabetes is associated with cognitive decline or dementia. The purpose of this study was to assess the executive functions and information processing in patients with type 2diabetes in comparison to pre-diabetic patients and normal subjects in Endocrine and Metabolism Research Center of Isfahan City from April to July 2011. METHODS The sample consisted of 32 patients with type 2 diabetes, 28 pre-diabetic patients and 30 healthy individuals. Executive functions were assessed by Wisconsin Card Sorting Test (WCST). Information processing was assessed by Paced Auditory Serial Addition Test (PASAT) and sub tests of Wechsler Adult Intelligence Scale-Revised (WAIS-R). RESULTS There was a significant difference among 3 groups, after the variables of age, sex and academic status were controlled (p ≤ 0.001). The pairwise comparisons of executive functions among three groups suggest a significant difference between diabetic and normal groups in WCST (perseveration) p = 0.018, and significant difference between diabetic and pre-diabetic patient in WCST (perseveration) p = 0.019. But there was no difference between three groups in WCST (category) and WCST (conceptual responses). The pairwise comparisons of information processing among three groups, suggest a significant difference between diabetic and normal groups in PASAT3". PASAT2", and Symbol coding (P = 0.003, P = 0.009, and P = 0.001, respectively). There was a significant correlation between demographic variable (FBS, HbA1c) and Symbol coding p = 0.05, p = 0.01 respectively) and significant correlation between (cholesterol) and WCST (conceptual responses) p = 0.05. The other variables were not correlated. CONCLUSION There were significant differences in executive function and information processing in patients with type 2 diabetic and normal individuals. Thus, monitoring neuropsychological status besides controlling levels of blood sugar in these patients is important.
Collapse
Affiliation(s)
- Marzieh Nazaribadie
- Clinical Psychology Ward, Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Amini
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ahmadpanah
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Karim Asgari
- Department of Psychology, School of Psychology and Educational Sciences, University of Isfahan, Isfahan, Iran
| | - Somaye Jamlipaghale
- Department of Psychology, School of Human Sciences, Alzahra University, Tehran, Iran
| | - Sara Nazaribadie
- Department of Nursing, School of Nursing and Midwifery, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
50
|
de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol 2013; 88:548-59. [PMID: 24380887 DOI: 10.1016/j.bcp.2013.12.012] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Growing evidence supports the concept that Alzheimer's disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology (Neuropathology), Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Ming Tong
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|