1
|
Veedu AP, Kunhipurayil D, Beegum F, George KT, Kanwal A, Shenoy RR, Nandakumar K. Biochanin‑A as SIRT‑1 modulator in preventing statin‑associated diabetogenesis: An in vitro study. Biomed Rep 2025; 22:91. [PMID: 40171401 PMCID: PMC11959223 DOI: 10.3892/br.2025.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
The widespread use of statin therapy for hypercholesterolemia has raised concerns due to its associated risk of inducing diabetes. Biochanin-A (BA), an isoflavone, exhibits potential in preventing diabetes and hyperlipidemia, yet its efficacy in mitigating statin-induced diabetes remains unexplored. This gap prompts a crucial inquiry: Can BA reduce the risk of diabetes associated with statin therapy? The present study investigated the molecular mechanisms behind atorvastatin's diabetogenic nature and evaluated the potential of BA to counteract these effects. Insulin resistance was assessed using L6 skeletal muscle cells and pancreatic beta cell apoptosis in MIN-6 cells. Our hypothesis posits that atorvastatin exacerbates free fatty acid accumulation, leading to the downregulation of sirtuin-1 (SIRT-1) and decreased uncoupling protein (UCP) 3 expression, culminating in insulin resistance. Conversely, BA is assumed to positively modulate SIRT-1 and downregulate UCP2, thus offering a protective effect. In vitro studies using L6 and MIN-6 cells revealed that BA has increased cell viability and shown optimal protection against the toxicity induced by atorvastatin in both cell lines at different concentrations. BA effectively inhibited the reduction in glucose uptake caused by atorvastatin. Pre-treatment with BA upregulated proteins that are involved in the insulin-signaling pathway and reversed the expression levels of UCPs induced by atorvastatin. BA also enhanced insulin release, preserved mitochondrial function, and prevented atorvastatin-induced apoptosis. Furthermore, BA improved SIRT-1 expression, potentially through the nicotinamide phospho-ribosyl-transferase-nicotinamide adenine dinucleotide + SIRT1-pathway, revealing that BA may play a role in modulating cellular processes in statin-associated SIRT-1 downregulation. BA can be considered a promising molecule to counteract statin-induced diabetes, suggesting a prospective therapeutic role in enhancing the safety profile of statin therapy. This research lays the groundwork for future clinical evaluations of BA as an adjunctive treatment for patients at risk of statin-induced diabetes.
Collapse
Affiliation(s)
- Anuranjana Putiya Veedu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Kunhipurayil
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab 151005, India
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Co-ordinator, Center for Animal Research, Ethics and Training (CARET), Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Müller M, Schubert T, Welke C, Maske T, Patschkowski T, Donhauser E, Heinen-Weiler J, Hormann FL, Heiles S, Schulz TJ, Lengenfelder LA, Landwehrjohann L, Vogt ET, Stratmann B, Hense J, Lüdtke S, Düfer M, Tolstik E, Dierks J, Lorenz K, Huxohl T, Reil JC, Sequeira V, Schopfer FJ, Freeman BA, Rudolph V, Schlomann U, Klinke A. Nitro-oleic acid enhances mitochondrial metabolism and ameliorates heart failure with preserved ejection fraction in mice. Nat Commun 2025; 16:3933. [PMID: 40287424 PMCID: PMC12033319 DOI: 10.1038/s41467-025-59192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
The prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, while treatment options are inadequate. Hypertension and obesity-related metabolic dysfunction contribute to HFpEF. Nitro-oleic acid (NO2-OA) impacts metabolic syndromes by improving glucose tolerance and adipocyte function. Here we show that treatment with NO2-OA ameliorates diastolic dysfunction and heart failure symptoms in a HFpEF mouse model induced by high-fat diet and inhibition of the endothelial nitric oxide synthase. Proteomic analysis of left ventricular tissue reveals that one-third of identified proteins, predominantly mitochondrial, are upregulated in hearts of NO2-OA-treated HFpEF mice compared to naïve and vehicle-treated HFpEF mice. Increased mitochondrial mass and numbers, and enhanced mitochondrial respiration are linked with this response, as assessed by transmission electron microscopy and high-resolution respirometry. Activation of the 5'-adenosine-monophosphate-activated-protein-kinase (AMPK) signaling pathway mediates the enhancement of mitochondrial dynamics in hearts of NO2-OA-treated HFpEF mice. These findings suggest that targeting mitochondrial function with NO2-OA may represent a promising therapeutic strategy for HFpEF.
Collapse
Affiliation(s)
- Marion Müller
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Torben Schubert
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Welke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tibor Maske
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Thomas Patschkowski
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Elfi Donhauser
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Jacqueline Heinen-Weiler
- Medical Imaging Center (MIC), Electron Microscopy Medical Analysis - Core Facility (EMMACF), Med. Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | - Felix-Levin Hormann
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
- Faculty of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Tina Johanna Schulz
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Luisa Andrea Lengenfelder
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Lucia Landwehrjohann
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Elisa Theres Vogt
- Diabetescenter, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Bernd Stratmann
- Diabetescenter, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Jurek Hense
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Simon Lüdtke
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Elena Tolstik
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Johann Dierks
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Tamino Huxohl
- Institute for Radiology, Nuclear Medicine and Molecular Imaging, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Jan-Christian Reil
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, DZHI, Würzburg, Germany
| | - Francisco Jose Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Uwe Schlomann
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
- Agnes Wittenborg Institute for Translational Cardiovascular Research (AWIHK), Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
3
|
Xiao L, Chen B, Chen C, Xiao F, Li M, Zhuang M, Dai Y, Wu K. Characterization and function of PTEN-induced putative kinase 1 (PINK1) in process of Zinc alleviates hepatic lipid deposition of yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2024; 265:131156. [PMID: 38537862 DOI: 10.1016/j.ijbiomac.2024.131156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
PTEN-induced putative kinase 1 (PINK1) is a key regulator of mitophagy, however, the relevant information remains poorly understood on aquatic animals. Here, a PINK1 gene was cloned, characterized and functionally studied in yellow catfish. PINK1 encoded a protein containing 570 amino acids, 2 functional domains. High fat (15.66%) fed fish showed a downregulation trend of liver PINK1 expression than that of normal fat (10.14%) group, and was reversed by the addition of Zn. In the in vitro study, high fat (HF) can increase lipid deposition and decrease by addition Zn (HFZ) in hepatocytes, whereas above phenomena reversed by overexpression/interference of PINK1, respectively. In addition, the addition of Zn can significantly affect mitochondrial activity, increase mitophagy, and improve the antioxidant activity of hepatocytes. Together, these findings illustrated that yellow catfish PINK1 is conserve, and it participated in mitochondria control of fish. These findings indicate Zn could alleviate high fat-induced hepatic lipid deposition of fish by activating PINK1-mediated mitophagy and provide basis for further exploring new approach for decreasing lipid deposition in fish products during aquaculture.
Collapse
Affiliation(s)
- Lanfei Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Baojia Chen
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingzi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minjia Zhuang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yishuang Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
4
|
Jabri MA, Hajaji S, Omrani A, Ben Youssef M, Sebai H. Myrtle Berries Seeds Prevent Dyslipidemia, Inflammation, and Excessive Cardiac Reactive Oxygen Species Production in Response to High-Fat Diet-Induced Obesity. J Med Food 2023; 26:631-640. [PMID: 37566463 DOI: 10.1089/jmf.2021.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Anthocyanins are the major polyphenols in myrtle berries seeds aqueous extract (MBSAE). This study investigates the protective potentials of MBSAE against obesity lipotoxicity and inflammation induced by a high-fat diet (HFD). It also describes the underlying mechanisms involved in its protective effects, with special attention to myocardial reactive oxygen species (ROS) production. Male Wistar rats were fed HFD for 6 weeks to induce obesity. MBSAE (100 mg/kg, b.w., p.o.) was orally administered to HFD-fed rats. Anti-obesity effects were triggered by the inhibitory action of the MBSAE against the weights of the body, its relative heart and the total abdominal fat. Treatment with MBSAE also restored the lipid profile to baseline compared with the HFD rats and lowered also the white blood cells count, including neutrophils, lymphocytes, and basophils number as well as cytokines (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β) levels in the rats serum, thus improving the tissue inflammatory status associated with obesity. Exposure of rats to HFD during 6 weeks induces a myocardial oxidative stress as assessed by deleterious effects on lipoperoxidation state, antioxidant enzyme (SOD, CAT, and GPx) activities as well as sulfhydryl groups and GSH rates. Of importance, our study shows also that HFD provokes a heart ROS (H2O2, OH•, and O2•-) overload. Of interest, all these oxidative heart disturbances were clearly ended by MBSAE treatment. Therefore, consumption of MBSAE as a natural extract may be a potential therapeutic strategy to treat obesity-associated diseases.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Soumaya Hajaji
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Ameni Omrani
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Meriam Ben Youssef
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Hichem Sebai
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
5
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
6
|
Lebrun LJ, Pallot G, Nguyen M, Tavernier A, Dusuel A, Pilot T, Deckert V, Dugail I, Le Guern N, Pais De Barros JP, Benkhaled A, Choubley H, Lagrost L, Masson D, Gautier T, Grober J. Increased Weight Gain and Insulin Resistance in HF-Fed PLTP Deficient Mice Is Related to Altered Inflammatory Response and Plasma Transport of Gut-Derived LPS. Int J Mol Sci 2022; 23:13226. [PMID: 36362012 PMCID: PMC9654699 DOI: 10.3390/ijms232113226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Lorène J. Lebrun
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Gaëtan Pallot
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, 21000 Dijon, France
| | - Annabelle Tavernier
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Alois Dusuel
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Valérie Deckert
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Isabelle Dugail
- Faculté de Médecine Pitié-Salpêtrière, UMR1269, 75000 Paris, France
| | - Naig Le Guern
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais De Barros
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Lipidomic Analytic Plate-Forme, UBFC, Bâtiment B3, 21000 Dijon, France
| | - Anissa Benkhaled
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Hélène Choubley
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Lipidomic Analytic Plate-Forme, UBFC, Bâtiment B3, 21000 Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Laboratory of Clinical Chemistry, François Mitterrand University Hospital, 21000 Dijon, France
| | - Thomas Gautier
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Jacques Grober
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| |
Collapse
|
7
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
8
|
Leisegang K. Oxidative Stress in Men with Obesity, Metabolic Syndrome and Type 2 Diabetes Mellitus: Mechanisms and Management of Reproductive Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:237-256. [PMID: 35641873 DOI: 10.1007/978-3-030-89340-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) are critical physiological mediators of cellular function, including male fertility. When ROS exceed antioxidant regulation, oxidative stress occurs which is detrimental to cellular function. Oxidative stress has been found to be a central mediator of obesity, metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM), as well as with male infertility. Human studies have correlated testicular oxidative stress in obese males, and animal studies have further provided insight into potential mechanisms of action. Management of oxidative stress is not well defined. Appropriate nutrition and exercise can be recommended for all diabetic patients, and weight loss for obese patients with MetS and T2DM. Consideration of dietary supplements including micronutrients, antioxidants or medicinal herbs are recommended. Metformin may also offer benefits on testicular oxidative stress and fertility parameters. Significantly more research on causation, mechanisms, clinical assessments and appropriate management of infertility on obesity, MetS and T2DM is still required.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Bellville, Cape Town, South Africa.
| |
Collapse
|
9
|
Hydroxytyrosol Attenuates High-Fat-Diet-Induced Oxidative Stress, Apoptosis and Inflammation of Blunt Snout Bream (Megalobrama amblycephala) through Its Regulation of Mitochondrial Homeostasis. FISHES 2022. [DOI: 10.3390/fishes7020078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study was conducted to investigate the effects of dietary hydroxytyrosol (HT) on oxidative stress, inflammation and mitochondrial homeostasis in blunt snout bream (Megalobrama amblycephala). Fish were fed a low-fat diet (LFD, 5% lipid), a high-fat diet (HFD, 15% lipid), an LFD supplementing 200 mg/kg HT, or an HFD supplementing 200 mg/kg HT. After 10-week feeding, significant reduction of growth was observed in fish fed HFD, compared with other groups. HFD caused oxidative stress and more apoptosis of hepatocytes, while HT addition resulted in significant decrease of ROS and MDA contents, and the apoptotic hepatocytes. Moreover, the expression of genes involving inflammation of HFD group were elevated. Supplementing HT to HFD can attenuate this. All the activities of complexes of mitochondria in the HFD group were decreased compared with those in the LFD group, while supplementing HT to HFD significantly increased complex I-III activities. Furthermore, HFD downregulated the expressions of Atg5 and NRF-1 which induced the failure of mitophagy and biogenesis, while, supplementing HT to HFD reversed these expressions involving mitochondrial autophagy and biogenesis. In summary, adding HT to HFD relieved oxidative stress, apoptosis and inflammation, likely due to its regulation of mitochondrial homeostasis.
Collapse
|
10
|
Jeong H, Yang D, Zhao J, Seo JH, Shin DG, Cha JD, Lim CW, Kim JW, Kim B. Ethanol Extract of Orostachys japonicus A. Berger (Crassulaceae) Protects Against Type 2 Diabetes by Reducing Insulin Resistance and Hepatic Inflammation in Mice. J Med Food 2021; 24:464-478. [PMID: 34009023 DOI: 10.1089/jmf.2020.4790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a threaten human health problem, and accompanied by hyperglycemia and disorder of insulin secretion, is a major cause of abnormalities in maintaining blood glucose homeostasis. Also, low-grade inflammation, as well as insulin resistance (IR), is a common feature in patients with T2D. Numerous causes of the outbreak of T2D have been suggested by researchers, who indicate that genetic background and epigenetic predisposition, such as overnutrition and deficient physical activity, hasten the promotion of T2D milieu. Orostachys japonicus A. Berger (O. japonicus) is a herbal and remedial plant whose various activities include hemostatic, antidotal, febrile, and anti-inflammatory. Hence, we designed to evaluate the antidiabetic efficacy of ethanol extracts of O. japonicus (OJE). Six-week-old C57BL/Ksj-db/db (db/db) mice were used. The results showed that mice given various concentrations of OJE (0, 50, 100, and 200 mg/kg per day) for 8 weeks showed significantly reduced hyperglycemia, IR, and liver injury, confirmed by measuring diabetic parameters, serum, and hepatic biochemicals. Furthermore, the treatment of OJE markedly decreased the mRNA levels of proinflammatory cytokines, lipid accumulation, and gluconeogenesis-related genes. Consistently, western blot analysis indicated that mice treated with OJE showed increased levels of phospho-c-Jun N-terminal kinase, phospho-Akt, glucose transporters 2 and 4 (GLUT2 and GLUT4) in T2D mice. Likewise, much the same results were obtained in in vitro experiments. Taken together, OJE had hopeful advantage in sustaining the glucose homeostasis and diminishing IR, and could be a safe alternative remedy for treating T2D.
Collapse
Affiliation(s)
- Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Jeong Hun Seo
- Research & Development Center of General Bio Co., Ltd, Namwon-si, Jeollabuk-do, Korea
| | - Dong Gue Shin
- Research & Development Center of General Bio Co., Ltd, Namwon-si, Jeollabuk-do, Korea
| | - Jeong-Dan Cha
- Research & Development Center of General Bio Co., Ltd, Namwon-si, Jeollabuk-do, Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| |
Collapse
|
11
|
Suneja S, Gangopadhyay S, Saini V, Dawar R, Kaur C. Emerging Diabetic Novel Biomarkers of the 21st Century. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractDiabetes is a growing epidemic with estimated prevalence of infected to reach ~592 million by the year 2035. An effective way to approach is to detect the disease at a very early stage to reduce the complications and improve lifestyle management. Although several traditional biomarkers including glucated hemoglobin, glucated albumin, fructosamine, and 1,5-anhydroglucitol have helped in ease of diagnosis, there is lack of sensitivity and specificity and are inaccurate in certain clinical settings. Thus, search for new and effective biomarkers is a continuous process with an aim of accurate and timely diagnosis. Several novel biomarkers have surged in the present century that are helpful in timely detection of the disease condition. Although it is accepted that a single biomarker will have its inherent limitations, combining several markers will help to identify individuals at high risk of developing prediabetes and eventually its progression to frank diabetes. This review describes the novel biomarkers of the 21st century, both in type 1 and type 2 diabetes mellitus, and their present potential for assessing risk stratification due to insulin resistance that will pave the way for improved clinical outcome.
Collapse
Affiliation(s)
- Shilpa Suneja
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Sukanya Gangopadhyay
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Vandana Saini
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Charanjeet Kaur
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| |
Collapse
|
12
|
García-Carro C, Vergara A, Bermejo S, Azancot MA, Sellarés J, Soler MJ. A Nephrologist Perspective on Obesity: From Kidney Injury to Clinical Management. Front Med (Lausanne) 2021; 8:655871. [PMID: 33928108 PMCID: PMC8076523 DOI: 10.3389/fmed.2021.655871] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is one of the epidemics of our era. Its prevalence is higher than 30% in the U.S. and it is estimated to increase by 50% in 2030. Obesity is associated with a higher risk of all-cause mortality and it is known to be a cause of chronic kidney disease (CKD). Typically, obesity-related glomerulopathy (ORG) is ascribed to renal hemodynamic changes that lead to hyperfiltration, albuminuria and, finally, impairment in glomerular filtration rate due to glomerulosclerosis. Though not only hemodynamics are responsible for ORG: adipokines could cause local effects on mesangial and tubular cells and podocytes promoting maladaptive responses to hyperfiltration. Furthermore, hypertension and type 2 diabetes mellitus, two conditions generally associated with obesity, are both amplifiers of obesity injury in the renal parenchyma, as well as complications of overweight. As in the native kidney, obesity is also related to worse outcomes in kidney transplantation. Despite its impact in CKD and cardiovascular morbility and mortality, therapeutic strategies to fight against obesity-related CKD were limited for decades to renin-angiotensin blockade and bariatric surgery for patients who accomplished very restrictive criteria. Last years, different drugs have been approved or are under study for the treatment of obesity. Glucagon-like peptide-1 receptor agonists are promising in obesity-related CKD since they have shown benefits in terms of losing weight in obese patients, as well as preventing the onset of macroalbuminuria and slowing the decline of eGFR in type 2 diabetes. These new families of glucose-lowering drugs are a new frontier to be crossed by nephrologists to stop obesity-related CKD progression.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Department, San Carlos Clinical University Hospital, Madrid, Spain
| | - Ander Vergara
- Nephrology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Nephrology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Sheila Bermejo
- Nephrology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Nephrology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - María A. Azancot
- Nephrology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Nephrology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Joana Sellarés
- Nephrology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Nephrology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Maria José Soler
- Nephrology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Nephrology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
13
|
Kostić M, Korićanac G, Tepavčević S, Stanišić J, Romić S, Ćulafić T, Ivković T, Stojiljković M. Low-intensity exercise diverts cardiac fatty acid metabolism from triacylglycerol synthesis to beta oxidation in fructose-fed rats. Arch Physiol Biochem 2021:1-11. [PMID: 33612014 DOI: 10.1080/13813455.2021.1886118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONTEXT Excessive fructose consumption causes ectopic lipid storage leading to metabolic disorders and cardiovascular diseases associated with defective substrate utilisation in the heart. OBJECTIVE Examining the preventive impact of low-intensity exercise on alterations related to fructose-rich diet (FRD) on cardiac fatty acid (FA) transport and metabolism. MATERIALS AND METHODS Male Wistar rats were divided into control and two groups that received 10% fructose for 9 weeks, one of which was additionally exposed to exercise. RESULTS FRD elevated plasma and cardiac TAG, FATP1 in plasma membrane, Lipin 1 in microsomes and HSL mRNA, while mitochondrial CPT1 was decreased. Exercise decreased plasma free FA level, raised CD36 in plasma membrane and FATP1 in lysate, mitochondrial CPT1 and decreased microsomal Lipin 1 in fructose-fed rats. CONCLUSIONS FRD changed plasma lipids and augmented partitioning of FA to TAG storage in the heart, whereas exercise in FRD rats switched metabolism of FA towards β-oxidation.
Collapse
Affiliation(s)
- Milan Kostić
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Korićanac
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snežana Tepavčević
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanišić
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snježana Romić
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Ćulafić
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Ivković
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljković
- Department for Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
15
|
Dong YZ, Li L, Espe M, Lu KL, Rahimnejad S. Hydroxytyrosol Attenuates Hepatic Fat Accumulation via Activating Mitochondrial Biogenesis and Autophagy through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9377-9386. [PMID: 32786840 DOI: 10.1021/acs.jafc.0c03310] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two experiments were carried out to examine the impacts of hydroxytyrosol (HT) on lipid metabolism and mitochondrial function in Megalobrama amblycephala. Triplicate groups of fish were fed four test diets: (1) low-fat diet (LFD, 5% fat), (2) high-fat diet (HFD, 15% fat), (3) LFD + 100 mg/kg HT (LFD + HT), and (4) HFD + 100 mg/kg HT (HFD + HT) (in vivo). Hepatocytes from the same batch were exposed to three media including L-15 medium (L15), oleic acid (OA) medium [L15 + 400 μM OA], and OA + HT medium [L15 + 400 μM OA + 10 μM HT] to explore the roles of HT in mitochondrial function (in vitro). Fish fed HFD had excessive fat deposition in the liver, and HT inclusion in the HFD decreased hepatic fat deposition. Transmission electron microscopy revealed that the HFD triggers loss of cristae and metrical density and hydropic changes in mitochondria and that HT supplementation attenuates the ultrastructural alterations of mitochondria. The in vitro test showed that HT decreases fat deposition in hepatocytes, suppresses the reactive oxygen species formation, and facilitates the expression of phospho-AMPK protein and the genes involved in mitochondria biogenesis (PGC-1, NRF-1, TFAM) and autophagy (PINK1, Mul1, Atg5). These findings suggest the lipid-lowering effect of HT mediated by activation of mitochondrial biogenesis and autophagy through the AMPK pathway.
Collapse
Affiliation(s)
- Yan-Zou Dong
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lei Li
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Marit Espe
- Institute of Marine Research (IMR), Bergen NO-5817, Norway
| | - Kang-Le Lu
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/ II, Vodnany 389 25, Czech Republic
| |
Collapse
|
16
|
Patterson Rosa L, Mallicote MF, Long MT, Brooks SA. Metabogenomics reveals four candidate regions involved in the pathophysiology of Equine Metabolic Syndrome. Mol Cell Probes 2020; 53:101620. [PMID: 32659253 DOI: 10.1016/j.mcp.2020.101620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 02/02/2023]
Abstract
An analogous condition to human metabolic syndrome, Equine Metabolic Syndrome (EMS) is defined by several clinical signs including obesity, hyperinsulinemia, and peripheral insulin dysregulation (ID). Affected horses may also exhibit hypertension, hyperlipemia and systemic inflammation. Measures of ID typically comprise the gold-standard for diagnosis in veterinary care. Yet, the dynamic nature of insulin homeostasis and complex procedures of typical assays make accurate quantification of ID and EMS challenging. This work aimed to investigate new strategies for identification of biochemical markers and correlated genes in EMS. To quantify EMS risk within this population, we utilized a composite score derived from nine common diagnostic variables. We applied a global liquid chromatography/mass spectroscopy approach (HPLC/MS) to whole plasma collected from 49 Arabian horses, resulting in 3392 high-confidence features and identification of putative metabolites in public databases. We performed a genome wide association analysis with genotypes from the 670k Affymetrix Equine SNP array utilizing EMS-correlated metabolites as phenotypes. We discovered four metabolite features significantly correlated with EMS score (P < 1.474 × 10-5). GWAs for these features results (P = 6.787 × 10-7, Bonferroni) identified four unique candidate regions (r2 > 0.4) containing 63 genes. Significant genomic markers capture 43.52% of the variation in the original EMS score phenotype. The identified genomic loci provide insight into the pathways controlling variation in EMS and the origin of genetic predisposition to the condition. Rapid, feasible and accurate diagnostic tools derived from metabogenomics can be translated into measurable benefits in the timeline and quality of preventative management practices to preserve health in horses.
Collapse
Affiliation(s)
- Laura Patterson Rosa
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA
| | - Martha F Mallicote
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - Maureen T Long
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, PO Box 100123, Gainesville, FL, 32610, USA
| | - Samantha A Brooks
- Department of Animal Sciences and UF Genetics Institute, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Fang J, Ji YX, Zhang P, Cheng L, Chen Y, Chen J, Su Y, Cheng X, Zhang Y, Li T, Zhu X, Zhang XJ, Wei X. Hepatic IRF2BP2 Mitigates Nonalcoholic Fatty Liver Disease by Directly Repressing the Transcription of ATF3. Hepatology 2020; 71:1592-1608. [PMID: 31529495 DOI: 10.1002/hep.30950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Although knowledge regarding the pathogenesis of nonalcoholic fatty liver disease (NAFLD) has profoundly grown in recent decades, the internal restrictive mechanisms remain largely unknown. We have recently reported that the transcription repressor interferon regulatory factor-2 binding protein 2 (IRF2BP2) is enriched in cardiomyocytes and inhibits pathological cardiac hypertrophy in mice. Notably, IRF2BP2 is abundantly expressed in hepatocytes and dramatically down-regulated in steatotic livers, whereas the role of IRF2BP2 in NAFLD is unknown. APPROACH AND RESULTS Herein, using gain-of-function and loss-of-function approaches in mice, we demonstrated that while hepatocyte-specific Irf2bp2 knockout exacerbated high-fat diet-induced hepatic steatosis, insulin resistance and inflammation, hepatic Irf2bp2 overexpression protected mice from these metabolic disorders. Moreover, the inhibitory role of IRF2BP2 on hepatosteatosis is conserved in a human hepatic cell line in vitro. Combinational analysis of digital gene expression and chromatin immunoprecipitation sequencing identified activating transcription factor 3 (ATF3) to be negatively regulated by IRF2BP2 in NAFLD. Chromatin immunoprecipitation and luciferase assay substantiated the fact that IRF2BP2 is a bona fide transcription repressor of ATF3 gene expression via binding to its promoter region. Functional studies revealed that ATF3 knockdown significantly relieved IRF2BP2 knockout-exaggerated hepatosteatosis in vitro. CONCLUSION IRF2BP2 is an integrative restrainer in controlling hepatic steatosis, insulin resistance, and inflammation in NAFLD through transcriptionally repressing ATF3 gene expression.
Collapse
Affiliation(s)
- Jing Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Lin Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Su
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Gong L, Guo S, Zou Z. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci 2020; 242:117212. [DOI: 10.1016/j.lfs.2019.117212] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
|
19
|
Wang X, Wu J, Wu Y, Wang M, Wang Z, Wu T, Chen D, Tang X, Qin X, Wu Y, Hu Y. Pleiotropic Effects of a KCNQ1 Variant on Lipid Profiles and Type 2 Diabetes: A Family-Based Study in China. J Diabetes Res 2020; 2020:8278574. [PMID: 32016123 PMCID: PMC6982365 DOI: 10.1155/2020/8278574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The genetic variant rs2237895, located in the Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1) gene, has been replicated to be associated with type 2 diabetes mellitus (T2DM) susceptibility, but the relationship with lipids is conflicting. Furthermore, the common genetic predisposition to T2DM and lipids was not fully detected. METHODS In total, 5839 individuals (2220 were T2DM patients) across 2885 families were included. The effect of rs2237895 on T2DM and lipids was estimated using linear regression and logistic regression models after adjustment for multiple covariates. Mediation analysis was then used to test whether KCNQ1 participated in T2DM pathogenesis via lipid-mediated pathways. RESULTS Per allele-C of rs2237895 was associated with 17% (11-23%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%. CONCLUSION KCNQ1 had pleiotropic effects on lipids and T2DM, and the unexpected genetic effect on association of HDL-C with T2DM was observed, indicating the different pathways to lipids and T2DM. Further research studies are needed to verify potential biological mechanisms.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Medical Informatics Center, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
20
|
Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019; 8:cells8121573. [PMID: 31817238 PMCID: PMC6952831 DOI: 10.3390/cells8121573] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Human pathologies such as Alzheimer’s disease, type 2 diabetes-induced insulin resistance, cancer, and cardiovascular diseases have altered lipid homeostasis. Among these imbalanced lipids, the bioactive sphingolipids ceramide and sphingosine-1 phosphate (S1P) are pivotal in the pathophysiology of these diseases. Several enzymes within the sphingolipid pathway contribute to the homeostasis of ceramide and S1P. Ceramidase is key in the degradation of ceramide into sphingosine and free fatty acids. In humans, five different ceramidases are known—acid ceramidase, neutral ceramidase, and alkaline ceramidase 1, 2, and 3—which are encoded by five different genes (ASAH1, ASAH2, ACER1, ACER2, and ACER3, respectively). Notably, the neutral ceramidase N-acylsphingosine amidohydrolase 2 (ASAH2) shows considerable differences between humans and animals in terms of tissue expression levels. Besides, the subcellular localization of ASAH2 remains controversial. In this review, we sum up the results obtained for identifying gene divergence, structure, subcellular localization, and manipulating factors and address the role of ASAH2 along with other ceramidases in human diseases.
Collapse
|
21
|
Mo J, Zhou Y, Yang R, Zhang P, He B, Yang J, Li S, Shen Z, Chen P. Ginsenoside Rg1 ameliorates palmitic acid-induced insulin resistance in HepG2 cells in association with modulating Akt and JNK activity. Pharmacol Rep 2019; 71:1160-1167. [PMID: 31675670 DOI: 10.1016/j.pharep.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatic insulin resistance can be induced by excess dietary intake of saturated fat. Ginsenoside Rg1 (GRg1), the major active ginsenoside enriched in tonic food ginseng, was reported to help alleviate liver diseases. In the present study, GRg1 was evaluated for its impact on palmitic acid (PA)-induced hepatic insulin resistance model in vitro. METHODS Insulin resistance in HepG2 cells was induced by 0.5 mM PA exposure for 24 h and then the effect of GRg1 on cellular glucose consumption was measured. Expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase) were analyzed by Western blot and quantitative real-time polymerase chain reaction. Activation of protein kinases and transcript factor was analyzed by measuring protein phosphorylation. The influence of GRg1 on reactive oxygen species (ROS) production in HepG2 was also examined. RESULTS GRg1 reversed PA-induced decrease in glucose consumption of HepG2 cells by downregulating gluconeogenesis genes G6pase and PEPCK. GRg1 increased Akt activation but inhibited JNK activation in PA-challenged HepG2 cells. Cellular ROS level was elevated in insulin-resistant HepG2 cells but was reduced by GRg1. CONCLUSIONS Together these findings indicate that GRg1 protects against hepatic insulin resistance via preserving insulin signaling sensitivity and is a promising alternative medicine.
Collapse
Affiliation(s)
- Jiao Mo
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Yulin Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Renhua Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Pengli Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Bo He
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Jianyu Yang
- School of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Shude Li
- School of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China.
| | - Zhiqiang Shen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China.
| | - Peng Chen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
22
|
Lytrivi M, Castell AL, Poitout V, Cnop M. Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J Mol Biol 2019; 432:1514-1534. [PMID: 31628942 DOI: 10.1016/j.jmb.2019.09.016] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
The deleterious effects of chronically elevated free fatty acid (FFA) levels on glucose homeostasis are referred to as lipotoxicity, and the concurrent exposure to high glucose may cause synergistic glucolipotoxicity. Lipo- and glucolipotoxicity have been studied for over 25 years. Here, we review the current evidence supporting the role of pancreatic β-cell lipo- and glucolipotoxicity in type 2 diabetes (T2D), including lipid-based interventions in humans, prospective epidemiological studies, and human genetic findings. In addition to total FFA quantity, the quality of FFAs (saturation and chain length) is a key determinant of lipotoxicity. We discuss in vitro and in vivo experimental models to investigate lipo- and glucolipotoxicity in β-cells and describe experimental pitfalls. Lipo- and glucolipotoxicity adversely affect many steps of the insulin production and secretion process. The molecular mechanisms underpinning lipo- and glucolipotoxic β-cell dysfunction and death comprise endoplasmic reticulum stress, oxidative stress and mitochondrial dysfunction, impaired autophagy, and inflammation. Crosstalk between these stress pathways exists at multiple levels and may aggravate β-cell lipo- and glucolipotoxicity. Lipo- and glucolipotoxicity are therapeutic targets as several drugs impact the underlying stress responses in β-cells, potentially contributing to their glucose-lowering effects in T2D.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne-Laure Castell
- CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
23
|
Ling SC, Wu K, Zhang DG, Luo Z. Endoplasmic Reticulum Stress-Mediated Autophagy and Apoptosis Alleviate Dietary Fat-Induced Triglyceride Accumulation in the Intestine and in Isolated Intestinal Epithelial Cells of Yellow Catfish. J Nutr 2019; 149:1732-1741. [PMID: 31204781 DOI: 10.1093/jn/nxz135] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The intestine is the main organ for absorbing dietary fat. High dietary lipid intake leads to fat deposition in the intestine and adversely influences fat absorption and health, but the underlying mechanism is unknown. OBJECTIVES We used yellow catfish and their isolated intestinal epithelial cells to test the hypothesis that endoplasmic reticulum (ER) stress, autophagy, and apoptosis mediate fat-induced changes in lipid metabolism. METHODS Male and female yellow catfish (weight: 3.79 ± 0.16 g; age: 3 mo) were fed diets containing lipid at 6.98% (low-fat diet; LFD), 11.3% (middle-fat diet; MFD), or 15.4% (high-fat diet; HFD) (by weight) for 8 wk. Each dietary group had 3 replicates, 30 fish per replicate. Their intestinal epithelial cells were isolated and incubated for 24 h in control solution or various concentrations of fatty acids (FAs) with or without 2-h pretreatment with an inhibitor [3-methyladenine (3-MA), 4-phenyl butyric acid (4-PBA), or Ac-DVED-CHO (AC)]. Triglyceride (TG) contents, genes, and enzymes involved in lipid metabolism, ER stress, autophagy, and apoptosis were determined in intestinal tissue and cells; immunoblotting, BODIPY 493/503 staining, ultrastructural observation, and the detection of autophagic and apoptotic vesicles were performed on intestinal cells. RESULTS Compared with the LFD and MFD, the HFD increased intestinal TG content by 120-226%, activities of lipogenic enzymes by 19.0-245%, expression of genes related to lipogenesis (0.77-8.4-fold), lipolysis (0.36-6.0-fold), FA transport proteins (0.79-1.7-fold), ER stress (0.55-7.5-fold), autophagy (0.56-4.2-fold), and apoptosis (0.80-5.2-fold). Using isolated intestinal epithelial cells and inhibitors (4-PBA, 3-MA, and AC), we found that ER stress mediated FA-induced activation of autophagy (11.0-50.1%) and apoptosis (10.4-32.0%), and lipophagy and apoptosis mediated FA-induced lipolysis (3.40-41.6%). CONCLUSIONS An HFD upregulated lipogenesis, lipolysis, and FA transport, induced ER stress, and activated autophagy and apoptosis. ER stress, autophagy, and apoptosis play important regulatory roles in fat-induced changes in lipid metabolism in the intestine and intestinal epithelial cells of yellow catfish.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Alnahdi A, John A, Raza H. Augmentation of Glucotoxicity, Oxidative Stress, Apoptosis and Mitochondrial Dysfunction in HepG2 Cells by Palmitic Acid. Nutrients 2019; 11:nu11091979. [PMID: 31443411 PMCID: PMC6770774 DOI: 10.3390/nu11091979] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia and hyperlipidemia are the hallmarks of diabetes and obesity. Experimental and epidemiological studies have suggested that dietary management and caloric restriction are beneficial in reducing the complications of diabesity. Studies have suggested that increased availability of energy metabolites like glucose and saturated fatty acids induces metabolic, oxidative, and mitochondrial stress, accompanied by inflammation that may lead to chronic complications in diabetes. In the present study, we used human hepatoma HepG2 cells to investigate the effects of high glucose (25 mM) and high palmitic acid (up to 0.3 mM) on metabolic-, inflammatory-, and redox-stress-associated alterations in these cells. Our results showed increased lipid, protein, and DNA damage, leading to caspase-dependent apoptosis and mitochondrial dysfunction. Glucolipotoxicity increased ROS production and redox stress appeared to alter mitochondrial membrane potential and bioenergetics. Our results also demonstrate the enhanced ability of cytochrome P450s-dependent drug metabolism and antioxidant adaptation in HepG2 cells treated with palmitic acid, which was further augmented with high glucose. Altered NF-kB/AMPK/mTOR-dependent cell signaling and inflammatory (IL6/TNF-α) responses were also observed. Our results suggest that the presence of high-energy metabolites enhances apoptosis while suppressing autophagy by inducing inflammatory and oxidative stress responses that may be responsible for alterations in cell signaling and metabolism.
Collapse
Affiliation(s)
- Arwa Alnahdi
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box-17666, Al Ain, UAE
| | - Annie John
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box-17666, Al Ain, UAE
| | - Haider Raza
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box-17666, Al Ain, UAE.
| |
Collapse
|
25
|
Kwon M, Lee B, Lim SJ, Choi JS, Kim HR. Sargahydroquinoic acid, a major compound in Sargassum serratifolium (C. Agardh) C. Agardh, widely activates lipid catabolic pathways, contributing to the formation of beige-like adipocytes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Rohrbach TD, Asgharpour A, Maczis MA, Montefusco D, Cowart LA, Bedossa P, Sanyal AJ, Spiegel S. FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice. J Lipid Res 2019; 60:1311-1322. [PMID: 31110049 DOI: 10.1194/jlr.m093799] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a leading cause of liver dysfunction, is a metabolic disease that begins with steatosis. Sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate (S1P), have recently received attention for their potential roles in insulin resistance and hepatic steatosis. FTY720/fingolimod, a prodrug for the treatment of multiple sclerosis, is phosphorylated in vivo to its active phosphorylated form by sphingosine kinase 2 and has been shown to interfere with the actions of S1P and to inhibit ceramide biosynthesis. Therefore, in this study we investigated the effects of FTY720 in a diet-induced animal model of NAFLD (DIAMOND) that recapitulates the hallmarks of the human disease. The oral administration of FTY720 to these mice fed a high-fat diet and sugar water improved glucose tolerance and reduced steatosis. In addition to decreasing liver triglycerides, FTY720 also reduced hepatic sphingolipid levels, including ceramides, monohexosylceramides, and sphingomyelins, particularly the C16:0 and C24:1 species, as well as S1P and dihydro-S1P. FTY720 administration decreased diet-induced fatty acid synthase (FASN) expression in DIAMOND mice without affecting other key enzymes in lipogenesis. FTY720 had no effect on the expression of SREBP-1c, which transcriptionally activates FASN. However, in agreement with the notion that the active phosphorylated form of FTY720 is an inhibitor of histone deacetylases, FTY720-P accumulated in the liver, and histone H3K9 acetylation was markedly increased in these mice. Hence, FTY720 might be useful for attenuating FASN expression and triglyceride accumulation associated with steatosis.
Collapse
Affiliation(s)
- Timothy D Rohrbach
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Amon Asgharpour
- Division of Gastroenterology, Hepatology, and Nutrition Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, VA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, VA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, VA.,Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA
| | - Pierre Bedossa
- Division of Gastroenterology, Hepatology, and Nutrition Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
27
|
van Meijel RL, Blaak EE, Goossens GH. Adipose tissue metabolism and inflammation in obesity. MECHANISMS AND MANIFESTATIONS OF OBESITY IN LUNG DISEASE 2019:1-22. [DOI: 10.1016/b978-0-12-813553-2.00001-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Li Z, Lan D, Zhang H, Zhang H, Chen X, Sun J. Electroacupuncture Mitigates Skeletal Muscular Lipid Metabolism Disorder Related to High-Fat-Diet Induced Insulin Resistance through the AMPK/ACC Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7925842. [PMID: 30524482 PMCID: PMC6247435 DOI: 10.1155/2018/7925842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The aim of this work is to investigate the effect of electroacupuncture (EA) on insulin sensitivity in high-fat diet (HFD) induced insulin resistance (IR) rats and to evaluate expression of AMPK/ACC signaling components. Thirty-two male Sprague-Dawley rats were randomized into control group, HFD group, HFD+Pi (oral gavage of pioglitazone) group, and HFD+EA group. Acupuncture was subcutaneously applied to Zusanli (ST40) and Sanyinjiao (SP6). For Zusanli (ST40) and Sanyinjiao (SP6), needles were connected to an electroacupuncture (EA) apparatus. Fasting plasma glucose was measured by glucose oxidase method. Plasma fasting insulin (FINS) and adiponectin (ADP) were determined by ELISA. Triglyceride (TG) and cholesterol (TC) were determined by Gpo-pap. Proteins of adiponectin receptor 1 (adipoR1), AMP-activated Protein Kinase (AMPK), and acetyl-CoA carboxylase (ACC) were determined by Western blot, respectively. Compared with the control group, HFD group exhibits increased levels of FPG, FINS, and homeostatic model assessment of insulin resistance (HOMA-IR) and decreased level of ADP and insulin sensitivity index (ISI). These changes were reversed by both EA and pioglitazone. Proteins of adipoR1 and AMPK were decreased, while ACC were increased in HFD group compared to control group. Proteins of these molecules were restored back to normal levels upon EA and pioglitazone. EA can improve the insulin sensitivity of insulin resistance rats; the positive regulation of the AMPK/ACC pathway in the skeletal muscle may be a possible mechanism of EA in the treatment of IR.
Collapse
Affiliation(s)
- Zhixing Li
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Danchun Lan
- Department of Acu-Moxibustion, Foshan Hospital of Traditional Chinese Medicine, Foshan, Foshan 528000, China
| | - Haihua Zhang
- Massage Department, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Hongtao Zhang
- Traditional Therapy Department of Fangchun, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaozhuan Chen
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jian Sun
- Traditional Therapy Department of Fangchun, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
29
|
Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk. Mediators Inflamm 2018; 2018:9853192. [PMID: 30498395 PMCID: PMC6222239 DOI: 10.1155/2018/9853192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7. The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.
Collapse
|
30
|
Saturated fatty acids promote chondrocyte matrix remodeling through reprogramming of autophagy pathways. Nutrition 2018; 54:144-152. [DOI: 10.1016/j.nut.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 11/20/2022]
|
31
|
Paradoxical role of tumor necrosis factor on metabolic dysfunction and adipose tissue expansion in mice. Nutrition 2018; 50:1-7. [DOI: 10.1016/j.nut.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
|
32
|
Zhang Y, Li Y, Liu Z, Zhao Q, Zhang H, Wang X, Lu P, Yu H, Wang M, Dong H, Zhang Z. PEDF regulates lipid metabolism and reduces apoptosis in hypoxic H9c2 cells by inducing autophagy related 5-mediated autophagy via PEDF-R. Mol Med Rep 2018; 17:7170-7176. [PMID: 29568944 PMCID: PMC5928674 DOI: 10.3892/mmr.2018.8733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Pigment epithelial-derived factor (PEDF) is a multifunctional secreted glycoprotein, which exerts a variety of physiological activities. PEDF may protect against hypoxia‑induced cell death associated with its antioxidative effects and p53 mitochondrial translocation in cultured cardiomyocytes and H9c2 cells. Additionally, previous studies have suggested that autophagy is an important cell survival mechanism. However, the effect of PEDF on autophagy and the associated pathway in hypoxic H9c2 cells has not been fully established. Autophagy has been reported to regulate lipid metabolism; however, little is known about whether PEDF is able to regulate lipid metabolism by promoting autophagy. In the present study, western blotting results revealed that PEDF increased the level of microtubule‑associated protein 1A/1B‑light chain 3 (LC3)‑II. Transmission electron microscopy (TEM) and LC3 fluorescence demonstrated that PEDF increased the number of autophagosomes. PEDF also increased the viability of hypoxic H9c2 cells and decreased the level of cleaved caspase‑3 protein, as evidenced by CCK‑8 assays and western blotting, respectively. TEM and a triglyceride assay kit demonstrated that PEDF‑induced autophagy may stimulate lipid degradation. Western blotting results revealed a novel mechanism underlying PEDF‑induced H9c2 cell autophagy via the PEDF‑R‑mediated Atg5 pathway under hypoxic conditions. Furthermore, the results also suggest that PEDF‑induced autophagy may stimulate lipid degradation. The survival function of autophagy suggests that modulation of PEDF‑induced autophagy may be used as a therapeutic strategy to protect cells against lipid-associated metabolic diseases.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yufeng Li
- Department of Thoracic Cardiovascular Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhiwei Liu
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qixiang Zhao
- Department of Thoracic Cardiovascular Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xiaoyu Wang
- Department of Thoracic Cardiovascular Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Peng Lu
- Department of Thoracic Cardiovascular Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Hongli Yu
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Meng Wang
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Hongyan Dong
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhongming Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
33
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
34
|
Fatima A, Connaughton RM, Weiser A, Murphy AM, O'Grada C, Ryan M, Brennan L, O'Gaora P, Roche HM. Weighted Gene Co-Expression Network Analysis Identifies Gender Specific Modules and Hub Genes Related to Metabolism and Inflammation in Response to an Acute Lipid Challenge. Mol Nutr Food Res 2017; 62. [PMID: 28952191 DOI: 10.1002/mnfr.201700388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/24/2017] [Indexed: 01/16/2023]
Abstract
SCOPE Inflammation is characteristic of diet-related diseases including obesity and type 2 diabetes (T2D). However, biomarkers of inflammation that reflect the early stage metabolic derangements are not optimally sensitive. Lipid challenges elicit postprandial inflammatory and metabolic responses. Gender-specific transcriptomic networks of the peripheral blood mononuclear cell (PBMC) were constructed in response to a lipid challenge. METHODS AND RESULTS Eighty-six adult males and females of comparable age, anthropometric, and biochemical profiles completed an oral lipid tolerance test (OLTT). PBMC transcriptome was profiled following OLTT. Weighted gene coexpression networks were constructed separately for males and females. Functional ontology analysis of network modules was performed and hub genes identified. Two modules of interest were identified in females-an "inflammatory" module and an "energy metabolism" module. NLRP3, which plays a central role in inflammation and STARD3 that is involved in cholesterol metabolism, were identified as hub genes for the respective modules. CONCLUSION The OLTT induced some gender-specific correlations of gene coexpression network modules. In females, biological processes relating to energy metabolism and inflammation pathways were evident. This suggests a gender specific link between inflammation and energy metabolism in response to lipids. In contrast, G-protein coupled receptor protein signaling pathway was common to both genders.
Collapse
Affiliation(s)
- Attia Fatima
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland.,National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ruth M Connaughton
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland.,Institute of Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Anna Weiser
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland.,Nutritional Physiology, Technische Universität München, 85354, Freising, Germany
| | - Aoife M Murphy
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland.,Institute of Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Colm O'Grada
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Miriam Ryan
- Institute of Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Lorraine Brennan
- Institute of Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Peadar O'Gaora
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland.,Institute of Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| |
Collapse
|
35
|
Singh MP, Kang SC. Endoplasmic reticulum stress-mediated autophagy activation attenuates fumonisin B1 induced hepatotoxicity in vitro and in vivo. Food Chem Toxicol 2017; 110:371-382. [PMID: 29097114 DOI: 10.1016/j.fct.2017.10.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/16/2017] [Accepted: 10/29/2017] [Indexed: 01/07/2023]
Abstract
Although pathological characteristics of fumonisin B1 are known to induce hepatic injury over prolonged periods, the cellular defense mechanisms against the detrimental effects of FB1 are still unknown. The underlying mechanisms of FB1 toxicity are thought to be related with the inhibition of ceramide synthase, causing an accumulation of sphingoid bases, which in turn cause development of oxidative stress. Herein, we investigated whether autophagy, a cellular defense mechanism, protects liver cells from FB1 exposure. To accomplish this, we utilized HepG2 cells and a mouse model to study the effects of FB1 in the autophagy pathway. FB1 was capable of inducing autophagy via the generation of ROS, induction of endoplasmic reticulum stress, phosphorylation of JNK, suppression of mTOR and activation of LC3I/II in HepG2 cells and mice livers. Treatment of HepG2 cells with the ROS scavenger N-acetyl-l-cysteine alleviated ER stress stimulation and induced HepG2 cell death. Moreover, suppression of autophagy with 3-Methyladenine enhanced HepG2 cells apoptosis. Concurrently, four consecutive days exposure of mice livers to FB1 altered the levels of sphingoid bases, hepatic enzymes and induced histopathological changes. Moreover, the expression levels of major ER stress and autophagy-related markers such as PERK, IRE1-α, and LC3I/II also increased. Autophagy activation protected HepG2 cells and mice livers from the lethal effects of FB1. Hence, these findings specify that, the compounds that modify autophagy might be useful therapeutic agents for treatment of patients with FB1 induced liver ailments.
Collapse
Affiliation(s)
- Mahendra Pal Singh
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
36
|
Moran LJ, Mundra PA, Teede HJ, Meikle PJ. The association of the lipidomic profile with features of polycystic ovary syndrome. J Mol Endocrinol 2017; 59:93-104. [PMID: 28500248 DOI: 10.1530/jme-17-0023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects up to 18% of reproductive-aged women with reproductive and metabolic complications. While lipidomics can identify associations between lipid species and metabolic diseases, no research has examined the association of lipid species with the pathophysiological features of PCOS. The aim of this study was to examine the lipidomic profile in women with and without PCOS. This study was a cross-sectional study in 156 age-matched pre-menopausal women (18-45 years, BMI >20 kg/m2; n = 92 with PCOS, n = 64 without PCOS). Outcomes included the association between the plasma lipidomic profile (325 lipid species (24 classes) using liquid chromatography mass spectrometry) and PCOS, adiposity, homeostasis assessment of insulin resistance (HOMA), sex hormone-binding globulin (SHBG) and free androgen index (FAI). There were no associations of the lipidomic profile with PCOS or testosterone. HOMA was positively associated with 2 classes (dihydroceramide and triacylglycerol), SHBG was inversely associated with 2 classes (diacylglycerol and triacylglycerol), FAI was positively associated with 8 classes (ceramide, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylinositol, diacylglycerol and triacylglycerol) and waist circumference was associated with 8 classes (4 positively (dihydroceramide, phosphatidylglycerol, diacylglycerol and triacylglycerol) and 4 inversely (trihexosylceramide, GM3 ganglioside, alkenylphosphatidylcholine and alkylphosphatidylethanolamine)). The lipidomic profile was primarily related to central adiposity and FAI in women with or without PCOS. This supports prior findings that adiposity is a key driver of dyslipidaemia in PCOS and highlights the need for weight management through lifestyle interventions.
Collapse
Affiliation(s)
- L J Moran
- Monash Centre for Health Research and ImplementationSchool of Public Health and Preventative Medicine, Monash University, Clayton, Victoria, Australia
- The Robinson Research InstituteUniversity of Adelaide, North Adelaide, South Australia, Australia
| | - P A Mundra
- Metabolomics LaboratoryBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - H J Teede
- Monash Centre for Health Research and ImplementationSchool of Public Health and Preventative Medicine, Monash University, Clayton, Victoria, Australia
- Diabetes and Endocrine UnitMonash Health, Clayton, Victoria, Australia
| | - P J Meikle
- Metabolomics LaboratoryBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular BiologyUniversity of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Tian F, Wu CL, Yu BL, Liu L, Hu JR. Apolipoprotein O expression in mouse liver enhances hepatic lipid accumulation by impairing mitochondrial function. Biochem Biophys Res Commun 2017. [PMID: 28647361 DOI: 10.1016/j.bbrc.2017.06.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apolipoprotein O (ApoO) was recently observed in the cellular mitochondrial inner membrane, which plays a role in mitochondrial function and is associated with myocardiopathy. Empirical information on the physiological functions of apoO is therefore limited. In this study, we aimed to elucidate the effect of apoO on hepatic fatty acid metabolism. An adenoviral vector expressing hApoO was constructed and introduced into chow diet and high-fat diet induced mice and the L02 human hepatoma cell line. High levels of hApoO mRNA and protein were detected in the liver, and the expression of lipid metabolism genes was significantly altered compared with negative controls. The liver function indices (serum ALT and AST) were clearly elevated, and the ultrastructure of cellular mitochondria was distinctly altered in the liver after apoO overexpression. Further, mitochondrial membrane potential decreased with hApoO treatment in L02 cells. These results establish a link between apoO and lipid accumulation and could suggest a new pathway for regulating non-alcoholic fatty liver disease progression.
Collapse
Affiliation(s)
- Feng Tian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chen-Lu Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bi-Lian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jia-Rui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
38
|
Grenier-Larouche T, Carreau AM, Carpentier AC. Early Metabolic Improvement After Bariatric Surgery: The First Steps Toward Remission of Type 2 Diabetes. Can J Diabetes 2017; 41:418-425. [PMID: 28318939 DOI: 10.1016/j.jcjd.2016.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Abstract
The introduction of bariatric surgery into clinical practice in the 1980s was followed by a relatively long watch-and-wait period before the very rapid accumulation of scientific literature, over the past decade, concerning its clinical effectiveness and safety and its mechanisms of action in the treatment of obesity. These surgical procedures now emerge as the most effective therapeutic modality to induce long-term remission of type 2 diabetes. Recent research has shed light on the potential mechanisms leading to the profound improvement of glucose homeostasis following most bariatric surgery procedures. These mechanisms can be classified as weight loss dependent and independent, both playing sequential and then synergistic antidiabetes roles. Many groups, including our own, have contributed to our understanding of the relative roles of these mechanisms at differing time periods following these procedures. Here we summarize what we currently know about the mechanisms underlying the very rapid, weight loss-independent improvement in glucose homeostasis after bariatric surgery. Beyond its impact in the field of bariatric surgery, this new knowledge about the very rapid in vivo "reverse engineering" of type 2 diabetes actually provides unique insights into the intricate and complex mechanisms linking nutrition and obesity with the development of this disease.
Collapse
Affiliation(s)
- Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
39
|
|
40
|
Boini KM, Xia M, Koka S, Gehr TWB, Li PL. Sphingolipids in obesity and related complications. FRONT BIOSCI-LANDMRK 2017; 22:96-116. [PMID: 27814604 PMCID: PMC5844360 DOI: 10.2741/4474] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sphingolipids are biologically active lipids ubiquitously produced in all vertebrate cells. Asides from structural components of cell membrane, sphingolipids also function as intracellular and extracellular mediators that regulate many important physiological cellular processes including cell survival, proliferation, apoptosis, differentiation, migration and immune processes. Recent studies have also indicated that disruption of sphingolipid metabolism is strongly associated with different diseases that exhibit diverse neurological and metabolic consequences. Here, we briefly summarize current evidence for understanding of sphingolipid pathways in obesity and associated complications. The regulation of sphingolipids and their enzymes may have a great impact in the development of novel therapeutic modalities for a variety of metabolic diseases.
Collapse
Affiliation(s)
- Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA and Department of Nephrology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Saisudha Koka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Todd W B Gehr
- Department of Nephrology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, 410 N, 12th Street, Richmond, VA, 23298,
| |
Collapse
|
41
|
Chaurasia B, Kaddai VA, Lancaster GI, Henstridge DC, Sriram S, Galam DLA, Gopalan V, Prakash KNB, Velan SS, Bulchand S, Tsong TJ, Wang M, Siddique MM, Yuguang G, Sigmundsson K, Mellet NA, Weir JM, Meikle PJ, Bin M Yassin MS, Shabbir A, Shayman JA, Hirabayashi Y, Shiow SATE, Sugii S, Summers SA. Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism. Cell Metab 2016; 24:820-834. [PMID: 27818258 DOI: 10.1016/j.cmet.2016.10.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 10/05/2016] [Indexed: 01/23/2023]
Abstract
Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Laboratory of Translational Metabolic Health, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia.
| | - Vincent Andre Kaddai
- Laboratory of Translational Metabolic Health, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Graeme Iain Lancaster
- Laboratory of Translational Metabolic Health, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Sandhya Sriram
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Singapore 138667, Singapore
| | - Dwight Lark Anolin Galam
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore 169547, Singapore
| | - Venkatesh Gopalan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore 138667, Singapore
| | - K N Bhanu Prakash
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore 138667, Singapore
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore 138667, Singapore
| | - Sarada Bulchand
- Tata Institute of Fundamental Research, Navy Nagar, Mumbai 400005, India
| | - Teh Jing Tsong
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | | | - Guan Yuguang
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore 169547, Singapore
| | - Kristmundur Sigmundsson
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore 169547, Singapore
| | - Natalie A Mellet
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - M Shabeer Bin M Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Asim Shabbir
- Department of Surgery, National University of Singapore, Singapore 117599, Singapore
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Sue-Anne Toh Ee Shiow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Singapore 138667, Singapore; Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore 169547, Singapore
| | - Scott A Summers
- Laboratory of Translational Metabolic Health, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| |
Collapse
|
42
|
Sekar S, Crawford R, Xiao Y, Prasadam I. Dietary Fats and Osteoarthritis: Insights, Evidences, and New Horizons. J Cell Biochem 2016; 118:453-463. [DOI: 10.1002/jcb.25758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sunderajhan Sekar
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
- The Prince Charles Hospital; Orthopedic Department; Brisbane Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| |
Collapse
|
43
|
Kopprasch S, Dheban S, Schuhmann K, Xu A, Schulte KM, Simeonovic CJ, Schwarz PEH, Bornstein SR, Shevchenko A, Graessler J. Detection of Independent Associations of Plasma Lipidomic Parameters with Insulin Sensitivity Indices Using Data Mining Methodology. PLoS One 2016; 11:e0164173. [PMID: 27736893 PMCID: PMC5063331 DOI: 10.1371/journal.pone.0164173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin resistance and type 2 diabetes mellitus (T2D). We aimed to detect subtle changes in the circulating lipid profile by shotgun lipidomics analyses and to associate them with four different insulin sensitivity indices. Methods The cross-sectional study comprised 90 men with a broad range of insulin sensitivity including normal glucose tolerance (NGT, n = 33), impaired glucose tolerance (IGT, n = 32) and newly detected T2D (n = 25). Prior to oral glucose challenge plasma was obtained and quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes including triacylglycerls (TAGs), phosphatidylcholine plasmalogen/ether (PC O-s), sphingomyelins (SMs), and lysophosphatidylcholines (LPCs). To identify a lipidomic signature of individual insulin sensitivity we applied three data mining approaches, namely least absolute shrinkage and selection operator (LASSO), Support Vector Regression (SVR) and Random Forests (RF) for the following insulin sensitivity indices: homeostasis model of insulin resistance (HOMA-IR), glucose insulin sensitivity index (GSI), insulin sensitivity index (ISI), and disposition index (DI). The LASSO procedure offers a high prediction accuracy and and an easier interpretability than SVR and RF. Results After LASSO selection, the plasma lipidome explained 3% (DI) to maximal 53% (HOMA-IR) variability of the sensitivity indexes. Among the lipid species with the highest positive LASSO regression coefficient were TAG 54:2 (HOMA-IR), PC O- 32:0 (GSI), and SM 40:3:1 (ISI). The highest negative regression coefficient was obtained for LPC 22:5 (HOMA-IR), TAG 51:1 (GSI), and TAG 58:6 (ISI). Conclusion Although a substantial part of lipid molecular species showed a significant correlation with insulin sensitivity indices we were able to identify a limited number of lipid metabolites of particular importance based on the LASSO approach. These few selected lipids with the closest connection to sensitivity indices may help to further improve disease risk prediction and disease and therapy monitoring.
Collapse
Affiliation(s)
- Steffi Kopprasch
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| | - Srirangan Dheban
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Klaus-Martin Schulte
- Department of Endocrine Surgery, King’s College Hospital, NHS Foundation Trust, London, United Kingdom
| | - Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Peter E. H. Schwarz
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Juergen Graessler
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
44
|
Chaurasia B, Summers SA. Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol Metab 2015; 26:538-550. [PMID: 26412155 DOI: 10.1016/j.tem.2015.07.006] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/19/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023]
Abstract
In obesity and dyslipidemia, the oversupply of fat to tissues not suited for lipid storage induces cellular dysfunction that underlies diabetes and cardiovascular disease (i.e., lipotoxicity). Of the myriad lipids that accrue under these conditions, sphingolipids such as ceramide or its metabolites are amongst the most deleterious because they disrupt insulin sensitivity, pancreatic β cell function, vascular reactivity, and mitochondrial metabolism. Remarkably, inhibiting ceramide biosynthesis or catalyzing ceramide degradation in rodents ameliorates many metabolic disorders including diabetes, cardiomyopathy, insulin resistance, atherosclerosis, and steatohepatitis. Herein we discuss and critically assess studies that identify sphingolipids as major contributors to the tissue dysfunction underlying metabolic pathologies, highlighting the need to further decipher the full array of benefits elicited by ceramide depletion.
Collapse
Affiliation(s)
| | - Scott A Summers
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
45
|
Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev 2015; 31:453-75. [PMID: 25139820 DOI: 10.1002/dmrr.2601] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wan Najihah Wan Hassan
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, 13th Floor Main Tower, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Berlanga A, Guiu-Jurado E, Porras JA, Aragonès G, Auguet T. [Role of metabolic lipases and lipotoxicity in the development of non-alcoholic steatosis and non-alcoholic steatohepatitis]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 28:47-61. [PMID: 26049666 DOI: 10.1016/j.arteri.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in developed countries, covering a spectrum of pathological conditions ranging from single steatosis to non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. Its pathogenesis has been often interpreted by the "double-hit" hypothesis, where the lipid accumulation in the liver is followed by proinflammatory mediators inducing inflammation, hepatocellular injury and fibrosis. Nowadays, a more complex model suggests that free fatty acids and their metabolites could be the true lipotoxic agents that contribute to the development of NAFLD and hepatic insulin resistance, suggesting a central role for metabolic lipases in that process.
Collapse
Affiliation(s)
- Alba Berlanga
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - Esther Guiu-Jurado
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - José Antonio Porras
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España; Servicio de Medicina Interna, Hospital Universitario Joan XXIII, Tarragona, España
| | - Gemma Aragonès
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - Teresa Auguet
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España; Servicio de Medicina Interna, Hospital Universitario Joan XXIII, Tarragona, España.
| |
Collapse
|
47
|
Liu X, Chan HC, Ding G, Cai J, Song Y, Wang T, Zhang D, Chen H, Yu MK, Wu Y, Qu F, Liu Y, Lu Y, Adashi EY, Sheng J, Huang H. FSH regulates fat accumulation and redistribution in aging through the Gαi/Ca(2+)/CREB pathway. Aging Cell 2015; 14:409-20. [PMID: 25754247 PMCID: PMC4406670 DOI: 10.1111/acel.12331] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2014] [Indexed: 12/25/2022] Open
Abstract
Increased fat mass and fat redistribution are commonly observed in aging populations worldwide. Although decreased circulating levels of sex hormones, androgens and oestrogens have been observed, the exact mechanism of fat accumulation and redistribution during aging remains obscure. In this study, the receptor of follicle-stimulating hormone (FSH), a gonadotropin that increases sharply and persistently with aging in both males and females, is functionally expressed in human and mouse fat tissues and adipocytes. Follicle-stimulating hormone was found to promote lipid biosynthesis and lipid droplet formation; FSH could also alter the secretion of leptin and adiponectin, but not hyperplasia, in vitro and in vivo. The effects of FSH are mediated by FSH receptors coupled to the Gαi protein; as a result, Ca2+ influx is stimulated, cAMP-response-element-binding protein is phosphorylated, and an array of genes involved in lipid biosynthesis is activated. The present findings depict the potential of FSH receptor-mediated lipodystrophy of adipose tissues in aging. Our results also reveal the mechanism of fat accumulation and redistribution during aging of males and females.
Collapse
Affiliation(s)
- Xin‐Mei Liu
- International Peace Maternity and Child Health Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
- Department of Pathology & Pathophysiology School of Medicine Zhejiang University Zhejiang China
- Shanghai Jiao Tong University – The Chinese University of Hong Kong Joint Research Center for Human Reproduction and Related Diseases Shanghai China
| | - Hsiao Chang Chan
- Shanghai Jiao Tong University – The Chinese University of Hong Kong Joint Research Center for Human Reproduction and Related Diseases Shanghai China
- Epithelial Cell Biology Research Center School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong Hong Kong
- Key Laboratory for Regenerative Medicine (Jinan University – The Chinese University of Hong Kong) Ministry of Education Hangzhou China
| | - Guo‐Lian Ding
- International Peace Maternity and Child Health Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
- Shanghai Jiao Tong University – The Chinese University of Hong Kong Joint Research Center for Human Reproduction and Related Diseases Shanghai China
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Jie Cai
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
- Ningbo Maternal and Child Health Hospital Zhejiang China
| | - Yang Song
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Ting‐Ting Wang
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Dan Zhang
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Hui Chen
- Shanghai Jiao Tong University – The Chinese University of Hong Kong Joint Research Center for Human Reproduction and Related Diseases Shanghai China
- Epithelial Cell Biology Research Center School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong Hong Kong
- Key Laboratory for Regenerative Medicine (Jinan University – The Chinese University of Hong Kong) Ministry of Education Hangzhou China
| | - Mei Kuen Yu
- Shanghai Jiao Tong University – The Chinese University of Hong Kong Joint Research Center for Human Reproduction and Related Diseases Shanghai China
- Epithelial Cell Biology Research Center School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong Hong Kong
- Key Laboratory for Regenerative Medicine (Jinan University – The Chinese University of Hong Kong) Ministry of Education Hangzhou China
| | - Yan‐Ting Wu
- International Peace Maternity and Child Health Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
- Shanghai Jiao Tong University – The Chinese University of Hong Kong Joint Research Center for Human Reproduction and Related Diseases Shanghai China
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Fan Qu
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Ye Liu
- International Peace Maternity and Child Health Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
- Department of Pathology & Pathophysiology School of Medicine Zhejiang University Zhejiang China
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Yong‐Chao Lu
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| | - Eli Y. Adashi
- The Warren Alpert Medical School Brown University Providence RI USA
| | - Jian‐Zhong Sheng
- Department of Pathology & Pathophysiology School of Medicine Zhejiang University Zhejiang China
| | - He‐Feng Huang
- International Peace Maternity and Child Health Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
- The Key Laboratory of Reproductive Genetics Ministry of Education Hangzhou China
| |
Collapse
|
48
|
Mir SUR, George NM, Zahoor L, Harms R, Guinn Z, Sarvetnick NE. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem 2015; 290:6071-85. [PMID: 25548282 PMCID: PMC4358249 DOI: 10.1074/jbc.m114.605345] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a cellular recycling process responsible for turnover of cytoplasmic contents, is critical for maintenance of health. Defects in this process have been linked to diabetes. Diabetes-associated glucotoxicity/lipotoxicity contribute to impaired β-cell function and have been implicated as contributing factors to this disease. We tested the hypothesis that these two conditions affect β-cell function by modulating autophagy. We report that exposure of β-cell lines and human pancreatic islets to high levels of glucose and lipids blocks autophagic flux and leads to apoptotic cell death. EM analysis showed accumulation of autophagy intermediates (autophagosomes), with abundant engulfed cargo in palmitic acid (PA)- or glucose-treated cells, indicating suppressed autophagic turnover. EM studies also showed accumulation of damaged mitochondria, endoplasmic reticulum distention, and vacuolar changes in PA-treated cells. Pulse-chase experiments indicated decreased protein turnover in β-cells treated with PA/glucose. Expression of mTORC1, an inhibitor of autophagy, was elevated in β-cells treated with PA/glucose. mTORC1 inhibition, by treatment with rapamycin, reversed changes in autophagic flux, and cell death induced by glucose/PA. Our results indicate that nutrient toxicity-induced cell death occurs via impaired autophagy and is mediated by activation of mTORC1 in β-cells, contributing to β-cell failure in the presence of metabolic stress.
Collapse
Affiliation(s)
- Shakeel U R Mir
- From the Department of Surgery and the Holland Regenerative Medicine Program, University Nebraska Medical Center, Omaha, Nebraska 68198-5965
| | - Nicholas M George
- From the Department of Surgery and the Holland Regenerative Medicine Program, University Nebraska Medical Center, Omaha, Nebraska 68198-5965
| | - Lubna Zahoor
- From the Department of Surgery and the Holland Regenerative Medicine Program, University Nebraska Medical Center, Omaha, Nebraska 68198-5965
| | - Robert Harms
- From the Department of Surgery and the Holland Regenerative Medicine Program, University Nebraska Medical Center, Omaha, Nebraska 68198-5965
| | - Zachary Guinn
- From the Department of Surgery and the Holland Regenerative Medicine Program, University Nebraska Medical Center, Omaha, Nebraska 68198-5965
| | - Nora E Sarvetnick
- From the Department of Surgery and the Holland Regenerative Medicine Program, University Nebraska Medical Center, Omaha, Nebraska 68198-5965
| |
Collapse
|
49
|
Sanders FWB, Griffin JL. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc 2015; 91:452-68. [PMID: 25740151 PMCID: PMC4832395 DOI: 10.1111/brv.12178] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl‐CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non‐alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance.
Collapse
Affiliation(s)
- Francis W B Sanders
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K.,The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Julian L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K.,The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| |
Collapse
|
50
|
Sun S, Zhang Z, Pokrovskaia N, Chowdhury S, Jia Q, Chang E, Khakh K, Kwan R, McLaren DG, Radomski CC, Ratkay LG, Fu J, Dales NA, Winther MD. Discovery of triazolone derivatives as novel, potent stearoyl-CoA desaturase-1 (SCD1) inhibitors. Bioorg Med Chem 2015; 23:455-65. [DOI: 10.1016/j.bmc.2014.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 12/17/2022]
|