1
|
Saleh AA, Moawad AS, Yang N, Zheng Y, Chen C, Wang X, Gao B, Song C. Association of a 7.9 kb Endogenous Retrovirus Insertion in Intron 1 of CD36 with Obesity and Fat Measurements in Sheep. Mob DNA 2025; 16:12. [PMID: 40087777 PMCID: PMC11908002 DOI: 10.1186/s13100-025-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Endogenous retroviruses (ERVs) enhance genetic diversity in vertebrates, including sheep. This study investigates the role of Ov-ERV-R13-CD36 within CD36 gene and its association with phenotypic traits in sheep. Analyzing 58 sheep genomes revealed that ERVs constitute approximately 6.02% to 10.05% of the genomic content. We identified 31 retroviral insertion polymorphisms (RIPs) from 28 ERV groups. Among these, Ov-ERV-R13-CD36, which is specifically classified as a beta retrovirus, was selected for further analysis due to its location in CD36 gene, known for its role in fat metabolism, obesity (OB), body weight (BW), and body condition score (BCS). We assessed the association of Ov-ERV-R13-CD36 with OB and BCS across six sheep breeds, utilizing data from 1,355 individuals. RESULTS Genomic analyses confirmed that Ov-ERV-R13-CD36 is located within CD36 gene on Chromosome 4, with polymorphisms across various sheep genomes. In a subset of 43 genomes, 22 contained the Ov-ERV-R13-CD36 insertion, while 21 exhibited wild-type variants. The studied animals showed variability in BCS and fat content associated with the Ov-ERV-R13-CD36 variant. Notably, Rahmani sheep exhibited a significantly higher BCS (4.62), categorized as obese, while Barki sheep displayed the lowest BCS (2.73), classified as thin to average. The association analysis indicated that sheep with the RIP-/- genotype correlated with higher OB and BCS, particularly in Rahmani and Romanov x Rahmani breeds. CONCLUSIONS Findings suggest that Ov-ERV-R13-CD36 within CD36 gene correlates with beneficial economic traits associated with OB and BCS, particularly in Rahmani and Romanov x Rahmani breeds. This indicates that Ov-ERV-R13-CD36 could be a valuable genetic marker for breeding programs aimed at enhancing traits like fat deposition and body condition in sheep.
Collapse
Affiliation(s)
- Ahmed A Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
| | - Ali Shoaib Moawad
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Naisu Yang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yao Zheng
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Huang L, Zhang T, Zhu Y, Lai X, Tao H, Xing Y, Li Z. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. J Inflamm Res 2025; 18:1575-1588. [PMID: 39925938 PMCID: PMC11806725 DOI: 10.2147/jir.s502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications which exerts detrimental effects on mothers and children. Emerging evidence has pointed to the important role of the fatty acid transporter protein CD36 in the pathogenesis of GDM. As a heavily glycosylated transmembrane protein, CD36 is widely expressed in diverse cell types, including placental trophoblasts, monocytes/macrophages, adipocytes, and pancreatic cells et al. CD36 plays a key role in lipid metabolism and signal transduction in the pathophysiological mechanism of GDM. The modified expression and functionality of CD36 may contribute to inflammation and oxidative stress in maternal tissues, interfere with insulin signaling, and subsequently influence maternal insulin sensitivity and fetal growth, increasing the risk for GDM. This review provides an overview of the current knowledge regarding the expression and function of CD36 in various tissues throughout pregnancy and explores how CD36 dysregulation can activate inflammatory pathways, worsen insulin resistance, and disrupt lipid metabolism, thereby complicating the necessary metabolic adjustments during pregnancy. Furthermore, the review delves into emerging therapeutic approaches targeting CD36 signaling to alleviate the impacts of GDM. Understanding the involvement of CD36 in GDM could yield crucial insights into its mechanisms and potential interventions for enhancing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Tong Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Xueling Lai
- Shenzhen Guangming Maternal & Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Lin C, Guo Z, Li H, Lai Z, Zhang J, Xie S, Tan Y, Jing C. Oxidative stress mediates the association of organophosphate flame retardants with metabolic obesity in U.S. adults: A combined epidemiologic and bioinformatic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125267. [PMID: 39510304 DOI: 10.1016/j.envpol.2024.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Obesity is a global public health issue, with limited epidemiologic studies on the relationship and mechanisms between organophosphate flame retardants (OPFRs) and metabolic obesity phenotypes (MOPs). We aimed to explore the link between OPFRs metabolite (m-OPFRs) and MOPs using a combined epidemiologic and bioinformatic approach. We used cross-sectional survey data from the U.S. National Health and Nutrition Examination Survey (2011-2018) to analyze the relationship between m-OPFRs and metabolic health obesity (MHO), as well as metabolic unhealthy obesity (MUO). The dataset encompasses eligible adults to assess the impact of individual, mixed, and mediated effects on the outcome variables through multivariate logistic regression, Bayesian kernel machine regression (BKMR), and mediation analysis. Multiple logistic regression models, stratified by tertiles of exposure showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) levels in the body significantly increased the risk of MHO, with OR and 95%CI of 1.454 (1.082, 1.953) for the second tertile (T2) and 1.598 (1.126, 2.268) for the third tertile (T3), compared to the first tertile (T1). Increased levels of BDCIPP in T3 (1.452(1.013, 2.081)) are associated with MUO, compared to T1. Mixed m-OPFRs and MHO risk in BMKR were positively correlated, with BDCIPP being the primary contributor. We found that the serum uric acid (SUA) and white blood cell count (WBC) indicators significantly mediated the association between BDCIPP and MHO (P < 0.05). Our study suggests that OPFRs, either individual or mixed, are associated with two distinct MOPs, with oxidative stress playing an important role. In addition, in silico analysis was used to screen for shared genes, and eight shared genes and eleven biological pathways identified during the screening process were used to construct the adverse outcome pathway, which suggests that exposure to OPFRs may activate the peroxisome proliferator-activated receptor (PPAR) pathway, thereby increasing the risk of obesity. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chuhang Lin
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Zhengtian Lai
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jing Zhang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shen Xie
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
4
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Targeting Metabolic Syndrome Pathways: Carrot microRNAs As Potential Modulators. ACS OMEGA 2024; 9:21891-21903. [PMID: 38799337 PMCID: PMC11112692 DOI: 10.1021/acsomega.3c09633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Metabolic syndrome is a condition characterized by metabolic alterations that culminate in chronic noncommunicable diseases of high morbidity and mortality, such as cardiovascular diseases, type 2 diabetes, nonalcoholic fatty liver disease, and colon cancer. Developing new therapeutic strategies with a multifactorial approach is important since current therapies focus on only one or two components of the metabolic syndrome. In this sense, plant-based gene regulation represents an innovative strategy to prevent or modulate human metabolic pathologies, including metabolic syndrome. Here, using a computational and systems biology approach, it was found that carrot microRNAs can modulate key BMPs/SMAD signaling members, C/EBPs, and KLFs involved in several aspects associated with metabolic syndrome, including the hsa04350:TGF-beta signaling pathway, hsa04931:insulin resistance, hsa04152:AMPK signaling pathway, hsa04933:AGE-RAGE signaling pathway in diabetic complications, hsa04010:MAPK signaling pathway, hsa04350:TGF-beta signaling pathway, hsa01522:endocrine resistance, and hsa04910:insulin signaling pathway. These data demonstrated the potential applications of carrot microRNAs as effective food-based therapeutics for obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| |
Collapse
|
6
|
Yen BL, Wang LT, Wang HH, Hung CP, Hsu PJ, Chang CC, Liao CY, Sytwu HK, Yen ML. Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD +/SIRT1 axis. J Biomed Sci 2024; 31:49. [PMID: 38735943 PMCID: PMC11089752 DOI: 10.1186/s12929-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan.
| | - Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei, 11042, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No.250, Wuxing Street, Taipei, 11042, Taiwan
| | - Hsiu-Huang Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chin-Pao Hung
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Chien-Yu Liao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Microbiology & Immunology, NDMC, No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| |
Collapse
|
7
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
8
|
Hosni S, Kilian V, Klümper N, Gabbia D, Sieckmann K, Corvino D, Winkler A, Saponaro M, Wörsdörfer K, Schmidt D, Hahn O, Zanotto I, Bertlich M, Toma M, Bald T, Eckstein M, Hölzel M, Geyer M, Ritter M, Wachten D, De Martin S, Alajati A. Adipocyte Precursor-Derived NRG1 Promotes Resistance to FGFR Inhibition in Urothelial Carcinoma. Cancer Res 2024; 84:725-740. [PMID: 38175774 PMCID: PMC10911805 DOI: 10.1158/0008-5472.can-23-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Aberrations of the fibroblast growth factor receptor (FGFR) family members are frequently observed in metastatic urothelial cancer (mUC), and blocking the FGF/FGFR signaling axis is used as a targeted therapeutic strategy for treating patients. Erdafitinib is a pan-FGFR inhibitor, which has recently been approved by the FDA for mUC with FGFR2/3 alterations. Although mUC patients show initial response to erdafitinib, acquired resistance rapidly develops. Here, we found that adipocyte precursors promoted resistance to erdafitinib in FGFR-dependent bladder and lung cancer in a paracrine manner. Moreover, neuregulin 1 (NRG1) secreted from adipocyte precursors was a mediator of erdafitinib resistance by activating human epidermal growth factor receptor 3 (ERBB3; also known as HER3) signaling, and knockdown of NRG1 in adipocyte precursors abrogated the conferred paracrine resistance. NRG1 expression was significantly downregulated in terminally differentiated adipocytes compared with their progenitors. Pharmacologic inhibition of the NRG1/HER3 axis using pertuzumab reversed erdafitinib resistance in tumor cells in vitro and prolonged survival of mice bearing bladder cancer xenografts in vivo. Remarkably, data from single-cell RNA sequencing revealed that NRG1 was enriched in platelet-derived growth factor receptor-A (PDGFRA) expressing inflammatory cancer-associated fibroblasts, which is also expressed on adipocyte precursors. Together, this work reveals a paracrine mechanism of anti-FGFR resistance in bladder cancer, and potentially other cancers, that is amenable to inhibition using available targeted therapies. SIGNIFICANCE Acquired resistance to FGFR inhibition can be rapidly promoted by paracrine activation of the NRG1/HER3 axis mediated by adipocyte precursors and can be overcome by the combination of pertuzumab and erdafitinib treatment. See related commentary by Kolonin and Anastassiou, p. 648.
Collapse
Affiliation(s)
- Sana Hosni
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Viola Kilian
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Katharina Sieckmann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Anja Winkler
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Miriam Saponaro
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Karin Wörsdörfer
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Doris Schmidt
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Oliver Hahn
- Clinic of Urology, University Hospital Göttingen, Göttingen, Germany
- Clinic of Urology, University Hospital Würzburg, Würzburg, Germany
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marina Bertlich
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn (UKB), Bonn, Germany
| | - Tobias Bald
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Manuel Ritter
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Abdullah Alajati
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
9
|
Vietor I, Cikes D, Piironen K, Vasakou T, Heimdörfer D, Gstir R, Erlacher MD, Tancevski I, Eller P, Demetz E, Hess MW, Kuhn V, Degenhart G, Rozman J, Klingenspor M, Hrabe de Angelis M, Valovka T, Huber LA. The negative adipogenesis regulator Dlk1 is transcriptionally regulated by Ifrd1 (TIS7) and translationally by its orthologue Ifrd2 (SKMc15). eLife 2023; 12:e88350. [PMID: 37603466 PMCID: PMC10468205 DOI: 10.7554/elife.88350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/20/2023] [Indexed: 08/23/2023] Open
Abstract
Delta-like homolog 1 (Dlk1), an inhibitor of adipogenesis, controls the cell fate of adipocyte progenitors. Experimental data presented here identify two independent regulatory mechanisms, transcriptional and translational, by which Ifrd1 (TIS7) and its orthologue Ifrd2 (SKMc15) regulate Dlk1 levels. Mice deficient in both Ifrd1 and Ifrd2 (dKO) had severely reduced adipose tissue and were resistant to high-fat diet-induced obesity. Wnt signaling, a negative regulator of adipocyte differentiation, was significantly upregulated in dKO mice. Elevated levels of the Wnt/β-catenin target protein Dlk1 inhibited the expression of adipogenesis regulators Pparg and Cebpa, and fatty acid transporter Cd36. Although both Ifrd1 and Ifrd2 contributed to this phenotype, they utilized two different mechanisms. Ifrd1 acted by controlling Wnt signaling and thereby transcriptional regulation of Dlk1. On the other hand, distinctive experimental evidence showed that Ifrd2 acts as a general translational inhibitor significantly affecting Dlk1 protein levels. Novel mechanisms of Dlk1 regulation in adipocyte differentiation involving Ifrd1 and Ifrd2 are based on experimental data presented here.
Collapse
Affiliation(s)
- Ilja Vietor
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - Domagoj Cikes
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- IMBA, Institute of MolecularBiotechnology of the Austrian Academy of SciencesViennaAustria
| | - Kati Piironen
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of HelsinkiHelsinkiFinland
| | - Theodora Vasakou
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - David Heimdörfer
- Division of Genomics and RNomics, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - Ronald Gstir
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- ADSI – Austrian Drug Screening Institute GmbHInnsbruckAustria
| | | | - Ivan Tancevski
- Department of Internal Medicine II, Innsbruck Medical UniversityInnsbruckAustria
| | - Philipp Eller
- Department of Internal Medicine II, Innsbruck Medical UniversityInnsbruckAustria
| | - Egon Demetz
- Department of Internal Medicine II, Innsbruck Medical UniversityInnsbruckAustria
| | - Michael W Hess
- Division of Histology and Embryology, Innsbruck Medical UniversityInnsbruckAustria
| | - Volker Kuhn
- Department Trauma Surgery, Innsbruck Medical UniversityInnsbruckAustria
| | - Gerald Degenhart
- Department of Radiology, Medical University InnsbruckInnsbruckAustria
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, School of Life SciencesWeihenstephanGermany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of MunichFreisingGermany
- ZIEL - Institute for Food & Health, Technical University of MunichFreisingGermany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Chair of Experimental Genetics, Technical University of Munich, School of Life SciencesFreisingGermany
| | - Taras Valovka
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- ADSI – Austrian Drug Screening Institute GmbHInnsbruckAustria
| |
Collapse
|
10
|
Han YH, Kee JY. Extract of Isatidis Radix Inhibits Lipid Accumulation in In Vitro and In Vivo by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1426. [PMID: 37507964 PMCID: PMC10376543 DOI: 10.3390/antiox12071426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Isatidis Radix (IR), the root of Isatis tinctoria L. belonging to Brassicaceae, has been traditionally used as a fever reducer. Although some pharmacological effects, such as anti-diabetes, anti-virus, and anti-inflammatory, have been reported, there is no study on the anti-obesity effect of IR. This study used 3T3-L1 cells, human mesenchymal adipose stem cells (hAMSCs), and a high-fat diet (HFD)-induced obese mouse model to confirm the anti-adipogenic effect of IR. Intracellular lipid accumulation in 3T3-L1 cells and hAMSCs was decreased by IR treatment.IR extract especially suppressed reactive oxygen species (ROS) production through a cluster of differentiation 36 (CD36)-AMP-activated protein kinase (AMPK) pathway. Consequently, the expressions of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding proteins alpha (C/EBPα), and fatty acid synthesis (FAS) were inhibited by IR extract. In addition, β-oxidation-related genes were also decreased by treatment of IR extract. IR inhibited weight gain through this cascade in the HFD-induced obese mouse model. IR significantly suppressed lipid accumulation in epididymal white adipose tissue (eWAT). Furthermore, the administration of IR extract decreased serum free fatty acid (FFA), total cholesterol (TC), and LDL cholesterol, suggesting that it could be a potential drug for obesity by inhibiting lipid accumulation.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
11
|
Clemente-Olivo MP, Hernández-Quiles M, Sparrius R, van der Stoel MM, Janssen V, Habibe JJ, van den Burg J, Jongejan A, Alcaraz-Sobrevals P, van Es R, Vos H, Kalkhoven E, de Vries CJM. Early adipogenesis is repressed through the newly identified FHL2-NFAT5 signaling complex. Cell Signal 2023; 104:110587. [PMID: 36610523 DOI: 10.1016/j.cellsig.2023.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The LIM-domain-only protein FHL2 is a modulator of signal transduction and has been shown to direct the differentiation of mesenchymal stem cells towards osteoblast and myocyte phenotypes. We hypothesized that FHL2 may simultaneously interfere with the induction of the adipocyte lineage. Therefore, we investigated the role of FHL2 in adipocyte differentiation. For these studies pre-adipocytes isolated from mouse adipose tissue and the 3T3-L1 (pre)adipocyte cell line were applied. We performed FHL2 gain of function and knockdown experiments followed by extensive RNAseq analyses and phenotypic characterization of the cells by oil-red O (ORO) lipid staining. Through affinity-purification mass spectrometry (AP-MS) novel FHL2 interacting proteins were identified. Here we report that FHL2 is expressed in pre-adipocytes and for accurate adipocyte differentiation, this protein needs to be downregulated during the early stages of adipogenesis. More specifically, constitutive overexpression of FHL2 drastically inhibits adipocyte differentiation in 3T3-L1 cells, which was demonstrated by suppressed activation of the adipogenic gene expression program as shown by RNAseq analyses, and diminished lipid accumulation. Analysis of the protein-protein interactions mediating this repressive activity of FHL2 on adipogenesis revealed the interaction of FHL2 with the Nuclear factor of activated T-cells 5 (NFAT5). NFAT5 is an established inhibitor of adipocyte differentiation and its knockdown rescued the inhibitory effect of FHL2 overexpression on 3T3-L1 differentiation, indicating that these proteins act cooperatively. We present a new regulatory function of FHL2 in early adipocyte differentiation and revealed that FHL2-mediated inhibition of pre-adipocyte differentiation is dependent on its interaction with NFAT5. FHL2 expression increases with aging, which may affect mesenchymal stem cell differentiation, more specifically inhibit adipocyte differentiation.
Collapse
Affiliation(s)
- Maria P Clemente-Olivo
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rinske Sparrius
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Miesje M van der Stoel
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Vera Janssen
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Jayron J Habibe
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Janny van den Burg
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC location University of Amsterdam, Department of Bioinformatics, Amsterdam, the Netherlands
| | - Paula Alcaraz-Sobrevals
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carlie J M de Vries
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Zhao C, Hu B, Zhang Z, Luo Q, Nie Q, Zhang X, Li H. CD36 AFFECTS CHICKEN CARCASS, SKIN YELLOWNESS Detection of CD36 gene polymorphism associated with chicken carcass traits and skin yellowness. Poult Sci 2023; 102:102691. [PMID: 37120870 PMCID: PMC10173766 DOI: 10.1016/j.psj.2023.102691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Investigations into the association between chicken traits and genetic variations provide helpful breeding information to improve production performance and economic benefits in chickens. The single nucleotide polymorphism technique is an important method in agricultural molecular breeding. In this study, we detected 11 SNPs in the CD36 gene, 2 SNPs (g.-1974 A>G, g.-1888 T>C) located in the 5' flanking regions, 8 SNPs (g.23496 G>A, g.23643 C>T, g.23931 T>C, g.23937 G>A, g.31256 C>A, g.31258 C>T, g.31335 C>T, g.31534 A>C) located in the intron region, 1 SNPs (g.23743 G>T) located in the exon region and it belongs to synonymous mutation. In SNPs g.23743 G>T, the abdominal fat weight and abdominal fat weight rate of the GG genotype were lower than that of the TT genotype. In SNPs g.23931 T>C, the full-bore weight rate and half-bore weight rate of the TT genotype were higher compared with the CC genotype. And the SNPs g.-1888 T>C, g.23496 G>A, g.23643 C>T, g.31335 C>T and g.31534 A>C were significantly associated with skin yellowness traits, the cloacal skin yellowness before slaughter of the TT genotype was higher than that of the TC and CC genotype in SNPs g.-1888 T>C. Furthermore, 3 haplotypes of the above eleven SNPs were calculated and they correlated with heart weight, stomach weight, wing weight, leg skin yellowness and shin skin yellowness before slaughter. Finally, the CD36 expression profile displayed the expression pattern of CD36 mRNA variation in different tissues.
Collapse
|
13
|
English J, Orofino J, Cederquist CT, Paul I, Li H, Auwerx J, Emili A, Belkina A, Cardamone D, Perissi V. GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Mol Metab 2023; 69:101682. [PMID: 36731652 PMCID: PMC9922684 DOI: 10.1016/j.molmet.2023.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Carly T. Cederquist
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Indranil Paul
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Anna Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
14
|
FABP4 Controls Fat Mass Expandability (Adipocyte Size and Number) through Inhibition of CD36/SR-B2 Signalling. Int J Mol Sci 2023; 24:ijms24021032. [PMID: 36674544 PMCID: PMC9867004 DOI: 10.3390/ijms24021032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.
Collapse
|
15
|
Pieters V, Rjaibi ST, Singh K, Li NT, Khan ST, Nunes SS, Dal Cin A, Gilbert P, McGuigan AP. A three-dimensional human adipocyte model of fatty acid-induced obesity. Biofabrication 2022; 14. [PMID: 35896099 DOI: 10.1088/1758-5090/ac84b1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
Obesity prevalence has reached pandemic proportions, leaving individuals at high risk for the development of diseases such as cancer and type 2 diabetes. In obesity, to accommodate excess lipid storage, adipocytes become hypertrophic, which is associated with an increased pro-inflammatory cytokine secretion and dysfunction of metabolic processes such as insulin signaling and lipolysis. Targeting adipocyte dysfunction is an important strategy to prevent the development of obesity-associated disease. However, it is unclear how accurately animal models reflect human biology, and the long-term culture of human hypertrophic adipocytes in an in vitro 2D monolayer is challenging due to the buoyant nature of adipocytes. Here we describe the development of a human 3D in vitro disease model that recapitulates hallmarks of obese adipocyte dysfunction. First, primary human adipose-derived mesenchymal stromal cells are embedded in hydrogel, and infiltrated into a thin cellulose scaffold. The thin microtissue profile allows for efficient assembly and image-based analysis. After adipocyte differentiation, the scaffold is stimulated with oleic or palmitic acid to mimic caloric overload. Using functional assays, we demonstrated that this treatment induced important obese adipocyte characteristics such as a larger lipid droplet size, increased basal lipolysis, insulin resistance and a change in macrophage gene expression through adipocyte-conditioned media. This 3D disease model mimics physiologically relevant hallmarks of obese adipocytes, to enable investigations into the mechanisms by which dysfunctional adipocytes contribute to disease.
Collapse
Affiliation(s)
- Vera Pieters
- University of Toronto, 200 College Street, Toronto, Ontario, M5R3E5, CANADA
| | - Saifedine T Rjaibi
- University of Toronto, 200 College Street, Toronto, Ontario, M5R3E5, CANADA
| | - Kanwaldeep Singh
- University of Toronto, 200 College Street, Toronto, Ontario, M5R 3E5, CANADA
| | - Nancy T Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 1A1, CANADA
| | - Safwat T Khan
- University of Toronto, 200 College Street, Toronto, Ontario, M5R 3E5, CANADA
| | - Sara S Nunes
- University of Toronto, 200 College Street, Toronto, Ontario, M5R 3E5, CANADA
| | - Arianna Dal Cin
- McMaster University, 504-304 Victoria Ave North, Hamilton, Ontario, L8L 5G4, CANADA
| | - Penney Gilbert
- University of Toronto, 200 College Street, Toronto, Ontario, M5R 3E5, CANADA
| | - Alison P McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Office: WB338, Walberg Building,, 200 College Street,, Toronto, ON, M5S 3E5, Toronto, Ontario, M5S 1A1, CANADA
| |
Collapse
|
16
|
Olona A, Hateley C, Guerrero A, Ko JH, Johnson MR, Anand PK, Thomas D, Gil J, Behmoaras J. Cardiac glycosides cause cytotoxicity in human macrophages and ameliorate white adipose tissue homeostasis. Br J Pharmacol 2022; 179:1874-1886. [PMID: 33665823 DOI: 10.1111/bph.15423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiac glycosides inhibit Na+ /K+ -ATPase and are used to treat heart failure and arrhythmias. They can induce inflammasome activation and pyroptosis in macrophages, suggesting cytotoxicity, which remains to be elucidated in human tissues. EXPERIMENTAL APPROACH To determine the cell-type specificity of this cytotoxicity, we used human monocyte-derived macrophages and non-adherent peripheral blood cells from healthy donors, plus omental white adipose tissue, stromal vascular fraction-derived pre-adipocytes and adipocytes from obese patients undergoing bariatric surgery. All these cells/tissues were treated with nanomolar concentrations of ouabain (50, 100, 500 nM) to investigate the level of cytotoxicity and the mechanisms leading to cell death. In white adipose tissue, we investigated ouabain-mediated cytotoxicity by measuring insulin sensitivity, adipose tissue function and extracellular matrix deposition ex vivo. KEY RESULTS Ouabain induced cell death through pyroptosis and apoptosis, and was more effective in monocyte-derived macrophages compared to non-adherent peripheral blood mononuclear cell populations. This cytotoxicity is dependent on K+ flux, as ouabain causes intracellular depletion of K+ and accumulation of Na+ and Ca2+ . Consistently, the cell death caused by these ion imbalances can be rescued by addition of potassium chloride to human monocyte-derived macrophages. Remarkably, when white adipose tissue explants from obese patients are cultured with nanomolar concentrations of ouabain, this causes depletion of macrophages, down-regulation of type VI collagen levels and amelioration of insulin sensitivity ex vivo. CONCLUSION AND IMPLICATIONS The use of nanomolar concentration of cardiac glycosides could be an attractive therapeutic treatment for metabolic syndrome, characterized by pathogenic infiltration and activation of macrophages. LINKED ARTICLES This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Antoni Olona
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Ana Guerrero
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Paras K Anand
- Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - David Thomas
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Jesus Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
17
|
Protein Expression of AEBP1, MCM4, and FABP4 Differentiate Osteogenic, Adipogenic, and Mesenchymal Stromal Stem Cells. Int J Mol Sci 2022; 23:ijms23052568. [PMID: 35269711 PMCID: PMC8910760 DOI: 10.3390/ijms23052568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells. However, it is apparent that the transformation processes are extremely complex and cause cellular heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic (AD) or osteoblastic (OB) differentiation at the proteome level. Comparative proteomic profiling was performed using tandem mass spectrometry in data-independent acquisition mode. Proteins were quantified by deep neural networks in library-free mode and correlated to the Molecular Signature Database (MSigDB) hallmark gene set collections for functional annotation. We analyzed 4108 proteins across all samples, which revealed a distinct clustering between MSCs and cell differentiation states. Protein expression profiling identified activation of the Peroxisome proliferator-activated receptors (PPARs) signaling pathway after AD. In addition, two distinct protein marker panels could be defined for osteoblastic and adipocytic cell lineages. Hereby, overexpression of AEBP1 and MCM4 for OB as well as of FABP4 for AD was detected as the most promising molecular markers. Combination of deep neural network and machine-learning algorithms with data-independent mass spectrometry distinguish MSCs and cell lineages after adipogenic or osteoblastic differentiation. We identified specific proteins as the molecular basis for bone formation, which could be used for regenerative medicine in the future.
Collapse
|
18
|
Regulatory mechanisms of the early phase of white adipocyte differentiation: an overview. Cell Mol Life Sci 2022; 79:139. [PMID: 35184223 PMCID: PMC8858922 DOI: 10.1007/s00018-022-04169-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
The adipose
organ comprises two main fat depots termed white and brown adipose tissues. Adipogenesis is a process leading to newly differentiated adipocytes starting from precursor cells, which requires the contribution of many cellular activities at the genome, transcriptome, proteome, and metabolome levels. The adipogenic program is accomplished through two sequential phases; the first includes events favoring the commitment of adipose tissue stem cells/precursors to preadipocytes, while the second involves mechanisms that allow the achievement of full adipocyte differentiation. While there is a very large literature about the mechanisms involved in terminal adipogenesis, little is known about the first stage of this process. Growing interest in this field is due to the recent identification of adipose tissue precursors, which include a heterogenous cell population within different types of adipose tissue as well as within the same fat depot. In addition, the alteration of the heterogeneity of adipose tissue stem cells and of the mechanisms involved in their commitment have been linked to adipose tissue development defects and hence to the onset/progression of metabolic diseases, such as obesity. For this reason, the characterization of early adipogenic events is crucial to understand the etiology and the evolution of adipogenesis-related pathologies, and to explore the adipose tissue precursors’ potential as future tools for precision medicine.
Collapse
|
19
|
Hanschkow M, Boulet N, Kempf E, Bouloumié A, Kiess W, Stein R, Körner A, Landgraf K. Expression of the Adipocyte Progenitor Markers MSCA1 and CD36 is Associated With Adipose Tissue Function in Children. J Clin Endocrinol Metab 2022; 107:e836-e851. [PMID: 34448000 PMCID: PMC8764220 DOI: 10.1210/clinem/dgab630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/05/2022]
Abstract
CONTEXT MSCA1 (mesenchymal stem cell antigen 1) and CD36 (cluster of differentiation 36) have been described as novel adipocyte progenitor markers in adults with a potential relevance for obesity and adipocyte progenitor function. OBJECTIVE With the early manifestation of obesity in children and formation of adipose tissue (AT) dysfunction, children provide the opportunity to characterize the function of MSCA1 and CD36 during physiological AT accumulation and with obesity and related disease. METHODS We investigated MSCA1 and CD36 expression in adipocytes and stroma vascular fraction (SVF) cells from 133 children of the Leipzig AT Childhood cohort with regard to AT accumulation and biology. In a subsample we analyzed how MSCA1 and CD36 expression is related to adipose progenitor capacities in vitro (ie, proliferation, differentiation and mitochondrial function). RESULTS Both MSCA1 and CD36 are differentially expressed in adipocytes and SVF cells of children. MSCA1 expression is positively correlated to obesity-associated AT dysfunction (ie, adipocyte hypertrophy and serum high-sensitivity C-reactive protein), and high SVF MSCA1 expression is associated with increased mitochondrial respiration in vitro. CD36 expression is not associated with AT dysfunction but SVF CD36 expression is downregulated in children with overweight and obesity and shows a positive association with the differentiation capacity of SVF cells ex vivo and in vitro. CONCLUSION Both MSCA1 and CD36 are associated with obesity-related alterations in AT of children. In particular, CD36 expression predicts adipogenic potential of SVF cells, indicating a potential role in the regulation of adipocyte hyperplasia and hypertrophy with obesity development in children.
Collapse
Affiliation(s)
- Martha Hanschkow
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Nathalie Boulet
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Elena Kempf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Anne Bouloumié
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Wieland Kiess
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Robert Stein
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Antje Körner
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Kathrin Landgraf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Correspondence: Kathrin Landgraf, PhD, Center for Pediatric Research Leipzig (CPL), Liebigstr. 19-21, 04103 Leipzig, Germany. E-mail:
| |
Collapse
|
20
|
Vercalsteren E, Vranckx C, Vermeire I, Gooijen M, Lijnen R, Scroyen I. Serum amyloid A3 deficiency impairs in vitro and in vivo adipocyte differentiation. Adipocyte 2021; 10:242-250. [PMID: 33896367 PMCID: PMC8078753 DOI: 10.1080/21623945.2021.1916220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Obesity, caused by an excess adipose tissue, is one of the biggest health-threats of the 21st century. Adipose tissue expansion occurs through two processes: (i) hypertrophy, and (ii) hyperplasia, the formation of new adipocytes, also termed adipogenesis. Recently, serum amyloid A3 (Saa3) has been implicated in adipogenesis. Therefore, the aim of this study was to investigate the effect of Saa3 on adipogenesis using both an in vitro and in vivo murine model. Saa3 gene silenced pre-adipocytes ha a lower expression of pro-adipogenic markers and less lipid accumulation, indicating impaired adipogenesis. Furthermore, male NUDE mice, injected with Saa3 gene silenced pre-adipocytes developed smaller fat pads with smaller adipocytes and lower expression of pro-adipogenic markers than their control counterparts. This confirms that Saa3 gene silencing indeed impairs adipogenesis, both in vitro and in vivo. These results indicate a clear role for Saa3 in adipogenesis and open new perspectives in the battle against obesity.
Collapse
Affiliation(s)
- Ellen Vercalsteren
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ines Vermeire
- Health Department, University Colleges Leuven Limburg, Leuven, Belgium
| | - Max Gooijen
- Health Department, University Colleges Leuven Limburg, Leuven, Belgium
| | - Roger Lijnen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Health Department, University Colleges Leuven Limburg, Leuven, Belgium
| |
Collapse
|
21
|
Mentese A, Dogramaci S, Demir S, Yaman SO, Ince I, Altay DU, Erdem M, Turan I, Alver A. The effect of homocysteine on the expression of CD36, PPARγ, and C/EBPα in adipose tissue of normal and obese mice. Arch Physiol Biochem 2021; 127:437-444. [PMID: 31373231 DOI: 10.1080/13813455.2019.1648517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to investigate the effect of homocysteine (Hcy) on CD36, PPARγ, and C/EBPα gene and protein expression in adipose tissue obtained from normal and high-calorie diet obesity models. CD36, PPARγ, and C/EBPα gene expression and protein levels in adipose tissue specimens were determined using the RT-PCR and ELISA methods, respectively. Significantly increased CD36 gene expression was observed in adipose tissue from obese mice, while Hcy significantly reduced CD36 gene expression in adipose tissue from normal and obese mice. PPARγ and C/EBPα gene expression levels decreased significantly in all groups compared to the normal group. In addition, levels of both PPARγ and C/EBPα gene expression were lower with Hcy supplementation compared to their own controls. In conclusion, Hcy's reduction of CD36 gene expression in adipose tissue may be one probable factor in hyperhomocysteinemia representing an independent risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmet Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Seniz Dogramaci
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Imran Ince
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Diler Us Altay
- Department of Chemistry and Chemical Processing Technology, Ulubey Vocational School, Ordu University, Ordu, Turkey
| | - Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ibrahim Turan
- Department of Genetic and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gumushane, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
22
|
Li B, Yang J, Gong Y, Xiao Y, Zeng Q, Xu K, Duan Y, He J, He J, Ma H. Integrated Analysis of Liver Transcriptome, miRNA, and Proteome of Chinese Indigenous Breed Ningxiang Pig in Three Developmental Stages Uncovers Significant miRNA-mRNA-Protein Networks in Lipid Metabolism. Front Genet 2021; 12:709521. [PMID: 34603377 PMCID: PMC8481880 DOI: 10.3389/fgene.2021.709521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
23
|
Zhang J, Li Q, Nogoy KMC, Sun J, Sun B, Wang Y, Tang L, Yu J, Jin X, Li X, Choi SH. Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:919-933. [PMID: 34447967 PMCID: PMC8367402 DOI: 10.5187/jast.2021.e78] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
We hypothesized that the unsaturated fatty acid palmitoleic acid (POA) could promote the expression of adipogenic/lipogenic genes in bovine skeletal muscle satellite cells (BSCs). The BSCs were cultured in a growth medium containing 10% fetal bovine serum. When the cells reached 80%-90% confluence, we used the differentiation medium with 5% horse serum for differentiation for 96 h. The differentiation medium contained 50 µM, 100 µM and 200 µM POA. Control BSC were cultured only in differentiation media. Compared with the control BSC, the POA BSC significantly up-regulated the expression of paired box 3 (Pax3) and paired box 7 (Pax7) and down-regulated myogenin gene expression (p < 0.01), which indicates a depression in muscle fiber development. However, all POA treatments up-regulated the expression of the adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha and beta (C/EBP α and C/EBP β), and other genes (p < 0.01) and increased the expression of PAT-family proteins and the concentration of adiponectin in the media. These results indicate that POA can convert part of BSCs into adipocytes.
Collapse
Affiliation(s)
- Junfang Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Qiang Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | | | - Jianfu Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Bin Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Ying Wang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Lin Tang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Jia Yu
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Seong-Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
24
|
Jiang CL, Chen YF, Lin FJ. Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing β-hydroxybutyrate production from precursor cells. FASEB J 2021; 35:e21760. [PMID: 34309918 DOI: 10.1096/fj.202100298rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022]
Abstract
White adipose tissue (WAT) has the capacity to undergo a white-to-beige phenotypic switch, known as browning, in response to stimuli such as cold. However, the mechanism underlying beige adipocyte formation is largely unknown. Apolipoprotein E (ApoE) is highly induced in WAT and has been implicated in lipid metabolism. Here, we show that ApoE deficiency in mice increased oxygen consumption and thermogenesis and enhanced adipose browning pattern in inguinal WAT (iWAT), with associated characteristics such as increased Ucp1 and Pparγ expression. At the cellular level, ApoE deficient beige adipocytes had increased glucose uptake and higher mitochondrial respiration than wild-type cells. Mechanistically, we showed that ApoE deficient iWAT and primary adipose precursor cells activated the thermogenic genes program by stimulating the production of ketone body β-hydroxybutyrate (βHB), a novel adipose browning promoting factor. This was accompanied by increased expression of genes involved in ketogenesis and could be compromised by the treatment for ketogenesis inhibitors. Consistently, ApoE deficient mice show higher serum βHB level than wild-type mice in the fed state and during cold exposure. Our results further demonstrate that the increased βHB production in ApoE deficient adipose precursor cells could be attributed, at least in part, to enhanced Cd36 expression and CD36-mediated fatty acid utilization. Our findings uncover a previously uncharacterized role for ApoE in energy homeostasis via its cell-autonomous action in WAT.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Fang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
26
|
Guha D, Mukherjee R, Aich P. Effects of two potential probiotic Lactobacillus bacteria on adipogenesis in vitro. Life Sci 2021; 278:119538. [PMID: 33932443 DOI: 10.1016/j.lfs.2021.119538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
AIMS Overweight is a major global health problem. Various methodologies to get rid of the extra fat are available, but usually, those are associated with adverse side effects. Probiotics, on the contrary, seem to have the potential to help reduce fat accumulation without much apparent adversity. In this study, we have evaluated a pair of well-documented probiotics for their anti-obesogenic effects. MAIN METHODS We used strains of Lactobacillus acidophilus (LA) and a cocktail (LDB-ST) of Lactobacillus delbruckei sp. bulgaricus (LDB) and Streptococcus thermophilus (ST) in this study. The murine pre-adipocyte cell line 3T3-L1 was terminally differentiated to matured adipocytes to use as a model to evaluate the bacteria's anti-obesogenic effects. The optimal dose for treatment of both the probiotics was determined using a cell viability assay. We assessed the probiotic internalization potential of differentiated 3T3-L1 cells by flow cytometry, fluorescence microscopy, and cell lysis method. We determined the lipolytic and anti-adipogenic potential of probiotics by intracellular lipid staining, spectrophotometry, and gene expression analysis. KEY FINDINGS Both probiotics were effective lipolytic agents as revealed by reducing cellular lipids and down-regulation of mammalian adipogenesis marker genes in terminally differentiated 3T3-L1 cells. SIGNIFICANCE Previous studies from our group had proven the immune-modulatory properties of these probiotics on an immune-biased mouse model. The present study demonstrates LA and LDB-ST to be effective against adipogenesis. Further in vivo studies will be conducted to strengthen this claim.
Collapse
Affiliation(s)
- Dipanjan Guha
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist.-Khurda, Odisha, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Raktim Mukherjee
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist.-Khurda, Odisha, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist.-Khurda, Odisha, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
27
|
Muoio F, Panella S, Jossen V, Lindner M, Harder Y, Müller M, Eibl R, Tallone T. Human Adipose Stem Cells (hASCs) Grown on Biodegradable Microcarriers in Serum- and Xeno-Free Medium Preserve Their Undifferentiated Status. J Funct Biomater 2021; 12:jfb12020025. [PMID: 33923488 PMCID: PMC8167760 DOI: 10.3390/jfb12020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are a viable alternative to static planar cultivation systems to obtain high numbers of clinical-grade hASCs. Nevertheless, the production of considerable biomass in a short time must not be achieved to the detriment of the cells' quality. To facilitate the scalable expansion of hASC, we have developed a new serum- and xeno-free medium (UrSuppe) and a biodegradable microcarrier (BR44). In this study, we investigated whether the culture of hASCs in defined serum-free conditions on microcarriers (3D) or on planar (2D) cell culture vessels may influence the expression of some marker genes linked with the immature degree or the differentiated status of the cells. Furthermore, we investigated whether the biomaterials, which form our biodegradable MCs, may affect cell behavior and differentiation. The results confirmed that the quality and the undifferentiated status of the hASCs are very well preserved when they grow on BR44 MCs in defined serum-free conditions. Indeed, the ASCs showed a gene expression profile more compatible with an undifferentiated status than the same cells grown under standard planar conditions.
Collapse
Affiliation(s)
- Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Valentin Jossen
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | | | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, EOC, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | | | - Regine Eibl
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
- Correspondence: ; Tel.: +41-91-805-38-85
| |
Collapse
|
28
|
Chemically Defined Xeno- and Serum-Free Cell Culture Medium to Grow Human Adipose Stem Cells. Cells 2021; 10:cells10020466. [PMID: 33671568 PMCID: PMC7926673 DOI: 10.3390/cells10020466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is an abundant source of stem cells. However, liposuction cannot yield cell quantities sufficient for direct applications in regenerative medicine. Therefore, the development of GMP-compliant ex vivo expansion protocols is required to ensure the production of a "cell drug" that is safe, reproducible, and cost-effective. Thus, we developed our own basal defined xeno- and serum-free cell culture medium (UrSuppe), specifically formulated to grow human adipose stem cells (hASCs). With this medium, we can directly culture the stromal vascular fraction (SVF) cells in defined cell culture conditions to obtain hASCs. Cells proliferate while remaining undifferentiated, as shown by Flow Cytometry (FACS), Quantitative Reverse Transcription PCR (RT-qPCR) assays, and their secretion products. Using the UrSuppe cell culture medium, maximum cell densities between 0.51 and 0.80 × 105 cells/cm2 (=2.55-4.00 × 105 cells/mL) were obtained. As the expansion of hASCs represents only the first step in a cell therapeutic protocol or further basic research studies, we formulated two chemically defined media to differentiate the expanded hASCs in white or beige/brown adipocytes. These new media could help translate research projects into the clinical application of hASCs and study ex vivo the biology in healthy and dysfunctional states of adipocytes and their precursors. Following the cell culture system developers' practice and obvious reasons related to the formulas' patentability, the defined media's composition will not be disclosed in this study.
Collapse
|
29
|
Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021; 48:743-761. [PMID: 33275195 DOI: 10.1007/s11033-020-06036-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
30
|
Furuhata R, Kabe Y, Kanai A, Sugiura Y, Tsugawa H, Sugiyama E, Hirai M, Yamamoto T, Koike I, Yoshikawa N, Tanaka H, Koseki M, Nakae J, Matsumoto M, Nakamura M, Suematsu M. Progesterone receptor membrane associated component 1 enhances obesity progression in mice by facilitating lipid accumulation in adipocytes. Commun Biol 2020; 3:479. [PMID: 32887925 PMCID: PMC7473863 DOI: 10.1038/s42003-020-01202-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptor membrane associated component 1 (PGRMC1) exhibits haem-dependent dimerization on cell membrane and binds to EGF receptor and cytochromes P450 to regulate cancer proliferation and chemoresistance. However, its physiological functions remain unknown. Herein, we demonstrate that PGRMC1 is required for adipogenesis, and its expression is significantly enhanced by insulin or thiazolidine, an agonist for PPARγ. The haem-dimerized PGRMC1 interacts with low-density lipoprotein receptors (VLDL-R and LDL-R) or GLUT4 to regulate their translocation to the plasma membrane, facilitating lipid uptake and accumulation, and de-novo fatty acid synthesis in adipocytes. These events are cancelled by CO through interfering with PGRMC1 dimerization. PGRMC1 expression in mouse adipose tissues is enhanced during obesity induced by a high fat diet. Furthermore, adipose tissue-specific PGRMC1 knockout in mice dramatically suppressed high-fat-diet induced adipocyte hypertrophy. Our results indicate a pivotal role of PGRMC1 in developing obesity through its metabolic regulation of lipids and carbohydrates in adipocytes.
Collapse
Affiliation(s)
- Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakae
- Department of Physiology, International University of Health and Welfare School of Medicine, Narita, 286-8686, Japan
| | - Morio Matsumoto
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
31
|
Xie G, Wang Y, Xu Q, Hu M, Zhu J, Bai W, Lin Y. Knockdown of adiponectin promotes the adipogenesis of goat intramuscular preadipocytes. Anim Biotechnol 2020; 33:408-416. [PMID: 32755436 DOI: 10.1080/10495398.2020.1800484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intramuscular fat (IMF) content determined by the intramuscular preadipocytes differentiation has a huge influence on the sensory quality traits of meats. It was reported that the adiponectin (ADIPOQ) gene could promote adipocytes differentiation, but the underlying molecular and functional characterization of the ADIPOQ for regulating goat IMF deposition remained unknown. Herein, the knockdown of ADIPOQ was mediated by siRNAs during goat intramuscular preadipocytes differentiation. Also, the qRT-PCR technique was performed to detect the mRNA levels of target genes in multiply experiment groups. These results showed that the ADIPOQ was expressed more than ∼400 folds in subcutaneous adipose tissue compared to that of heart tissue, and the mRNA level of ADIPOQ reached a peak at Hour 60 during the differentiation process, while at Hour 36 did ADIPOR1 and ADIPOR2. Moreover, the knockdown of ADIPOQ promoted the intramuscular preadipocytes differentiation and accelerated the lipid accumulation in the mature adipocytes with down-regulating the ADIPOR1 and preadipocyte factor 1 (Pref-1) mRNA levels and up-regulating the mRNA expression levels of the CAAT/enhancer-binding proteins (C/EBPs) and transcription factor peroxisomal proliferator-activated receptor γ (PPARγ), etc. Our study will provide a new opposite insight that the inhibition of ADIPOQ expression during intramuscular preadipocytes differentiation promotes goat IMF deposition.
Collapse
Affiliation(s)
- Guangjie Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Meng Hu
- College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| |
Collapse
|
32
|
Elafin inhibits obesity, hyperglycemia, and liver steatosis in high-fat diet-treated male mice. Sci Rep 2020; 10:12785. [PMID: 32733043 PMCID: PMC7393145 DOI: 10.1038/s41598-020-69634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Elafin is an antimicrobial and anti-inflammatory protein. We hypothesize that elafin expression correlates with diabetes. Among non-diabetic and prediabetic groups, men have significantly higher serum elafin levels than women. Men with type 2 diabetes mellitus (T2DM) have significantly lower serum elafin levels than men without T2DM. Serum elafin levels are inversely correlated with fasting blood glucose and hemoglobin A1c levels in men with T2DM, but not women with T2DM. Lentiviral elafin overexpression inhibited obesity, hyperglycemia, and liver steatosis in high-fat diet (HFD)-treated male mice. Elafin-overexpressing HFD-treated male mice had increased serum leptin levels, and serum exosomal miR181b-5p and miR219-5p expression. Transplantation of splenocytes and serum exosomes from elafin-overexpressing HFD-treated donor mice reduced food consumption and fat mass, and increased adipose tissue leptin mRNA expression in HFD-treated recipient mice. Elafin improved leptin sensitivity via reduced interferon-gamma expression and induced adipose leptin expression via increased miR181b-5p and miR219-5p expression. Subcutaneous and oral administration of modified elafin inhibited obesity, hyperglycemia, and liver steatosis in the HFD-treated mice. Circulating elafin levels are associated with hyperglycemia in men with T2DM. Elafin, via immune-derived miRNAs and cytokine, activates leptin sensitivity and expression that subsequently inhibit food consumption, obesity, hyperglycemia, and liver steatosis in HFD-treated male mice.
Collapse
|
33
|
Liu Y, Zhang X, Zhan L, Xu C, Sun L, Jiang H, Sun C, Li X. LC-Q-TOF-MS Characterization of Polyphenols from White Bayberry Fruit and Its Antidiabetic Effect in KK-A y Mice. ACS OMEGA 2020; 5:17839-17849. [PMID: 32715269 PMCID: PMC7377368 DOI: 10.1021/acsomega.0c02759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 05/25/2023]
Abstract
The present study is to investigate the polyphenolic composition and in vivo antidiabetic effect of white-fleshed Chinese bayberry cultivar "Shui Jing". By liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), 38 polyphenols were identified in the Shui Jing fruit extract (SJE), where proanthocyanidins (PAs), including epigallocatechin gallate (EGCG), as well as flavonols, including myricitrin and quercetrin, were the predominant ingredients. After a 5-week experiment, the SJE (200 mg/kg bodyweight) significantly reduced fasting blood glucose, elevated glucose tolerance, and insulin sensitivity in diabetic KK-Ay mice. It markedly attenuated bodyweight gain and decreased glycolipid metabolism-related markers including insulin, leptin, glucagon, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and alanine aminotransferase (ALT) levels in mice. Liver weight and hepatic lipid accumulation were also significantly reduced by the SJE. Gene expressions of insulin 1 (INS1) and glycogen synthase kinase 3 β (GSK3b) were markedly inhibited while the hepatic phosphorylation of AMPKα was significantly increased in the liver of SJE-treated mice, indicating that the SJE may exert an antidiabetic effect through an AMPK-dependent pathway. In conclusion, white bayberry rich in PAs and flavonols may have great potential in the regulation of diabetes mellitus.
Collapse
Affiliation(s)
- Yilong Liu
- Zhejiang
Provincial Key Laboratory of Horticultural Plant Integrative Biology/The
State Agriculture Ministry Laboratory of Horticultural Plant Growth,
Development and Quality Improvement, Zhejiang
University, Hangzhou 310058, China
| | - Xianan Zhang
- Forestry
and Fruit Research Institute, Shanghai Academy
of Agricultural Sciences, Shanghai 201403, China
| | - Liuhuan Zhan
- Zhejiang
Provincial Key Laboratory of Horticultural Plant Integrative Biology/The
State Agriculture Ministry Laboratory of Horticultural Plant Growth,
Development and Quality Improvement, Zhejiang
University, Hangzhou 310058, China
| | - Chang Xu
- Zhejiang
Provincial Key Laboratory of Horticultural Plant Integrative Biology/The
State Agriculture Ministry Laboratory of Horticultural Plant Growth,
Development and Quality Improvement, Zhejiang
University, Hangzhou 310058, China
| | - Linxiao Sun
- Key
Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic
Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline
in Surgery, Wenzhou Medical University First
Affiliated Hospital, Wenzhou 325000, China
| | - Huamin Jiang
- Hangzhou
Lichuan Ecological Agriculture Development Co., Ltd., Hangzhou 311123, China
| | - Chongde Sun
- Zhejiang
Provincial Key Laboratory of Horticultural Plant Integrative Biology/The
State Agriculture Ministry Laboratory of Horticultural Plant Growth,
Development and Quality Improvement, Zhejiang
University, Hangzhou 310058, China
| | - Xian Li
- Zhejiang
Provincial Key Laboratory of Horticultural Plant Integrative Biology/The
State Agriculture Ministry Laboratory of Horticultural Plant Growth,
Development and Quality Improvement, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
34
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
35
|
Luo X, Li Y, Yang P, Chen Y, Wei L, Yu T, Xia J, Ruan XZ, Zhao L, Chen Y. Obesity induces preadipocyte CD36 expression promoting inflammation via the disruption of lysosomal calcium homeostasis and lysosome function. EBioMedicine 2020; 56:102797. [PMID: 32516742 PMCID: PMC7281849 DOI: 10.1016/j.ebiom.2020.102797] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Preadipocyte is closely related to obesity-induced inflammation. The impairment of autophagic flux by defective lysosomal function has been observed in adipose tissue from obese mice. While the fatty acid translocase CD36 is an important immuno-metabolic receptor, it remains unclear whether preadipocyte CD36 is involved in adipose tissue inflammation and whether CD36 regulates lysosomal function. Methods Using visceral adipose tissue from obese patients, a high-fat diet (HFD)-induced obese mice model, primary mouse preadipocytes and 3T3L1 cells we analyzed whether and how preadipocyte CD36 modulates lysosomal function and adipose tissue inflammation. Findings CD36 expression in preadipocytes is induced in obese patients and HFD-fed mice, accompanied with the disruption of lysosome function. CD36 knockout protects primary preadipocytes of HFD-fed mice from lysosomal impairment. In vitro, CD36 interacts with Fyn to phosphorylate and activate Inositol (1,4,5)-trisphosphate receptor 1 (IP3R1), causing excess calcium transport from endoplasmic reticulum (ER) to lysosome, which results in lysosomal impairment and inflammation. Moreover, IP3R inhibitor 2-aminoethoxydiphenyl borate (2APB) attenuates lysosomal impairment, inflammation and lipid accumulation in CD36-overexpressing preadipocytes. Interpretation Our data support that the abnormal upregulation of CD36 in preadipocytes may contribute to the development of adipose tissue inflammation. CD36/Fyn/IP3R1-mediated lysosomal calcium overload leads to lysosomal impairment and inflammation in preadipocyte. Thus targeting improving lysosomal calcium homeostasis may represent a novel strategy for treating obesity-induced inflammation.
Collapse
Affiliation(s)
- Xiaoxiao Luo
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ping Yang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yao Chen
- Medical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ting Yu
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xia
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Hanghai, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
36
|
Mawed SA, He Y, Zhang J, Mei J. Strategy of Hepatic Metabolic Defects Induced by beclin1 Heterozygosity in Adult Zebrafish. Int J Mol Sci 2020; 21:E1533. [PMID: 32102330 PMCID: PMC7073209 DOI: 10.3390/ijms21041533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic disorders have been increasing in recent years because of high carbohydrate diets. Hepatocytes depend mainly on the basal autophagy to maintain hepatic glucose/lipid homeostasis in mammals. However, the regulatory mechanisms of autophagy in hepatic energy metabolism are still unknown in fish species. Accordingly, mutant zebrafish lines of autophagy-related genes beclin1 and atg7 were generated by CRISPR/Cas9 gene-editing technology. Interestingly, unlike atg7+/-, male beclin1+/- zebrafish displayed liver defects in the morphology and histology, including abnormal hepatocyte proliferation, hemorrhagic and inflammatory phenotypes. A significant decrease in hepatocyte glycogen and an increase in hepatocyte lipids were detected in the histological assay that coincidence with the hepatic gene expression. Meanwhile, loss of heterozygosity for beclin1 creates a suitable microenvironment for hepatic tumorigenesis via phosphorylation of Akt kinase, which in turn affects liver autophagy. The reduction in autophagy activity in male beclin1+/- liver leads to a disturbance in the glucose/lipid metabolism and negatively regulates apoptosis accompanied by the induction of cellular proliferation and acute inflammatory response. Our findings highlight an important role of beclin1 in zebrafish liver development and energy metabolism, suggesting the crucial role of autophagy in maintaining homeostasis of the nutrient metabolism in fish species.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Yan He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
| | - Jin Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
| |
Collapse
|
37
|
Martins FF, Aguila MB, Mandarim-de-Lacerda CA. Eicosapentaenoic and docosapentaenoic acids lessen the expression of PPARγ/Cidec affecting adipogenesis in cultured 3T3-L1 adipocytes. Acta Histochem 2020; 122:151504. [PMID: 31955908 DOI: 10.1016/j.acthis.2020.151504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have benefits in the metabolism of adipose tissue. However, its contribution to the adipogenesis is not entirely elucidated. The study aimed to evaluate the effects of EPA and DHA on adipogenesis, especially in the PPARγ (peroxisome proliferator-activated receptor-gamma) and Cidec (cell death-inducing DFFA-like effector c) pathway. Twenty-four hours after confluence, 3T3-L1 adipocytes were treated with EPA (100 μM), DHA (50μM) and EPA (100μM) + DHA (50μM) and at the end of differentiation (day 11) the cells were collected for analysis. Cell viability analysis indicated that the concentrations used for EPA and DHA did not cause cytotoxicity in cultured 3T3l1 adipocytes. The treatments have lessened the triacylglycerol accumulation in the adipocyte cytoplasm that, compared to the control group, were EPA-32%, DHA-38%, EPA + DHA -24%. The double-labeling immunofluorescence showed a signal attenuation of protein expressions of PPARγ, CIDEC, and SREBP-1c (sterol regulatory element-binding protein). EPA and DHA had a significant impact on the expression of cleaved CASPASE 3, which increases cell apoptosis and gene expressions of Pparγ and Cidec in the treated groups. Also, there was a reduction of C/ebpα (CCAAT/enhancer-binding protein alpha), Cd36 (cluster differentiation 36), and Foxo1 (forkhead box O). In conclusion, the study determined the ability of both EPA and DHA, alone or combined, in the adipogenesis modulation in cultured 3T3-L1 adipocytes, affecting the cell differentiation, maturation, and consequently, reducing adipogenesis via PPARγ-CIDEC suppression.
Collapse
|
38
|
Breitfeld J, Kehr S, Müller L, Stadler PF, Böttcher Y, Blüher M, Stumvoll M, Kovacs P. Developmentally Driven Changes in Adipogenesis in Different Fat Depots Are Related to Obesity. Front Endocrinol (Lausanne) 2020; 11:138. [PMID: 32273869 PMCID: PMC7115744 DOI: 10.3389/fendo.2020.00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Subcutaneous (sc) and visceral (vis) adipose tissue (AT) contribute to the variability in pathophysiological consequences of obesity and adverse fat distribution. To gain insights into the molecular mechanisms distinguishing vis and sc fat, we compared the transcriptome during differentiation of immortalized adipocytes from murine epididymal (epi) and inguinal (ing) AT. RNA was extracted on different days of adipogenesis (-2, 0, 2, 4, 6, 8) and analyzed using Clariom™ D mouse assays (Affymetrix) covering >214,900 transcripts in >66,100 genes. Transcript Time Course Analysis revealed 137 differentially expressed genes. The top genes with most divergent expression dynamics included developmental genes like Alx1, Lhx8, Irx1/2, Hoxc10, Hoxa5/10, and Tbx5/15. According to pathway analysis the majority of the genes were enriched in pathways related to AT development. Finally, in paired samples of human vis and sc AT (N = 63), several of these genes exhibited depot-specific variability in expression which correlated closely with body mass index and/or waist-to-hip ratio. In conclusion, intrinsically programmed differences in gene expression patterns during adipogenesis suggest that fat depot specific regulation of adipogenesis contributes to individual risk of obesity.
Collapse
Affiliation(s)
- Jana Breitfeld
- University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- *Correspondence: Jana Breitfeld
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, United States
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Yvonne Böttcher
- University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Peter Kovacs
| |
Collapse
|
39
|
Su T, Huang C, Yang C, Jiang T, Su J, Chen M, Fatima S, Gong R, Hu X, Bian Z, Liu Z, Kwan HY. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol Res 2019; 152:104586. [PMID: 31877350 DOI: 10.1016/j.phrs.2019.104586] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/26/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
Visceral obesity is the excess deposition of visceral fat within the abdominal cavity that surrounds vital organs. Visceral obesity is directly associated with metabolic syndrome, breast cancer and endometrial cancer. In visceral obese subjects, signal transducer and activator of the transcription 3 (STAT3) in adipocytes is constitutively active. In this study, we aimed to screen for dietary herbal compounds that possess anti-visceral obesity effect. Apigenin is abundant in fruits and vegetables. Our data show that apigenin significantly reduces body weight and visceral adipose tissue (VAT), but not subcutaneous (SAT) and epididymal adipose tissues (EAT), of the high fat diet (HFD)-induced obese mice. Mechanistic studies show that HFD increases STAT3 phosphorylation in VAT, but not in SAT and EAT. Further studies suggest that apigenin binds to non-phosphorylated STAT3, reduces STAT3 phosphorylation and transcriptional activity in VAT, and consequently reduces the expression of STAT3 target gene cluster of differentiation 36 (CD36). The reduced CD36 expression in adipocytes reduces the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) which is the critical nuclear factor in adipogenesis. Our data show that apigenin reduces CD36 and PPAR-γ expressions and inhibits adipocyte differentiation; overexpression of constitutive active STAT3 reverses the apigenin-inhibited adipogenesis. Taken together, our data suggest that apigenin inhibits adipogenesis via the STAT3/CD36 axis. Our study has delineated the mechanism of action underlying the anti-visceral obesity effect of apigenin, and provide scientific evidence to support the development of apigenin as anti-visceral obesity therapeutic agent.
Collapse
Affiliation(s)
- Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Chunhua Huang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chunfang Yang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Ting Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Junfang Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Sarwat Fatima
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Ruihong Gong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Xianjing Hu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhaoxiang Bian
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
40
|
The Effect of Early Rounds of ex vivo Expansion and Cryopreservation on the Adipogenic Differentiation Capacity of Adipose-Derived Stromal/Stem Cells. Sci Rep 2019; 9:15943. [PMID: 31685852 PMCID: PMC6828715 DOI: 10.1038/s41598-019-52086-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Multipotent adipose-derived stromal/stem cells (ASCs) are candidates for use in cellular therapies for the treatment of a variety of conditions/diseases. Ex vivo expansion of freshly isolated ASCs may be necessary prior to clinical application to ensure that clinically relevant cell numbers are administered during treatment. In addition, cryopreserving cells at early passages allows for storage of freshly isolated cells for extended periods of time before expanding these cells for clinical usage. There are however several concerns that these laboratory-based procedures may alter the characteristics of the cells and in so doing decrease their regenerative potential. In this study we report on the impact of early rounds of cryopreservation (P0) and ex vivo expansion (P0 to P5) on the phenotypic characteristics and adipogenic differentiation potential of ASCs. Our results show that ASCs that upregulate CD36 expression during adipogenic differentiation gradually decrease with increasing expansion rounds. The consequent decrease in adipogenic differentiation capacity was evident in both gene expression and flow cytometry-based phenotypic studies. Successive rounds of expansion did not however alter cell surface marker expression of the cells. We also show that early cryopreservation of ASCs (at P0) does not affect the adipogenic differentiation potential of the cells.
Collapse
|
41
|
Miggitsch C, Meryk A, Naismith E, Pangrazzi L, Ejaz A, Jenewein B, Wagner S, Nägele F, Fenkart G, Trieb K, Zwerschke W, Grubeck-Loebenstein B. Human bone marrow adipocytes display distinct immune regulatory properties. EBioMedicine 2019; 46:387-398. [PMID: 31327694 PMCID: PMC6711052 DOI: 10.1016/j.ebiom.2019.07.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Background The bone marrow (BM) is a major reservoir of resting memory T cells and long-lived plasma cells, capable of providing protection against recurrent infections. Whether the age-related accumulation of adipose tissue in the BM affects the functionality and maintenance of memory cells is not well understood. Methods For the first time, we compare human femur marrow adipose tissue (fMAT) and subcutaneous white adipose tissue of the thigh (tsWAT) obtained from the same donors. Therefore, we used microarrays for comparative global gene expression analysis, and employed assays to analyse parameters of adipocyte biology, inflammation and oxidative stress. Findings We show that fMAT adipocytes differ significantly from tsWAT adipocytes regarding specific gene expression profiles including inflammatory responses and adipogenesis/adipocyte phenotype. Concomitant with considerably lower levels of CD36, a membrane-associated protein important for long-chain fatty acid uptake that is used as maturation marker, fMAT adipocytes are smaller and contain less triglycerides. fMAT adipocytes secrete similar levels of adiponectin and leptin as tsWAT adipocytes, and express increased levels of pro-inflammatory molecules concomitant with an elevated generation of reactive oxygen species (ROS) and impaired function of plasma cells in the BM. Interpretation Our findings suggest that fMAT is a unique type of adipose tissue containing small adipocytes with lower CD36 protein and triglyceride levels than tsWAT but high adipokine secretion. Moreover, fMAT adipocytes secrete high levels of pro-inflammatory cytokines, contributing to inflammation and impairment of plasma cell function in the BM, suggesting that fMAT has more immune regulatory functions than tsWAT.
Collapse
Affiliation(s)
- Carina Miggitsch
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria.
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street 6B Scaife Hall, Pittsburgh, PA 15261, United States
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Sonja Wagner
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Fabiana Nägele
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Gabriella Fenkart
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Department for Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology, University of Innsbruck, Technikerstraße 25, Innsbruck, Tyrol 6020, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Klinikum Wels, Grieskirchner Str. 42, Wels, Upper Austria 4600, Austria; Computed Tomography Research Group, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| |
Collapse
|
42
|
Zhang P, Bai H, Li J, Liu J, Ma W, Xu B, Xia Q, Wang J, Du Q. Knockdown of slincRAD leads to defective adipose development in vivo. Biochem Biophys Res Commun 2019; 513:983-989. [PMID: 31005260 DOI: 10.1016/j.bbrc.2019.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
The development of adipose tissue is a precisely coordinated cellular process, in which both protein-coding and non-coding genes are involved. To characterize the in vivo function of a novel long non-coding RNA (lncRNAs), loss-of-function assays were performed with slincRAD knockdown mice. Down-regulation of slincRAD expression was found to impair the development of adipose tissue, leading to a slim phenotype for both of the male and female mice. Compared to normal adipocytes, slincRAD knockdown cells had defective differentiation features, such as smaller sizes and decreased lipid production. For elder mice, slincRAD knockdown led to abnormal glucose and lipid metabolism. Therefore, a physiologically important lncRNA was characterized in the development of adipose tissue.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Huicheng Bai
- Laboratory Animal Center, Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Jun Li
- Laboratory Animal Center, Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Jinghao Liu
- Laboratory Animal Center, Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Weizhi Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jue Wang
- Laboratory Animal Center, Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, 100871, China.
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
43
|
Fatty acid transport receptor soluble CD36 and dietary fatty acid pattern in type 2 diabetic patients: a comparative study. Br J Nutr 2019; 119:153-162. [PMID: 29359682 DOI: 10.1017/s0007114517003269] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, it has been remarked that dietary fatty acids and fatty acid receptors might be involved in the aetiology of diabetes. Therefore, this study was conducted to determine the relationship between dietary fatty acid pattern, fatty food preferences and soluble CD36 (sCD36) and insulin resistance in type 2 diabetes mellitus (DM). The study was carried out with thirty-eight newly diagnosed type 2 DM patients and thirty-seven healthy volunteers, aged 30-65 years. In the study, socio-demographic characteristics, dietary fat type and fatty acid pattern of individuals were recorded. After anthropometric measurements were taken, blood CD36, glucose, TAG and insulin levels were analysed. The results showed that although the type of fatty acid intake did not differ between the groups (P>0·05), the consumption of olive oil in the type 2 DM group was lower than the control group (P0·05). Crucially, elevated sCD36 levels increased the type 2 DM risk (OR 1·21, P<0·05). In conclusion, sCD36 level may be a possible biomarker, independent from the dietary fatty acid pattern, for type 2 DM owing to its higher levels in these patients. Therefore, the new insights make CD36 attractive as a therapeutic target for diabetes.
Collapse
|
44
|
Guo L, Li K, Cui ZW, Kang JS, Son BG, Choi YW. S-Petasin isolated from Petasites japonicus exerts anti-adipogenic activity in the 3T3-L1 cell line by inhibiting PPAR-γ pathway signaling. Food Funct 2019; 10:4396-4406. [DOI: 10.1039/c9fo00549h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
S-Petasin from Petasites japonicus exerts anti-adipogenic activity in 3T3-L1 cells through inhibition of the expression of PPAR-γ.
Collapse
Affiliation(s)
- Lu Guo
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Ke Li
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Zheng Wei Cui
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Jum Soon Kang
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Beung Gu Son
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
- Life and Industry Convergence Research Institute
| |
Collapse
|
45
|
Huang KT, Hsu LW, Chen KD, Kung CP, Goto S, Chen CL. Decreased PEDF Expression Promotes Adipogenic Differentiation through the Up-Regulation of CD36. Int J Mol Sci 2018; 19:ijms19123992. [PMID: 30544997 PMCID: PMC6321369 DOI: 10.3390/ijms19123992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023] Open
Abstract
Adipogenesis is a tightly regulated cellular process that involves the action of multiple signaling pathways. Characterization of regulators that are associated with adipose development is crucial to understanding the mechanisms underlying obesity and other metabolic disorders. Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein that was first described as a neurotrophic factor. The role of PEDF in lipid metabolism was established when adipose triglyceride lipase (ATGL), a major triglyceride hydrolase, was characterized as its binding partner. In this study, we investigated the downstream effects of PEDF on adipogenic differentiation using rat adipose-derived stem cells (AdSCs) and the mouse pre-adipocyte cell line 3T3-L1. Knocking down PEDF in differentiating cells resulted in elevated levels of ATGL and CD36, as well as other adipogenic markers, with a concomitant increase in adipocyte number. CD36, a scavenger receptor for a variety of ligands, regulated proliferation and lipogenic gene expression during adipogenesis. The CD36 increase due to PEDF down-regulation might be a result of elevated PPARγ. We further demonstrated that PEDF expression was regulated by dexamethasone, a synthetic glucocorticoid that is widely used for adipogenesis at the transcriptional level. Taken together, our findings highlight that PEDF negatively regulates adipogenesis through the regulation of various signaling intermediates, and it may play a crucial role in lipid metabolic disorders.
Collapse
Affiliation(s)
- Kuang-Tzu Huang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Li-Wen Hsu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Chao-Pin Kung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Shigeru Goto
- Fukuoka Institute of Occupational Health, Fukuoka 815-0081, Japan.
| | - Chao-Long Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| |
Collapse
|
46
|
Matsunaga H, Iwashita M, Shinjo T, Yamashita A, Tsuruta M, Nagasaka S, Taniguchi A, Fukushima M, Watanabe N, Nishimura F. Adipose tissue complement factor B promotes adipocyte maturation. Biochem Biophys Res Commun 2017; 495:740-748. [PMID: 29137982 DOI: 10.1016/j.bbrc.2017.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES It is well-known that the complement system plays an essential role in host immunity. Observational studies have indicated that complement system-related molecules such as complement factor B (CfB) and other components are correlated with obesity and/or insulin resistance parameters. In this study, we investigated the role of adipocyte-derived CfB in adipose tissue metabolism. METHODS We investigated the expression level of complement system-related genes in adipocytes. To understand the role of CfB in adipocyte, we performed Cfb overexpression in 3T3-L1 preadipocytes and generated adipocyte-specific Cfb transgenic mice. RESULTS Cfb expression was markedly enhanced in 3T3-L1 adipocytes co-cultured with macrophages following endotoxin stimulation. In Cfb-overexpressing cells, the expression of adipocyte differentiation/maturation-related genes encoding peroxisome proliferator-activated receptor γ (Pparγ), adipocyte Protein 2 and perilipin was significantly enhanced. Cfb transgenic mice showed a marked increase in the expression of genes encoding Pparγ, perilipin, sterol regulatory element-binding protein 1 c, and Cd36 in the subcutaneous adipose tissue. CONCLUSIONS CfB plays a crucial role in late-phase of adipocyte differentiation and subsequent lipid droplet formation.
Collapse
Affiliation(s)
- Hiroaki Matsunaga
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Misaki Iwashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takanori Shinjo
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Akiko Yamashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Mitsudai Tsuruta
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Ataru Taniguchi
- Division of Diabetes and Endocrinology, Kyoto Preventive Medical Center, Kyoto, Japan
| | - Mitsuo Fukushima
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Naoya Watanabe
- Health Care and Promotion Center, Yodogawa Christian Hospital, Osaka, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| |
Collapse
|
47
|
Ehrlund A, Acosta JR, Björk C, Hedén P, Douagi I, Arner P, Laurencikiene J. The cell-type specific transcriptome in human adipose tissue and influence of obesity on adipocyte progenitors. Sci Data 2017; 4:170164. [PMID: 29087381 PMCID: PMC5663208 DOI: 10.1038/sdata.2017.164] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity affects gene expression and metabolism of white adipose tissue (WAT),
which results in insulin resistance (IR) and type 2 diabetes. However, WAT is a
heterogeneous organ containing many cell types that might respond differently to
obesity-induced changes. We performed flow cytometry sorting and RNA expression
profiling by microarray of major WAT cell types (adipocytes,
CD45−/CD31−/CD34+ progenitors, CD45+/CD14+ monocytes/
macrophages, CD45+/CD14− leukocytes), which allowed us to identify genes
enriched in specific cell fractions. Additionally, we included adipocytes and
adipocyte progenitor cells obtained from lean and obese individuals. Taken
together, we provide a detailed gene expression atlas of major human adipose
tissue resident cell types for clinical/basic research and using this dataset
provide lists of cell-type specific genes that are of interest for metabolic
research.
Collapse
Affiliation(s)
- Anna Ehrlund
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Juan R Acosta
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Christel Björk
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Per Hedén
- Akademikliniken, Storängsvägen 10, Stockholm SE-115 42, Sweden
| | - Iyadh Douagi
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Peter Arner
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Jurga Laurencikiene
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm SE-14186, Sweden
| |
Collapse
|
48
|
Huang W, Zhang X, Li A, Xie L, Miao X. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget 2017; 8:87539-87553. [PMID: 29152100 PMCID: PMC5675652 DOI: 10.18632/oncotarget.20978] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/27/2017] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) can regulate lipid metabolism and adipogenesis. However, there is little research on the role of lncRNAs in fat deposition in pig. In this study, RNA-seq technology was used to analyze the gene expression profiles of subcutaneous adipose tissue in Laiwu (LW) and Large White (LY) pigs. Then, key lncRNAs and genes associated with lipid metabolism and adipogenic differentiation were identified. Fifty four lncRNAs and 482 known mRNAs were differentially expressed in the two pig breeds. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that differentially expressed genes and the target genes of differentially expressed lncRNAs were significantly enriched in PPAR signaling pathway and biological processes including fat cell differentiation and fatty acid metabolism. Key lncRNAs might regulate adipogenic differentiation and fatty acid metabolism by regulating genes involved in above signaling pathway and biological processes. Specifically, XLOC_014379, XLOC_011279, XLOC_064871, XLOC_019518 and XLOC_013639 might target SCD, LPIN1, TRIB3, EGR2 and FABP3, respectively, and then play critical regulatory role. These results are useful for understanding fat deposition in pig, breeding livestock with high quality meat, and preventing and treating lipid metabolic disease.
Collapse
Affiliation(s)
- Wanlong Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuxiu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ai Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingli Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangyang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
49
|
Transcriptome Analysis Reveals Increases in Visceral Lipogenesis and Storage and Activation of the Antigen Processing and Presentation Pathway during the Mouth-Opening Stage in Zebrafish Larvae. Int J Mol Sci 2017; 18:ijms18081634. [PMID: 28758957 PMCID: PMC5578024 DOI: 10.3390/ijms18081634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
The larval phase of the fish life cycle has the highest mortality, particularly during the transition from endogenous to exogenous feeding. However, the transcriptional events underlying these processes have not been fully characterized. To understand the molecular mechanisms underlying mouth-opening acclimation, RNA-seq was used to investigate the transcriptional profiles of the endogenous feeding, mixed feeding and exogenous feeding stages of zebrafish larvae. Differential expression analysis showed 2172 up-regulated and 2313 down-regulated genes during this stage. Genes associated with the assimilation of exogenous nutrients such as the arachidonic acid metabolism, linoleic acid metabolism, fat digestion and absorption, and lipogenesis were activated significantly, whereas dissimilation including the cell cycle, homologous recombination, and fatty acid metabolism were inhibited, indicating a physiological switch for energy storage occurred during the mouth-opening stage. Moreover, the immune recognition involved in the antigen processing and presentation pathway was activated and nutritional supply seemed to be required in this event confirmed by qPCR. These results suggested the energy utilization during the mouth-opening stage is more tended to be reserved or used for some important demands, such as activity regulation, immune defense, and lipid deposition, instead of rapid growth. The findings of this study are important for understanding the physiological switches during the mouth-opening stage.
Collapse
|
50
|
Segovia SA, Vickers MH, Gray C, Zhang XD, Reynolds CM. Conjugated Linoleic Acid Supplementation Improves Maternal High Fat Diet-Induced Programming of Metabolic Dysfunction in Adult Male Rat Offspring. Sci Rep 2017; 7:6663. [PMID: 28751679 PMCID: PMC5532367 DOI: 10.1038/s41598-017-07108-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
The developmental origins of health and disease hypothesis proposes that an adverse early life environment, including in utero exposure to a maternal obesogenic environment, can lead to an increased long-term risk of obesity and related metabolic complications in offspring. We assessed whether maternal supplementation with conjugated linoleic acid (CLA) could prevent some of these adverse effects in offspring exposed to a maternal high fat diet. Sprague-Dawley dams consumed either a: control (CD), control with CLA (CLA), high fat (HF) or high fat with CLA (HFCLA) diet 10 days prior to mating and throughout pregnancy/lactation. Male offspring were weaned onto a standard chow diet. Body composition was quantified by DXA and oral glucose tolerance tests conducted on adult offspring. Gene/protein expression and histological analysis were conducted in adipose tissue. Offspring from HF dams had increased body weight, body fat deposition, impaired insulin sensitivity and adipocyte hypertrophy; all of which were rescued in HFCLA offspring. Molecular and histological analyses of the adipose tissue suggest that disturbances in adipogenesis may mediate the metabolic dysfunction observed in HF offspring. Therefore, CLA supplementation to a maternal obesogenic diet may be a promising strategy to prevent adverse programming outcomes.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Xiaoyuan D Zhang
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|