1
|
Ning M, Lu D, Teng B, Liang D, Ren PG. Comprehensive study of the murine MASH models' applicability by comparing human liver transcriptomes. Life Sci 2025; 376:123723. [PMID: 40404118 DOI: 10.1016/j.lfs.2025.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/29/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
AIMS Multiple murine models, including high-fat diet (HFD), methionine-choline-deficient diet (MCD), choline-deficient, L-amino acid-defined high-fat diet (CDA-HFD), Western diet (WD), carbon tetrachloride (CCl₄) injection, and Gubra-Amylin diet (GAN), are widely used for mechanistic studies and therapeutic evaluation in MASH research. However, due to species-specific differences in metabolism, lifespan, and dietary composition, no single model could fully recapitulate the onset and progression of human MASH. Therefore, a detailed transcriptomic reference is urgently needed to better guide model selection and experimental design. METHODS We established three murine MASH models: HFD, MCD and CDA-HFD. Physiological and pathological features were systematically evaluated and compared across models. Bulk and single-cell RNA sequencing were performed, and the resulting data were integrated with transcriptomic profiles from CCl₄-induced models and human MASH datasets, with a focus on metabolism, inflammation, fibrosis, and cellular signaling pathways. KEY FINDINGS The CDA-HFD and CCl₄ models closely resembled human MASH in inflammation and fibrosis but disrupted key metabolic pathways. Conversely, the HFD model mirrored metabolic abnormalities but lacked severe inflammation and fibrosis. Immunoinfiltration and single-cell analyses revealed that macrophages dominate the inflammatory process, with activation of PPAR signaling, extracellular matrix remodeling, and phagocytosis. SIGNIFICANCE To balance metabolic and pathological fidelity without relying on genetic or toxin means, a combination of the CDA-HFD model with either HFD or WD is recommended as a robust and practical strategy for MASH research.
Collapse
Affiliation(s)
- Meng Ning
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Bin Teng
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Liang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Pei-Gen Ren
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhou Y, Zhou J, Li Z, Wang J, Li H, Yin X, Gao J, Wu Y, Li J, Sun YX, Li Y, Wang W, Eser PO, Assimes TL, He J, Chen G. Bidirectional associations of zinc supplement intake with biological ageing interacted by metabolic equivalent of task: A large-scale population-based Biobank study. Clin Nutr 2025; 50:1-9. [PMID: 40359759 DOI: 10.1016/j.clnu.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND The association of zinc intake with biological ageing and whether physical exercise modifies this association remain uncertain. We aimed to explore the correlations between zinc intake and biological ageing and to evaluate the modifying effect of physical exercise. METHODS Data were extracted from 68,947 participants in the Biobank. Daily zinc intake and biological age were calculated using standard equations, and physical exercise was measured by the metabolic equivalent of task (MET) per week. Generalized linear regression models, adjusted for confounding factors, were employed to explore the associations between zinc intake and biological ageing. Pre-specified subgroup and sensitivity analyses were performed to identify effect modification of MET and to validate the robustness of findings, respectively. RESULTS The regression models revealed that zinc intake with recommended dose was associated with 0.13-year delayed biological age [95 % Confidence Interval (CI) = -0.21 to -0.05], while an excessive intake of zinc (>40 mg per day) was associated with 3.23-year biological age acceleration (95 % CI = 0.18 to 6.28). Participants adhering to the recommended zinc intake combined with sufficient physical exercise (>600 MET per week) demonstrated a 31 % lower likelihood of experiencing accelerated biological ageing compared to those with inadequate zinc intake and insufficient physical exercise (Odds Ratio = 0.69, 95 % CI = 0.66 to 0.74, p < 0.001). Subgroup analyses indicated that the association between zinc intake and delayed biological ageing was more pronounced in the low-income population with an annual household income before tax of less than £30,999 (P-interaction <0.001). Sensitivity analyses confirmed the robustness of these results. CONCLUSION A recommended dose of zinc intake is associated with delayed biological ageing, with physical exercise exceeding 600 MET per week enhancing this association. Conversely, excessive zinc intake is linked to accelerated biological ageing. We suggest that people take daily zinc supplements with caution.
Collapse
Affiliation(s)
- Yang Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayan Zhou
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhao Li
- Department of Health Prevention and Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jingyi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, China
| | - Ying Wu
- Harvard Law School, Harvard University, Cambridge, 02138, USA
| | - Jinlin Li
- PBC School of Finance, Tsinghua University, 100190, Beijing, China
| | - Ya Xuan Sun
- T.H. Chan School of Public Health, Harvard University, Boston, 02115, USA
| | - Yige Li
- Department of Health Care Policy, Harvard Medical School, Harvard University, Boston, 02115, USA
| | - Weiguang Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Pinar O Eser
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | | | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guang Chen
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA; Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Dixon ED, Claudel T, Nardo AD, Riva A, Fuchs CD, Mlitz V, Busslinger G, Scharnagl H, Stojakovic T, Senéca J, Hinteregger H, Grabner GF, Kratky D, Verkade H, Zimmermann R, Haemmerle G, Trauner M. Inhibition of ATGL alleviates MASH via impaired PPARα signalling that favours hydrophilic bile acid composition in mice. J Hepatol 2025; 82:658-675. [PMID: 39357546 DOI: 10.1016/j.jhep.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND & AIMS Adipose triglyceride lipase (ATGL) is an attractive therapeutic target in insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigated the effects of pharmacological ATGL inhibition on the development of metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis in mice. METHODS Streptozotocin-injected male mice were fed a high-fat diet to induce MASH. Mice receiving the ATGL inhibitor atglistatin (ATGLi) were compared to controls using liver histology, lipidomics, metabolomics, 16s rRNA, and RNA sequencing. Human ileal organoids, HepG2 cells, and Caco2 cells treated with the human ATGL inhibitor NG-497, HepG2 ATGL knockdown cells, gel-shift, and luciferase assays were analysed for mechanistic insights. We validated the benefits of ATGLi on steatohepatitis and fibrosis in a low-methionine choline-deficient mouse model. RESULTS ATGLi improved serum liver enzymes, hepatic lipid content, and histological liver injury. Mechanistically, ATGLi attenuated PPARα signalling, favouring hydrophilic bile acid (BA) synthesis with increased Cyp7a1, Cyp27a1, Cyp2c70, and reduced Cyp8b1 expression. Additionally, reduced intestinal Cd36 and Abca1, along with increased Abcg5 expression, were consistent with reduced levels of hepatic triacylglycerol species containing polyunsaturated fatty acids, like linoleic acid, as well as reduced cholesterol levels in the liver and plasma. Similar changes in gene expression associated with PPARα signalling and intestinal lipid transport were observed in ileal organoids treated with NG-497. Furthermore, HepG2 ATGL knockdown cells revealed reduced expression of PPARα target genes and upregulation of genes involved in hydrophilic BA synthesis, consistent with reduced PPARα binding and luciferase activity in the presence of the ATGL inhibitors. CONCLUSIONS Inhibition of ATGL attenuates PPARα signalling, translating into hydrophilic BA composition, interfering with dietary lipid absorption, and improving metabolic disturbances. Validation with NG-497 opens a new therapeutic perspective for MASLD. IMPACT AND IMPLICATIONS Despite the recent approval of drugs novel mechanistic insights and pathophysiology-oriented therapeutic options for MASLD (metabolic dysfunction-associated steatotic liver disease) are still urgently needed. Herein, we show that pharmacological inhibition of ATGL, the key enzyme in lipid hydrolysis, using atglistatin (ATGLi), improves MASH (metabolic dysfunction-associated steatohepatitis), fibrosis, and key features of metabolic dysfunction in mouse models of MASH and liver fibrosis. Mechanistically, we demonstrated that attenuation of PPARα signalling in the liver and gut favours hydrophilic bile acid composition, ultimately interfering with dietary lipid absorption. One of the drawbacks of ATGLi is its lack of efficacy against human ATGL, thus limiting its clinical applicability. Against this backdrop, we could show that ATGL inhibition using the human inhibitor NG-497 in human primary ileum-derived organoids, Caco2 cells, and HepG2 cells translated into therapeutic mechanisms similar to ATGLi. Collectively, these findings reveal a possible new avenue for MASLD treatment.
Collapse
Affiliation(s)
- Emmanuel Dauda Dixon
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Alexander Daniel Nardo
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Alessandra Riva
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Claudia Daniela Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Georg Busslinger
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Tatjana Stojakovic
- Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Austria
| | - Joana Senéca
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Helga Hinteregger
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Gernot F Grabner
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Henkjan Verkade
- Department of Paediatrics, University Medical Centre Groningen, Groningen, Netherlands
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Sultana M, Islam MA, Khairnar R, Kumar S. A guide to pathophysiology, signaling pathways, and preclinical models of liver fibrosis. Mol Cell Endocrinol 2025; 598:112448. [PMID: 39755140 DOI: 10.1016/j.mce.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Liver fibrosis is potentially a reversible form of liver disease that evolved from the early stage of liver scarring as a consequence of chronic liver injuries. Recurrent injuries in the liver without any appropriate medication cause the injuries to get intense and deeper, which gradually leads to the progression of irreversible cirrhosis or carcinoma. Unfortunately, there are no approved treatment strategies for reversing hepatic fibrosis, making it one of the significant risk factors for developing advanced liver disorders and liver disease-associated mortality. Consequently, the interpretation of the fundamental mechanisms, etiology, and pathogenesis is crucial for identifying the potential therapeutic target as well as evaluating novel anti-fibrotic therapy. However, despite innumerable research, the functional mechanism and disease characteristics are still obscure. To accelerate the understanding of underlying disease pathophysiology, molecular pathways and disease progression mechanism, it is crucial to mimic human liver disease through the formation of precise disease models. Although various in vitro and in vivo liver fibrotic models have emerged and developed already, a perfect clinical model replicating human liver diseases is yet to be established, which is one of the major challenges in discovering proper therapeutics. This review paper will shed light on pathophysiology, signaling pathways, preclinical models of liver fibrosis, and their limitations.
Collapse
Affiliation(s)
- Mehonaz Sultana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
5
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
6
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
7
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Agudelo JP, Kim Y, Agarwal S, Sriram R, Bok R, Kurhanewicz J, Mattis AN, Maher JJ, von Morze C, Ohliger MA. Hyperpolarized [1- 13 C] pyruvate MRSI to detect metabolic changes in liver in a methionine and choline-deficient diet rat model of fatty liver disease. Magn Reson Med 2024; 91:1625-1636. [PMID: 38115605 PMCID: PMC11032123 DOI: 10.1002/mrm.29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.
Collapse
Affiliation(s)
- Joao Piraquive Agudelo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Aras N. Mattis
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Jacquelyn J. Maher
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, California, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Gupta AC, Bhat A, Maras JS. Early hepatic proteomic signatures reveal metabolic changes in high-fat-induced obesity in rats. Br J Nutr 2024; 131:773-785. [PMID: 37886840 DOI: 10.1017/s0007114523002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The prevalence of diet-related obesity is increasing dramatically worldwide, making it important to understand the associated metabolic alterations in the liver. It is well known that obesity is a multifactorial condition that is the result of complex integration between many gene expressions and dietary factors. Obesity alone or in conjunction with other chronic diseases such as diabetes and insulin resistance causes many health problems and is considered a major risk factor for developing non-alcoholic steatohepatitis (NASH) and cirrhosis. In this study, we aimed to understand the molecular mechanisms underlying early hepatic changes in the pathophysiology of high-fat diet (HFD)-induced abdominal obesity in rats. Hepatic protein profiles of normal diet and HFD-induced obesity for 24 weeks were analysed using two-dimensional differential gel electrophoresis (DIGE) and protein identification by MS. Fifty-two proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), and computer-assisted DIGE image software analysis showed that eighteen major proteins were significantly differentially expressed between comparable groups, with 2·0–4·0-fold change/more (P < 0·01). These proteins are regulated in response to a HFD, and differentially expressed proteins are involved in key metabolic pathways such as lipid metabolism, energy metabolism, detoxification, urea cycle and hepatic Ca homoeostasis. In addition, Western blot and immunohistochemistry of liver-specific arginase-1 (Arg-1) showed significant increased expression in the liver of high-fat-fed rats (P < 0·01). Further, Arg-1 expression was correlated with NASH patients with obesity-related fibrosis (F0–F4). It is concluded that high-fat content may affect changes in liver pathways and may be a therapeutic target for obesity-related liver disease. Arg-1 expressions may be a potential pathological marker for assessing the progression of the disease.
Collapse
Affiliation(s)
- Abhishak C Gupta
- Department of Education and Research, Artemis Hospitals, Gurugram, Haryana, India
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Adil Bhat
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Jaswinder S Maras
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| |
Collapse
|
10
|
Rodriguez-Ramiro I, Pastor-Fernández A, López-Aceituno JL, Garcia-Dominguez E, Sierra-Ramirez A, Valverde AM, Martinez-Pastor B, Efeyan A, Gomez-Cabrera MC, Viña J, Fernandez-Marcos PJ. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic Biol Med 2024; 210:448-461. [PMID: 38036067 DOI: 10.1016/j.freeradbiomed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.
Collapse
Affiliation(s)
- Ildefonso Rodriguez-Ramiro
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, E28029, Spain; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Bárbara Martinez-Pastor
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain.
| |
Collapse
|
11
|
Rein-Fischboeck L, Pohl R, Haberl EM, Mages W, Girke P, Liebisch G, Krautbauer S, Buechler C. Lower adiposity does not protect beta-2 syntrophin null mice from hepatic steatosis and inflammation in experimental non-alcoholic steatohepatitis. Gene 2023; 859:147209. [PMID: 36681100 DOI: 10.1016/j.gene.2023.147209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Visceral adiposity is strongly associated with liver steatosis, which predisposes to the development of non-alcoholic steatohepatitis (NASH). Mice with loss of the molecular adapter protein beta-2 syntrophin (SNTB2) have greatly reduced intra-abdominal fat mass. Hepatic expression of proteins with a role in fatty acid metabolism such as fatty acid synthase was nevertheless normal. This was also the case for proteins regulating cholesterol synthesis and uptake. Yet, a slight induction of hepatic cholesterol was noticed in the mutant mice. When mice were fed a methionine choline deficient (MCD) diet to induce NASH, liver cholesteryl ester content was induced in the wild type but not the mutant mice. Serum cholesterol of the mice fed a MCD diet declined and this was significant for the SNTB2 null mice. Though the mutant mice lost less fat mass than the wild type animals, hepatic triglyceride levels were similar between the groups. Proteins involved in fatty acid or cholesterol metabolism such as fatty acid synthase, apolipoprotein E and low-density lipoprotein receptor did not differ between the genotypes. Hepatic oxidative stress and liver inflammation of mutant and wild type mice were comparable. Mutant mice had lower hepatic levels of secondary bile acids and higher cholesterol storage in epididymal fat, and this may partly prevent hepatic cholesterol deposition. In summary, the current study shows that SNTB2 null mice have low intra-abdominal fat mass and do not accumulate hepatic cholesteryl esters when fed a MCD diet. Nevertheless, the SNTB2 null mice develop a similar NASH pathology as wild type mice suggesting a minor role of intra-abdominal fat and liver cholesteryl esters in this model.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Wolfgang Mages
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Philipp Girke
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany.
| |
Collapse
|
12
|
Benegiamo G, von Alvensleben GV, Rodríguez-López S, Goeminne LJ, Bachmann AM, Morel JD, Broeckx E, Ma JY, Carreira V, Youssef SA, Azhar N, Reilly DF, D’Aquino K, Mullican S, Bou-Sleiman M, Auwerx J. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J Exp Med 2023; 220:213867. [PMID: 36787127 PMCID: PMC9960245 DOI: 10.1084/jem.20221738] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene-environment interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice, suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Giorgia Benegiamo:
| | | | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ludger J.E. Goeminne
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis M. Bachmann
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ellen Broeckx
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | - Jing Ying Ma
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | - Nabil Azhar
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | | | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Correspondence to Johan Auwerx:
| |
Collapse
|
13
|
Gallage S, Avila JEB, Ramadori P, Focaccia E, Rahbari M, Ali A, Malek NP, Anstee QM, Heikenwalder M. A researcher's guide to preclinical mouse NASH models. Nat Metab 2022; 4:1632-1649. [PMID: 36539621 DOI: 10.1038/s42255-022-00700-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.
Collapse
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nisar P Malek
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Quentin M Anstee
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
14
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
15
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Zhao F, Ke J, Pan W, Pan H, Shen M. Synergistic effects of ISL1 and KDM6B on non-alcoholic fatty liver disease through the regulation of SNAI1. Mol Med 2022; 28:12. [PMID: 35100965 PMCID: PMC8802528 DOI: 10.1186/s10020-021-00428-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/20/2021] [Indexed: 11/15/2022] Open
Abstract
Background The increasing incidence of non-alcoholic fatty liver disease (NAFLD) has been reported worldwide, which urges understanding of its pathogenesis and development of more effective therapeutical methods for this chronic disease. In this study, we aimed to investigate the effects of a LIM homeodomain transcription factor, islet1 (ISL1) on NAFLD. Methods Male C57BL/6J mice were fed with a diet high in fat content to produce NAFLD models. These models were then treated with overexpressed ISL1 (oe-ISL1), oe-Lysine-specific demethylase 6B (KDM6B), oe-SNAI1, or short hairpin RNA against SNAI1. We assessed triglyceride and cholesterol contents in the plasma and liver tissues and determined the expressions of ISL1, KDM6B and SNAI1 in liver tissues. Moreover, the in vitro model of lipid accumulation was constructed using fatty acids to explore the in vitro effect of ISL1/KDM6B/SNAI1 in NAFLD. Results The results showed that the expressions of ISL1, KDM6B, and SNAI1 where decreased, but contents of triglyceride and cholesterol increased in mice exposed to high-fat diet. ISL1 inhibited lipogenesis and promoted lipolysis and exhibited a synergizing effect with KDM6B to upregulate the expression of SNAI1. Moreover, both KDM6B and SNAI1 could inhibit lipogenesis and induce lipolysis. Importantly, the therapeutic effects of ISL1 on in vitro model of lipid accumulations was also confirmed through the modulation of KDM6B and SNAI1. Conclusions Taken together, these findings highlighted that ISL1 effectively ameliorated NAFLD by inducing the expressions of KDM6B and SNAI1, which might be a promising drug for the treatment of NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00428-7.
Collapse
Affiliation(s)
- Fei Zhao
- Health Management Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China
| | - Jinjing Ke
- Health Management Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China
| | - Wensheng Pan
- Health Management Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China
| | - Hanghai Pan
- Health Management Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China
| | - Miao Shen
- Health Management Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
17
|
Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int J Mol Sci 2022; 23:ijms23031070. [PMID: 35162992 PMCID: PMC8834914 DOI: 10.3390/ijms23031070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
18
|
Fuchs CD, Radun R, Dixon ED, Mlitz V, Timelthaler G, Halilbasic E, Herac M, Jonker JW, Ronda OAHO, Tardelli M, Haemmerle G, Zimmermann R, Scharnagl H, Stojakovic T, Verkade HJ, Trauner M. Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice. Hepatology 2022; 75:125-139. [PMID: 34387896 DOI: 10.1002/hep.32112] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Increased fatty acid (FA) flux from adipose tissue to the liver contributes to the development of NAFLD. Because free FAs are key lipotoxic triggers accelerating disease progression, inhibiting adipose triglyceride lipase (ATGL)/patatin-like phospholipase domain containing 2 (PNPLA2), the main enzyme driving lipolysis, may attenuate steatohepatitis. APPROACH AND RESULTS Hepatocyte-specific ATGL knockout (ATGL LKO) mice were challenged with methionine-choline-deficient (MCD) or high-fat high-carbohydrate (HFHC) diet. Serum biochemistry, hepatic lipid content and liver histology were assessed. Mechanistically, hepatic gene and protein expression of lipid metabolism, inflammation, fibrosis, apoptosis, and endoplasmic reticulum (ER) stress markers were investigated. DNA binding activity for peroxisome proliferator-activated receptor (PPAR) α and PPARδ was measured. After short hairpin RNA-mediated ATGL knockdown, HepG2 cells were treated with lipopolysaccharide (LPS) or oleic acid:palmitic acid 2:1 (OP21) to explore the direct role of ATGL in inflammation in vitro. On MCD and HFHC challenge, ATGL LKO mice showed reduced PPARα and increased PPARδ DNA binding activity when compared with challenged wild-type (WT) mice. Despite histologically and biochemically pronounced hepatic steatosis, dietary-challenged ATGL LKO mice showed lower hepatic inflammation, reflected by the reduced number of Galectin3/MAC-2 and myeloperoxidase-positive cells and low mRNA expression levels of inflammatory markers (such as IL-1β and F4/80) when compared with WT mice. In line with this, protein levels of the ER stress markers protein kinase R-like endoplasmic reticulum kinase and inositol-requiring enzyme 1α were reduced in ATGL LKO mice fed with MCD diet. Accordingly, pretreatment of LPS-treated HepG2 cells with the PPARδ agonist GW0742 suppressed mRNA expression of inflammatory markers. Additionally, ATGL knockdown in HepG2 cells attenuated LPS/OP21-induced expression of proinflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand 5, chemokine (C-C motif) ligand (Ccl) 2, and Ccl5. CONCLUSIONS Low hepatic lipolysis and increased PPARδ activity in ATGL/PNPLA2 deficiency may counteract hepatic inflammation and ER stress despite increased steatosis. Therefore, lowering hepatocyte lipolysis through ATGL inhibition represents a promising therapeutic strategy for the treatment of steatohepatitis.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Richard Radun
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Emmanuel D Dixon
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute for Cancer Research, Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Merima Herac
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Onne A H O Ronda
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Guenter Haemmerle
- BioTechMed-Graz, Graz, Austria.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- BioTechMed-Graz, Graz, Austria.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Graz, Austria
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Tsurusaki S, Kanegae K, Tanaka M. In Vivo Analysis of Necrosis and Ferroptosis in Nonalcoholic Steatohepatitis (NASH). Methods Mol Biol 2022; 2455:267-278. [PMID: 35213001 DOI: 10.1007/978-1-0716-2128-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic liver disease that progresses from simple steatosis to the disease states such as chronic inflammation and fibrosis. In most liver diseases, immunological responses caused by tissue damages or viral infection contribute to the pathological advances, and various types of cell death have been reported to be implicated in their pathogenesis. However, the conventional detection of necrosis in vivo is not currently available, whereas the detection method for apoptosis has been relatively well-established. We recently reported a method for the in vivo detection of necrotic cells in liver disease models by an intravenous injection of Propidium Iodide (PI) into mice. We also provide standard methods for the evaluation of lipid accumulation and fibrosis characteristic of NASH. In addition, by utilizing these procedures and a murine model of steatohepatitis, we showed that ferroptosis, a type of regulated necrotic cell death, could be involved in the pathogenesis of NASH. These approaches allow us to explore the pathophysiological roles of cell death in liver diseases.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Kanegae
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Xiong F, Zheng Z, Xiao L, Su C, Chen J, Gu X, Tang J, Zhao Y, Luo H, Zha L. Soyasaponin A 2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline-Deficient (MCD) Diet-induced Nonalcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2021; 65:e2100067. [PMID: 34047448 DOI: 10.1002/mnfr.202100067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Indexed: 12/21/2022]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a chronic progressive disease with complex pathogenesis of which the bile acids (BAs) and gut microbiota are involved. Soyasaponins (SS) exhibits many health-promoting effects including hepatoprotection, but its prevention against NASH is unclear. This study aims to investigate the preventive bioactivities of SS monomer (SS-A2 ) against NASH and further clarify its mechanism by targeting the BAs and gut microbiota. METHODS AND RESULTS The methionine and choline deficient (MCD) diet-fed male C57BL/6 mice were intervened with obeticholic acid or SS-A2 for 16 weeks. Hepatic pathology is assessed by hematoxylin-eosin and Masson's trichrome staining. BAs in serum, liver, and colon are measured by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS). Gut microbiota in caecum are determined by 16S rDNA amplicon sequencing. In the MCD diet-induced NASH mice, SS-A2 significantly reduces hepatic steatosis, lobular inflammation, ballooning, nonalcoholic fatty liver disease activity score (NAS) scores, and fibrosis, decreases Erysipelotrichaceae (Faecalibaculum) and Lactobacillaceae (Lactobacillus) and increases Desulfovibrionaceae (Desulfovibrio). Moreover, SS-A2 reduces serum BAs accumulation and promotes fecal BAs excretion. SS-A2 changes the BAs profiles in both liver and serum and specifically increases the taurohyodeoxycholic acid (THDCA) level. Faecalibaculum is negatively correlated with serum THDCA. CONCLUSION SS-A2 alleviates steatohepatitis possibly through regulating BAs and gut microbiota in the MCD diet-induced NASH mice.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Lingyu Xiao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
21
|
Alipour Khoshdel M, Shirini F, Nikoo Langarudi MS, Zabihzadeh M, Biglari M. Three-component synthesis of 4 H-pyran scaffolds accelerated by a gabapentin-based natural deep eutectic solvent. NEW J CHEM 2021. [DOI: 10.1039/d0nj05342b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new natural deep eutectic solvent was prepared from gabapentin and choline chloride and its catalytic activity was investigated.
Collapse
Affiliation(s)
| | - Farhad Shirini
- Department of Chemistry
- College of Sciences
- University of Guilan
- Rasht
- Iran
| | | | - Mehdi Zabihzadeh
- Department of Chemistry
- College of Sciences
- University of Guilan
- Rasht
- Iran
| | - Mohammad Biglari
- Department of Chemistry
- College of Sciences
- University of Guilan
- Rasht
- Iran
| |
Collapse
|
22
|
Pilling D, Karhadkar TR, Gomer RH. A CD209 ligand and a sialidase inhibitor differentially modulate adipose tissue and liver macrophage populations and steatosis in mice on the Methionine and Choline-Deficient (MCD) diet. PLoS One 2020; 15:e0244762. [PMID: 33378413 PMCID: PMC7773271 DOI: 10.1371/journal.pone.0244762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and type 2 diabetes and is characterized by the accumulation of fat in the liver (steatosis). NAFLD can transition into non-alcoholic steatohepatitis (NASH), with liver cell injury, inflammation, and an increased risk of fibrosis. We previously found that injections of either 1866, a synthetic ligand for the lectin receptor CD209, or DANA, a sialidase inhibitor, can inhibit inflammation and fibrosis in multiple animal models. The methionine and choline-deficient (MCD) diet is a model of NASH which results in the rapid induction of liver steatosis and inflammation. In this report, we show that for C57BL/6 mice on a MCD diet, injections of both 1866 and DANA reversed MCD diet-induced decreases in white fat, decreases in adipocyte size, and white fat inflammation. However, these effects were not observed in type 2 diabetic db/db mice on a MCD diet. In db/db mice on a MCD diet, 1866 decreased liver steatosis, but these effects were not observed in C57BL/6 mice. There was no correlation between the ability of 1866 or DANA to affect steatosis and the effects of these compounds on the density of liver macrophage cells expressing CLEC4F, CD64, F4/80, or Mac2. Together these results indicate that 1866 and DANA modulate adipocyte size and adipose tissue macrophage populations, that 1866 could be useful for modulating steatosis, and that changes in the local density of 4 different liver macrophages cell types do not correlate with effects on liver steatosis.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Tejas R Karhadkar
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
23
|
Gámez-Belmonte R, Tena-Garitaonaindia M, Hernández-Chirlaque C, Córdova S, Ceacero-Heras D, de Medina FS, Martínez-Augustin O. Deficiency in Tissue Non-Specific Alkaline Phosphatase Leads to Steatohepatitis in Mice Fed a High Fat Diet Similar to That Produced by a Methionine and Choline Deficient Diet. Int J Mol Sci 2020; 22:ijms22010051. [PMID: 33374541 PMCID: PMC7793076 DOI: 10.3390/ijms22010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
The liver expresses tissue-nonspecific alkaline phosphatase (TNAP), which may participate in the defense against bacterial components, in cell regulation as part of the purinome or in bile secretion, among other roles. We aimed to study the role of TNAP in the development of hepatosteatosis. TNAP+/− haplodeficient and wild type (WT) mice were fed a control diet (containing 10% fat w/w) or the same diet deficient in methionine and choline (MCD diet). The MCD diet induced substantial weight loss together with hepatic steatosis and increased alanine aminotransferase (ALT) plasma levels, but no differences in IL-6, TNF, insulin or resistin. There were no substantial differences between TNAP+/− and WT mice fed the MCD diet. In turn, TNAP+/− mice receiving the control diet presented hepatic steatosis with alterations in metabolic parameters very similar to those induced by the MCD diet. Nevertheless, no weight loss, increased ALT plasma levels or hypoglycemia were observed. These mice also presented increased levels of liver TNF and systemic resistin and glucagon compared to WT mice. The phenotype of TNAP+/− mice fed a standard diet was normal. In conclusion, TNAP haplodeficiency induces steatosis comparable to that produced by a MCD diet when fed a control diet.
Collapse
Affiliation(s)
- Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain;
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology 2, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, 18071 Granada, Spain; (M.T.-G.); (C.H.-C.); (S.C.); (D.C.-H.); (O.M.-A.)
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology 2, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, 18071 Granada, Spain; (M.T.-G.); (C.H.-C.); (S.C.); (D.C.-H.); (O.M.-A.)
| | - Samir Córdova
- Department of Biochemistry and Molecular Biology 2, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, 18071 Granada, Spain; (M.T.-G.); (C.H.-C.); (S.C.); (D.C.-H.); (O.M.-A.)
| | - Diego Ceacero-Heras
- Department of Biochemistry and Molecular Biology 2, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, 18071 Granada, Spain; (M.T.-G.); (C.H.-C.); (S.C.); (D.C.-H.); (O.M.-A.)
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-241747
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, 18071 Granada, Spain; (M.T.-G.); (C.H.-C.); (S.C.); (D.C.-H.); (O.M.-A.)
| |
Collapse
|
24
|
Antioxidant Function and Metabolomics Study in Mice after Dietary Supplementation with Methionine. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9494528. [PMID: 33145362 PMCID: PMC7596454 DOI: 10.1155/2020/9494528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023]
Abstract
The antioxidant function and metabolic profiles in mice after dietary supplementation with methionine were investigated. The results showed that methionine supplementation enhanced liver GSH-Px activity and upregulated Gpx1 expression in the liver and SOD1 and Gpx4 expressions in the jejunum. Nrf2/Keap1 is involved in oxidative stress, and the western blotting data exhibited that dietary methionine markedly increased Keap1 abundance, while failed to influence the Nrf2 signal. Metabolomics investigation showed that methionine administration increased 2-hydroxypyridine, salicin, and asparagine and reduced D-Talose, maltose, aminoisobutyric acid, and inosine 5'-monophosphate in the liver, which are widely reported to involve in oxidative stress, lipid metabolism, and nucleotides generation. In conclusion, our study provides insights into antioxidant function and liver metabolic profiles in response to dietary supplementation with methionine.
Collapse
|
25
|
Cheng Y, Gan-Schreier H, Seeßle J, Staffer S, Tuma-Kellner S, Khnykin D, Stremmel W, Merle U, Herrmann T, Chamulitrat W. Methionine- and Choline-Deficient Diet Enhances Adipose Lipolysis and Leptin Release in aP2-Cre Fatp4-Knockout Mice. Mol Nutr Food Res 2020; 64:e2000361. [PMID: 32991778 DOI: 10.1002/mnfr.202000361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/22/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Inadequate intake of choline commonly leads to liver diseases. Methionine- and choline-deficient diets (MCDD) induce fatty liver in mice which is partly mediated by triglyceride (TG) lipolysis in white adipose tissues (WATs). Because Fatp4 knockdown has been shown to increase adipocyte lipolysis in vitro, here, the effects of MCDD on WAT lipolysis in aP2-Cre Fatp4-knockout (Fatp4A-/- ) mice are determined. METHODS AND RESULTS Isolated WATs of Fatp4A-/- mice exposed to MCD medium show an increase in lipolysis, and the strongest effect is noted on glycerol release from subcutaneous fat. Fatp4A-/- mice fed with MCDD for 4 weeks show an increase in serum glycerol, TG, and leptin levels associated with the activation of hormone-sensitive lipase in subcutaneous fat. Chow-fed Fatp4A-/- mice also show an increase in serum leptin and very-low-density lipoproteins as well as liver phosphatidylcholine and sphingomyelin levels. Both chow- and MCDD-fed Fatp4A-/- mice show a decrease in serum ketone and WAT sphingomyelin levels which supports a metabolic shift to TG for subsequent WAT lipolysis CONCLUSIONS: Adipose Fatp4 deficiency leads to TG lipolysis and leptin release, which are exaggerated by MCDD. The data imply hyperlipidemia risk by a low dietary choline intake and gene mutations that increase adipose TG levels.
Collapse
Affiliation(s)
- Yuting Cheng
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Denis Khnykin
- Department of Pathology and Center for Immune Regulation, Rikshospitalet University Hospital, 0424, Oslo, Norway
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
26
|
Yuan R, Sun G, Gao J, Yu Z, Yu C, Wang C, Sun J, Li H, Chen J. Schisandra Fruit Vinegar Lowers Lipid Profile in High-Fat Diet Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7083415. [PMID: 32952590 PMCID: PMC7487111 DOI: 10.1155/2020/7083415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
Hyperlipidemia and its associated obesity, hepatic steatosis, and NAFLD are worldwide problems. However, there is no ideal pharmacological treatment for these. Therefore, the complementary therapies that are both natural and safe have been focused. Healthy foods, such as fruit vinegar, may be one of the best choices. In this study, we made a special medicinal fruit vinegar, Schisandra fruit vinegar (SV), and examined its lipid-lowering effects and the underlying mechanisms in a high-fat diet rat model. The results showed that SV significantly reduced the body weight, liver weight, liver index, the serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), free fatty acid (FFA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA), increased the content of high-density lipoprotein cholesterol (HDL-C) and the activity of superoxide dismutase (SOD), upregulated the expressions of peroxisome proliferative activated receptor (PPAR-α), peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), and carnitine palmitoyltransferase 1 (CPT1) proteins, increased the contents of key component of antioxidant defense NF-E2-related factor 2 (NRF2) and its downstream heme oxygenase-1 (HO-1) protein, and downregulated the expression of Kelch-like ECH-associated protein 1 (KEAP1). These results suggest that SV has weight loss and lipid-lowering effects in HFD rats, which may be related to its upregulation of the expressions of β-oxidation -elated PPAR-α, CPT1, and ACOX1 and the regulation of the expressions of antioxidant pathway-related KEAP1-NRF2-HO-1. Therefore, all these data provide an experimental basis for the development of SV as a functional beverage which is safe, effective, convenient, and inexpensive.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| | - Guangren Sun
- Department of Food Science, College of Forestry, Beihua University, Jilin 132013, China
| | - Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| | - Zepeng Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| | - Chunyan Yu
- Department of Pathology, College of Medicine, Beihua University, Jilin 132013, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China
| |
Collapse
|
27
|
Fuchs CD, Krivanec S, Steinacher D, Mlitz V, Wahlström A, Stahlman M, Claudel T, Scharnagl H, Stojakovic T, Marschall H, Trauner M. Absence of Bsep/Abcb11 attenuates MCD diet-induced hepatic steatosis but aggravates inflammation in mice. Liver Int 2020; 40:1366-1377. [PMID: 32141703 PMCID: PMC7317533 DOI: 10.1111/liv.14423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bile acids (BAs) regulate hepatic lipid metabolism and inflammation. Bile salt export pump (BSEP) KO mice are metabolically preconditioned with a hydrophilic BA composition protecting them from cholestasis. We hypothesize that changes in hepatic BA profile and subsequent changes in BA signalling may critically determine the susceptibility to steatohepatitis. METHODS Wild-type (WT) and BSEP KO mice were challenged with methionine choline-deficient (MCD) diet to induce steatohepatitis. Serum biochemistry, lipid profiling as well as intestinal lipid absorption were assessed. Markers of inflammation, fibrosis, lipid and BA metabolism were analysed. Hepatic and faecal BA profile as well as serum levels of the BA synthesis intermediate 7-hydroxy-4-cholesten-3-one (C4) were also investigated. RESULTS Bile salt export pump KO MCD-fed mice developed less steatosis but more inflammation than WT mice. Intestinal neutral lipid levels were reduced in BSEP KO mice at baseline and under MCD conditions. Faecal non-esterified fatty acid concentrations at baseline and under MCD diet were markedly elevated in BSEP KO compared to WT mice. Serum liver enzymes and hepatic expression of inflammatory markers were increased in MCD-fed BSEP KO animals. PPARα protein levels were reduced in BSEP KO mice. Accordingly, PPARα downstream targets Fabp1 and Fatp5 were repressed, while NFκB subunits were increased in MCD-fed BSEP KO mice. Farnesoid X receptor (FXR) protein levels were reduced in MCD-fed BSEP KO vs WT mice. Hepatic BA profile revealed elevated levels of TβMCA, exerting FXR antagonistic action, while concentrations of TCA (FXR agonistic function) were reduced. CONCLUSION Presence of hydroxylated BAs result in increased faecal FA excretion and reduced hepatic lipid accumulation. This aggravates development of MCD diet-induced hepatitis potentially by decreasing FXR and PPARα signalling.
Collapse
Affiliation(s)
- Claudia D. Fuchs
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Sebastian Krivanec
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Daniel Steinacher
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Annika Wahlström
- Department of Molecular and Clinical MedicineWallenberg LaboratoryInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcus Stahlman
- Department of Molecular and Clinical MedicineWallenberg LaboratoryInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hanns‐Ulrich Marschall
- Department of Molecular and Clinical MedicineWallenberg LaboratoryInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
28
|
Loss of Hepatocyte-Specific PPAR γ Expression Ameliorates Early Events of Steatohepatitis in Mice Fed the Methionine and Choline-Deficient Diet. PPAR Res 2020; 2020:9735083. [PMID: 32411189 PMCID: PMC7211257 DOI: 10.1155/2020/9735083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. To date, there is not a specific and approved treatment for NAFLD yet, and therefore, it is important to understand the molecular mechanisms that lead to the progression of NAFLD. Methionine- and choline-deficient (MCD) diets are used to reproduce some features of NAFLD in mice. MCD diets increase the expression of hepatic peroxisome proliferator-activated receptor gamma (PPARγ, Pparg) and the fatty acid translocase (CD36, Cd36) which could increase hepatic fatty acid uptake and promote the progression of NAFLD in mice and humans. In this study, we assessed the contribution of hepatocyte-specific PPARγ and CD36 expression to the development of early events induced by the MCD diet. Specifically, mice with adult-onset, hepatocyte-specific PPARγ knockout with and without hepatocyte CD36 overexpression were fed a MCD diet for three weeks. Hepatocyte PPARγ and/or CD36 expression did not contribute to the development of steatosis induced by the MCD diet. However, the expression of inflammatory and fibrogenic genes seems to be dependent on the expression of hepatocyte PPARγ and CD36. The expression of PPARγ and CD36 in hepatocytes may be relevant in the regulation of some features of NAFLD and steatohepatitis.
Collapse
|
29
|
Yang G, Jang JH, Kim SW, Han SH, Ma KH, Jang JK, Kang HC, Cho YY, Lee HS, Lee JY. Sweroside Prevents Non-Alcoholic Steatohepatitis by Suppressing Activation of the NLRP3 Inflammasome. Int J Mol Sci 2020; 21:ijms21082790. [PMID: 32316419 PMCID: PMC7216241 DOI: 10.3390/ijms21082790] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH), a type of non-alcoholic fatty liver disease, is characterized as steatosis and inflammation in the liver. NLRP3 inflammasome activation is associated with NASH pathology. We hypothesized that suppressing the NLRP3 inflammasome could be effective in preventing NASH. We searched substances that could inhibit the activation of the NLRP3 inflammasome and identified sweroside as an NLRP3 inhibitor. We investigated whether sweroside can be applied to prevent the pathological symptoms associated with NASH in a methionine–choline-deficient (MCD) diet-induced NASH mouse model. The activation of the NLRP3 inflammasome was determined by detecting the production of caspase-1 and IL-1β from pro-caspase-1 and pro-IL-1β in primary mouse macrophages and mouse liver. In a NASH model, mice were fed an MCD diet for two weeks with daily intraperitoneal injections of sweroside. Sweroside effectively inhibited NLRP3 inflammasome activation in primary macrophages as shown by a decrease in IL-1β and caspase-1 production. In a MCD diet-induced NASH mouse model, intraperitoneal injection of sweroside significantly reduced serum aspartate transaminase and alanine transaminase levels, hepatic immune cell infiltration, hepatic triglyceride accumulation, and liver fibrosis. The improvement of NASH symptoms by sweroside was accompanied with its inhibitory effects on the hepatic NLRP3 inflammasome as hepatic IL-1β and caspase-1 were decreased. Furthermore, sweroside blocked de novo synthesis of mitochondrial DNA in the liver, contributing to suppression of the NLRP3 inflammasome. These results suggest that targeting the NLRP3 inflammasome with sweroside could be beneficially employed to improve NASH symptoms.
Collapse
Affiliation(s)
- Gabsik Yang
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonbuk 55338, Korea
| | - Joo Hyeon Jang
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Sung Wook Kim
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumsung 27709, Korea; (S.-H.H.); (K.-H.M.); (J.-K.J.)
| | - Kyung-Ho Ma
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumsung 27709, Korea; (S.-H.H.); (K.-H.M.); (J.-K.J.)
| | - Jae-Ki Jang
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumsung 27709, Korea; (S.-H.H.); (K.-H.M.); (J.-K.J.)
| | - Han Chang Kang
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Yong-Yeon Cho
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Hye Suk Lee
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Joo Young Lee
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (J.H.J.); (S.W.K.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- Correspondence: ; Tel.: +82-2-2164-4095; Fax: +82-2-2164-4059
| |
Collapse
|
30
|
Laitakari A, Tapio J, Mäkelä KA, Herzig KH, Dengler F, Gylling H, Walkinshaw G, Myllyharju J, Dimova EY, Serpi R, Koivunen P. HIF-P4H-2 inhibition enhances intestinal fructose metabolism and induces thermogenesis protecting against NAFLD. J Mol Med (Berl) 2020; 98:719-731. [PMID: 32296880 PMCID: PMC7220983 DOI: 10.1007/s00109-020-01903-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Abstract Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2gt/gt mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2gt/gt tissues, including the liver, was 15–35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2gt/gt small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2gt/gt mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. Key messages • HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. • HIF-P4H-2 inhibition downregulates hepatic lipogenesis. • Induced browning of WAT and increased thermogenesis can also mediate protection. • HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD. Electronic supplementary material The online version of this article (10.1007/s00109-020-01903-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Kari A Mäkelä
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Helena Gylling
- Internal Medicine, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland.
| |
Collapse
|
31
|
Dams S, Holasek S, Tsiountsioura M, Edelsbrunner M, Dietz P, Koefeler H, Malliga DE, Gürbüz A, Meier-Allard N, Poncza B, Lackner S, Schwarzenberger E, Jansenberger Y, Lamprecht M. Effects of a plant-based fatty acid supplement and a powdered fruit, vegetable and berry juice concentrate on omega-3-indices and serum micronutrient concentrations in healthy subjects. Int J Food Sci Nutr 2020; 71:769-780. [PMID: 32064970 DOI: 10.1080/09637486.2020.1725960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The major aim of this controlled, randomised, open-labelled, parallel-grouped, clinical trial was to investigate whether supplementation with different dosages of omega-3 fatty acids (0.5 g/d and 1 g/d) from a plant-based fatty acid supplement affected omega-3-indices (O3I) in well-nourished, healthy people. In addition, the combined ingestion of the plant-based fatty acid supplement, together with an encapsulated fruit, vegetable and berry (FVB) juice powder concentrate, was applied in order to observe the absorption of certain micronutrients and to examine some aspects related to the safe consumption of the products. The data demonstrate that the intake of only 0.5 g/day of omega-3 fatty acids from of a vegan supplement was able to increase the O3I significantly after 8 and 16 weeks. The combined ingestion with the FVB supplement concurrently increased serum concentrations of specific vitamins and carotenoids without effects on hepatic, kidney and thyroid function or changes in blood lipids.
Collapse
Affiliation(s)
- Sebastian Dams
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.,Green Beat - Institute of Nutrient Research and Sport Nutrition, Graz, Austria
| | - Sandra Holasek
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Melina Tsiountsioura
- Green Beat - Institute of Nutrient Research and Sport Nutrition, Graz, Austria.,The Juice Plus+® Science Institute, Memphis, TN, USA
| | - Martin Edelsbrunner
- Green Beat - Institute of Nutrient Research and Sport Nutrition, Graz, Austria.,Institute of Sport Sciences, University of Graz, Graz, Austria
| | - Pavel Dietz
- Institute of Occupational, Social and Environmental Medicine, University Medical Centre, University of Mainz, Mainz, Germany
| | - Harald Koefeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, Graz, Austria
| | - Daniela-Eugenia Malliga
- Green Beat - Institute of Nutrient Research and Sport Nutrition, Graz, Austria.,Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Ayse Gürbüz
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Nathalie Meier-Allard
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Brigitte Poncza
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Elke Schwarzenberger
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Yvonne Jansenberger
- Green Beat - Institute of Nutrient Research and Sport Nutrition, Graz, Austria
| | - Manfred Lamprecht
- Green Beat - Institute of Nutrient Research and Sport Nutrition, Graz, Austria.,The Juice Plus+® Science Institute, Memphis, TN, USA.,Otto Loewi Research Center, Division of Physiological Chemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
32
|
Sun WW, ShangGuan T, Zhu P, Li HK, Jiang M, Yang P, Li LY, Zhang ZH. Role of hepatic neuropeptide Y-Y1 receptors in a methionine-choline-deficient model of non-alcoholic steatohepatitis. Life Sci 2020; 245:117356. [PMID: 31991181 DOI: 10.1016/j.lfs.2020.117356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 01/07/2023]
Abstract
AIMS NPY-Y1R plays an important role in dietary regulation. Although germline knockdown of NPY-Y1R in mice alleviates high-fat-diet-induced obesity and increases CPT1α levels in the liver, the role of the Y1 receptor in specific tissues has not been studied. MAIN METHODS MCD diet is the most widely used method to establish a model of lean NASH in a short time. We therefore evaluated the role of liver NPY-Y1R in NASH progression. KEY FINDINGS In mice with liver-specific knockout of NPY-Y1R (LivKO) and wild-type control littermates fed MCD diet for 4 weeks, NPY-Y1R deficiency significantly decreased body and liver weight. Moreover, NPY-Y1R deletion protected mice against hepatic steatosis and injury. LivKO decreased TG, TC, and FFA levels in the liver and alanine aminotransferase activity in plasma. To clarify the mechanism, we evaluated the key enzymes involved in triglyceride hydrolase and fatty-acid oxidase. Expression of ATGL, CPT1α, and ACO was significantly increased in LivKO mice, whereas expression of fatty-acid synthase was significantly decreased. mRNA expression analysis revealed a marked reduction of genes involved in de-novo lipogenesis and monosaturated fatty-acid synthesis, including sterol-regulatory element-binding protein 1c and fatty-acid synthase. Moreover, liver injury-related factors were significantly decreased in LivKO mice, such as TNF-α, inducible nitric oxide synthase, and MCP-1. Thus, NPY-Y1R deficiency in the liver alleviates lipid deposition and injury. However, NPY-Y1R did not affect inflammation and fibrosis. SIGNIFICANCE NPY-Y1R deficiency in the liver directly suppresses not only hepatic steatosis, but also liver injury, and thus provides a treatment option for NASH.
Collapse
Affiliation(s)
- Wei-Wei Sun
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Tao ShangGuan
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Hua-Kang Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Min Jiang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Pan Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Lin-Yu Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China
| | - Zhi-Hui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, China.
| |
Collapse
|
33
|
Zhang J, Hong Y, Jiang L, Yi X, Chen Y, Liu L, Chen Z, Wu Y, Cai Z. Global Metabolomic and Lipidomic Analysis Reveal the Synergistic Effect of Bufalin in Combination with Cinobufagin against HepG2 Cells. J Proteome Res 2020; 19:873-883. [DOI: 10.1021/acs.jproteome.9b00681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jinghui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute for Research and Continuing Education (IRACE), Shenzhen 518000, China
| | - Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute for Research and Continuing Education (IRACE), Shenzhen 518000, China
| | - Xiaojiao Yi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongjian Chen
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
34
|
Alpha-syntrophin deficiency protects against non-alcoholic steatohepatitis associated increase of macrophages, CD8 + T-cells and galectin-3 in the liver. Exp Mol Pathol 2019; 113:104363. [PMID: 31881201 DOI: 10.1016/j.yexmp.2019.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by immune cell infiltration. Loss of the scaffold protein alpha-syntrophin (SNTA) protected mice from hepatic inflammation in the methionine-choline-deficient (MCD) diet model. Here, we determined increased numbers of macrophages and CD8+ T-cells in MCD diet induced NASH liver of wild type mice. In the mutant animals these NASH associated changes in immune cell composition were less pronounced. Further, there were more γδ T-cells in the NASH liver of the null mice. Galectin-3 protein in the hepatic non-parenchymal cell fraction was strongly induced in MCD diet fed wild type but not mutant mice. Antioxidant enzymes declined in NASH liver with no differences between the genotypes. To identify the target cells responsive to SNTA loss in-vitro experiments were performed. In the human hepatic stellate cell line LX-2, SNTA did not regulate pro-fibrotic or antioxidant proteins like alpha-smooth muscle actin or catalase. Soluble galectin-3 was, however, reduced upon SNTA knock-down and increased upon SNTA overexpression. SNTA deficiency neither affected cell proliferation nor cell death of LX-2 cells. In the macrophage cell line RAW264.7 low SNTA indeed caused higher galectin-3 production whereas release of TNF and cell viability were normal. Moreover, SNTA had no effect on hepatocyte chemerin and CCL2 expression. Overall, SNTA loss improved NASH without causing major effects in macrophage, hepatocyte and hepatic stellate cell lines. SNTA null mice fed the MCD diet had less body weight loss and this seems to contribute to improved liver health of the mutant mice.
Collapse
|
35
|
Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, Imai H, Yuet-Yin Kok C, Okochi H, Nakano H, Miyajima A, Tanaka M. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis 2019; 10:449. [PMID: 31209199 PMCID: PMC6579767 DOI: 10.1038/s41419-019-1678-y] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic liver disease that progresses from simple steatosis to the disease state of inflammation and fibrosis. Previous studies suggest that apoptosis and necroptosis may contribute to the pathogenesis of NASH, based on several murine models. However, the mechanisms underlying the transition of simple steatosis to steatohepatitis remain unclear, because it is difficult to identify when and where such cell deaths begin to occur in the pathophysiological process of NASH. In the present study, our aim is to investigate which type of cell death plays a role as the trigger for initiating inflammation in fatty liver. By establishing a simple method of discriminating between apoptosis and necrosis in the liver, we found that necrosis occurred prior to apoptosis at the onset of steatohepatitis in the choline-deficient, ethionine-supplemented (CDE) diet model. To further investigate what type of necrosis is involved in the initial necrotic cell death, we examined the effect of necroptosis and ferroptosis inhibition by administering inhibitors to wild-type mice in the CDE diet model. In addition, necroptosis was evaluated using mixed lineage kinase domain-like protein (MLKL) knockout mice, which is lacking in a terminal executor of necroptosis. Consequently, necroptosis inhibition failed to block the onset of necrotic cell death, while ferroptosis inhibition protected hepatocytes from necrotic death almost completely, and suppressed the subsequent infiltration of immune cells and inflammatory reaction. Furthermore, the amount of oxidized phosphatidylethanolamine, which is involved in ferroptosis pathway, was increased in the liver sample of the CDE diet-fed mice. These findings suggest that hepatic ferroptosis plays an important role as the trigger for initiating inflammation in steatohepatitis and may be a therapeutic target for preventing the onset of steatohepatitis.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Tomoko Koumura
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Misaki Nakasone
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Taro Sakamoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masaki Matsuoka
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Cindy Yuet-Yin Kok
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Evaluating the therapeutic potential of one-carbon donors in nonalcoholic fatty liver disease. Eur J Pharmacol 2019; 847:72-82. [DOI: 10.1016/j.ejphar.2019.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
|
37
|
Allard J, Le Guillou D, Begriche K, Fromenty B. Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:75-107. [PMID: 31307592 DOI: 10.1016/bs.apha.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is commonly associated with nonalcoholic fatty liver (NAFL), a benign condition characterized by hepatic lipid accumulation. However, NAFL can progress in some patients to nonalcoholic steatohepatitis (NASH) and then to severe liver lesions including extensive fibrosis, cirrhosis and hepatocellular carcinoma. The entire spectrum of these hepatic lesions is referred to as nonalcoholic fatty liver disease (NAFLD). The transition of simple fatty liver to NASH seems to be favored by several genetic and environmental factors. Different experimental and clinical investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs may cause more severe and/or more frequent acute liver injury in obese individuals whereas others may trigger the transition of simple fatty liver to NASH or may worsen hepatic lipid accumulation, necroinflammation and fibrosis. This review presents the available information regarding drugs that may cause a specific risk in the context of obesity and NAFLD. These drugs, which belong to different pharmacological classes, include acetaminophen, halothane, methotrexate, rosiglitazone and tamoxifen. For some of these drugs, experimental investigations confirmed the clinical observations and unveiled different pathophysiological mechanisms which may explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Because obese people often take several drugs for the treatment of different obesity-related diseases, there is an urgent need to identify the main pharmaceuticals that may cause acute liver injury on a fatty liver background or that may enhance the risk of severe chronic liver disease.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Dounia Le Guillou
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Karima Begriche
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France.
| |
Collapse
|
38
|
Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS One 2019; 14:e0210068. [PMID: 30689650 PMCID: PMC6349312 DOI: 10.1371/journal.pone.0210068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Tabernaemontana divaricate, attenuates hepatic fibrosis in mice. We have previously shown that CnP inhibits non-alcoholic steatohepatitis (NASH) using a methionine-choline-deficient (MCD) diet-fed mouse model. However, little is known about the CnP mediated inhibition of hepatic steatosis in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse models. CnP (0.5 and 1 μg/g/body weight) was co-administered along with a high-fat diet to male BALB/c mice. After nine weeks of administering the high-fat diet, hepatic steatosis, triglyceride, and hepatic fat metabolism-related markers were examined. Administration of a high-fat diet for 9 weeks was found to induce hepatic steatosis. CnP dose-dependently attenuated the high-fat diet-induced hepatic steatosis. The diet also attenuated hepatic peroxisome proliferator-activated receptor alpha (PPARA) mRNA levels. PPARA is known to be involved in β-oxidation. CnP upregulated the mRNA levels of hepatic PPARA and its target genes, such as carnitine palmitoyl transferase 1 (CPT1) and CPT2, in a dose-dependent manner in the liver. Furthermore, levels of hepatic β-hydroxybutyrate, which is a type of ketone body, were increased by CnP in a dose-dependent manner. Finally, CnP increased the expression of the autophagosomal marker LC3-II and decreased the expression of p62, which are known to be selectively degraded during autophagy. These results indicate that CnP inhibits hepatic steatosis through the stimulation of β-oxidation and autophagy in the liver. Therefore, CnP might prove to be a suitable therapeutic target for NAFLD.
Collapse
|
39
|
Dietary methionine increased the lipid accumulation in juvenile tiger puffer Takifugu rubripes. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:19-28. [PMID: 30677513 DOI: 10.1016/j.cbpb.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022]
Abstract
Methionine (Met) is one of the most important amino acids in fish feed. The effects of dietary Met on lipid deposition in fish varied a lot among different studies. The present study was aimed at investigating the effects of dietary Met supplementation on the lipid accumulation in tiger puffer, which have a unique lipid storage pattern. Crystalline L-Met was supplemented to a low-fishmeal control diet to obtain two experimental diets with a low (1.1% of dry weight, L-MET) or high Met level (1.6% of dry weight, H-MET). A 67-day feeding trial was conducted with juvenile tiger puffer (average initial weight, 13.83 g). Each diet was fed to triplicate tanks (30 fish in each tank). The results showed that the total lipid contents in whole-body and liver significantly increased with increasing dietary Met levels. The hepatosomatic index, weight gain, and total bile acid content in serum showed similar patterns in response to dietary Met treatments, while the lipid content in muscle was not affected. The hepatic contents of 18-carbon fatty acids were elevated by dietary Met supplementation. The Hepatic mRNA expression of lipogenetic gene such as FAS, GPAT, PPARγ, ACLY, and SCD1 was down-regulated, while the gene expression of lipolytic genes ACOX1 and HSL, as well as that of ApoB100, were up-regulated by increasing dietary Met levels. The hepatic lipidomics of experimental fish was also analyzed. In conclusion, increasing dietary Met levels (0.61%, 1.10%, and 1.60%) increased the hepatic lipid accumulation in tiger puffer. The mechanisms involved warrant further studies.
Collapse
|
40
|
Ou Q, Weng Y, Wang S, Zhao Y, Zhang F, Zhou J, Wu X. Silybin Alleviates Hepatic Steatosis and Fibrosis in NASH Mice by Inhibiting Oxidative Stress and Involvement with the Nf-κB Pathway. Dig Dis Sci 2018; 63:3398-3408. [PMID: 30191499 DOI: 10.1007/s10620-018-5268-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Silybin is the major biologically active compound of silymarin, the standardized extract of the milk thistle (Silybum marianum). Increasing numbers of studies have shown that silybin can improve nonalcoholic steatohepatitis (NASH) in animal models and patients; however, the mechanisms underlying silybin's actions remain unclear. METHODS Male C57BL/6 mice were fed a methionine-choline deficient (MCD) diet for 8 weeks to induce the NASH model, and silybin was orally administered to the NASH mice. The effects of silybin on lipid accumulation, hepatic fibrosis, oxidative stress, inflammation-related gene expression and nuclear factor kappa B (NF-κB) activities were evaluated by biochemical analysis, immunohistochemistry, immunofluorescence, quantitative real-time PCR and western blot. RESULTS Silybin treatment significantly alleviated hepatic steatosis, fibrosis and inflammation in MCD-induced NASH mice. Moreover, silybin inhibited HSC activation and hepatic apoptosis and prevented the formation of MDBs in the NASH liver. Additionally, silybin partly reversed the abnormal expression of lipid metabolism-related genes in NASH. Further study showed that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway played important roles in the silybin-derived antioxidant effect, as evidenced by the upregulation of Nrf2 target genes in the silybin treatment group. In addition, silybin significantly downregulated the expression of inflammation-related genes and suppressed the activity of NF-κB signaling. CONCLUSIONS Silybin was effective in preventing the MCD-induced increases in hepatic steatosis, fibrosis and inflammation. The effect was related to alteration of lipid metabolism-related gene expression, activation of the Nrf2 pathway and inhibition of the NF-κB signaling pathway in the NASH liver.
Collapse
Affiliation(s)
- Qiang Ou
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China
| | - Yuanyuan Weng
- Department of Clinical Laboratory, Core Facility, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Siwei Wang
- Department of Clinical Laboratory, Core Facility, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yajuan Zhao
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China
| | - Feng Zhang
- Department of Clinical Laboratory, Core Facility, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China.
| | - Jianhua Zhou
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China. .,The Central Laboratory of the Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 201508, China.
| | - Xiaolin Wu
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China. .,The Central Laboratory of the Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 201508, China.
| |
Collapse
|
41
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
42
|
Katsyuba E, Mottis A, Zietak M, De Franco F, van der Velpen V, Gariani K, Ryu D, Cialabrini L, Matilainen O, Liscio P, Giacchè N, Stokar-Regenscheit N, Legouis D, de Seigneux S, Ivanisevic J, Raffaelli N, Schoonjans K, Pellicciari R, Auwerx J. De novo NAD + synthesis enhances mitochondrial function and improves health. Nature 2018; 563:354-359. [PMID: 30356218 PMCID: PMC6448761 DOI: 10.1038/s41586-018-0645-6] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a cosubstrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits the proportion of ACMS able to undergo spontaneous cyclisation in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionary conserved mechanism from C. elegans to the mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and SIRT1 activity, ultimately enhancing mitochondrial function. We furthermore characterized a series of potent and selective ACMSD inhibitors, which, given the restricted ACMSD expression in kidney and liver, are of high therapeutic interest to protect these tissues from injury. ACMSD hence is a key modulator of cellular NAD+ levels, sirtuin activity, and mitochondrial homeostasis in kidney and liver.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marika Zietak
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Vera van der Velpen
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Karim Gariani
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospitals, Geneva, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Molecular and Integrative Biology Lab, Healthy Aging-Korean Medical Research Center, Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Olli Matilainen
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Nadine Stokar-Regenscheit
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - David Legouis
- Intensive Care Unit, Department of Anaesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland.,Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
43
|
Zhou YF, Zhou Z, Batistel F, Martinez-Cortés I, Pate RT, Luchini DL, Loor JJ. Methionine and choline supply alter transmethylation, transsulfuration, and cytidine 5'-diphosphocholine pathways to different extents in isolated primary liver cells from dairy cows. J Dairy Sci 2018; 101:11384-11395. [PMID: 30316602 DOI: 10.3168/jds.2017-14236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
Insufficient supply of Met and choline (Chol) around parturition could compromise hepatic metabolism and milk protein synthesis in dairy cows. Mechanistic responses associated with supply of Met or Chol in primary liver cells enriched with hepatocytes (PHEP) from cows have not been thoroughly ascertained. Objectives were to isolate and culture PHEP to examine abundance of genes and proteins related to transmethylation, transsulfuration, and cytidine 5'-diphosphocholine (CDP-choline) pathways in response to Met or Chol. The PHEP were isolated from liver biopsies of Holstein cows (160 d in lactation). More than 90% of isolated cells stained positively for the hepatocyte marker cytokeratin 18. Cytochrome P450 (CYP1A1) mRNA abundance was only detectable in the PHEP and liver tissue compared with mammary tissue. Furthermore, in response to exogenous Met (80 μM vs. control) PHEP secreted greater amounts of albumin and urea. Subsequently, PHEP were cultured with Met (40 μM) or Chol (80 mg/dL) for 24 h. Compared with control or Chol, mRNA and protein abundance of methionine adenosyltransferase 1A (MAT1A) and phosphatidylethanolamine methyltransferase (PEMT) were greater in PHEP treated with Met. The mRNA abundance of S-adenosylhomocysteine hydrolase (SAHH), betaine-homocysteine methyltransferase (BHMT), and sarcosine dehydrogenase (SARDH) was greater in Met-treated PHEP compared with control or Chol. Compared with control, greater expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine aldehyde dehydrogenase (BADH), and choline dehydrogenase (CHDH) was observed in cells supplemented with Met and Chol. However, Chol led to the greatest mRNA abundance of CHDH. Abundance of choline kinase α (CHKA), choline kinase β (CHKB), phosphate cytidylyltransferase 1 α (PCYT1A), and choline/ethanolamine phosphotransferase 1 (CEPT1) in the CDP-choline pathway was greater in PHEP treated with Chol compared with control or Met. In the transsulfuration pathway, mRNA and protein abundance of cystathionine β-synthase (CBS) was greater in PHEP treated with Met compared with control or Chol. Similarly, abundance of cysteine sulfinic acid decarboxylase (CSAD), glutamate-cysteine ligase, catalytic subunit (GCLC), and glutathione reductase (GSR) was greater in response to Met compared with control or Chol. Overall, these findings suggest that transmethylation and transsulfuration in dairy cow primary liver cells are more responsive to Met supply, whereas the CDP-choline pathway is more responsive to Chol supply. The relevance of these data in vivo merit further study.
Collapse
Affiliation(s)
- Y F Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China; Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Department of Animal and Veterinary Sciences, Clemson University, Clemson 29634
| | - F Batistel
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - I Martinez-Cortés
- Department of Immunology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico 04510
| | - R T Pate
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
44
|
Cao YN, Baiyisaiti A, Wong CW, Hsu SH, Qi R. Polyurethane Nanoparticle-Loaded Fenofibrate Exerts Inhibitory Effects on Nonalcoholic Fatty Liver Disease in Mice. Mol Pharm 2018; 15:4550-4557. [PMID: 30188729 DOI: 10.1021/acs.molpharmaceut.8b00548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyurethane (PU) nanoparticles are potential drug carriers. We aimed to study the in vitro and in vivo efficacy of biodegradable PU nanoparticles loaded with fenofibrate (FNB-PU) on nonalcoholic fatty liver disease (NAFLD). FNB-PU was prepared by a green process, and its preventive effects on NAFLD were investigated on HepG2 cells and mice. FNB-PU showed sustained in vitro FNB release profile. Compared to FNB crude drug, FNB-PU significantly decreased triglyceride content in HepG2 cells incubated with oleic acid and in livers of mice with NAFLD induced by a methionine choline deficient diet, and increased plasma FNB concentration of the mice. FNB-PU increased absorption of FNB and therefore enhanced the inhibitory effects of FNB on NAFLD.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| | - Asiya Baiyisaiti
- School of Pharmacy , Shihezi University , Shihezi , Xinjiang , China
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| |
Collapse
|
45
|
Abstract
Liver fibrosis is a wound-healing response generated against an insult to the liver that causes liver injury. It has the potential to progress into cirrhosis, and if not prevented, it may lead to liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. In addition to HSCs, numerous studies have supported the potential contribution of bone marrow-derived cells and myofibroblasts to liver fibrosis. The liver is a heterogeneous organ; thus, molecular and cellular events that underlie liver fibrogenesis are complex. This review aims to focus on major events that occur during liver fibrogenesis. In addition, important antifibrotic therapeutic approaches and experimental liver fibrosis models will be discussed.
Collapse
Affiliation(s)
- M Merve Aydın
- Mikrogen Genetic Diagnostic Laboratory, Ankara, Turkey
| | - Kamil Can Akçalı
- Department of Biophysics, Ankara University, School of Medicine, Ankara, Turkey
| |
Collapse
|
46
|
Na AY, Jo JJ, Kwon OK, Shrestha R, Cho PJ, Kim KM, Ki SH, Lee TH, Jeon TW, Jeong TC, Lee S. Investigation of nonalcoholic fatty liver disease-induced drug metabolism by comparative global toxicoproteomics. Toxicol Appl Pharmacol 2018; 352:28-37. [DOI: 10.1016/j.taap.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 02/06/2023]
|
47
|
Rein-Fischboeck L, Haberl EM, Pohl R, Schmid V, Feder S, Krautbauer S, Liebisch G, Buechler C. Alpha-syntrophin null mice are protected from non-alcoholic steatohepatitis in the methionine-choline-deficient diet model but not the atherogenic diet model. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:526-537. [PMID: 29474931 DOI: 10.1016/j.bbalip.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/23/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA-/- mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA-/- animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed. SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Verena Schmid
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
48
|
Lemberger UJ, Fuchs CD, Schöfer C, Bileck A, Gerner C, Stojakovic T, Taketo MM, Trauner M, Egger G, Österreicher CH. Hepatocyte specific expression of an oncogenic variant of β-catenin results in lethal metabolic dysfunction in mice. Oncotarget 2018. [PMID: 29541410 PMCID: PMC5834276 DOI: 10.18632/oncotarget.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Wnt/β-catenin signaling plays a crucial role in embryogenesis, tissue homeostasis, metabolism and malignant transformation of different organs including the liver. Continuous β-catenin signaling due to somatic mutations in exon 3 of the Ctnnb1 gene is associated with different liver diseases including cancer and cholestasis. Results Expression of a degradation resistant form of β-catenin in hepatocytes resulted in 100% mortality within 31 days after birth. Ctnnb1CAhep mice were characterized by reduced body weight, significantly enlarged livers with hepatocellular fat accumulation around central veins and increased hepatic triglyceride content. Proteomics analysis using whole liver tissue revealed significant deregulation of proteins involved in fat, glucose and mitochondrial energy metabolism, which was also reflected in morphological anomalies of hepatocellular mitochondria. Key enzymes involved in transport and synthesis of fatty acids and cholesterol were significantly deregulated in livers of Ctnnb1CAhep mice. Furthermore, carbohydrate metabolism was substantially disturbed in mutant mice. Conclusion Continuous β-catenin signaling in hepatocytes results in premature death due to severe disturbances of liver associated metabolic pathways and mitochondrial dysfunction. Methods To investigate the influence of permanent β-catenin signaling on liver biology we analyzed mice with hepatocyte specific expression of a dominant stable form of β-catenin (Ctnnb1CAhep) and their WT littermates by serum biochemistry, histology, electron microscopy, mRNA profiling and proteomic analysis of the liver.
Collapse
Affiliation(s)
- Ursula J Lemberger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Claudia D Fuchs
- Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Schöfer
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michael Trauner
- Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | | |
Collapse
|
49
|
Lee YH, Kim SH, Kim SN, Kwon HJ, Kim JD, Oh JY, Jung YS. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease. Oncotarget 2018; 7:46959-46971. [PMID: 27409675 PMCID: PMC5216916 DOI: 10.18632/oncotarget.10506] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.
Collapse
Affiliation(s)
- Yun-Hee Lee
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sou Hyun Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sang-Nam Kim
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Hyun-Jung Kwon
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Jeong-Dong Kim
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Ji Youn Oh
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
50
|
Fuchs CD, Claudel T, Scharnagl H, Stojakovic T, Trauner M. FXR controls CHOP expression in steatohepatitis. FEBS Lett 2017; 591:3360-3368. [PMID: 28895119 PMCID: PMC5698708 DOI: 10.1002/1873-3468.12845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
The farnesoid X receptor (FXR) and C/EBP homologous protein (CHOP) have critical functions in hepatic lipid metabolism. Here, we aimed to explore a potential relationship between FXR and CHOP. We fed wild‐type (WT) and FXR KO mice a MCD diet (model of steatohepatitis) and found that Chop mRNA expression is upregulated in WT but not FXR KO mice. The absence of FXR aggravates hepatic inflammation after MCD feeding. In HepG2 cells, we found that Chop expression is regulated in a FXR/Retinoid X receptor (RXR)‐dependent manner. We identified a FXR/RXR‐binding site in the human CHOP promoter, demonstrating a highly conserved regulatory pathway. Our study shows that FXR/RXR regulates Chop expression in a mouse model of steatohepatitis, providing novel insights into pathogenesis of this disorder.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| |
Collapse
|