1
|
Zhang Y, Li F, Cheng Y, Zhu J, Li Y, Zhao H, Song J, Yin J, Yang B, Kuang H. A novel way of regression of pregnant corpus luteum during parturition in mice: The ferroptosis associated with NCOA4-mediated ferritinophagy. Biochem Pharmacol 2025; 236:116910. [PMID: 40174644 DOI: 10.1016/j.bcp.2025.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Numerous studies have shown that inappropriate regression of corpus luteum would lead to adverse pregnancy outcomes during gestation. However, the detailed mechanisms and types of programmed cell death involved in the regression of pregnant corpus luteum are largely unknown. Here, we investigated whether ferroptosis and ferritinophagy were involved in luteal regression during parturition in mice and related mechanisms. The results showed that ferroptosis and ferritinophagy were both involved in luteal regression during mice peri-parturition in vivo. Erastin (ferroptosis agonist) treatment significantly accelerated luteal regression and induced premature labor in pregnant mice. PGF2α treatment induced the ferroptosis and ferritinophagy of luteal cells in vitro. Nevertheless, inhibition or promotion of ferroptosis significantly altered the states of PGF2α-induced luteal cell viability and ferroptosis. Furthermore, inhibition of autophagy (3-methyladenine co-treatment) alleviated PGF2α-induced ferritinophagy and ferroptosis of luteal cells, and knockdown of NCOA4 reduced the degradation of FTH1 and the level of ferroptosis of luteal cells induced by PGF2α. In summary, our current data demonstrated that the ferroptosis associated with NCOA4-mediated ferritinophagy was a novel way of luteal regression during peri-parturition in mice. Targeting ferroptosis in the corpus luteum may be a therapeutic strategy for preventing luteal insufficiency in the future.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| | - Fei Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Yanmin Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jun Zhu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Hongru Zhao
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jiahao Song
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jiting Yin
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| |
Collapse
|
2
|
Barbieri L, Salvioni L, Banfi A, Garbujo S, Fiandra L, Baioni C, Giustra M, Morelli L, Frascotti G, Colombo M, Innocenti M, Prosperi D. Dual-Targeting Strategy to Repurpose Cetuximab with HFn Nanoconjugates for Immunotherapy of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327456 DOI: 10.1021/acsami.5c06626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and treatment-resistant malignancy characterized by the lack of targeted therapies and poor clinical outcomes. Here, we present a dual-targeting strategy combining the anti-EGFR monoclonal antibody cetuximab (CTX) with H-ferritin (HFn), a nanoparticle targeting transferrin receptor 1 (TfR1), for potential immunotherapy in CTX-resistant tumors. The HFn-CTX nanoconjugate exhibited favorable biophysical properties and good tumor accumulation and significantly enhanced antibody-dependent cellular cytotoxicity (ADCC) in TNBC spheroids compared to CTX alone. Conversely, glioblastoma spheroids did not exhibit comparable reactivity. This effect correlated with elevated cell-surface EGFR expression and plasma-membrane lingering of the nanoconjugate in TNBC cells, facilitating robust immune activation. Biodistribution studies showed selective accumulation of the HFn-CTX nanoconjugate in TNBC tumors in vivo. These findings highlight the potential of HFn-CTX nanoconjugates to repurpose CTX for refractory cancers that express EGFR at high levels, such as TNBC, leveraging dual-receptor targeting to amplify immune-mediated cytotoxicity and overcome resistance.
Collapse
Affiliation(s)
- Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Lucia Salvioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Andrea Banfi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Garbujo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Chiara Baioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Marco Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Lucia Morelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Gianni Frascotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
3
|
Chen X, Zuo X, Becker A, Mante M, Florio JB, Jadhav SG, Albay R, Johnstone A, Karachentsev D, Rissman R, Zhao H, Dowdy SF, Mobley WC. Antisense oligonucleotides directed against App and Rab5 normalized endosomal Rab activity and reversed DS-AD-linked degenerative phenotypes in the Dp16 mouse model of Down syndrome. Alzheimers Dement 2025; 21:e70022. [PMID: 40339155 PMCID: PMC12058459 DOI: 10.1002/alz.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/27/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION Down syndrome (DS) markedly raises the risk of Alzheimer's disease (DS-AD). Our findings identified widespread dysregulation of the endolysosomal network (ELN) in DS and DS-AD brains, driven by increased APP gene dose, hyperactivation of RAB5, and elevated levels of guanine nucleotide exchange factors (GEFs) for RABs 7 and 11. METHODS We investigated whether increasing APP gene dose and RAB5 hyperactivation contributed to neuropathogenesis and whether a clinically feasible intervention could reverse ELN changes. The Dp16 DS-AD mouse model was treated with a mouse App-specific antisense oligonucleotide (App-ASO) and Rab5-specific ASOs targeting Rab5a and Rab5b. RESULTS App-ASO treatment normalized full-length APP (fl-APP) and its products, RAB5 activity, and downstream RABs 7 and 11 pathways. Rab5-ASOs reduced RAB5 levels and restored endosomal Rab activity. Both ASO treatments mitigated DS-AD-linked pathologies. DISCUSSION These findings highlight ELN dysregulation in DS and the therapeutic potential of ASO-based strategies targeting APP or Rab5 to counteract DS-AD features. HIGHLIGHTS App-ASO treatment reduced the levels of APP and its products and normalized endosomal Rab activity and GEF levels in Dp16 mice. Administration of Rab5-ASOs reduced RAB5 levels and normalized endosomal Rab activity and GEF levels in Dp16 mice. Both ASO treatments were well tolerated and mitigated APP-linked pathologies including tau hyperphosphorylation, neurotrophin signaling deficits, and synaptic protein loss. App-ASO or Rab5-ASOs reversed established pathological phenotypes in Dp16 mice.
Collapse
Affiliation(s)
- Xu‐Qiao Chen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Xinxin Zuo
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ann Becker
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Michael Mante
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jazmin B. Florio
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Satish G. Jadhav
- Department of Cellular & Molecular MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ricardo Albay
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Aaron Johnstone
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dmitry Karachentsev
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Robert Rissman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hien Zhao
- Ionis Pharmaceuticals Inc.CarlsbadCaliforniaUSA
| | - Steven F. Dowdy
- Department of Cellular & Molecular MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - William C. Mobley
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Zhang R, Liang L, Liao K, Zeng H, Yang X, Wang X, Wang B, Yuan J. Autophagy Impairment-Derived SQSTM1 Accumulation Promotes Ferroptosis in Corneal Epithelial Cells Through ACSL4 in Dry Eye. Invest Ophthalmol Vis Sci 2025; 66:23. [PMID: 40358583 DOI: 10.1167/iovs.66.5.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Purpose To reveal the function of autophagy impairment-derived sequestosome 1 (SQSTM1) in inducing ferroptosis in an experimental dry eye model and investigate the underlying mechanism. Methods To induce the dry eye animal model, 8-week-old C57BL/6 mice were subcutaneously injected with scopolamine and exposed to a desiccated environment. To build the in vitro dry eye model, human corneal epithelial cells (HCECs) were applied with desiccating stress. Cell viability was examined using a CCK-8 kit. Intracellular reactive oxygen species (ROS), oxidative lipid, and Fe2+ were detected using the H2DCFDA assay kit, C11 BODIPY probe, and FerroOrange probe. Gene expression was screened by RNA sequencing. Protein expression was evaluated by western blot and immunofluorescence staining. Corneal defect area was assessed by fluorescein sodium staining. Conjunctiva goblet cells were counted by periodic acid-Schiff staining. Tear secretion was measured using phenol red cotton thread. Results Desiccating stress induced ferroptosis and SQSTM1 accumulation in both HCECs and C57BL/6 mice. SQSTM1 knockdown alleviated ferroptosis in HCECs. In contrast, the overexpression of SQSTM1 promoted ferroptotic changes. Additionally, overexpression of SQSTM1 significantly increased acyl-CoA synthetase long chain family member 4 (ACSL4). Also, targeted inhibition of ACSL4 mitigated the dry eye symptoms and ferroptosis caused by both SQSTM1 overexpression and desiccating stress. Conclusions The accumulation of SQSTM1 triggers corneal epithelial cells ferroptosis through ACSL4 in dry eye disease.
Collapse
Affiliation(s)
- Runze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lihong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kai Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
5
|
Lee WC, Moi SH, Yang SF, Tseng HH, Liu YP. Downregulation of AATK enhances susceptibility to ferroptosis by promoting endosome recycling in gefitinib-resistant lung cancer cells. J Pathol 2025; 265:422-436. [PMID: 39871626 DOI: 10.1002/path.6393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025]
Abstract
Ferroptosis has been characterised by disruption of the cell membrane through iron-related lipid peroxidation. However, regulation of iron homeostasis in lung cancer cells that are resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains unclear. Transcriptome analysis identified a significant downregulation of apoptosis-associated tyrosine kinase (AATK) mRNA expression in gefitinib-resistant PC9 (PC9-GR) cells, which were found to be more susceptible to ferroptosis inducers. An in-depth analysis of publicly available datasets revealed that downregulation of AATK mRNA was associated with lymph node metastasis and poor prognosis in patients with lung adenocarcinoma. Knockdown of AATK-sensitised PC9, HCC827, and H441 cells to the ferroptosis inducer RSL3, whereas ectopic expression of AATK reduced RSL3-induced cell death in PC9-GR and HCC827-GR cells. Compared to PC9 cells, PC9-GR cells exhibited higher transferrin uptake, endosome recycling rate, and increased intracellular iron levels. Blocking iron transport reduced RSL3-induced ferroptosis in PC9-GR cells. Mechanistic studies showed that AATK localised to both early and recycling endosomes. Knockdown of AATK facilitated endosome recycling and elevated intracellular ferrous iron (Fe2+) levels in PC9 cells. Conversely, ectopic expression of AATK delayed endosome recycling and reduced intracellular Fe2+ levels in PC9-GR cells. Inhibition of AATK downregulation-induced iron accumulation decreased RSL3-induced ferroptosis. Taken together, our study indicates that the downregulation of AATK contributes to endosome recycling and iron accumulation, leading to an increased susceptibility to ferroptosis in EGFR-TKI-resistant lung cancer cells. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Wei-Chang Lee
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Hsing Tseng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Scavone F, Lian S, Eskelinen EL, Cohen RE, Yao T. Trafficking of K63-polyubiquitin-modified membrane proteins in a macroautophagy-independent pathway is linked to ATG9A. Mol Biol Cell 2025; 36:ar42. [PMID: 39969968 PMCID: PMC12005115 DOI: 10.1091/mbc.e24-12-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Cytoplasmic K63-linked polyubiquitin signals have well-established roles in endocytosis and selective autophagy. However, how these signals help to direct different cargos to different intracellular trafficking routes is unclear. Here we report that, when the K63-polyubiquitin signal is blocked by intracellular expression of a high-affinity sensor (named Vx3), many proteins originating from the plasma membrane are found trapped in clusters of small vesicles that colocalize with ATG9A, a transmembrane protein that plays an essential role in autophagy. Importantly, whereas ATG9A is required for cluster formation, other core autophagy machinery as well as selective autophagy cargo receptors are not required. Although the cargos are sequestered in the vesicular clusters in an ATG9-dependent manner, additional signals are needed to induce LC3 conjugation. Upon removal of the Vx3 block, K63-polyubiquitylated cargos are rapidly delivered to lysosomes. These observations suggest that ATG9A plays an unexpected role in the trafficking of K63-polyubiquitin-modified membrane proteins.
Collapse
Affiliation(s)
- Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sharon Lian
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eeva-Liisa Eskelinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, 00014, Finland
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Waich S, Kreidl K, Vodopiutz J, Demir AM, Pollio AR, Dostál V, Pfaller K, Parlato M, Cerf-Bensussan N, Adam R, Vogel GF, Uhlig HH, Ruemmele FM, Müller T, Hess MW, Janecke AR, Huber LA, Valovka T. Altered chaperone-nonmuscle myosin II interactions drive pathogenicity of the UNC45A c.710T>C variant in osteo-oto-hepato-enteric syndrome. JCI Insight 2025; 10:e185508. [PMID: 40125554 PMCID: PMC11949031 DOI: 10.1172/jci.insight.185508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
The osteo-oto-hepato-enteric (O2HE) syndrome is a severe autosomal recessive disease ascribed to loss-of-function mutations in the Unc-45 myosin chaperone A (UNC45A) gene. The clinical spectrum includes bone fragility, hearing loss, cholestasis, and life-threatening diarrhea associated with microvillus inclusion disease-like enteropathy. Here, we present molecular and functional analysis of the UNC45A c.710T>C (p.Leu237Pro) missense variant, which revealed a unique pathogenicity compared with other genetic variants causing UNC45A deficiency. The UNC45A p.Leu237Pro mutant retained chaperone activity, prevented myosin aggregation, and supported proper nonmuscle myosin II (NMII) filament formation in patient fibroblasts and human osteosarcoma (U2OS) cells. However, the mutant formed atypically stable oligomers and prevented chaperone-myosin complex dissociation, thereby inhibiting NMII functions. Similar to biallelic UNC45A deficiency, this resulted in impaired intracellular trafficking, defective recycling, and abnormal retention of transferrin at various endocytic sites. In particular, coexpression of wild-type protein attenuated the pathogenic effects of the variant by inhibiting excessive oligomer formation. Our results elucidate the pathogenic mechanisms and recessive characteristics of this variant and may aid in the development of targeted therapies.
Collapse
Affiliation(s)
| | - Karin Kreidl
- Institute of Cell Biology, Biocenter, and
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Vodopiutz
- Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Comprehensive Center for Paediatrics, Medical University of Vienna, Vienna, Austria
- Vienna Bone & Growth Center (VBGC), Medical University of Vienna, and full member of European Reference Network on Rare Bone Diseases, Vienna, Austria
| | - Arzu Meltem Demir
- Ankara Child Health and Diseases, Training and Research Hospital, Department of Paediatric Gastroenterology, Ankara, Turkey
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Ankara University School of Medicine, Ankara, Turkey
| | | | | | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marianna Parlato
- Université Paris Cité, Laboratory of Intestinal Immunity, Institut IMAGINE INSERM UMR 1163, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Laboratory of Intestinal Immunity, Institut IMAGINE INSERM UMR 1163, Paris, France
| | - Rüdiger Adam
- University Children’s Hospital, Paediatric Gastroenterology, Hepatology and Nutrition, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georg F. Vogel
- Institute of Cell Biology, Biocenter, and
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Holm H. Uhlig
- Experimental Medicine Division, Nuffield Department of Clinical Medicine; Department of Paediatrics; and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Frank M. Ruemmele
- Université Paris Cité, Faculté de Santé, UFR de Médicine, APHP, Hôpital Universitaire Necker Enfants Malades, Service de Gastroentérologie Pediatrique, Institut IMAGINE INSERM UMR 1163, Paris, France
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W. Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R. Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Taras Valovka
- Institute of Cell Biology, Biocenter, and
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Lan Z, Tian Y, Li C, Wang Y, Yi P, Zhang R. ATP8A1-translocated endosomal phosphatidylserine fine-tunes the multivesicular body formation and the endo-lysosomal traffic. iScience 2025; 28:111973. [PMID: 40083718 PMCID: PMC11904568 DOI: 10.1016/j.isci.2025.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
P4-ATPases are phospholipid flippases responsible for the transbilayer lipid asymmetry. ATP8A1, a P4-ATPase family member, has been reported to be involved in phosphatidylserine (PS) translocation at the trans-Golgi network, early endosomes and recycling endosomes. However, the possible roles of the PS on late endosomes/lysosomes pathway and how they are regulated remain to be elucidated. This study showed enrichment of ATP8A1 in Rab7-positive late endosomal compartments, and that ATP8A1 primarily flips the endosomal PS from the luminal leaflet to the cytosolic leaflet but not the PS in the inner leaflet of the plasma membrane. ATP8A1 depletion accelerates the lysosome-destined cargo proteins transfer into the intraluminal vesicles (ILVs) of multivesicular bodies (MVBs) and alters the signaling of epidermal growth factor receptor. Mechanistically, ATP8A1 depletion leads to PS loading in the luminal leaflet of MVB's limiting membrane, which fine-tunes ILVs initiation and endosomal sorting complex required for transport (ESCRT) component recruitment.
Collapse
Affiliation(s)
- Zengmei Lan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hebei Key Laboratory of Medical Data Science, School of Medicine, Hebei University of Engineering, Handan, China
| | - Chengang Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yudong Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhou J, Zhang H, Wu G, Zhang Y, Aweya JJ, Tayyab M, Zhu J, Zhang Y, Yao D. The Na +-K +-ATPase alpha subunit is an entry receptor for white spot syndrome virus. mBio 2025; 16:e0378724. [PMID: 39964166 PMCID: PMC11898654 DOI: 10.1128/mbio.03787-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
White spot syndrome virus (WSSV) is a debilitating viral pathogen that poses a significant threat to the global crustacean farming industry. It has a wide host tropism because it uses several receptors to facilitate its attachment and entry. Thus far, not all the receptors have been identified. Here, we employed a BioID-based screening method to identify the Na+-K+-ATPase alpha subunit (PvATP1A) as a potential receptor in Penaeus vannamei. Although during the early stages of WSSV infection, PvATP1A was induced and underwent oligomerization, clustering, and internalization, knockdown of PvATP1A inhibited viral entry and replication. PvATP1A interacted with the WSSV envelope protein VP28 through its multiple extracellular regions, whereas synthetic PvATP1A extracellular region peptides blocked WSSV entry and replication. We showed that PvATP1A did not affect WSSV attachment but facilitated internalization via caveolin-mediated endocytosis and macropinocytosis. These findings provide a robust receptor screening approach that identified PvATP1A as an entry receptor for WSSV, presenting a novel target for the development of anti-WSSV therapeutics. IMPORTANCE Cell surface receptors are crucial for mediating virus entry into host cells. Identification and characterization of virus receptors are fundamental yet challenging aspects of virology research. In this study, a BioID-based screening method was employed to identify the Na+-K+-ATPase alpha subunit (PvATP1A) as a potential receptor for white spot syndrome virus (WSSV) in the shrimp Penaeus vannamei. We demonstrated that PvATP1A interacted with the WSSV envelope protein VP28 via its multiple extracellular regions, thereby promoting viral internalization through caveolin-mediated endocytosis and macropinocytosis. Importantly, compared with previously identified WSSV receptors such as β-integrin, glucose transporter 1 (Glut1), and polymeric immunoglobulin receptor (pIgR), PvATP1A demonstrated significantly enhanced viral entry, indicating that PvATP1A is a crucial entry receptor of WSSV. This study not only presents a robust approach for screening virus receptors but also identifies PvATP1A as a promising target for the development of anti-WSSV therapeutics.
Collapse
Affiliation(s)
- Junyi Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Huimin Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Gaochun Wu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Yinghao Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| |
Collapse
|
10
|
Itagaki M, Kamei N. Clathrin functions in intracellular sorting during receptor-mediated endocytosis. FEBS Lett 2025. [PMID: 39973445 DOI: 10.1002/1873-3468.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
Clathrin is a key protein involved in receptor-mediated endocytosis (RME), which is also known as clathrin-mediated endocytosis (CME). Ligand/receptor binding facilitates clathrin clustering and cell surface invagination. We recently found that the typical CME ligand transferrin (Tf) can be internalized into cells without the clathrin heavy chain (CLTC). In this study, we clarified the unknown roles of clathrin during intracellular trafficking. Microscopic observation revealed that Tf accumulates in the deeper compartments of CLTC-knockdown HeLa cells. A colocalization analysis with endosome/lysosome markers showed that endocytosed Tf moves to early/late endosomes and then to lysosomes in CLTC-knockdown cells. This suggests that clathrin contributes to the recycling and exocytosis of endocytosed molecules.
Collapse
Affiliation(s)
- Mai Itagaki
- Laboratory of Drug Delivery Systems, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Japan
| | - Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Japan
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan
| |
Collapse
|
11
|
Zou L, Chen G, Rong Y, Tang C, Lv X, Fan Y. Three signalling pathways for iron overload in osteoporosis: a narrative review. J Orthop Surg Res 2025; 20:186. [PMID: 39979989 PMCID: PMC11844007 DOI: 10.1186/s13018-025-05588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by a decrease in the amount of bone tissue per unit volume and changes in bone microstructure, often resulting in bone fragility and increased susceptibility to fracture. Iron plays an important role in the normal physiological activities of human body, and its abnormal metabolism is one of the risk factors of osteoporosis. Iron overload, as an abnormality of iron metabolism, has been reported to be associated with osteoporosis in recent years. However, the mechanism of iron overload involved in the process of osteoporosis is not fully understood. In this review, we summarize what we have learned about iron overload-associated bone loss from clinical studies and animal models. Starting from the three signaling pathways of Wnt/β-catenin, BMP/SMADs, PI3K/AKT/mTOR, the mechanism of iron overload affecting the process of osteoporosis was explored, we got the conclusion that iron overload accelerates the process of osteoporosis by inhibiting normal wnt signaling, suppressing the BMP-2/SMADs pathway, down-regulating the PI3K/AKT/mTOR pathway to inhibit bone formation, and destroying the bone strength and load-bearing capacity, which providing a new direction for clinical treatment.
Collapse
Affiliation(s)
- Lingling Zou
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Guiquan Chen
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China.
| | - Yi Rong
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Cai Tang
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Xingmin Lv
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Yundong Fan
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| |
Collapse
|
12
|
Sarkar S, Liu HY, Yuan F, Malady BT, Wang L, Perez J, Lafer EM, Huibregtse JM, Stachowiak JC. Epsin1 enforces a condensation-dependent checkpoint for ubiquitylated cargo during clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637885. [PMID: 39990390 PMCID: PMC11844442 DOI: 10.1101/2025.02.12.637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Clathrin-mediated endocytosis internalizes proteins and lipids from the cell surface, supporting nutrient uptake, signaling, and membrane trafficking. Recent work has demonstrated that a flexible, liquid-like network of initiator proteins is responsible for catalyzing assembly of clathrin-coated vesicles in diverse organisms including yeast, mammals, and plants. How do cells regulate the assembly of this dynamic network to produce cargo-loaded vesicles? Here we reveal the ability of an endocytic adaptor protein, Epsin1, to conditionally stabilize the initiator protein network, creating a cargo-dependent checkpoint during clathrin-mediated endocytosis. Epsin1 is known to recruit ubiquitylated transmembrane proteins to endocytic sites. Using in vitro assays, we demonstrate that Epsin1 uses competitive binding and steric repulsion to destabilize condensation of initiator proteins in the absence of ubiquitin. However, when polyubiquitin is present, Epsin1 binds to both ubiquitin and initiator proteins, creating attractive interactions that stabilize condensation. Similarly, in mammalian cells, endocytic dynamics and ligand uptake are disrupted by removal of either ubiquitin or Epsin1. Surprisingly, when Epsin1 and ubiquitin are removed simultaneously, endocytic defects are rescued to near wildtype levels, although endocytic sites lose the ability to distinguish between ubiquitylated and non-ubiquitylated cargos. Taken together, these results suggest that Epsin1 tunes protein condensation to ensure the presence of ubiquitylated cargo during assembly of clathrin-coated vesicles. More broadly, these findings illustrate how a balance of attractive and repulsive molecular interactions controls the stability of liquid-like protein networks, providing dynamic control over key cellular events.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Hao-Yang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Brandon T. Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jessica Perez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
14
|
Taciak B, Bialasek M, Kubiak M, Marszalek I, Gorczak M, Osadchuk O, Kurpiel D, Strzemecki D, Barwik K, Skorzynski M, Nowakowska J, Lipiński W, Kiraga Ł, Brancewicz J, Klopfleisch R, Krzemiński Ł, Gorka E, Smolarska A, Padzinska-Pruszynska I, Siemińska M, Guzek J, Kutner J, Kisiala M, Wozniak K, Parisi G, Piacentini R, Cassetta L, Forrester LM, Bodnar L, Weiss T, Boffi A, Kucharzewska P, Rygiel TP, Krol M. Harnessing macrophage-drug conjugates for allogeneic cell-based therapy of solid tumors via the TRAIN mechanism. Nat Commun 2025; 16:1327. [PMID: 39900573 PMCID: PMC11790938 DOI: 10.1038/s41467-025-56637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Treatment of solid tumors remains challenging and therapeutic strategies require continuous development. Tumor-infiltrating macrophages play a pivotal role in tumor dynamics. Here, we present a Macrophage-Drug Conjugate (MDC) platform technology that enables loading macrophages with ferritin-drug complexes. We first show that macrophages actively take up human heavy chain ferritin (HFt) in vitro via macrophage scavenger receptor 1 (MSR1). We further manifest that drug-loaded macrophages transfer ferritin to adjacent cancer cells through a process termed 'TRAnsfer of Iron-binding protein' (TRAIN). The TRAIN process requires direct cell-to-cell contact and an immune synapse-like structure. At last, MDCs with various anti-cancer drugs are formulated with their safety and anti-tumor efficacy validated in multiple syngeneic mice and orthotopic human tumor models via different routes of administration. Importantly, MDCs can be prepared in advance and used as thawed products, supporting their clinical applicability. This MDC approach thus represents a promising advancement in the therapeutic landscape for solid tumors.
Collapse
Affiliation(s)
- Bartlomiej Taciak
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maciej Bialasek
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Kubiak
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Malgorzata Gorczak
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | | | | | - Marcin Skorzynski
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Julia Nowakowska
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Łukasz Kiraga
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | | | - Emilia Gorka
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | - Jakub Guzek
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jan Kutner
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Marlena Kisiala
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Wozniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Giacomo Parisi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Rome, Italy
| | - Luca Cassetta
- MRC Centre for Reproductive Health, Queen Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lesley M Forrester
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Lubomir Bodnar
- Cellis AG, Zurich, Switzerland
- Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Alberto Boffi
- Cellis AG, Zurich, Switzerland
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Rome, Italy
| | - Paulina Kucharzewska
- Cellis AG, Zurich, Switzerland.
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Tomasz P Rygiel
- Cellis AG, Zurich, Switzerland.
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Magdalena Krol
- Cellis AG, Zurich, Switzerland.
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
15
|
Zhang D, Duque-Jimenez J, Facchinetti F, Brixi G, Rhee K, Feng WW, Jänne PA, Zhou X. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 2025; 638:787-795. [PMID: 39322661 PMCID: PMC11839386 DOI: 10.1038/s41586-024-07947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Cancer cells require high levels of iron for rapid proliferation, leading to significant upregulation of cell-surface transferrin receptor 1 (TfR1), which mediates iron uptake by binding to the iron-carrying protein transferrin1-3. Leveraging this phenomenon and the fast endocytosis rate of TfR1 (refs. 4,5), we developed transferrin receptor targeting chimeras (TransTACs), a heterobispecific antibody modality for membrane protein degradation. TransTACs are engineered to drive rapid co-internalization of a target protein of interest and TfR1 from the cell surface, and to enable target protein entry into the lysosomal degradation pathway. We show that TransTACs can efficiently degrade a diverse range of single-pass, multi-pass, native or synthetic membrane proteins, including epidermal growth factor receptor, programmed cell death 1 ligand 1, cluster of differentiation 20 and chimeric antigen receptor. In example applications, TransTACs enabled the reversible control of human primary chimeric antigen receptor T cells and the targeting of drug-resistant epidermal growth factor receptor-driven lung cancer with the exon 19 deletion/T790M/C797S mutations in a mouse xenograft model. TransTACs represent a promising new family of bifunctional antibodies for precise manipulation of membrane proteins and targeted cancer therapy.
Collapse
Affiliation(s)
- Dingpeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Francesco Facchinetti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kaitlin Rhee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Singh N, Singh A, Bhatia D. Self-Assembled DNA-Collagen Bioactive Scaffolds Promote Cellular Uptake and Neuronal Differentiation. ACS Biomater Sci Eng 2025; 11:308-321. [PMID: 39630658 DOI: 10.1021/acsbiomaterials.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Different modalities of DNA/collagen complexes have been utilized primarily for gene delivery studies. However, very few studies have investigated the potential of these complexes as bioactive scaffolds. Further, no studies have characterized the DNA/collagen complex formed from the interaction of the self-assembled DNA macrostructure and collagen. Toward this investigation, we report herein the fabrication of novel bioactive scaffolds formed from the interaction of sequence-specific, self-assembled DNA macrostructure and collagen type I. Varying molar ratios of DNA and collagen resulted in highly intertwined fibrous scaffolds with different fibrillar thicknesses. The formed scaffolds were biocompatible and presented as a soft matrix for cell growth and proliferation. Cells cultured on DNA/collagen scaffolds promoted the enhanced cellular uptake of transferrin, and the potential of DNA/collagen scaffolds to induce neuronal cell differentiation was further investigated. The DNA/collagen scaffolds promoted neuronal differentiation of precursor cells with extensive neurite growth in comparison to the control groups. These novel, self-assembled DNA/collagen scaffolds could serve as a platform for the development of various bioactive scaffolds with potential applications in neuroscience, drug delivery, tissue engineering, and in vitro cell culture.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ankur Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
17
|
Troisi R, Galardo F, Ferraro G, Lucignano R, Picone D, Marano A, Trifuoggi M, Sica F, Merlino A. Cisplatin/Apo-Transferrin Adduct: X-ray Structure and Binding to the Transferrin Receptor 1. Inorg Chem 2025; 64:761-765. [PMID: 39711171 DOI: 10.1021/acs.inorgchem.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here, we report the X-ray structure of the adduct formed upon reaction of cisplatin, one of the most prescribed anticancer agents for the clinic treatment of solid tumors, with the apo-form of human serum transferrin (hTF). Two Pt binding sites were identified in both molecules of the adduct present in the crystal asymmetric unit: Pt binds close to the side chains of Met256 and Met499 at the N- and C-lobe, respectively. In the crystal structure, the cisplatin moiety bound to Met256 also interacts with Ser616 from a symmetry related molecule. Structural analyses, together with in solution data, demonstrate that the presence of iron does not affect the ability of hTF to bind cisplatin and that the cisplatin binding does not significantly alter the overall conformation of the different forms of the protein that remain able to form a complex with the transferrin receptor 1 (TfR1). These data suggest that the different hTF forms can be used as nanocarriers for targeted (combined) metallodrug delivery.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Francesco Galardo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| |
Collapse
|
18
|
Pilz M, Kalwarczyk T, Burdzy K, Hołyst R. Quantitative analysis of transferrin uptake into living cells at single-molecule level. Talanta 2025; 282:127031. [PMID: 39447345 DOI: 10.1016/j.talanta.2024.127031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Endocytosis, apart from providing a mechanism for cells to take up nutrients, is the principal route of entry for many nanomedicines. The evaluation of therapeutic delivery efficiency without providing quantitative parameters, like the number of molecules entering the cell and the time of their entry, is very limited. Despite advances in single-molecule methods for in-cell quantitative measurements, they have not become widely used in the study of endocytosis. Their application, however, is challenging owing to the appropriate experimental design and applicable analysis methods. Here, by using an integrated approach based on the multidimensional time-correlated single-photon counting (TCSPC) technique, we demonstrate the quantitative method to measure the time- and concentration-dependent uptake of TRITC-transferrin into living cells with single-molecule sensitivity. The methodology opens possibilities for quantitatively assessing the delivery efficiency of fluorescent molecules into living cells.
Collapse
Affiliation(s)
- Marta Pilz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Burdzy
- Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA
| | - Robert Hołyst
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
19
|
Yaple-Maresh ME, Flores GG, Zimmerman GE, Gomez-Rivera F, Collins KL. Virus-induced vesicular acidification enhances HIV immune evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628989. [PMID: 39763927 PMCID: PMC11702596 DOI: 10.1101/2024.12.17.628989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
To inhibit endocytic entry of some viruses, cells promote acidification of endosomes by expressing the short isoform of human nuclear receptor 7 (NCOA7) which increases activity of vacuolar ATPase (V-ATPase). While we found that HIV-1 infection of primary T cells led to acidification of endosomes, NCOA7 levels were only marginally affected. Contrastingly, levels of the 50 kDa form of the sodium/hydrogen exchanger 6 (NHE6) were greatly reduced. NHE6 overexpression and low concentrations of the V-ATPase inhibitor, concanamycin A, selectively reversed endosomal acidification. Endosomal neutralization by these interventions also reduced Nef-dependent MHC-I downmodulation by our wildtype HIV reporter virus. NHE6 overexpression disrupted MHC-I downmodulation by reducing recruitment of Nef to Rab11+ compartments and inhibiting interactions between Nef, β-COP, and ARF-1. In addition, we found that the HIV Vif protein was required for downmodulation of the 50 kDa form of NHE6 and for endosomal acidification but was dispensable for Nef-dependent MHC-I downmodulation.
Collapse
Affiliation(s)
| | - Giselle G. Flores
- Graduate Program in Biological Chemistry, University of Michigan,
Ann Arbor, MI, 48109, United States
| | - Gretchen E. Zimmerman
- Department of Internal Medicine, University of Michigan, Ann
Arbor, MI, 48109, United States
| | - Francisco Gomez-Rivera
- Graduate Program in Immunology, University of Michigan, Ann
Arbor, MI, 48109, United States
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann
Arbor, MI, 48109, United States
- Graduate Program in Biological Chemistry, University of Michigan,
Ann Arbor, MI, 48109, United States
- Graduate Program in Immunology, University of Michigan, Ann
Arbor, MI, 48109, United States
| |
Collapse
|
20
|
Varalda M, Venetucci J, Nikaj H, Kankara CR, Garro G, Keivan N, Bettio V, Marzullo P, Antona A, Valente G, Gentilli S, Capello D. Second-Generation Antipsychotics Induce Metabolic Disruption in Adipose Tissue-Derived Mesenchymal Stem Cells Through an aPKC-Dependent Pathway. Cells 2024; 13:2084. [PMID: 39768174 PMCID: PMC11674800 DOI: 10.3390/cells13242084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT. While second-generation antipsychotics (SGAs) have significantly improved treatments for mental health disorders, their chronic use is associated with an increased risk of MetS. In this study, we explored the impact of SGAs on ADSCs to better understand their role in MetS and identify potential therapeutic targets. Our findings reveal that olanzapine disrupts lipid droplet formation during adipogenic differentiation, impairing insulin receptor endocytosis, turnover, and signaling. SGAs also alter the endolysosomal compartment, leading to acidic vesicle accumulation and increased lysosomal biogenesis through TFEB activation. PKCζ is crucial for the SGA-induced nuclear translocation of TFEB and acidic vesicle formation. Notably, inhibiting PKCζ restored insulin receptor tyrosine phosphorylation, normalized receptor turnover, and improved downstream signaling following olanzapine treatment. This activation of PKCζ by olanzapine is driven by increased phosphatidic acid synthesis via phospholipase D (PLD), following G protein-coupled receptor (GPCR) signaling activation. Overall, olanzapine and clozapine disrupt endolysosomal homeostasis and insulin signaling in a PKCζ-dependent manner. These findings highlight SGAs as valuable tools for uncovering cellular dysfunction in vWAT during MetS and may guide the development of new therapeutic strategies to mitigate the metabolic side effects of these drugs.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Herald Nikaj
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Chaitanya Reddy Kankara
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Giulia Garro
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nazanin Keivan
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- Pathology Unity, Ospedale “Sant’Andrea”, 13100 Vercelli, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
21
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host clathrin suggests additional contributions for Sca4 during rickettsial infection. Infect Immun 2024; 92:e0026724. [PMID: 39535192 PMCID: PMC11629629 DOI: 10.1128/iai.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single function or interaction, there are a growing number of secreted effectors capable of interacting with multiple host factors. However, few effectors secreted by arthropod-borne obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin in donor cells to promote cell-to-cell spread in the model Rickettsia species R. parkeri. We discovered that Sca4 also binds the host cell protein clathrin heavy chain (CHC, CLTC) via a conserved segment in the Sca4 N-terminus. In mammalian host cells, ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread. Unexpectedly, the contribution of CHC to spread was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell type-specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
Affiliation(s)
- Cassandra J. Vondrak
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Nividha, Maiti A, Parihar K, Chakraborty R, Agarwala P, Sasmal DK, Radhakrishnan R, Bhatia D, Dey KK. Enzyme-Regulated Non-Thermal Fluctuations Enhance Ligand Diffusion and Receptor-Mediated Endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627033. [PMID: 39713409 PMCID: PMC11661126 DOI: 10.1101/2024.12.05.627033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Active enzymes during catalyzing chemical reactions, have been found to generate significant mechanical fluctuations, which can influence the dynamics of their surroundings. These phenomena open new avenues for controlling mass transport in complex and dynamically inhomogeneous environments through localized chemical reactions. To explore this potential, we studied the uptake of transferrin molecules in retinal pigment epithelium (RPE) cells via clathrin-mediated endocytosis. In the presence of enzyme catalysis in the extracellular matrix, we observed a significant enhancement in the transport of fluorophore-tagged transferrin inside the cells. Fluorescence correlation spectroscopy measurements showed substantial increase in transferrin diffusion in the presence of active fluctuations. This study sheds light on the possibility that enzyme-substrate reactions within the extracellular matrix may induce long-range mechanical influences, facilitating targeted material delivery within intracellular milieu more efficiently than passive diffusion. These insights are expected to contribute to the development of better therapeutic strategies by overcoming limitations imposed by slow molecular diffusion under complex environments.
Collapse
Affiliation(s)
- Nividha
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| | - Arnab Maiti
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| | - Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rik Chakraborty
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| | - Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Dibyendu K. Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| |
Collapse
|
23
|
Lambies G, Lee SW, Duong-Polk K, Aza-Blanc P, Maganti S, Galapate CM, Deshpande A, Deshpande AJ, Scott DA, Dawson DW, Commisso C. Cell polarity proteins promote macropinocytosis in response to metabolic stress. Nat Commun 2024; 15:10541. [PMID: 39627191 PMCID: PMC11614886 DOI: 10.1038/s41467-024-54788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Macropinocytosis has emerged as a scavenging pathway that cancer cells exploit to survive in a nutrient-deprived microenvironment. Tumor cells are especially reliant on glutamine for their survival, and in pancreatic ductal adenocarcinoma (PDAC) cells, glutamine deficiency can enhance the stimulation of macropinocytosis. Here, we identify the atypical protein kinase C (aPKC) enzymes, PKCζ and PKCι, as regulators of macropinocytosis. In normal epithelial cells, aPKCs associate with the scaffold proteins Par3 and Par6 to regulate cell polarity, affecting several targets, including the Par1 kinases and we find that each of these proteins is required for macropinocytosis. Mechanistically, aPKCs are regulated by EGFR signaling or by the transcription factor CREM to promote the Par3 relocation to microtubules, facilitating macropinocytosis in a dynein-dependent manner. Importantly, cell fitness impairment caused by aPKC depletion is rescued by the restoration of macropinocytosis and aPKCs support PDAC growth in vivo. Our findings enhance our understanding of the mechanistic underpinnings that control macropinocytic uptake in the context of metabolic stress.
Collapse
Affiliation(s)
- Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Szu-Wei Lee
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pedro Aza-Blanc
- Functional Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska M Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anagha Deshpande
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aniruddha J Deshpande
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
24
|
Hausott B, Pircher L, Kind M, Park JW, Claus P, Obexer P, Klimaschewski L. Sprouty2 Regulates Endocytosis and Degradation of Fibroblast Growth Factor Receptor 1 in Glioblastoma Cells. Cells 2024; 13:1967. [PMID: 39682716 PMCID: PMC11639775 DOI: 10.3390/cells13231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels. SPRY2 overexpression (SPRY2-OE) inhibited clathrin- and caveolae-mediated endocytosis of FGFR1, reduced the number of caveolin-1 vesicles and the uptake of transferrin. Furthermore, FGFR1 protein was decreased by SPRY2-OE, whereas EGFR protein was increased. SPRY2-OE enhanced FGFR1 degradation by increased c-casitas b-lineage lymphoma (c-CBL)-mediated ubiquitination, but it diminished binding of phospholipase Cγ1 (PLCγ1) to FGFR1. Consequently, SPRY2-OE inhibited FGF2-induced activation of PLCγ1, whereas it enhanced EGF-induced PLCγ1 activation. Despite the reduction of FGFR1 protein and the inhibition of FGF signaling, SPRY2-OE increased cell viability, and knockdown of SPRY2 enhanced the sensitivity to cisplatin. These results demonstrate that the inhibitory effect of SPRY2-OE on FGF signaling is at least in part due to the reduction in FGFR1 levels and the decreased binding of PLCγ1 to the receptor.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Lena Pircher
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Michaela Kind
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Jong-Whi Park
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Peter Claus
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Petra Obexer
- Department of Pediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| |
Collapse
|
25
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
26
|
Gomez IM, Uriarte M, Fernandez G, Barrile F, Castrogiovanni D, Cantel S, Fehrentz JA, De Francesco PN, Perello M. Hypothalamic tanycytes internalize ghrelin from the cerebrospinal fluid: Molecular mechanisms and functional implications. Mol Metab 2024; 90:102046. [PMID: 39401613 PMCID: PMC11532763 DOI: 10.1016/j.molmet.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE The peptide hormone ghrelin exerts potent effects in the brain, where its receptor is highly expressed. Here, we investigated the role of hypothalamic tanycytes in transporting ghrelin across the blood-cerebrospinal fluid (CSF) interface. METHODS We investigated the internalization and transport of fluorescent ghrelin (Fr-ghrelin) in primary cultures of rat hypothalamic tanycytes, mouse hypothalamic explants, and mice. We also tested the impact of inhibiting clathrin-mediated endocytosis of ghrelin in the brain ventricular system on the orexigenic and locomotor effects of the hormone. RESULTS In vitro, we found that Fr-ghrelin is selectively and rapidly internalized at the soma of tanycytes, via a GHSR-independent and clathrin-dependent mechanism, and then transported to the endfoot. In hypothalamic explants, we also found that Fr-ghrelin is internalized at the apical pole of tanycytes. In mice, Fr-ghrelin present in the CSF was rapidly internalized by hypothalamic β-type tanycytes in a clathrin-dependent manner, and pharmacological inhibition of clathrin-mediated endocytosis in the brain ventricular system prolonged the ghrelin-induced locomotor effects. CONCLUSIONS We propose that tanycyte-mediated transport of ghrelin is functionally relevant, as it may contribute to reduce the concentration of this peptide hormone in the CSF and consequently shortens the duration of its central effects.
Collapse
Affiliation(s)
- Ivana M Gomez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron-UMR5247, Pôle Chimie Balard Recherche, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron-UMR5247, Pôle Chimie Balard Recherche, Montpellier, France
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
27
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard ML, Price J, Olson JM, Nairn NW. CYpHER: catalytic extracellular targeted protein degradation with high potency and durable effect. Nat Commun 2024; 15:8731. [PMID: 39384759 PMCID: PMC11464628 DOI: 10.1038/s41467-024-52975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal delivery of surface and extracellular targets while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R Crook
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA
- Blaze Bioscience Inc, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | - Gregory P Sevilla
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA
- Blaze Bioscience Inc, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | | | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | | | | | - Jason Price
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | - Natalie W Nairn
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA.
- Blaze Bioscience Inc, Seattle, WA, 98109, USA.
| |
Collapse
|
28
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 PMCID: PMC11736056 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
29
|
Greig J, Bates GT, Yin DI, Briant K, Simonetti B, Cullen PJ, Brodsky FM. CHC22 clathrin recruitment to the early secretory pathway requires two-site interaction with SNX5 and p115. EMBO J 2024; 43:4298-4323. [PMID: 39160272 PMCID: PMC11445476 DOI: 10.1038/s44318-024-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The two clathrin isoforms, CHC17 and CHC22, mediate separate intracellular transport routes. CHC17 performs endocytosis and housekeeping membrane traffic in all cells. CHC22, expressed most highly in skeletal muscle, shuttles the glucose transporter GLUT4 from the ERGIC (endoplasmic-reticulum-to-Golgi intermediate compartment) directly to an intracellular GLUT4 storage compartment (GSC), from where GLUT4 can be mobilized to the plasma membrane by insulin. Here, molecular determinants distinguishing CHC22 from CHC17 trafficking are defined. We show that the C-terminal trimerization domain of CHC22 interacts with SNX5, which also binds the ERGIC tether p115. SNX5, and the functionally redundant SNX6, are required for CHC22 localization independently of their participation in the endosomal ESCPE-1 complex. In tandem, an isoform-specific patch in the CHC22 N-terminal domain separately mediates binding to p115. This dual mode of clathrin recruitment, involving interactions at both N- and C-termini of the heavy chain, is required for CHC22 targeting to ERGIC membranes to mediate the Golgi-bypass route for GLUT4 trafficking. Interference with either interaction inhibits GLUT4 targeting to the GSC, defining a bipartite mechanism regulating a key pathway in human glucose metabolism.
Collapse
Affiliation(s)
- Joshua Greig
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - George T Bates
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Daowen I Yin
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Kit Briant
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Peter J Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Frances M Brodsky
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK.
| |
Collapse
|
30
|
Hao M, Sebag SC, Qian Q, Yang L. Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus. EGASTROENTEROLOGY 2024; 2:e100096. [PMID: 39512752 PMCID: PMC11542681 DOI: 10.1136/egastro-2024-100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating intracellular organelles and metabolite turnover. In response to acute or chronic stress, the lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal biology, followed by exploring the immune and metabolic functions of lysosomes and finally discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. Ultimately, our review aims to enhance our understanding of lysosomal stress in disease pathogenesis, which could potentially lead to the discovery of innovative treatment methods for these conditions.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sara C Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
31
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Bergner T, Cortez Rayas L, Freimann G, Read C, von Einem J. Secondary Envelopment of Human Cytomegalovirus Is a Fast Process Utilizing the Endocytic Compartment as a Major Membrane Source. Biomolecules 2024; 14:1149. [PMID: 39334915 PMCID: PMC11430300 DOI: 10.3390/biom14091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Secondary envelopment of the human cytomegalovirus (HCMV) is a critical but not well-understood process that takes place at the cytoplasmic viral assembly complex (cVAC) where nucleocapsids acquire their envelope by budding into cellular membranes containing viral glycoproteins. Previous studies presented controversial results regarding the composition of the viral envelope, suggesting trans-Golgi and endosomal origins, as well as intersections with the exosomal and endocytic pathways. Here, we investigated the role of endocytic membranes for the secondary envelopment of HCMV by using wheat germ agglutinin (WGA) pulse labeling to label glycoproteins at the plasma membrane and to follow their trafficking during HCMV infection by light microscopy and transmission electron microscopy (TEM). WGA labeled different membrane compartments within the cVAC, including early endosomes, multivesicular bodies, trans-Golgi, and recycling endosomes. Furthermore, TEM analysis showed that almost 90% of capsids undergoing secondary envelopment and 50% of enveloped capsids were WGA-positive within 90 min. Our data reveal extensive remodeling of the endocytic compartment in the late stage of HCMV infection, where the endocytic compartment provides an optimized environment for virion morphogenesis and serves as the primary membrane source for secondary envelopment. Furthermore, we show that secondary envelopment is a rapid process in which endocytosed membranes are transported from the plasma membrane to the cVAC within minutes to be utilized by capsids for envelopment.
Collapse
Affiliation(s)
- Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Gesa Freimann
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
33
|
Aranha MDC, Alencar LMR, Souto EB, Kamei DT, Lopes AM. Dual Chemotherapeutic Loading in Oxalate Transferrin-Conjugated Polymersomes Incorporated into Chitosan Hydrogels for Site-Specific Targeting of Melanoma Cells. Pharmaceuticals (Basel) 2024; 17:1177. [PMID: 39338339 PMCID: PMC11434979 DOI: 10.3390/ph17091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In this work, we developed a smart drug delivery system composed of poly (ethylene glycol)-block-poly (ε-caprolactone) (PEG-PCL)-based polymersomes (Ps) loaded with doxorubicin (DOX) and vemurafenib (VEM). To enhance targeted delivery to malignant melanoma cells, these drug-loaded nanovesicles were conjugated to the oxalate transferrin variant (oxalate Tf) and incorporated into three-dimensional chitosan hydrogels. This innovative approach represents the first application of oxalate Tf for the precision delivery of drug-loaded polymersomes within a semi-solid dosage form based on chitosan hydrogels. These resulting semi-solids exhibited a sustained release profile for both encapsulated drugs. To evaluate their potency, we compared the cytotoxicity of native Tf-Ps with oxalate Tf-Ps. Notably, the oxalate Tf-Ps demonstrated a 3-fold decrease in cell viability against melanoma cells compared to normal cells and were 1.6-fold more potent than native Tf-Ps, indicating the greater potency of this nanoformulation. These findings suggest that dual-drug delivery using an oxalate-Tf-targeting ligand significantly enhances the drug delivery efficiency of Tf-conjugated nanovesicles and offers a promising strategy to overcome the challenge of multidrug resistance in melanoma therapy.
Collapse
Affiliation(s)
- Mariana de C. Aranha
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (EEL/USP), Lorena 12602-810, Brazil;
| | - Luciana M. R. Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Eliana B. Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland;
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, USA
| | - André M. Lopes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (EEL/USP), Lorena 12602-810, Brazil;
| |
Collapse
|
34
|
Vrettos EΙ, Kyrkou SG, Zoi V, Giannakopoulou M, Chatziathanasiadou MV, Kanaki Z, Agalou A, Bistas VP, Kougioumtzi A, Karampelas T, Diamantis DA, Murphy C, Beis D, Klinakis A, Tamvakopoulos C, Kyritsis AP, Alexiou GA, Tzakos AG. A Novel Fluorescent Gemcitabine Prodrug That Follows a Nucleoside Transporter-Independent Internalization and Bears Enhanced Therapeutic Efficacy With Respect to Gemcitabine. Chemistry 2024; 30:e202401327. [PMID: 38941241 DOI: 10.1002/chem.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The multiplexity of cancer has rendered it the second leading cause of mortality worldwide and theragnostic prodrugs have gained popularity in recent years as a means of treatment. Theragnostic prodrugs enable the simultaneous diagnosis and therapy of tumors via high-precision real-time drug release monitoring. Herein, we report the development of the small theragnostic prodrug GF, based on the nucleoside anticancer agent gemcitabine and the fluorescent dye 5(6)-carboxyfluorescein. We have successfully demonstrated its efficient internalization in tumor cells, showing localization throughout both the early and late endocytic pathways. Its mechanism of cell internalization was evaluated, confirming its independence from nucleoside transporters. Its cellular localization via confocal microscopy revealed a clathrin-mediated endocytosis mechanism, distinguishing it from analogous compounds studied previously. Furthermore, GF exhibited stability across various pH values and in human blood plasma. Subsequently, its in vitro cytotoxicity was assessed in three human cancer cell lines (A549, U87 and T98). Additionally, its pharmacokinetic profile in mice was investigated and the consequent drug release was monitored. Finally, its in vivo visualization was accomplished in zebrafish xenotransplantation models and its in vivo efficacy was evaluated in A549 xenografts. The results unveiled an intriguing efficacy profile, positioning GF as a compelling candidate warranting further investigation.
Collapse
Affiliation(s)
| | - Stavroula G Kyrkou
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, GR-45110, Ioannina, Greece
| | | | | | - Zoi Kanaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, GR-11527, Athens, Greece
| | - Adamantia Agalou
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
| | | | | | - Theodoros Karampelas
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
| | | | - Carol Murphy
- Biomedical Research Institute, BRI-FORTH, Ioannina, Greece
| | - Dimitris Beis
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
- School of Health Sciences, University of Ioannina, Ioannina, GR-45110, Greece
| | - Apostolos Klinakis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, GR-11527, Athens, Greece
| | - Constantin Tamvakopoulos
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
| | | | - George A Alexiou
- Neurosurgical Institute, University of Ioannina, GR-45110, Ioannina, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece
| |
Collapse
|
35
|
Yuan F, Gollapudi S, Day KJ, Ashby G, Sangani A, Malady BT, Wang L, Lafer EM, Huibregtse JM, Stachowiak JC. Ubiquitin-driven protein condensation stabilizes clathrin-mediated endocytosis. PNAS NEXUS 2024; 3:pgae342. [PMID: 39253396 PMCID: PMC11382290 DOI: 10.1093/pnasnexus/pgae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live-cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live-cell settings, dynamic exchange of Eps15 proteins, a measure of protein network stability, was decreased by Eps15-ubiquitin interactions and increased by loss of ubiquitin. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic internalization.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Sangani
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon T Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
36
|
Budhiraja S, McManus G, Baisiwala S, Perrault EN, Cho S, Saathoff M, Chen L, Park CH, Kazi HA, Dmello C, Lin P, James CD, Sonabend AM, Heiland DH, Ahmed AU. ARF4-mediated retrograde trafficking as a driver of chemoresistance in glioblastoma. Neuro Oncol 2024; 26:1421-1437. [PMID: 38506351 PMCID: PMC11300013 DOI: 10.1093/neuonc/noae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cellular functions hinge on the meticulous orchestration of protein transport, both spatially and temporally. Central to this process is retrograde trafficking, responsible for targeting proteins to the nucleus. Despite its link to many diseases, the implications of retrograde trafficking in glioblastoma (GBM) are still unclear. METHODS To identify genetic drivers of TMZ resistance, we conducted comprehensive CRISPR-knockout screening, revealing ADP-ribosylation factor 4 (ARF4), a regulator of retrograde trafficking, as a major contributor. RESULTS Suppressing ARF4 significantly enhanced TMZ sensitivity in GBM patient-derived xenograft (PDX) models, leading to improved survival rates (P < .01) in both primary and recurrent lines. We also observed that TMZ exposure stimulates ARF4-mediated retrograde trafficking. Proteomics analysis of GBM cells with varying levels of ARF4 unveiled the influence of this pathway on EGFR signaling, with increased nuclear trafficking of EGFR observed in cells with ARF4 overexpression and TMZ treatment. Additionally, spatially resolved RNA-sequencing of GBM patient tissues revealed substantial correlations between ARF4 and crucial nuclear EGFR (nEGFR) downstream targets, such as MYC, STAT1, and DNA-PK. Decreased activity of DNA-PK, a DNA repair protein downstream of nEGFR signaling that contributes to TMZ resistance, was observed in cells with suppressed ARF4 levels. Notably, treatment with DNA-PK inhibitor, KU-57788, in mice with a recurrent PDX line resulted in prolonged survival (P < .01), highlighting the promising therapeutic implications of targeting proteins reliant on ARF4-mediated retrograde trafficking. CONCLUSIONS Our findings demonstrate that ARF4-mediated retrograde trafficking contributes to the development of TMZ resistance, cementing this pathway as a viable strategy to overcome chemoresistance in GBM.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ella N Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sia Cho
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Miranda Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hasaan A Kazi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
37
|
Brambillasca S, Cera MR, Andronache A, Dey SK, Fagá G, Fancelli D, Frittoli E, Pasi M, Robusto M, Varasi M, Scita G, Mercurio C. Novel selective inhibitors of macropinocytosis-dependent growth in pancreatic ductal carcinoma. Biomed Pharmacother 2024; 177:116991. [PMID: 38906021 PMCID: PMC11287759 DOI: 10.1016/j.biopha.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 μM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.
Collapse
Affiliation(s)
- Silvia Brambillasca
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Maria Rosaria Cera
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Adrian Andronache
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sumit Kumar Dey
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fagá
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Fancelli
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Maurizio Pasi
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Ciro Mercurio
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
38
|
Carecho R, Marques D, Carregosa D, Masuero D, Garcia-Aloy M, Tramer F, Passamonti S, Vrhovsek U, Ventura MR, Brito MA, Nunes Dos Santos C, Figueira I. Circulating low-molecular-weight (poly)phenol metabolites in the brain: unveiling in vitro and in vivo blood-brain barrier transport. Food Funct 2024; 15:7812-7827. [PMID: 38967492 DOI: 10.1039/d4fo01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Circulating metabolites resulting from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally explored, particularly concerning their brain accessibility. Our goal is to disclose (poly)phenol metabolites' blood-brain barrier (BBB) transport, in vivo and in vitro, as well as their role at BBB level. For three selected metabolites, benzene-1,2-diol-3-sulfate/benzene-1,3-diol-2-sulfate (pyrogallol-sulfate - Pyr-sulf), benzene-1,3-diol-6-sulfate (phloroglucinol-sulfate - Phlo-sulf), and phenol-3-sulfate (resorcinol-sulfate - Res-sulf), BBB transport was assessed in human brain microvascular endothelial cells (HBMEC). Their potential in modulating in vitro BBB properties at circulating concentrations was also studied. Metabolites' fate towards the brain, liver, kidney, urine, and blood was disclosed in Wistar rats upon injection. Transport kinetics in HBMEC highlighted different BBB permeability rates, where Pyr-sulf emerged as the most in vitro BBB permeable metabolite. Pyr-sulf was also the most potent regarding BBB properties improvement, namely increased beta(β)-catenin membrane expression and reduction of zonula occludens-1 membrane gaps. Whereas no differences were observed for transferrin, increased expression of caveolin-1 upon Pyr-sulf and Res-sulf treatments was found. Pyr-sulf was also capable of modulating gene and protein expression of some solute carrier transporters. Notably, each of the injected metabolites exhibited a unique tissue distribution in vivo, with the remarkable ability to almost immediately reach the brain.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy
| | - Mar Garcia-Aloy
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| |
Collapse
|
39
|
Brisse M, Ly H. GBP1, an interferon-inducible GTPase, inhibits Hantaan viral entry by restricting clathrin-mediated endocytosis. J Med Virol 2024; 96:e29818. [PMID: 39011797 DOI: 10.1002/jmv.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
40
|
Joshi K, York HM, Wright CS, Biswas RR, Arumugam S, Iyer-Biswas S. Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics. Annu Rev Biophys 2024; 53:193-220. [PMID: 38346244 DOI: 10.1146/annurev-biophys-030422-044448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.
Collapse
Affiliation(s)
- Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Rudro R Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
- Single Molecule Science, University of New South Wales, Sydney, New South Wales, Australia
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, Victoria, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
41
|
Banerjee S, Minshall N, Webb H, Carrington M. How are Trypanosoma brucei receptors protected from host antibody-mediated attack? Bioessays 2024; 46:e2400053. [PMID: 38713161 DOI: 10.1002/bies.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Adler J, Bernhem K, Parmryd I. Membrane topography and the overestimation of protein clustering in single molecule localisation microscopy - identification and correction. Commun Biol 2024; 7:791. [PMID: 38951588 PMCID: PMC11217499 DOI: 10.1038/s42003-024-06472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
43
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host endocytic machinery suggests additional roles for Sca4 during rickettsial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600492. [PMID: 38979345 PMCID: PMC11230260 DOI: 10.1101/2024.06.24.600492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single specific function or interaction, there are a growing number of secreted pathogen effectors capable of interacting with multiple host factors. However, few effectors secreted by obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin to promote cell-to-cell spread in the model Rickettsia species R. parkeri . We discovered that Sca4 also binds the host cell endocytic factor clathrin heavy chain (CHC, CLTC ) via a conserved segment in the Sca4 N-terminus. Ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread between mammalian cells. This activity was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction also regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell-type specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
|
44
|
Batistatou N, Kritzer JA. Comparing Cell Penetration of Biotherapeutics across Human Cell Lines. ACS Chem Biol 2024; 19:1351-1365. [PMID: 38836425 PMCID: PMC11687341 DOI: 10.1021/acschembio.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A major obstacle in biotherapeutics development is maximizing cell penetration. Ideally, assays would allow for optimization of cell penetration in the cell type of interest early in the drug development process. However, few assays exist to compare cell penetration across different cell types independent of drug function. In this work, we applied the chloroalkane penetration assay (CAPA) in seven mammalian cell lines as well as primary cells. Careful controls were used to ensure that data could be compared across cell lines. We compared the nuclear penetration of several peptides and drug-like oligonucleotides and saw significant differences among the cell lines. To help explain these differences, we quantified the relative activities of endocytosis pathways in these cell lines and correlated them with the penetration data. Based on these results, we knocked down clathrin in a cell line with an efficient permeability profile and observed reduced penetration of peptides but not oligonucleotides. Finally, we used small-molecule endosomal escape enhancers and observed enhancement of cell penetration of some oligonucleotides, but only in some of the cell lines tested. CAPA data provide valuable points of comparison among different cell lines, including primary cells, for evaluating the cell penetration of various classes of peptides and oligonucleotides.
Collapse
Affiliation(s)
- Nefeli Batistatou
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
45
|
Van den Bossche F, Tevel V, Gilis F, Gaussin JF, Boonen M, Jadot M. Residence of the Nucleotide Sugar Transporter Family Members SLC35F1 and SLC35F6 in the Endosomal/Lysosomal Pathway. Int J Mol Sci 2024; 25:6718. [PMID: 38928424 PMCID: PMC11203873 DOI: 10.3390/ijms25126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.
Collapse
Affiliation(s)
- François Van den Bossche
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Virginie Tevel
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Florentine Gilis
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Michel Jadot
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
| |
Collapse
|
46
|
Jürgens DC, Müller JT, Nguyen A, Merkel OM. Tailoring lipid nanoparticles for T-cell targeting in allergic asthma: Insights into efficacy and specificity. Eur J Pharm Biopharm 2024; 198:114242. [PMID: 38442794 PMCID: PMC7616735 DOI: 10.1016/j.ejpb.2024.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Asthma impacts over 300 million patients globally, with significant health implications, especially in cases of its allergic subtype. The disease is characterized by a complex interplay of airway inflammation and immune responses, often mediated by Th2 cell-related cytokines. In this study, we engineered lipid nanoparticles (LNPs) to specifically deliver therapeutic siRNA via the transferrin receptor to T cells. Strain-promoted azide-alkyne cycloaddition (SPAAC) was employed for the conjugation of transferrin ligands to PEGylated lipids in the LNPs, with the goal of enhancing cellular uptake and gene knockdown. The obtained LNPs exhibited characteristics that make them suitable for pulmonary delivery. Using methods such as nanoparticle tracking analysis (NTA) and enzyme-linked immunosorbent assay (ELISA), we determined the average number of transferrin molecules bound to individual LNPs. Additionally, we found that cellular uptake was ligand-dependent, achieving a GATA3 knockdown of more than 50% in relevant in vitro and ex vivo models. Notably, our findings highlight the limitations inherent to modifying the surface of LNPs, particularly with regard to their targeting capabilities. This work paves the way for future research aimed at optimizing targeted LNPs for the treatment of immunologic diseases such as allergic asthma.
Collapse
Affiliation(s)
- David C Jürgens
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Joschka T Müller
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Anny Nguyen
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany; Ludwig-Maximilians-University Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
47
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard M, Price J, Olson JM, Nairn NW. CYpHER: Catalytic extracellular targeted protein degradation with high potency and durable effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581471. [PMID: 38712232 PMCID: PMC11071310 DOI: 10.1101/2024.02.21.581471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R. Crook
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gregory P. Sevilla
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Emily J. Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | | | | | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - James M. Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - Natalie W. Nairn
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
| |
Collapse
|
48
|
Marrocco F, Falvo E, Mosca L, Tisci G, Arcovito A, Reccagni A, Limatola C, Bernardini R, Ceci P, D'Alessandro G, Colotti G. Nose-to-brain selective drug delivery to glioma via ferritin-based nanovectors reduces tumor growth and improves survival rate. Cell Death Dis 2024; 15:262. [PMID: 38615026 PMCID: PMC11016100 DOI: 10.1038/s41419-024-06653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Gliomas are among the most fatal tumors, and the available therapeutic options are very limited. Additionally, the blood-brain barrier (BBB) prevents most drugs from entering the brain. We designed and produced a ferritin-based stimuli-sensitive nanocarrier with high biocompatibility and water solubility. It can incorporate high amounts of the potent topoisomerase 1 inhibitor Genz-644282. Here, we show that this nanocarrier, named The-0504, can cross the BBB and specifically deliver the payload to gliomas that express high amounts of the ferritin/transferrin receptor TfR1 (CD71). Intranasal or intravenous administration of The-0504 both reduce tumor growth and improve the survival rate of glioma-bearing mice. However, nose-to-brain administration is a simpler and less invasive route that may spare most of the healthy tissues compared to intravenous injections. For this reason, the data reported here could pave the way towards a new, safe, and direct ferritin-based drug delivery method for brain diseases, especially brain tumors.
Collapse
Affiliation(s)
- Francesco Marrocco
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Elisabetta Falvo
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Giada Tisci
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Alice Reccagni
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute 17 Pasteur Italia, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Roberta Bernardini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Pierpaolo Ceci
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
- Thena Biotech, Latina, Italy.
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
49
|
Koike S, Jahn R. Rab GTPases and phosphoinositides fine-tune SNAREs dependent targeting specificity of intracellular vesicle traffic. Nat Commun 2024; 15:2508. [PMID: 38509070 PMCID: PMC10954720 DOI: 10.1038/s41467-024-46678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
In the secretory pathway the destination of trafficking vesicles is determined by specific proteins that, with the notable exception of SNAREs, are recruited from soluble pools. Previously we have shown that microinjected proteoliposomes containing early or late endosomal SNAREs, respectively, are targeted to the corresponding endogenous compartments, with targeting specificity being dependent on the recruitment of tethering factors by some of the SNAREs. Here, we show that targeting of SNARE-containing liposomes is refined upon inclusion of polyphosphoinositides and Rab5. Intriguingly, targeting specificity is dependent on the concentration of PtdIns(3)P, and on the recruitment of PtdIns(3)P binding proteins such as rabenosyn-5 and PIKfyve, with conversion of PtdIns(3)P into PtdIns(3,5)P2 re-routing the liposomes towards late endosomes despite the presence of GTP-Rab5 and early endosomal SNAREs. Our data reveal a complex interplay between permissive and inhibitory targeting signals that sharpen a basic targeting and fusion machinery for conveying selectivity in intracellular membrane traffic.
Collapse
Affiliation(s)
- Seiichi Koike
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- University of Toyama, Laboratory of Molecular and Cellular Biology, Department of Life Sciences and Bioengineering, 3190 Gofuku, Toyama City, 930-8555, Japan
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
50
|
Zhang F, Li K, Zhang W, Zhao Z, Chang F, Du J, Zhang X, Bao K, Zhang C, Shi L, Liu Z, Dai X, Chen C, Wang DW, Xian Z, Jiang H, Ai D. Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis. Circulation 2024; 149:843-859. [PMID: 38018467 DOI: 10.1161/circulationaha.123.066110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.
Collapse
Affiliation(s)
- Fangni Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kan Li
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Fangyuan Chang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Jie Du
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
- Beijing Anzhen Hospital, Capital Medical University, China (J.D.)
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, China (J.D.)
- Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China (J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, China (J.D.)
| | - Xu Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Chunyong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Zongwei Liu
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Xiangchen Dai
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Chen Chen
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Dao Wen Wang
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Zhong Xian
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| |
Collapse
|