1
|
Zhou JQ, Liu ZX, Zhong HF, Liu GQ, Ding MC, Zhang Y, Yu B, Jiang N. Single nucleotide polymorphisms in the development of osteomyelitis and prosthetic joint infection: a narrative review. Front Immunol 2024; 15:1444469. [PMID: 39301021 PMCID: PMC11410582 DOI: 10.3389/fimmu.2024.1444469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Currently, despite advancements in diagnostic and therapeutic modalities, osteomyelitis and prosthetic joint infection (PJI) continue to pose significant challenges for orthopaedic surgeons. These challenges are primarily attributed to the high degree of heterogeneity exhibited by these disorders, which are influenced by a combination of environmental and host factors. Recent research efforts have delved into the pathogenesis of osteomyelitis and PJI by investigating single nucleotide polymorphisms (SNPs). This review comprehensively summarizes the current evidence regarding the associations between SNPs and the predisposition to osteomyelitis and PJI across diverse populations. The findings suggest potential linkages between SNPs in genes such as IL-1, IL-6, IFN-γ, TNF-α, VDR, tPA, CTSG, COX-2, MMP1, SLC11A1, Bax, NOS2, and NLRP3 with the development of osteomyelitis. Furthermore, SNPs in genes like IL-1, IL-6, TNF-α, MBL, OPG, RANK, and GCSFR are implicated in susceptibility to PJI. However, it is noted that most of these studies are single-center reports, lacking in-depth mechanistic research. To gain a more profound understanding of the roles played by various SNPs in the development of osteomyelitis and PJI, future multi-center studies and fundamental investigations are deemed necessary.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zi-Xian Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Fa Zhong
- Department of Trauma Emergency Center, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Cong Ding
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Trauma Emergency Center, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| |
Collapse
|
2
|
Kamińska A, Pardyak L, Lustofin S, Gielata K, Arent Z, Pietsch-Fulbiszewska A, Hejmej A. 9-cis-retinoic acid signaling in Sertoli cells regulates their immunomodulatory function to control lymphocyte physiology and Treg differentiation. Reprod Biol Endocrinol 2024; 22:75. [PMID: 38926848 PMCID: PMC11202360 DOI: 10.1186/s12958-024-01246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Testis is an immune privileged organ, which prevents the immune response against sperm antigens and inflammation. Testicular cells responsible for immune tolerance are mainly Sertoli cells, which form the blood-testis barrier and produce immunosuppressive factors. Sertoli cells prevent inflammation in the testis and maintain immune tolerance by inhibiting proliferation and inducing lymphocyte apoptosis. It has been shown that 9-cis-retinoic acid (9cRA) blocks ex vivo apoptosis of peripheral blood lymphocytes and promotes the differentiation of Treg cells in the gut. However, the role of retinoid signaling in regulating the immune privilege of the testes remains unknown. OBJECTIVE The aim of this study was to determine whether 9cRA, acting via the retinoic acid receptors (RAR) and the retinoic X receptors (RXR), controls the immunomodulatory functions of Sertoli cells by influencing the secretion of anti-inflammatory/pro-inflammatory factors, lymphocyte physiology and Treg cell differentiation. METHODS Experiments were performed using in vitro model of co-cultures of murine Sertoli cells and T lymphocytes. Agonists and antagonists of retinoic acid receptors were used to inhibit/stimulate retinoid signaling in Sertoli cells. RESULTS Our results have demonstrated that 9cRA inhibits the expression of immunosuppressive genes and enhances the expression of pro-inflammatory factors in Sertoli cells and lymphocytes, increases lymphocyte viability and decreases apoptosis rate. Moreover, we have found that 9cRA blocks lymphocyte apoptosis acting through both RAR and RXR and inhibiting FasL/Fas/Caspase 8 and Bax/Bcl-2/Caspase 9 pathways. Finally, we have shown that 9cRA signaling in Sertoli cells inhibits Treg differentiation. CONCLUSION Collectively, our results indicate that retinoid signaling negatively regulates immunologically privileged functions of Sertoli cells, crucial for ensuring male fertility. 9cRA inhibits lymphocyte apoptosis, which can be related to the development of autoimmunity, inflammation, and, in consequence, infertility.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland.
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Krakow, 30-248, Poland
| | - Sylwia Lustofin
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Karolina Gielata
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Krakow, 30-248, Poland
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Krakow, 30-059, Poland
| | | | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| |
Collapse
|
3
|
Tortora F, Guerrera V, Lettieri G, Febbraio F, Piscopo M. Prediction of Pesticide Interactions with Proteins Involved in Human Reproduction by Using a Virtual Screening Approach: A Case Study of Famoxadone Binding CRBP-III and Izumo. Int J Mol Sci 2024; 25:5790. [PMID: 38891976 PMCID: PMC11171824 DOI: 10.3390/ijms25115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of -10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (-7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between -8.3 and -8.0 Kcal/mol, to the IZUMO Sperm-Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process.
Collapse
Affiliation(s)
- Fabiana Tortora
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Valentina Guerrera
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| |
Collapse
|
4
|
Liu G, Zhang Y, Han S, Zhuang W, Lv J, Han M, Xie L, Jiang X, Wang C, Saimaier K, Shen J, Du C. TPN10466 ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting ERK/JNK/p38 signaling pathway. Eur J Immunol 2023; 53:e2250100. [PMID: 36648433 DOI: 10.1002/eji.202250100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Autoimmune hepatitis (AIH) eventually progresses to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, causing irreversible damage to the liver. Concanavalin A-induced hepatitis in mice is a well-established model with pathophysiology similar to that of immune-mediated liver injury in human viral and autoimmune hepatitis, and it has been widely used to explore the pathogenesis and clinical treatment of human immune hepatitis. Artemisinin has been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to assess the effect of the artemisinin derivative TPN10466 on AIH. In vitro studies showed that TPN10466 dose dependently inhibited the percentage of IFN-γ-producing T cells. Further studies showed that TPN10466 attenuated the disease severity of AIH by downregulating the ability of lymphocytes to secrete IFN-γ and by reducing lymphocyte number in the liver. In addition, we found that TPN10466 treatment reduced T-cell responses by inhibiting JNK, ERK, and p38 pathways. In conclusion, our work suggests that TPN10466 provides protection against the autoimmune disease AIH by suppressing the inflammatory response of T cells, suggesting that TPN10466 may be a promising potential agent for the treatment of AIH.
Collapse
Affiliation(s)
- Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yan Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Sansheng Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengyao Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangrui Jiang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingshan Shen
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Fishov H, Muchtar E, Salmon‐Divon M, Dispenzieri A, Zvida T, Schneider C, Bender B, Duek A, Leiba M, Shpilberg O, Hershkovitz‐Rokah O. AL amyloidosis clonal plasma cells are regulated by microRNAs and dependent on anti-apoptotic BCL2 family members. Cancer Med 2023; 12:8199-8210. [PMID: 36694297 PMCID: PMC10134277 DOI: 10.1002/cam4.5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Noncoding RNAs such as microRNAs (miRNAs) have attracted attention as biological pathway regulators, which differ from chromosomal translocations and gene point mutations. Their involvement in the molecular mechanisms underlying light chain (AL) amyloidosis pathogenesis is yet to be elucidated. AIMS To decipher specific miRNA expression profile in AL-amyloidosis and to examine how miRNAs are involved in AL pathogenesis. METHODS The expression profile of miRNAs and mRNA from bone marrow (BM)-derived CD138+ cells were determined using the NanoString nCounter assay and RNA-Seq, respectively. The effect of aberrantly expressed miRNAs on potential molecular targets was analyzed by qRT-PCR, Western blot, Mito-potential assay, and Annexin-PI staining. RESULTS Genes which were significantly differentially expressed between AL-amyloidosis and MM, were found to be involved in cell growth and apoptotic mechanisms. Specifically, BCL2L1, MCL1, and BCL2 were upregulated in AL-amyloidosis compared with MM and controls. The levels of miR-181a-5p and miR-9-5p, which regulate the above-mentioned genes, were lower in BM samples from AL-amyloidosis compared with controls, providing a mechanism for BCL2 family gene upregulation. When miR-9-5p and miR-181a-5p were overexpressed in ALMC1 cells, BCL2L1, MCL1, and BCL2 were downregulated and induced apoptosis. Treatment of ALMC-1 cells with venetoclax, (BCL-2 inhibitor), resulted in the upregulation of those miRNAs, the downregulation of BCL2, MCL1, and BCL2L1 mRNA and protein levels, and subsequent apoptosis. CONCLUSION Our findings suggest that miR-9-5p and miR-181a-5p act as tumor-suppressors whose downregulation induces anti-apoptotic mechanisms underlying the pathogenesis of AL-amyloidosis. The study highlights the post-transcriptional regulation in AL-amyloidosis and provides pathogenetic evidence for the potential use of BCL-2 inhibitors in this disease.
Collapse
Affiliation(s)
- Hila Fishov
- Department of Molecular Biology, Faculty of Natural SciencesAriel UniversityArielIsrael
- Translational Research Lab, Assuta Medical CentersTel‐AvivIsrael
| | - Eli Muchtar
- Division of HematologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Mali Salmon‐Divon
- Department of Molecular Biology, Faculty of Natural SciencesAriel UniversityArielIsrael
- Adelson School of MedicineAriel UniversityArielIsrael
| | - Angela Dispenzieri
- Division of HematologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Tal Zvida
- Department of Molecular Biology, Faculty of Natural SciencesAriel UniversityArielIsrael
- Translational Research Lab, Assuta Medical CentersTel‐AvivIsrael
| | | | | | - Adrian Duek
- Institute of HematologyAssuta Ashdod University Hospital, Faculty of Health Science Ben‐Gurion University of the NegevBeer ShevaIsrael
| | - Merav Leiba
- Institute of HematologyAssuta Ashdod University Hospital, Faculty of Health Science Ben‐Gurion University of the NegevBeer ShevaIsrael
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical CentersTel‐AvivIsrael
- Adelson School of MedicineAriel UniversityArielIsrael
- Institute of Hematology, Assuta Medical CentersTel‐AvivIsrael
| | - Oshrat Hershkovitz‐Rokah
- Department of Molecular Biology, Faculty of Natural SciencesAriel UniversityArielIsrael
- Translational Research Lab, Assuta Medical CentersTel‐AvivIsrael
| |
Collapse
|
6
|
Qi Z, Yan D, Cao L, Xu Y, Chang M. Zebrafish BID Exerts an Antibacterial Role by Negatively Regulating p53, but in a Caspase-8-Independent Manner. Front Immunol 2021; 12:707426. [PMID: 34531858 PMCID: PMC8439435 DOI: 10.3389/fimmu.2021.707426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Bid (BH3-interacting domain death agonist), a member of the Bcl-2 family, plays a crucial role in the initiation of apoptosis. Independent of its apoptotic function, Bid is also involved in the regulation of inflammation and innate immunity. However, the role of Bid during bacterial pathogen infection remains unclear. In the present study, Bid of zebrafish (Dario rerio) was cloned and its functions during Edwardsiella ictaluri infection were investigated. Zebrafish Bid enhances the apoptosis rate of Epithelioma papulosum cyprini (EPC) cells following E. ictaluri infection. Importantly, in vitro and in vivo bacterial invasion assays showed that overexpressed Bid could significantly inhibit the invasion and proliferation of E. ictaluri. Real-time qPCR analysis revealed that p53 gene expression was downregulated in embryos microinjected with Bid-FLAG. Further, in vitro and in vivo bacterial invasion assays showed that overexpressed p53 increased the invasion and proliferation of E. ictaluri. Moreover, the invasion and proliferation of E. ictaluri were inhibited when co-overexpressing Bid and p53 in vivo and in vitro. Further, the numbers of E. ictaluri in larvae treated with Z-IETD-FMK (caspase-8 inhibitor) were higher than those of larvae without Z-IETD-FMK treatment, while the number of E. ictaluri in larvae microinjected with bid-Flag decreased significantly, even if the larvae were treated in advance with Z-IETD-FMK. Collectively, our study demonstrated a novel antibacterial activity of fish Bid, providing evidence for understanding the function of apoptosis associated gene in pathogen infection.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Dong Yan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Lamie PF, Philoppes JN. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg Chem 2021; 116:105335. [PMID: 34509795 DOI: 10.1016/j.bioorg.2021.105335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
In this study, fourteen novel indole-pyrimidine hybrids were designed and synthesized. Their chemical structures were confirmed using different spectroscopic techniques (1H NMR, 13C NMR, IR and mass). Their (E) stereochemical configuration was determined theoretically (MM2 property) and experimentally using 2D NMR technique (NOESY experiment). The prepared compounds were subjected to preliminary biological studies as Mcl-1 inhibitors. Most of the compounds exhibited good abilities for targeting Mcl-1 protein, especially, 7d, 7e, 7i and 7k (Ki = 11.19-15.21 nM). These derivatives were further evaluated against Bcl-XL and Bcl-2 proteins. Some compounds were found to have dual Mcl-1/Bcl-XL such as 7i, or Bcl-XL/Bcl-2 inhibitory activity as 7d. The most potent derivatives as Mcl-1 inhibitors were chosen as representative examples for determination of in-vitro anti-proliferative activity against PC-3, K-562 and MDA-MB-231 cell lines. They possessed excellent to good anti-proliferative activities. All of the synthesized compounds were docked into Mcl-1 active site. Drug-likeness properties and in silico pre-ADMET characters were also predicted.
Collapse
Affiliation(s)
- Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Nutritional, phytochemical, and in vitro anticancer potential of sugar apple (Annona squamosa) fruits. Sci Rep 2021; 11:6224. [PMID: 33737634 PMCID: PMC7973736 DOI: 10.1038/s41598-021-85772-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023] Open
Abstract
In plants, Fruits and their wastes are the main sources of bioactive compounds. Currently, Annona fruits have attracted the attention of people interested in health-promoting foods due to their phytochemical content that their activities were not studied before. This study aimed to explore the potential antioxidant, antimicrobial, and in vitro anticancer activity of two cultivars Annona squamosa (Annona b. and Annona h.) seed, peel, and pulp. We also meausred phenolic, flavonoid, sulfated polysaccharide, tannins, and triterpenoids. Polyphenol identification was determined using RP-HPLC. Results of the antioxidant activity revealed that the highest activity was observed for Annona h. seed extract using DPPH and ABTS assays with IC50 6.07 ± 0.50 and 9.58 ± 0.53 µg/ml, respectively. The antimicrobial activity against various pathogenic strains revealed that the peel extracts of both Annona b. and Annona h. exhibited the best antimicrobial activity. We also assessed the IC50 values for anticancer activity in all six Annona b. and Annona h samples against four cancer cell lines colon (Caco-2), prostate (PC3), liver (HepG-2), and breast (MCF-7) using MTT assay. Annona b. and Annona h seed extracts had the lowest IC50 values for four cancer cell lines with 7.31 ± 0.03 and 15.99 ± 1.25 for PC-3 and MCF-7, respectively. Both seed extracts, Annona b. and Annona h., showed significantly down-regulated mRNA expression of Bcl-2 and up-regulated p53 in all treated cell lines. Apoptosis was evaluated using nuclear staining, flow cytometric analysis, and immunohistochemistry of the proliferation marker (Ki-67). Additional studies are required to characterize the bioactive compounds responsible for the observed activities of Annona seed and determine its mechanism as an anticancer drug.
Collapse
|
9
|
Samo SP, Malhi M, Kachiwal AB, Gadahi JA, Parveen F, Kalhoro NH, Lei Y. Supranutritional selenium level minimizes high concentrate diet-induced epithelial injury by alleviating oxidative stress and apoptosis in colon of goat. BMC Vet Res 2020; 16:462. [PMID: 33246474 PMCID: PMC7694315 DOI: 10.1186/s12917-020-02653-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
Background High concentrate (HC) diet-induced oxidative stress causes gut epithelial damages associated with apoptosis. Selenium (Se) being an integral component of glutathione peroxidase (GSH-Px) plays an important role in antioxidant defense system. Therefore, increasing dietary Se level would alleviate HC diet-induced injuries in gut mucosa. The present study investigated eighteen cross-bred goats, randomly divided into three groups (n = 6/group) fed either low concentrate (LC, roughage: concentrate ratio 65:35), high concentrate (HC, 35:65) or HC plus Se (HC-SY) diets for 10 weeks. Se was supplemented at the dose rate of 0.5 mg Se kg− 1 diet in the form of selenium yeast. The background Se level in HC and LC diets were 0.15 and 0.035 mg.kg− 1 diet, respectively. The Se at the dose of 0.115 mg.kg− 1 diet was added in LC diet to make its concentration equivalent to HC diet and with the supplementation of 0.5 mg Se kg− 1, the goats in group HC-SY received total Se by 0.65 mg.kg− 1 diet. Results The molar concentrations of individual and total short chain fatty acids (TSCFA) significantly increased (P < 0.05) with simultaneous decrease in pH of colonic fluid in goats of HC and HC-SY groups compared with LC goats. HC diet induced loss of epithelial integrity, inflammation and loss of goblet cells in colonic mucosa associated with higher lipopolysaccharide (LPS) concentrations in colonic fluid whereas, the addition of SY in HC diet alleviated such damaging changes. Compared with LC, the HC diet elevated malondialdehyde (MDA) level with concurrent decrease in GSH-Px and superoxide dismutase (SOD) activities, while SY supplementation attenuated these changes and improved antioxidant status in colonic epithelium. Moreover, epithelial injury and oxidative stress in colon of HC goats were associated with increased apoptosis as evidenced by downregulation of bcl2 and upregulation of bax, caspases 3 and 8 mRNA expressions compared with LC goats. On contrary, addition of SY in HC (HC-SY) diet alleviated these changes by modulating expression of apoptotic genes in colonic epithelium. Conclusions Our data suggest that supranutritional level of Se attenuates HC diet-induced oxidative stress and apoptosis and thereby minimizes the epithelial injury in colon of goats.
Collapse
Affiliation(s)
- Saba Parveen Samo
- Department Veterinary Physiology and Biochemistry, Sindh Agricultural University, 70060, Tando Jam, Pakistan
| | - Moolchand Malhi
- Department Veterinary Physiology and Biochemistry, Sindh Agricultural University, 70060, Tando Jam, Pakistan.
| | - Allah Bux Kachiwal
- Department Veterinary Physiology and Biochemistry, Sindh Agricultural University, 70060, Tando Jam, Pakistan
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology, Sindh Agricultural University, 70060, Tandojam, Pakistan
| | - Fahmida Parveen
- Department of Veterinary Pathology, Sindh Agricultural University, 70060, Tandojam, Pakistan
| | - Nazeer Hussain Kalhoro
- Sindh Poultry Vaccine Centre, Animal Science Complex, Korangi , 74900, Karachi, Pakistan
| | - Yan Lei
- Dairy Herd Improvement Center, Henan Animal Husbandry Bureau, 450046, Zhengzhou, China
| |
Collapse
|
10
|
Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur J Med Chem 2020; 201:112446. [PMID: 32563811 DOI: 10.1016/j.ejmech.2020.112446] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
B-cell lymphoma-2 (Bcl-2) proteins family is an essential checkpoint in apoptosis. Extensive evidences suggested that overexpression of anti-apoptotic Bcl-2 proteins can be observed in multiple cancer cell lines and primary tumor biopsy samples, which is an important reason for tumor cells to evade apoptosis and further acquire drug resistance for chemotherapy. Hence, down-regulation of anti-apoptotic Bcl-2 proteins is effective for the treatment of cancers. In view that Bcl-2 inhibitors and some other anti-tumor agents, such as HDAC inhibitors and Mdm2 inhibitors, exert synergy effects in tumor cells, it is pointed out that dual-targeting therapies based on these targets are regarded as rational strategies to enhance the effectiveness of single target agents for cancer treatment. This review briefly introduces the apoptosis, the structure of Bcl-2 family proteins, and focuses on the current status and recent advances of Bcl-2 inhibitors and the corresponding SARs of them. Moreover, we discuss the synergisms between Bcl-2 and other anti-tumor targets, and summarize the current dual-target agents.
Collapse
|
11
|
Mohammadpour-Gharehbagh A, Jahantigh D, Eskandari M, Sadegh MH, Nematollahi MH, Rezaei M, Rasouli A, Eskandari F, Heydarabad MZ, Teimoori B, Salimi S. Genetic and epigenetic analysis of the BAX and BCL2 in the placenta of pregnant women complicated by preeclampsia. Apoptosis 2020; 24:301-311. [PMID: 30701356 DOI: 10.1007/s10495-018-1501-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current study examined the effects of BAX and BCL2 polymorphisms and methylation as well as mRNA expression on susceptibility to PE. After delivery, the placentas were collected from 92 women with PE, as well as 106 normotensive pregnant women. The BAX rs4645878 and BCL2 rs2279115 polymorphisms were genotyped by the PCR-RFLP method. Methylation-specific PCR (MSP) was used for analysis of promoter methylation. mRNA expression was assayed by Quantitative RT-PCR. In addition, in silico analysis was performed by bioinformatics tools. There was no relationship between PE and placental BAX rs4645878 and BCL2 rs2279115 polymorphisms. The groups were not significantly different regarding the promoter methylation of BAX gene. Nonetheless, the MM status of BCL2 promoter had a significantly higher frequency in the PE group and was associated with 2.7-fold higher risk of PE (OR = 2.7, 95% CI = 1.3-5.6; P = 0.01). The relative mRNA expression of BCL2 was decreased in the placentas of PE women (P < 0.0001). The expression of BAX gene was not significantly different between the two groups. There was no association between placental BAX rs4645878 and BCL2 rs2279115 polymorphisms and mRNA expression levels. In silico analysis indicated that BAX rs4645878 and BCL2 rs2279115 polymorphisms were located in the core recognition site of different transcription factors and these substitutions of wild allele resulted in the loss and/ or change of these binding sites and subsequently may alter BCL2 and BAX expression. This study showed that the BAX and BCL2 polymorphisms and BAX promoter methylation were not associated with PE risk. The BCL2 promoter methylation was associated with lower BCL2 expression and higher PE susceptibility.
Collapse
Affiliation(s)
- Abbas Mohammadpour-Gharehbagh
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Moein Eskandari
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Harati Sadegh
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Mahnaz Rezaei
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ava Rasouli
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Eskandari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
12
|
Islam MA, Neuhoff C, Aqter Rony S, Große-Brinkhaus C, Uddin MJ, Hölker M, Tesfaye D, Tholen E, Schellander K, Pröll-Cornelissen MJ. PBMCs transcriptome profiles identified breed-specific transcriptome signatures for PRRSV vaccination in German Landrace and Pietrain pigs. PLoS One 2019; 14:e0222513. [PMID: 31536525 PMCID: PMC6752781 DOI: 10.1371/journal.pone.0222513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting the swine industry worldwide. Genetic variation in host immunity has been considered as one of the potential determinants to improve the immunocompetence, thereby resistance to PRRS. Therefore, the present study aimed to investigate the breed difference in innate immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi) pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vaccine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the breed differences in vaccine responsiveness. The top biological pathways significantly affected by DEGs of both breeds were linked to immune response functions. The network enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV vaccine response specific for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the most potential hubs of Pi specific transcriptome network. In conclusion, our data provided insights of breed-specific host transcriptome responses to PRRSV vaccination which might contribute in better understanding of PPRS resistance in pigs.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Sharmin Aqter Rony
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christine Große-Brinkhaus
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- School of Veterinary Science, The University of Queensland, Gatton campus, Brisbane, QLD, Australia
| | - Michael Hölker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Ernst Tholen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Maren Julia Pröll-Cornelissen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- * E-mail:
| |
Collapse
|
13
|
Bag AK, Mandloi S, Jarmalavicius S, Mondal S, Kumar K, Mandal C, Walden P, Chakrabarti S, Mandal C. Connecting signaling and metabolic pathways in EGF receptor-mediated oncogenesis of glioblastoma. PLoS Comput Biol 2019; 15:e1007090. [PMID: 31386654 PMCID: PMC6684045 DOI: 10.1371/journal.pcbi.1007090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
As malignant transformation requires synchronization of growth-driving signaling (S) and metabolic (M) pathways, defining cancer-specific S-M interconnected networks (SMINs) could lead to better understanding of oncogenic processes. In a systems-biology approach, we developed a mathematical model for SMINs in mutated EGF receptor (EGFRvIII) compared to wild-type EGF receptor (EGFRwt) expressing glioblastoma multiforme (GBM). Starting with experimentally validated human protein-protein interactome data for S-M pathways, and incorporating proteomic data for EGFRvIII and EGFRwt GBM cells and patient transcriptomic data, we designed a dynamic model for EGFR-driven GBM-specific information flow. Key nodes and paths identified by in silico perturbation were validated experimentally when inhibition of signaling pathway proteins altered expression of metabolic proteins as predicted by the model. This demonstrated capacity of the model to identify unknown connections between signaling and metabolic pathways, explain the robustness of oncogenic SMINs, predict drug escape, and assist identification of drug targets and the development of combination therapies. Complex and highly dynamic interconnected networks allow cancer to take different routes and circumvent chemotherapy. Therefore, understanding these context-specific networks and their dynamics of molecular interactions driven by different oncogenic signaling and metabolic pathways is very much needed to predict drug targets and the effect of therapeutics. We incorporated high-throughput transcriptome and proteome data into mathematical models to deduce properties of cancer cells through systems biology approach. Here we report the development, testing and validation of an integrated systems biology model of information flow between signaling and metabolic pathways to understand the regulation of the interconnection between them in cancer. Our model efficiently identified unique connections and key nodes important in signaling-metabolic information flow. We predicted some potential novel targets before performing actual drug tests. We have successfully applied this model to identify the interconnections altered in the constitutive signaling of the mutated EGFR by comparing EGF-dependent and wild-type EGFR signaling in glioblastoma multiforme.
Collapse
Affiliation(s)
- Arup K. Bag
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Sapan Mandloi
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Saulius Jarmalavicius
- Department of Dermatology, Venerology and Allergology, Charité– Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susmita Mondal
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Kumar
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Chhabinath Mandal
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Peter Walden
- Department of Dermatology, Venerology and Allergology, Charité– Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail: (PW); , (SC); , (CM)
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (PW); , (SC); , (CM)
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (PW); , (SC); , (CM)
| |
Collapse
|
14
|
Design, synthesis and preliminary biological studies of pyrrolidine derivatives as Mcl-1 inhibitors. Bioorg Med Chem 2015; 23:7685-93. [PMID: 26620718 DOI: 10.1016/j.bmc.2015.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023]
Abstract
Anti-apoptotic proteins, such as B-cell lymphoma (Bcl-2) protein, myeloid cell leukemia sequence 1 (Mcl-1) protein, are potential targets for cancer treatment. In the studies, a series of pyrrolidine derivatives were developed as potent Mcl-1 inhibitors. The preliminary biological studies suggested that most of target compounds exhibit good abilities for targeting Mcl-1 protein. Among them, compound 21 (Ki=0.53μM) exhibited equal inhibitory activities towards Mcl-1 protein compared to positive control gossypol (Ki=0.39μM). This compound also possessed good antiproliferative activities against MDA-MB-231 and PC-3 cancer cells.
Collapse
|
15
|
Cheng CH, Yang FF, Liao SA, Miao YT, Ye CX, Wang AL, Liu JC, Liu LW. Identification, characterization and functional analysis of anti-apoptotic protein BCL-2-like gene from pufferfish, Takifugu obscurus, responding to bacterial challenge. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1053-1064. [PMID: 25963943 DOI: 10.1007/s10695-015-0068-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Apoptosis plays a crucial role in many biological processes, including development, cellular homeostasis and immune responses. The BCL-2 family is a key regulator of the mitochondrial response to apoptotic signals in the intrinsic pathway. In this study, we identified and characterized the cDNA and expression pattern of pufferfish BCL-2 (PfBCL-2). The full-length cDNA of PfBCL-2 was 1412 bp with an open reading frame of 657 bp encoding a putative protein of 219 amino acids (Accession no: KP898414). The calculated molecular mass of the PfBCL-2 was 24.2 kDa with a predicted isoelectric point of 5.27. The deduced PfBCL-2 protein exhibited four highly conserved BCL-2 homology domains, suggesting that PfBCL-2 may play a similar role in the apoptotic-signaling pathway as in other species. Real-time PCR results showed that PfBCL-2 transcript was expressed in a wide range of tissues but exhibited the greatest level of expression in blood. Transcriptional responses of PfBCL-2 exhibited different spatial and temporal expression profiles in liver and blood after bacterial infection. PfBcl-2 transcript was significantly up-regulated in liver at 6, 12, 24 and 48 h (with maximum induction at 48 h) and was up-regulated in blood at 3, 6, 12 and 24 h (with maximum induction at 12 h). Meanwhile, recombinant PfBCL-2 fused with His6 tag was efficiently expressed in Escherichia coli BL21 (DE3) and purified using Ni-nitrilotriacetic acid resin. Western blot analysis indicated that its protein level appeared to be elevated during the initial bacterial infection. These results suggest that PfBCL-2 plays important roles in immune responses against bacteria challenge.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wan Y, Wu S, Xiao G, Liu T, Hou X, Chen C, Guan P, Yang X, Fang H. Design, synthesis and preliminary bioactivity studies of 2-thioxo-4-thiazolidinone derivatives as Bcl-2 inhibitors. Bioorg Med Chem 2015; 23:1994-2003. [PMID: 25818766 DOI: 10.1016/j.bmc.2015.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
The B-cell lymphoma-2 (Bcl-2) protein is a promising target for cancer therapy. In the present study, a series of 2-thioxo-4-thiazolidinone derivatives were designed and synthesized as Bcl-2 inhibitors. Most of them possessed decent inhibitory activity for anti-apoptotic Bcl-2 proteins. Among them, compound 31 has similar growth inhibition towards K562 compared to (R)-Gossypol. In addition, it inhibits the myeloid cell leukemia sequence 1 (Mcl-1) protein with a Ki value of 74 nM.
Collapse
Affiliation(s)
- Yichao Wan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Shaolei Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Guizhi Xiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Tingting Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Chen Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Peng Guan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xinying Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
17
|
Apolipoprotein L2 contains a BH3-like domain but it does not behave as a BH3-only protein. Cell Death Dis 2014; 5:e1275. [PMID: 24901046 PMCID: PMC4611713 DOI: 10.1038/cddis.2014.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 11/08/2022]
Abstract
Apolipoproteins of the L family are lipid-binding proteins whose function is largely unknown. Apolipoprotein L1 and apolipoprotein L6 have been recently described as novel pro-death BH3-only proteins that are also capable of regulating autophagy. In an in-silico screening to discover novel putative BH3-only proteins, we identified yet another member of the apolipoprotein L family, apolipoprotein L2 (ApoL2), as a BH3 motif-containing protein. ApoL2 has been suggested to behave as a BH3-only protein and mediate cell death induced by interferon-gamma or viral infection. As previously described, we observed that ApoL2 protein was induced by interferon-gamma. However, knocking down its expression in HeLa cells did not regulate cell death induced by interferon-gamma. Overexpression of ApoL2 did not induce cell death on its own. ApoL2 did not sensitize or protect cells from overexpression of the BH3-only proteins Bmf or Noxa. Furthermore, siRNA against ApoL2 did not alter sensitivity to a variety of death stimuli. We could, however, detect a weak interaction between ApoL2 and Bcl-2 by immunoprecipitation of the former, suggesting a role of ApoL2 in a Bcl-2-regulated process like autophagy. However, in contrast to what has been described about its homologs ApoL1 and ApoL6, ApoL2 did not regulate autophagy. Thus, the role, if any, of ApoL2 in cell death remains to be clarified.
Collapse
|
18
|
In vivo and ex vivo responses of CLL cells to purine analogs combined with alkylating agent. Pharmacol Rep 2013; 65:460-75. [PMID: 23744431 DOI: 10.1016/s1734-1140(13)71022-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 11/15/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND The heterogeneity of chronic lymphocytic leukemia (CLL) is thought to be due to differences in the expression of factors that regulate apoptosis and cell cycle, giving rise to diverse apoptotic disturbances and tumor properties. Therefore, the primary goal in CLL treatment is to overcome resistance to apoptosis and efficiently trigger this process in leukemic cells. METHODS Mononuclear cells were obtained from the blood of CLL patients by Histopaque-1077 sedimentation. CLL cell samples from the blood of drug treated patients, (cladribine or fludarabine with cyclophosphamide; CC or FC), as well as the cell samples of untreated patients exposed to the used drug combinations (CM, FM) or mafosfamide alone for 48 h were fractionated into nuclear and cytoplasmic fractions or were lysed. DNA fragmentation was evaluated by agarose electrophoresis and also cytometrically as sub-G1 population. The expression of apoptosis related proteins and H1.2 histone translocation were evaluated in lysates and nuclear and cytoplasmic fractions, respectively with appropriate antibodies. RESULTS Cladribine (C) and fludarabine (F) combined with cyclophosphamide/mafosfamide in vivo, as well as ex vivo trigger apoptosis in CLL cells. These drug combinations (CC; FC/CM; FM) induce leukemic cell apoptosis confirmed by DNA fragmentation, sub-G1 cell number, down-regulation of anti-apoptotic proteins (Mcl-1, Bcl-2), and H1.2 histone translocation in comparison with appropriate control cells, however, to a different degree. CONCLUSIONS The kinetics and rate of drug-induced apoptosis in leukemic cells under ex vivo experiments differ between patients, mirroring the differences noticed during in vivo treatment. Individual model cell samples indicate comparable susceptibility to the used drug combinations under in vivo and ex vivo conditions.
Collapse
|
19
|
Riese A, Eilert Y, Meyer Y, Arin M, Baron JM, Eming S, Krieg T, Kurschat P. Epidermal expression of neuropilin 1 protects murine keratinocytes from UVB-induced apoptosis. PLoS One 2012; 7:e50944. [PMID: 23251405 PMCID: PMC3518474 DOI: 10.1371/journal.pone.0050944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/29/2012] [Indexed: 01/13/2023] Open
Abstract
Background Neuropilin 1 (NRP1) is expressed on several cell types including neurons and endothelial cells, where it functions as an important regulator in development and during angiogenesis. As a cell surface receptor, NRP1 is able to bind to members of the VEGF family of growth factors and to secreted class 3 semaphorins. Neuropilin 1 is also highly expressed in keratinocytes, but the function of NRP1 in epidermal physiology and pathology is still unclear. Methods and Results To elucidate the role of NRP1 in skin in vivo we generated an epidermis-specific neuropilin 1 knock out mouse model by using the Cre-LoxP-System. Mice were viable and fertile and did not display any obvious skin or hair defects. After challenge with UVB irradiation, we found that deletion of epidermal NRP1 leads to increased rates of apoptosis both in vitro and in vivo. NRP1-deficient primary keratinocytes cultured in vitro showed significantly higher rates of apoptosis 24 hours after UVB. Likewise, there is a significant increase of active caspase 3 positive cells in the epidermis of Keratin 14-Cre-NRP1 (−/−) mice 24 hours after UVB irradiation. By Western Blot analysis we could show that NRP1 influences the cytosolic levels of Bcl-2, a pro-survival member of the Bcl-2 family. After UVB irradiation the amounts of Bcl-2 decrease in both protein extracts from murine epidermis and in NRP1-deficient keratinocytes in vitro, whereas wild type cells retain their Bcl-2 levels. Likewise, levels of phospho-Erk and Rac1 were lower in NRP1-knock out keratinocytes, whereas levels of pro-apoptotic p53 were higher. Conclusion NRP1 expression in keratinocytes is dispensable for normal skin development. Upon UVB challenge, NRP1 contributes to the prevention of keratinocyte apoptosis. This pro-survival function of NRP1 is accompanied by the maintenance of high levels of the antiapoptotic regulator Bcl-2 and by lower levels of pro-apoptotic p53.
Collapse
Affiliation(s)
- Anna Riese
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
| | - Yvonne Eilert
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
| | - Yvonne Meyer
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
| | - Meral Arin
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
| | - Jens M. Baron
- Department of Dermatology and Allergology, RWTH Aachen, Aachen, Germany
| | - Sabine Eming
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
| | - Peter Kurschat
- Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
20
|
Rosas-Trigueros JL, Correa-Basurto J, Benítez-Cardoza CG, Zamorano-Carrillo A. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures. Protein Sci 2011; 20:2035-46. [PMID: 21936009 DOI: 10.1002/pro.740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 01/05/2023]
Abstract
Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment.
Collapse
Affiliation(s)
- Jorge Luis Rosas-Trigueros
- SEPI de la ESCOM del Instituto Politécnico Nacional, Juan de Dios Bátiz y Miguel Othón de Mendizábal s/n, México DF, México
| | | | | | | |
Collapse
|
21
|
Słotwiński R, Olszewski W, Słodkowski M, Lech G, Zaleska M, Kędziora S, Włuka A, Domaszewska A, Słotwińska S, Krasnodębski W, Wójcik Z. Apoptosis in Lymphocytes of Pancreatic Cancer Patients: Influence of Preoperative Enteral Immunonutrition and Extensive Surgery. Arch Immunol Ther Exp (Warsz) 2011; 59:385-97. [DOI: 10.1007/s00005-011-0140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 04/08/2011] [Indexed: 12/15/2022]
|
22
|
Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011; 351:41-58. [PMID: 21210296 DOI: 10.1007/s11010-010-0709-x] [Citation(s) in RCA: 701] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, KSA
| | | | | |
Collapse
|
23
|
Zunino SJ, Storms DH. Resveratrol alters proliferative responses and apoptosis in human activated B lymphocytes in vitro. J Nutr 2009; 139:1603-8. [PMID: 19549761 DOI: 10.3945/jn.109.105064] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We hypothesized that the phytochemicals resveratrol, quercetin, and kaempferol would modulate B lymphocyte proliferation, Ig synthesis, and apoptosis after activation. Peripheral blood mononuclear cells (PBMC) were isolated from 12 healthy adult human volunteers and incubated with pokeweed mitogen plus 0, 2, 5, and 10 mumol/L resveratrol, quercetin, or kaempferol. After 6 d, CD19+ B cells were analyzed for proliferation, B cell lymphoma-2 (Bcl-2) expression, and activation of caspase-3 using flow cytometry. After 8 d, cell supernatants were collected and IgM and IgG were measured by ELISA. Resveratrol at a concentration of 5 mumol/L increased the percentage of CD19+ cells compared with mitogen only-stimulated cells (P < 0.01), and a trend for increased proliferation was observed for cells treated with 0, 2, and 5 mumol/L resveratrol (P-trend = 0.01). However, 10 mumol/L resveratrol inhibited proliferation of B lymphocytes (P < 0.01). Expression of Bcl-2 and caspase-3 activation increased in B cells treated with 10 mumol/L resveratrol compared with mitogen alone (P < 0.01), and trends for dose-responsive increases in Bcl-2 expression and caspase-3 activation were observed (P-trend < 0.0001). Differences in IgM and IgG production were not observed for PBMC treated with resveratrol. Kaempferol at 10 mumol/L slightly inhibited proliferative responses (P < 0.05) but did not affect B cell function or apoptosis. Quercetin did not alter B cell proliferation, function, or apoptosis. These data show that human B lymphocyte proliferation and apoptosis are modified by physiological concentrations of resveratrol and suggest that exposure of human B cells to resveratrol may increase survival by upregulating Bcl-2.
Collapse
Affiliation(s)
- Susan J Zunino
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
| | | |
Collapse
|
24
|
Liu C, Liu Z, Li Z, Wu Y. Molecular regulation of mast cell development and maturation. Mol Biol Rep 2009; 37:1993-2001. [PMID: 19644767 DOI: 10.1007/s11033-009-9650-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Mast cells play a crucial role in the pathogenesis of allergic diseases. In recent years, tremendous progresses have been made in studies of mast cell origination, migration, proliferation, maturation and survival, and the cytokines regulating these activities. These advances have significantly improved our understandings to mast cell biology and to the molecular mechanisms of mast cells in the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Chenxiong Liu
- Allergy and Immunology Institute, School of Medicine, Shenzhen University, Shenzhen, China
| | | | | | | |
Collapse
|
25
|
Abstract
The skin is the largest organ of the body and protects the organism against external physical, chemical and biological insults, such as wounding, ultraviolet radiation and micro-organisms. The epidermis is the upper part of the skin that is continuously renewed. The keratinocytes are the major cell type in the epidermis and undergo a specialized form of programmed cell death, called cornification, which is different from classical apoptosis. In keep with this view, several lines of evidence indicate that NF-kB is an important factor providing protection against keratinocyte apoptosis in homeostatic and inflammatory conditions. In contrast, the hair follicle is an epidermal appendage that shows cyclic apoptosis-driven involution, as part of the normal hair cycle. The different cell death programs need to be well orchestrated to maintain skin homeostasis. One of the major environmental insults to the skin is UVB radiation, causing the occurrence of apoptotic sunburn cells. Deregulation of cell death mechanisms in the skin can lead to diseases such as cancer, necrolysis and graft-versus-host disease. Here we review the apoptotic and the anti-apoptotic mechanisms in skin homeostasis and disease.
Collapse
|
26
|
Riley RS, Williams D, Ross M, Zhao S, Chesney A, Clark BD, Ben-Ezra JM. Bone marrow aspirate and biopsy: a pathologist's perspective. II. interpretation of the bone marrow aspirate and biopsy. J Clin Lab Anal 2009; 23:259-307. [PMID: 19774631 PMCID: PMC6648980 DOI: 10.1002/jcla.20305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/19/2009] [Indexed: 12/11/2022] Open
Abstract
Bone marrow examination has become increasingly important for the diagnosis and treatment of hematologic and other illnesses. Morphologic evaluation of the bone marrow aspirate and biopsy has recently been supplemented by increasingly sophisticated ancillary assays, including immunocytochemistry, cytogenetic analysis, flow cytometry, and molecular assays. With our rapidly expanding knowledge of the clinical and biologic diversity of leukemia and other hematologic neoplasms, and an increasing variety of therapeutic options, the bone marrow examination has became more critical for therapeutic monitoring and planning optimal therapy. Sensitive molecular techniques, in vitro drug sensitivity testing, and a number of other special assays are available to provide valuable data to assist these endeavors. Fortunately, improvements in bone marrow aspirate and needle technology has made the procurement of adequate specimens more reliable and efficient, while the use of conscious sedation has improved patient comfort. The procurement of bone marrow specimens was reviewed in the first part of this series. This paper specifically addresses the diagnostic interpretation of bone marrow specimens and the use of ancillary techniques.
Collapse
Affiliation(s)
- Roger S Riley
- Medical College of Virginia Hospitals of Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dzhagalov I, Dunkle A, He YW. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. THE JOURNAL OF IMMUNOLOGY 2008; 181:521-8. [PMID: 18566418 DOI: 10.4049/jimmunol.181.1.521] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
T lymphocyte development and function are tightly regulated by the intrinsic death pathway through members of the Bcl-2 family. Genetic studies have demonstrated that the Bcl-2 family member Mcl-1 is an important anti-apoptotic protein in the development of multiple cell types including T lymphocytes. However, the expression pattern and anti-apoptotic roles of Mcl-1 in T lymphocytes at different developmental stages remain to be fully determined. In this study, we examined the expression pattern of Mcl-1 in different populations of T cells at the single-cell level and found that Mcl-1 protein is constitutively expressed in all T cell populations and up-regulated upon TCR stimulation. We then investigated the role of Mcl-1 in the survival of these different populations by conditionally deleting Mcl-1 at various T cell stages. Our results show that Mcl-1 is required for the survival of double-negative and single-positive thymocytes as well as naive and activated T cells. Furthermore, we demonstrate that Mcl-1 functions together with Bcl-xL to promote double-positive thymocyte survival. Thus, Mcl-1 is a critical anti-apoptotic factor for the survival of T cells at multiple stages in vivo.
Collapse
Affiliation(s)
- Ivan Dzhagalov
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
28
|
Jorgensen TN, McKee A, Wang M, Kushnir E, White J, Refaeli Y, Kappler JW, Marrack P. Bim and Bcl-2 mutually affect the expression of the other in T cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:3417-24. [PMID: 17785775 DOI: 10.4049/jimmunol.179.6.3417] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The life and death of T cells is controlled to a large extent by the relative amounts of Bcl-2-related proteins they contain. The antiapoptotic protein Bcl-2 and the proapoptotic protein Bim are particularly important in this process with the amount of Bcl-2 per cell dropping by about one-half when T cells prepare to die. In this study we show that Bcl-2 and Bim each control the expression of the other. Absence of Bim leads to a drop in the amount of intracellular Bcl-2 protein, while having no effect on the amounts of mRNA for Bcl-2. Conversely, high amounts of Bcl-2 per cell allow high amounts of Bim, although in this case the effect involves increases in Bim mRNA. These mutual effects occur even if Bcl-2 is induced acutely. Thus these two proteins control the expression of the other, at either the protein or mRNA level.
Collapse
Affiliation(s)
- Trine N Jorgensen
- Integrated Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rossi AG, Hallett JM, Sawatzky DA, Teixeira MM, Haslett C. Modulation of granulocyte apoptosis can influence the resolution of inflammation. Biochem Soc Trans 2007; 35:288-91. [PMID: 17371262 DOI: 10.1042/bst0350288] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apoptosis of granulocytes and the subsequent clearance of apoptotic cells are important processes for the successful resolution of inflammation. Signalling pathways, including those involving NF-kappaB (nuclear factor kappaB), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) have been shown to be key regulators of inflammatory cell survival and apoptosis in vitro. In addition, manipulation of such pathways in vivo has indicated that they also play a role in the resolution of inflammation. Furthermore, manipulation of proteins directly involved in the control of apoptosis, such as Bcl-2 family members and caspases, can be targeted in vivo to influence inflammatory resolution. Recently, it has been shown that CDK (cyclin-dependent kinase) inhibitor drugs induce caspase-dependent human neutrophil apoptosis possibly by altering levels of the anti-apoptotic Bcl-2 family member, Mcl-1. Importantly, CDK inhibitor drugs augment the resolution of established 'neutrophil-dominant' inflammation by promoting apoptosis of neutrophils. Thus manipulation of apoptotic pathways, together with ensuring macrophage clearance of apoptotic cells, appears to be a viable pharmacological target for reducing established inflammation.
Collapse
Affiliation(s)
- A G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
30
|
Ollila J, Vihinen M. Immunological systems biology: Gene expression analysis of B-cell development in Ramos B-cells. Mol Immunol 2007; 44:3537-51. [PMID: 17485117 DOI: 10.1016/j.molimm.2007.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/14/2007] [Indexed: 12/22/2022]
Abstract
B-cell development into antibody producing cells is a complex process that relies on the tightly controlled production of hundreds of genes and proteins. A B-cell is activated through the B-cell receptor (BCR) and this activation is modified by different co-stimulatory or inhibitory co-receptors. The concerted action of signals from BCR and from co-receptors decides the fate of the B-cells. The majority of B-cells enter apoptosis, while some of them progress through the cell cycle and become, for example, antibody producing plasma cells. We studied BCR stimulated Ramos B-cells to explore the expression of BCR pathway, cell cycle and apoptosis related genes. We followed, using microarrays, the gene expression for several days after BCR engagement. Several bioinformatics methods were used to investigate the properties and common features of co-expressed genes. Certain gene ontologies have statistically significant enrichment into clusters of similarly expressed genes. The cell signaling pathways and gene expression data were combined to reveal detailed information about biological processes and B-cell systems biology. The results provide knowledge of the development of adaptive immunity and clues about how the pathways are affected by regulation of the expression of genes.
Collapse
Affiliation(s)
- Juha Ollila
- Department of Biological and Environmental Sciences, Division of Biochemistry, University of Helsinki, Finland
| | | |
Collapse
|
31
|
Nitta T, Takahama Y. The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins. Trends Immunol 2006; 28:58-65. [PMID: 17196432 DOI: 10.1016/j.it.2006.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/13/2006] [Accepted: 12/12/2006] [Indexed: 01/10/2023]
Abstract
The life-or-death decision of immune cells makes an essential contribution to immune-system development and the regulation of immune responses. A new family of cell-survival regulators expressed in lymphocytes, termed immune-associated nucleotide-binding proteins (IANs) [also known as GTPase of immunity-associated proteins (GIMAPs)], has been described. The IAN/GIMAP family consists of GTP-binding proteins that share a unique primary structure and whose expression is finely regulated by T-cell receptor signals. Recent studies have shown that IAN/GIMAP family proteins crucially regulate the survival of T cells during development, selection and homeostasis, and are possibly linked to the onset of T-lymphopenia, leukemia and autoimmunity. IAN/GIMAP family proteins might also take part in mitochondrial regulation of lymphocyte apoptosis by interacting with Bcl-2 family proteins.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | |
Collapse
|
32
|
Ghanem MM, Battelli LA, Mercer RR, Scabilloni JF, Kashon ML, Ma JY, Nath J, Hubbs AF. Apoptosis and Bax expression are increased by coal dust in the polycyclic aromatic hydrocarbon-exposed lung. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1367-73. [PMID: 16966090 PMCID: PMC1570065 DOI: 10.1289/ehp.8906] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. METHODS We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal beta-naphthoflavone (BNF) , a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe) -CH2-OPH]. RESULTS In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. CONCLUSIONS Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.
Collapse
Affiliation(s)
- Mohamed M. Ghanem
- Genetics and Developmental Biology Program, West Virginia University, Morgantown, West Virginia, USA
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Lori A. Battelli
- Genetics and Developmental Biology Program, West Virginia University, Morgantown, West Virginia, USA
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - James F. Scabilloni
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Michael L. Kashon
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Jane Y.C. Ma
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Joginder Nath
- Genetics and Developmental Biology Program, West Virginia University, Morgantown, West Virginia, USA
| | - Ann F. Hubbs
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
- Address correspondence to A. Hubbs, Pathology and Physiology Research Branch, Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Rd., Morgantown, WV 26505 USA. Telephone: (304) 285-6128. Fax: (304) 285-5938. E-mail:
| |
Collapse
|
33
|
Domingo-Gil E, Esteban M. Role of mitochondria in apoptosis induced by the 2-5A system and mechanisms involved. Apoptosis 2006; 11:725-38. [PMID: 16532271 DOI: 10.1007/s10495-006-5541-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The 2-5A system (2-5OAS/RNaseL) is composed of the 2',5'oligoadenylate synthetase 1 (2-5OAS1) and 2-5A-dependent RNase (RNaseL), enzymes that play a key role in antiviral defence mechanisms. Activation of the 2-5A system by double stranded RNA (dsRNA) induces degradation of ribosomal RNAs and apoptosis in mammalian cells. To obtain further information into the molecular mechanisms by which RNaseL induces apoptosis, we expressed human RNaseL and 2-5OAS in HeLa cells using recombinant vaccinia viruses as vectors and we analysed in detail different biochemical markers of apoptosis. In this expression virus-cell system the activation of RNaseL, as index of rRNA degradation, is an upstream event of apoptosis induction. RNaseL induces apoptosis in a caspase-dependent manner (caspases 8, 9 and 2). At the beginning of apoptosis RNaseL and 2-5OAS are localized in the mitochondria and cytosol fractions, while at the onset of apoptosis both enzymes are largely in mitochondria. The 2-5A system induces the release of Cytochrome c from mitochondria to cytosol in a caspase dependent manner. The onset of apoptosis elicits the disruption of mitochondrial membrane potential (delta psi m), as well as the generation of reactive oxygen species (ROS). Moreover, the activation of RNaseL induces morphological alterations in the mitochondria. Apoptosis induced by the 2-5A system involves mitochondrial proteins, such as the human anti-apoptotic protein Bcl-2, which blocks both the apoptosis and the change of delta psi m induced by the activation of RNaseL. These findings provide new insights into the molecular mechanisms of apoptosis induction by the 2-5A system, demonstrating the importance of mitochondria in 2-5OAS/RNaseL-induced apoptosis.
Collapse
Affiliation(s)
- E Domingo-Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
34
|
Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res 2006; 34:97-115. [PMID: 16760571 PMCID: PMC1490026 DOI: 10.1385/ir:34:2:97] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/16/2022]
Abstract
Mast cells play a pivotal role in immediate hypersensitivity and chronic allergic reactions that can contribute to asthma, atopic dermatitis, and other allergic diseases. Because mast cell numbers are increased at sites of inflammation in allergic diseases, pharmacologic intervention into the proliferation, migration, and survival (or apoptosis) of mast cells could be a promising strategy for the management of allergic diseases. Mast cells differentiate from multipotent hematopoietic progenitors in the bone marrow. Stem cell factor (SCF) is a major chemotactic factor for mast cells and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of mast cells. Therefore, many aspects of mast cell biology can be understood as interactions of mast cells and their precursors with SCF and factors that modulate their responses to SCF and its signaling pathways. Numerous factors known to have such a capacity include cytokines that are secreted from activated T cells and other immune cells including mast cells themselves. Recent studies also demonstrated that monomeric IgE binding to FcepsilonRI can enhance mast-cell survival. In this review we discuss the factors that regulate mast cell development, migration, and survival.
Collapse
Affiliation(s)
- Yoshimichi Okayama
- Research Unit for Allergy Transcriptome, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA
| |
Collapse
|
35
|
Dunn SR, Phillips WS, Spatafora JW, Green DR, Weis VM. Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. J Mol Evol 2006; 63:95-107. [PMID: 16770683 DOI: 10.1007/s00239-005-0236-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/12/2006] [Indexed: 10/24/2022]
Abstract
Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis.
Collapse
Affiliation(s)
- Simon R Dunn
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
36
|
Nitta T, Nasreen M, Seike T, Goji A, Ohigashi I, Miyazaki T, Ohta T, Kanno M, Takahama Y. IAN family critically regulates survival and development of T lymphocytes. PLoS Biol 2006; 4:e103. [PMID: 16509771 PMCID: PMC1393758 DOI: 10.1371/journal.pbio.0040103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 12/27/2005] [Indexed: 11/19/2022] Open
Abstract
The IAN (immune-associated nucleotide-binding protein) family is a family of functionally uncharacterized GTP-binding proteins expressed in vertebrate immune cells and in plant cells during antibacterial responses. Here we show that all eight IAN family genes encoded in a single cluster of mouse genome are predominantly expressed in lymphocytes, and that the expression of IAN1, IAN4, and IAN5 is significantly elevated upon thymic selection of T lymphocytes. Gain-of-function experiments show that the premature overexpression of IAN1 kills immature thymocytes, whereas short hairpin RNA-mediated loss-of-function studies show that IAN4 supports positive selection. The knockdown of IAN5 perturbs the optimal generation of CD4/CD8 double-positive thymocytes and reduces the survival of mature T lymphocytes. We also show evidence suggesting that IAN4 and IAN5 are associated with anti-apoptotic proteins Bcl-2 and Bcl-xL, whereas IAN1 is associated with pro-apoptotic Bax. Thus, the IAN family is a novel family of T cell-receptor-responsive proteins that critically regulate thymic development and survival of T lymphocytes and that potentially exert regulatory functions through the association with Bcl-2 family proteins.
Collapse
Affiliation(s)
- Takeshi Nitta
- 1Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Mariam Nasreen
- 1Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Takafumi Seike
- 1Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Atsushi Goji
- 1Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Izumi Ohigashi
- 1Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Tadaaki Miyazaki
- 2Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tsutomu Ohta
- 3Medical Genomics Center, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masamoto Kanno
- 4Department of Immunology, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yousuke Takahama
- 1Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| |
Collapse
|
37
|
Cohen-Saidon C, Carmi I, Keren A, Razin E. Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90β. Blood 2006; 107:1413-20. [PMID: 16166581 DOI: 10.1182/blood-2005-07-2648] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present study, we demonstrated that the antiapoptotic function of Bcl-2 in mast cells is significantly dependent on its association with the heat shock protein 90β (Hsp90β). Dissociation of these 2 proteins inhibits the antiapoptotic activity of Bcl-2 by initiating the release of cytochrome c from mitochondria into cytosol and increasing the activity of caspase 3 and caspase 7, resulting in mast-cell apoptosis. The antiapoptotic activity of Bcl-2 was greatly affected by knocking-out specifically Hsp90β using the RNA interference approach. Thus, for the first time, it has been shown that Hsp90β might modulate the antiapoptotic activity of Bcl-2 at least in mast cells. These findings could have implications for a novel strategy of regulating apoptosis in patients with mastocytosis and other mast cell–associated diseases.
Collapse
Affiliation(s)
- Cellina Cohen-Saidon
- Department of Biochemistry, Hebrew University Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
38
|
Fanzo JC, Yang W, Jang SY, Gupta S, Chen Q, Siddiq A, Greenberg S, Pernis AB. Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity. J Clin Invest 2006; 116:703-14. [PMID: 16470246 PMCID: PMC1361345 DOI: 10.1172/jci24096] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/01/2005] [Indexed: 12/18/2022] Open
Abstract
IFN regulatory factor 4-binding (IRF-4-binding) protein (IBP) is a novel type of activator of Rho GTPases that is recruited to the immunological synapse upon TCR stimulation. Here we demonstrate that loss of IBP leads to the spontaneous development of a systemic autoimmune disorder characterized by the accumulation of effector/memory T cells and IgG+ B cells, profound hypergammaglobulinemia, and autoantibody production. Similar to human SLE, this syndrome primarily affects females. T cells from IBP-deficient mice are resistant to death in vitro as well as in vivo and exhibit selective defects in effector function. In the absence of IBP, T cells respond suboptimally to TCR engagement, as demonstrated by diminished ERK1/2 activation, decreased c-Fos induction, impaired immunological synapse formation, and defective actin polymerization. Transduction of IBP-deficient T cells with a WT IBP protein, but not with an IBP mutant lacking the Dbl-like domain required for Rho GTPase activation, rescues the cytoskeletal defects exhibited by these cells. Collectively, these findings indicate that IBP, a novel regulator of Rho GTPases, is required for optimal T cell effector function, lymphocyte homeostasis, and the prevention of systemic autoimmunity.
Collapse
Affiliation(s)
- Jessica C Fanzo
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nitta T, Takahama Y. [Central tolerance and autoimmune diseases]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2006; 29:8-15. [PMID: 16505598 DOI: 10.2177/jsci.29.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Central tolerance is established by the repertoire selection of immature T lymphocytes in the thymus, avoiding autoimmune responses to self-antigens. Differential ligand-TCR interactions that result in positive and negative selection initiate differential intracellular signals that, in turn, lead to the survival-or-death decision of immature thymocytes. TCR signal dysregulation due to the mutation of ZAP-70 or defective apoptosis of autoreactive thymocytes due to the deficiency of pro-apoptotic protein Bim impair tolerance and cause autoimmunity. Thymic repertoire selection also induces the development of CD25(+)CD4(+) regulatory T cells, which play important roles for maintaining peripheral tolerance. Furthermore, the establishment of central tolerance requires the development of thymic medulla that is mediated by the activation of NF-kappaB signaling pathway, promiscuous expression of tissue-specific self-antigens by medullary epithelial cells that is regulated by AIRE, and cortex-to-medulla migration of developing thymocytes that is regulated by CCR7-mediated chemokine signals.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima
| | | |
Collapse
|
40
|
Cheung HH, Arora V, Korneluk RG. Abnormalities of cell structures in tumors: apoptosis in tumors. EXS 2006:201-21. [PMID: 16383020 DOI: 10.1007/3-7643-7378-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A conceptual shift has occurred in recent years from considering cancer as simply a disease of deregulated cell proliferation to a view that incorporates the aberrant control of apoptosis into the equation. Apoptosis is an organized, genetically programmed cell death process by which multicellular organisms specifically destroy, dismantle and dispose of cells. In cancer cells, this tightly controlled process is suppressed by genetic lesions, allowing cancer cells to survive beyond their normal life span even in hostile environments that are prone to hypoxia and lack many trophic factor supports. In the last two decades, cancer researchers have made great strides in our understanding of the underlying molecular mechanism of apoptosis in chemoresistance generation and tumorigenesis. This tremendous increase in our knowledge of apoptosis in tumors has greatly impacted our perspective on carcinogenesis. Key regulators of apoptosis such as members of the Inhibitors of Apoptosis family and Bcl-2 family have been shown to play a pivotal role in allowing most cancer cells to escape apoptosis. The identification of specific targets involved in the suppression of apoptosis in cancer cells has facilitated the design and development of therapeutic strategies based on rational molecular approaches that aim to modulate apoptotic pathways. Many promising apoptosis-dependent strategies have been translated into clinical trials in the continued assessment of regimens that can effectively eradicate cancers.
Collapse
Affiliation(s)
- Herman H Cheung
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.
| | | | | |
Collapse
|
41
|
Arruda MA, Graça-Souza AV, Barja-Fidalgo C. Heme and innate immunity: new insights for an old molecule. Mem Inst Oswaldo Cruz 2006; 100:799-803. [PMID: 16410972 DOI: 10.1590/s0074-02762005000700022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemolytic episodes such as sickle cell disease, malaria and ischemia-reperfusion occurrence are often associated to the statement of an inflammatory response which may develop or not to a chronic inflammatory status. Although these pathological states are triggered by distinct etiological agents, all of them are associated to high levels of free heme in circulation. In this review, we aim to focus the very recent achievements that have led to the statement of free heme as a proinflammatory molecule, which may play a central role during the onset and/or persistence of inflammation during these pathologies.
Collapse
Affiliation(s)
- Maria Augusta Arruda
- Departamento de Farmacologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
42
|
Hynes J, O'Riordan TC, Curtin J, Cotter TG, Papkovsky DB. Fluorescence based oxygen uptake analysis in the study of metabolic responses to apoptosis induction. J Immunol Methods 2005; 306:193-201. [PMID: 16212976 DOI: 10.1016/j.jim.2005.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/18/2005] [Accepted: 09/07/2005] [Indexed: 11/22/2022]
Abstract
Mitochondrial activity has been shown to be centrally involved in the progression of apoptosis. The electron transport chain is a major player in this process and oxygen uptake analysis provides detailed information on its activity. Here we examined the ability of a fluorescence based oxygen uptake assay to inform on cellular responses to apoptosis induction. HL60 cells treated with camptothecin and UV light were used as a model and the ability of the assay to detect dose and time dependent decreases in respiratory activity analysed. The data obtained were compared to more specific markers of apoptosis including annexin V binding, and caspase-3 activity. Reductions in oxygen uptake rates were seen at lower doses than increases in annexin V binding or mitochondrial membrane potential depolarisation. These reductions were observed earlier than detectable caspase-3 activity and were unaffected by pre-treatment with the caspase-3 inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone (zVADfmk).
Collapse
Affiliation(s)
- James Hynes
- Biochemistry Department, University College Cork, Lee Maltings, Cork, Ireland
| | | | | | | | | |
Collapse
|
43
|
Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W. Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 2005; 12 Suppl 2:1497-508. [PMID: 16247497 DOI: 10.1038/sj.cdd.4401722] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.
Collapse
Affiliation(s)
- S Lippens
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology) and Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Belgium
| | | | | | | | | |
Collapse
|
44
|
Eldering E, VanLier RAW. B-cell antigen receptor-induced apoptosis: looking for clues. Immunol Lett 2005; 96:187-94. [PMID: 15585322 DOI: 10.1016/j.imlet.2004.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 09/06/2004] [Indexed: 11/28/2022]
Abstract
Triggering of the B cell antigen receptor (BCR) can initiate divergent responses ranging from activation and cell division to apoptosis, depending on the differentiation stage and additional signals the cell receives. Despite considerable progress in unraveling general apoptosis pathways, the route from the BCR to apoptosis execution is still quite obscure, and there is no consensus yet concerning the mechanism or the players involved. Here, we will summarize current developments in this field and will attempt to pinpoint key questions and perspectives for future research.
Collapse
Affiliation(s)
- Eric Eldering
- Department of Experimental Immunology, Academical Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
45
|
Han J, Goldstein LA, Gastman BR, Rabinovitz A, Rabinowich H. Disruption of Mcl-1·Bim Complex in Granzyme B-mediated Mitochondrial Apoptosis. J Biol Chem 2005; 280:16383-92. [PMID: 15713684 DOI: 10.1074/jbc.m411377200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported the identification of a novel mitochondrial apoptotic pathway for granzyme B (GrB). The newly identified GrB-mediated mitochondrial cascade was initiated by the cleavage and subsequent degradation of Mcl-1, resulting in the release of mitochondrial Bim from Mcl-1 sequestration. To investigate the biological significance of Mcl-1 cleavage by GrB, we mapped the major GrB cleavage sites and evaluated the apoptotic potential of the cleavage products. GrB cleaves Mcl-1 after aspartic acid residues 117, 127, and 157, generating C-terminal fragments that all contain BH-1, BH-2, BH-3, and transmembrane domains. These fragments accumulate at an early apoptotic phase but are eliminated by further degradation during the apoptotic process. The major Mcl-1 C-terminal fragment generated by GrB (residues 118-350) was unable to induce or enhance apoptosis when transfected into tumor cells. Instead, this Mcl-1 C-terminal fragment maintained a partial protective capability against GrB-mediated apoptosis via its lower affinity to Bim. In comparison with ectopically expressed full-length Mcl-1, the stably transfected C-terminal fragments of Mcl-1 were less efficiently localized to the mitochondria. Knockdown of Mcl-1, as achieved by transfection with Mcl-1-specific short interfering RNA, resulted in a significant level of apoptosis in the absence of external apoptotic stimulation and, in addition, enhanced the susceptibility of breast carcinoma cells to GrB cytotoxicity. The significance of Bim in this GrB apoptotic cascade was indicated by the marked protection against GrB-mediated apoptosis endowed on these cells through Bim knockdown. Our studies suggest that the disruption of the Mcl-1.Bim complex by GrB initiates a major Bim-mediated cellular cytotoxic mechanism that requires the elimination of Mcl-1 following its initial cleavage.
Collapse
Affiliation(s)
- Jie Han
- Department of Pathology, the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
46
|
Arruda MA, Graça-Souza AV, Barja-Fidalgo C. [NO TITLE AVAILABLE]. Mem Inst Oswaldo Cruz 2005. [DOI: 10.1590/s0074-02762005000900039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Nhan TQ, Liles WC, Schwartz SM. Role of caspases in death and survival of the plaque macrophage. Arterioscler Thromb Vasc Biol 2005; 25:895-903. [PMID: 15718496 DOI: 10.1161/01.atv.0000159519.07181.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review considers the role of macrophage cell death in formation of the necrotic core and in plaque progression, and lists many of the possible mediators of macrophage cell death. Among these, perhaps the most cited toxic agent is oxidized low-density lipoprotein (oxLDL). Whereas oxLDL can kill macrophage, and whereas the form of death is morphologically apoptotic, caspase inhibitors appear to be ineffective in preventing death. This finding is consistent with recent literature showing how the canonical caspase pathways are used for physiological cellular functions other than cell death. Plaque macrophages appear to be among the cells with this nonapoptotic signaling function for activated caspases. In many of the other cell types, caspase activation appears to play a critical role in cell differentiation. We discuss possible functions of plaque macrophage using the nondeath caspase pathway. Recent literature shows that physiological and developmental functions of many cell types require active caspases without progressing to cell death. We discuss the role of macrophage cell death in plaque progression, possible mediators of macrophage cell death, and the possible functions of plaque macrophage using the nondeath caspase pathway.
Collapse
Affiliation(s)
- Thomas Q Nhan
- Department of Pathology, University of Washington, Seattle, Wash 98195-4717, USA
| | | | | |
Collapse
|
48
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2171-2173. [DOI: 10.11569/wcjd.v12.i9.2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|