1
|
Ren KX, Feng L, Wu P, Liu Y, Ren HM, Jin XW, Zhong CB, Zhou XQ, Jiang WD. Mitigation of the toxic effects of nitrite: Role and mechanism of isoleucine in mitigating mitochondrial DNA leakage-induced inflammation in grass carp (Ctenopharyngodon idella) under nitrite exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138016. [PMID: 40147124 DOI: 10.1016/j.jhazmat.2025.138016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The physiological and growth processes of fish are closely associated with their surrounding environment. This study investigated the role and underlying mechanisms of isoleucine (Ile) in alleviating mitochondrial DNA (mtDNA) leakage-induced inflammation in grass carp under nitrite exposure. Grass carp were fed six experimental diets containing different Ile levels (0.00, 3.00, 6.00, 9.00, 12.00 and 15.00 g/kg) for 9 weeks, followed by a 96-hour nitrite exposure trial. Ile supplementation mitigated the deterioration of blood parameters including glutamic oxaloacetic transaminase (GOT), glutamic alanine transaminase (GPT), glucose, cortisol and lactate dehydrogenase (LDH) induced by nitrite exposure. Additionally, Ile enhanced its transport to the liver and mitochondria, as well as increased metabolism of Ile in mitochondria. Histological analyses revealed that Ile mitigated nitrite exposure-induced liver damage and mitochondrial cristae disruption. Furthermore, Ile preserved the mitochondrial cristae homeostasis by upregulating key proteins involved in mitochondrial structure maintenance, while inhibiting mtDNA leakage. Mechanistically, Ile attenuated mtDNA leakage-induced inflammation under nitrite exposure associated with the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathways. These findings highlight the protective role of Ile in reducing inflammation triggered by environmental nitrite exposure, offering new insights into aquatic toxicology, and determined that Ile concentration of 11.13 g/kg diet could be optimal for mitigating nitrite-induced stress in grass carp, providing a theoretical basis for formulating anti- nitrite stress diets in aquaculture.
Collapse
Affiliation(s)
- Kai-Xuan Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co.Ltd, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
2
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
3
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
4
|
Lee YJ, Song JH, Lee JW, Hong TK, Uhm SJ, Hong K, Do JT. Mitochondrial morphology and energy metabolism in reprogrammed porcine expanded potential stem cells. Anim Biosci 2025; 38:444-453. [PMID: 39483037 PMCID: PMC11917424 DOI: 10.5713/ab.24.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Expanded potential stem cells (EPSCs) are stem cells that can differentiate into embryonic and extraembryonic lineages, including extraembryonic endoderm and trophoblast lineages. Therefore, EPSCs have great potential in advancing regenerative medicine, elucidating disease mechanisms, and exploring early embryonic development. However, the generation and characterization of EPSCs in pigs have not been thoroughly explored. In this study, we successfully generated porcine EPSCs (pEPSCs). METHODS We reprogrammed porcine fetal fibroblasts (PFFs) using an integration-free method with Sendai virus vectors. RESULTS The resulting pEPSCs expressed key pluripotency markers and demonstrated the ability to differentiate between embryonic and extraembryonic lineages. Notably, reprogramming into pEPSCs was associated with a transformation of mitochondrial morphology from the elongated form observed in PFFs to a globular shape, reflecting potential alterations in energy metabolism. We observed significant remodeling of mitochondrial morphology and a subsequent shift towards glycolytic energy dependence during the reprogramming of PFFs into pEPSCs. CONCLUSION Our findings provide valuable insights into the characteristics of EPSCs in pigs and highlight their potential applications in regenerative medicine, disease modeling, and emerging fields such as cell-based meat production.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
- Biotechnology Research Institute, MGENSolutions Co., Ltd., Seoul 06591, Korea
| | - Jae Hoon Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Je Woo Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
5
|
Chen C, Yan Y, Wu J, Gan WB. GCTransNet: 3D mitochondrial instance segmentation based on Global Context Vision Transformers. J Struct Biol 2025; 217:108170. [PMID: 39842559 DOI: 10.1016/j.jsb.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Mitochondria are double membrane-bound organelles essential for generating energy in eukaryotic cells. Mitochondria can be readily visualized in 3D using Volume Electron Microscopy (vEM), and accurate image segmentation is vital for quantitative analysis of mitochondrial morphology and function. To address the challenge of segmenting small mitochondrial compartments in vEM images, we propose an automated mitochondrial segmentation method called GCTransNet. This method employs grayscale migration technology to preprocess images, effectively reducing intensity distribution differences across EM images. By utilizing 3D Global Context Vision Transformers (GC-ViT) combined with global context self-attention modules and local self-attention modules, GCTransNet precisely models long-range and short-range spatial interactions. The long-range interactions enable the model to capture the global structural relationships within the mitochondrial segmentation network, while the short-range interactions refine local details and boundaries. In our approach, the encoder of the 3D U-Net network, a classical multi-scale learning architecture that retains high-resolution features through skip connections and combines multi-scale features for precise segmentation, is replaced by a 3D GC-ViT. The GC-ViT leverages shifted window-based self-attention, capturing long-range dependencies and offering improved segmentation accuracy compared to traditional U-Net encoders. In the MitoEM mitochondrial segmentation challenge, GCTransNet achieved state-of-the-art results, demonstrating its superiority in automated mitochondrial segmentation. The code and its documentation are publicly available at https://github.com/GanLab123/GCTransNet.
Collapse
Affiliation(s)
- Chaoyi Chen
- Collage of Biological Sciences, China Agricultural University, Beijing 100091, China; Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yidan Yan
- Collage of Biological Sciences, China Agricultural University, Beijing 100091, China
| | | | - Wen-Biao Gan
- Shenzhen Bay Laboratory, Shenzhen 518132, China; Lingang Laboratory, Shanghai 200032, China.
| |
Collapse
|
6
|
Zhang X, Zhang L, Xiang W. The impact of mitochondrial dysfunction on ovarian aging. J Transl Med 2025; 23:211. [PMID: 39980008 PMCID: PMC11844166 DOI: 10.1186/s12967-025-06223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
IMPORTANCE Ovarian aging has become a focal point in current research on female aging and refers to the gradual decline in ovarian function as women age. Numerous factors influence ovarian aging, among which mitochondrial function is one because it plays a crucial role by affecting oocytes and granulosa cells. Mitochondrial deterioration not only leads to a decrease in oocyte quality but also hinders follicle development, further impacting women's reproductive health and fertility. OBJECTIVE This review summarizes and integrates research on the impact of mitochondrial function on ovarian aging, outlining the mechanisms by which mitochondria regulate the functions of oocytes and granulosa cells. This study aims to provide potential therapeutic directions to mitigate mitochondrial decline and support female reproductive health. EVIDENCE REVIEW According to a 2023 study published in Cell, factors such as oxidative stress, mitochondrial dysfunction, chronic inflammation, and telomere shortening collectively drive ovarian aging, directly affecting female fertility. Among these factors, mitochondrial dysfunction plays a key role. This study reviewed literature from databases such as PubMed, Google Scholar, and CNKI, using keywords such as "mitochondrial dysfunction", "decline in oocyte quality and quantity", and "ovarian aging", aiming to summarize current research on the mechanisms of the impact of mitochondrial dysfunction on ovarian aging and provide theoretical support for future exploration of related therapeutic strategies. FINDINGS The main characteristics of ovarian aging include a decline in oocyte quantity and quality, fluctuations in hormone levels, and a reduction in granulosa cell function. Studies have shown that mitochondria affect fertility by regulating cellular energy metabolism, exacerbating oxidative stress, causing mitochondrial DNA (mtDNA) damage, and impacting the physiological function of granulosa cells within the ovary, gradually diminishing the ovarian reserve. CONCLUSION This review focuses on analyzing the effects of mitochondrial decline on energy production in oocytes and granulosa cells, the accumulation of reactive oxygen species (ROS), and the calcium ion (Ca2+) concentration, which all contribute to the ovarian aging process, and understanding them will provide new insights into the mechanisms of ovarian aging. RELEVANCE Therapeutic interventions targeting mitochondrial dysfunction may help delay ovarian aging and improve female reproductive health.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Adams R, Afzal N, Jafri MS, Mannella CA. How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production. Cells 2025; 14:257. [PMID: 39996730 PMCID: PMC11853683 DOI: 10.3390/cells14040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cells in heart muscle need to generate ATP at or near peak capacity to meet their energy demands. Over 90% of this ATP comes from mitochondria, strategically located near myofibrils and densely packed with cristae to concentrate ATP generation per unit volume. However, a consequence of dense inner membrane (IM) packing is that restricted metabolite diffusion inside mitochondria may limit ATP production. Under physiological conditions, the flux of ATP synthase is set by ADP levels in the matrix, which in turn depends on diffusion-dependent concentration of ADP inside cristae. Computer simulations show how ADP diffusion and consequently rates of ATP synthesis are modulated by IM topology, in particular (i) number, size, and positioning of crista junctions that connect cristae to the IM boundary region, and (ii) branching of cristae. Predictions are compared with the actual IM topology of a cardiomyocyte mitochondrion in which cristae vary systematically in length and morphology. The analysis indicates that this IM topology decreases but does not eliminate the "diffusion penalty" on ATP output. It is proposed that IM topology normally attenuates mitochondrial ATP output under conditions of low workload and can be regulated by the cell to better match ATP supply to demand.
Collapse
Affiliation(s)
- Raquel Adams
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (R.A.); (N.A.)
| | - Nasrin Afzal
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (R.A.); (N.A.)
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (R.A.); (N.A.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Carmen A. Mannella
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
8
|
Domitin S, Puff N, Pilot-Storck F, Tiret L, Joubert F. Role of cardiolipin in proton transmembrane flux and localization. Biophys J 2025; 124:408-416. [PMID: 39674891 PMCID: PMC11788487 DOI: 10.1016/j.bpj.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux. Increasing the CL content led to a net increase in proton efflux, which was also dependent on the magnitude of the membrane potential. The same increase in proton efflux was measured in the presence of the equally negatively charged phosphatidylglycerol, indicating that the charge of CL plays a more important role than its structure in this mechanism. When varying the proton membrane permeability (pH) using the protonophore CCCP, we observed that unlike PC liposomes, where a small amount of CCCP was sufficient to achieve maximum flux, a significantly larger amount of protonophore was required in the presence of CL. Conversely, increasing the buffer capacity increased proton flux, indicating that proton availability, rather than membrane permeability, may be the limiting factor for proton leak. Our findings demonstrated that a higher proton content associated with the membrane was correlated with an increasing leak in the presence of CL. Additionally, smaller liposome diameters appeared to favor proton leak. Taken together, our results suggest that the presence of negatively charged CL in a membrane traps protons and increases their leakage, potentially in a manner dependent on membrane curvature. We discuss the possible mechanisms and implications of these findings for mitochondrial respiration function.
Collapse
Affiliation(s)
- Sylvain Domitin
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, Paris, France; Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS, Université Paris Cité, Paris, France
| | - Fanny Pilot-Storck
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Laurent Tiret
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France.
| |
Collapse
|
9
|
Benning FMC, Bell TA, Nguyen TH, Syau D, Connell LB, Coughlin M, Nordstrom AEH, Ericsson M, daCosta CJB, Chao LH. Ancestral sequence reconstruction of the Mic60 Mitofilin domain reveals residues supporting respiration in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.26.591372. [PMID: 38746426 PMCID: PMC11092495 DOI: 10.1101/2024.04.26.591372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In eukaryotes, cellular respiration takes place in the cristae of mitochondria. The mitochondrial inner membrane protein Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS), is crucial for the organization and stabilization of crista junctions and its associated functions. While the C-terminal Mitofilin domain of Mic60 is necessary for cellular respiration, the sequence determinants for this function have remained unclear. Here, we used ancestral sequence reconstruction to generate Mitofilin ancestors up to and including the last opisthokont common ancestor (LOCA). We found that yeast-lineage derived Mitofilin ancestors as far back as the LOCA rescue respiration. By comparing Mitofilin ancestors, we identified four residues sufficient to explain the respiratory difference between yeast- and animal-derived Mitofilin ancestors. Our results provide a foundation for investigating the conservation of Mic60-mediated cristae junction interactions.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tristan A. Bell
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Present address: Generate Biomedicines, Somerville, MA 02143, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Present address: Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Della Syau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Present address: Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115
| | - Louise B. Connell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Margaret Coughlin
- Electron Microscopy Core Facility, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anja E. H. Nordstrom
- Electron Microscopy Core Facility, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Ericsson
- Electron Microscopy Core Facility, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Corrie J. B. daCosta
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zerbes RM, Colina-Tenorio L, Bohnert M, von der Malsburg K, Peikert CD, Mehnert CS, Perschil I, Klar RFU, de Boer R, Kram A, van der Klei I, Oeljeklaus S, Warscheid B, Rampelt H, van der Laan M. Coordination of cytochrome bc 1 complex assembly at MICOS. EMBO Rep 2025; 26:353-384. [PMID: 39623166 PMCID: PMC11772845 DOI: 10.1038/s44319-024-00336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025] Open
Abstract
The boundary and cristae domains of the mitochondrial inner membrane are connected by crista junctions. Most cristae membrane proteins are nuclear-encoded and inserted by the mitochondrial protein import machinery into the inner boundary membrane. Thus, they must overcome the diffusion barrier imposed by crista junctions to reach their final location. Here, we show that respiratory chain complexes and assembly intermediates are physically connected to the mitochondrial contact site and cristae organizing system (MICOS) that is essential for the formation and stability of crista junctions. We identify the inner membrane protein Mar26 (Fmp10) as a determinant in the biogenesis of the cytochrome bc1 complex (complex III). Mar26 couples a Rieske Fe/S protein-containing assembly intermediate to MICOS. Our data indicate that Mar26 maintains an assembly-competent Rip1 pool at crista junctions where complex III maturation likely occurs. MICOS facilitates efficient Rip1 assembly by recruiting complex III assembly intermediates to crista junctions. We propose that MICOS, via interaction with assembly factors such as Mar26, contributes to the spatial and temporal coordination of respiratory chain biogenesis.
Collapse
Affiliation(s)
- Ralf M Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Institute of Cell Dynamics and Imaging, Cells in Motion Interfaculty Centre (CiM), University of Münster, 48149, Münster, Germany
| | - Karina von der Malsburg
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
- Center for Molecular Signaling, PZMS, Saarland University, 66421, Homburg, Germany
| | - Christian D Peikert
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104, Freiburg, Germany
- Bioinformatics Research & Development, BioNTech SE, 55131, Mainz, Germany
| | - Carola S Mehnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Rhena F U Klar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, 79104, Freiburg, Germany
| | - Rinse de Boer
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Anita Kram
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Ida van der Klei
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
- Center for Molecular Signaling, PZMS, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
11
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
12
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
13
|
Damiecki M, Naha R, Schaumkessel Y, Westhoff P, Atanelov N, Stefanski A, Petzsch P, Stühler K, Köhrer K, Weber AP, Anand R, Reichert AS, Kondadi AK. Mitochondrial apolipoprotein MIC26 is a metabolic rheostat regulating central cellular fuel pathways. Life Sci Alliance 2024; 7:e202403038. [PMID: 39393820 PMCID: PMC11472510 DOI: 10.26508/lsa.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Mitochondria play central roles in metabolism and metabolic disorders such as type 2 diabetes. MIC26, a mitochondrial contact site and cristae organising system complex subunit, was linked to diabetes and modulation of lipid metabolism. Yet, the functional role of MIC26 in regulating metabolism under hyperglycemia is not understood. We used a multi-omics approach combined with functional assays using WT and MIC26 KO cells cultured in normoglycemia or hyperglycemia, mimicking altered nutrient availability. We show that MIC26 has an inhibitory role in glycolysis and cholesterol/lipid metabolism under normoglycemic conditions. Under hyperglycemia, this inhibitory role is reversed demonstrating that MIC26 is critical for metabolic adaptations. This is partially mediated by alterations of mitochondrial metabolite transporters. Furthermore, MIC26 deletion led to a major metabolic rewiring of glutamine use and oxidative phosphorylation. We propose that MIC26 acts as a metabolic "rheostat," that modulates mitochondrial metabolite exchange via regulating mitochondrial cristae, allowing cells to cope with nutrient overload.
Collapse
Affiliation(s)
- Melissa Damiecki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ritam Naha
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Nika Atanelov
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Molecular Medicine, Protein Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Rojas-Ríos P, Chartier A, Enjolras C, Cremaschi J, Garret C, Boughlita A, Ramat A, Simonelig M. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun 2024; 15:8405. [PMID: 39333531 PMCID: PMC11437085 DOI: 10.1038/s41467-024-52709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Aymeric Chartier
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Camille Enjolras
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Julie Cremaschi
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Adel Boughlita
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
15
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Shapiro IM, Risbud MV, Landis WJ. Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria. Bone 2024; 185:117112. [PMID: 38697384 PMCID: PMC11251007 DOI: 10.1016/j.bone.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
17
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys 2024; 53:147-168. [PMID: 38166176 DOI: 10.1146/annurev-biophys-030822-020736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| |
Collapse
|
19
|
Su Y, Yu Y, Quan J, Zhang J, Xu Y. Alcohol exposure during pregnancy induces cardiac mitochondrial damage in offspring mice. Birth Defects Res 2024; 116:e2369. [PMID: 38877673 DOI: 10.1002/bdr2.2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has been linked to congenital heart disease and fetal alcohol syndrome. The heart primarily relies on mitochondria to generate energy, so impaired mitochondrial function due to alcohol exposure can significantly affect cardiac development and function. Our study aimed to investigate the impact of PAE on myocardial and mitochondrial functions in offspring mice. METHODS We administered 30% alcohol (3 g/kg) to pregnant C57BL/6 mice during the second trimester. We assessed cardiac function by transthoracic echocardiography, observed myocardial structure and fibrosis through staining tests and electron transmission microscopy, and detected cardiomyocyte apoptosis with dUTP nick end labeling assay and real-time quantitative PCR. Additionally, we measured the reactive oxygen species content, ATP level, and mitochondrial DNA copy number in myocardial mitochondria. Mitochondrial damage was evaluated by assessing the level of mitochondrial membrane potential and the opening degree of mitochondrial permeability transition pores. RESULTS Our findings revealed that PAE caused cardiac systolic dysfunction, ventricular enlargement, thinned ventricular wall, cardiac fibrosis in the myocardium, scattered loss of cardiomyocytes, and disordered arrangement of myocardial myotomes in the offspring. Furthermore, we observed a significant increase in mitochondrial reactive oxygen species content, a decrease in mitochondrial membrane potential, ATP level, and mitochondrial DNA copy number, and sustained opening of mitochondrial permeability transition pores in the heart tissues of the offspring. CONCLUSIONS These results indicated that PAE had adverse effects on the cardiac structure and function of the newborn mice and could trigger oxidative stress in their myocardia and contribute to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yujuan Yu
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjun Quan
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Zhang
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
21
|
Chen Z, Pan Z, Huang C, Zhu X, Li N, Huynh H, Xu J, Huang L, Vaz FM, Liu J, Han Z, Ouyang K. Cardiac lipidomic profiles in mice undergo changes from fetus to adult. Life Sci 2024; 341:122484. [PMID: 38311219 DOI: 10.1016/j.lfs.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
AIMS Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.
Collapse
Affiliation(s)
- Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Zhixiang Pan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Helen Huynh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, the Netherlands
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| |
Collapse
|
22
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. EMBO J 2024; 43:391-413. [PMID: 38225406 PMCID: PMC10897290 DOI: 10.1038/s44318-024-00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Virly Y Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Juan C Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, China
| | - Julie L McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Golombek M, Tsigaras T, Schaumkessel Y, Hänsch S, Weidtkamp-Peters S, Anand R, Reichert AS, Kondadi AK. Cristae dynamics is modulated in bioenergetically compromised mitochondria. Life Sci Alliance 2024; 7:e202302386. [PMID: 37957016 PMCID: PMC10643176 DOI: 10.26508/lsa.202302386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.
Collapse
Affiliation(s)
- Mathias Golombek
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Park I, Kim KE, Kim J, Kim AK, Bae S, Jung M, Choi J, Mishra PK, Kim TM, Kwak C, Kang MG, Yoo CM, Mun JY, Liu KH, Lee KS, Kim JS, Suh JM, Rhee HW. Mitochondrial matrix RTN4IP1/OPA10 is an oxidoreductase for coenzyme Q synthesis. Nat Chem Biol 2024; 20:221-233. [PMID: 37884807 PMCID: PMC10830421 DOI: 10.1038/s41589-023-01452-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.
Collapse
Affiliation(s)
- Isaac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Eun Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea
| | - Subin Bae
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | | | - Taek-Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chang-Mo Yoo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
You W, Knoops K, Boesten I, Berendschot TTJM, van Zandvoort MAMJ, Benedikter BJ, Webers CAB, Reutelingsperger CPM, Gorgels TGMF. A time window for rescuing dying retinal ganglion cells. Cell Commun Signal 2024; 22:88. [PMID: 38297331 PMCID: PMC10832163 DOI: 10.1186/s12964-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration and death cause vision loss in patients with glaucoma. Regulated cell death, once initiated, is generally considered to be an irreversible process. Recently, we showed that, by timely removing the cell death stimulus, stressed neuronal PC12 cells can recover from phosphatidylserine (PS) exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation, mitochondrial membrane potential loss, and retraction of neurites, all hallmarks of an activated cell death program. Whether the cell death process can be reversed in neurons of the central nervous system, like RGCs, is still unknown. Here, we studied reversibility of the activated cell death program in primary rat RGCs (prRGCs). METHODS prRGCs were exposed to ethanol (5%, vol/vol) to induce cell death. At different stages of the cell death process, ethanol was removed by washing and injured prRGCs were further cultured in fresh medium to see whether they recovered. The dynamics of single cells were monitored by high-resolution live-cell spinning disk microscopy. PS exposure, mitochondrial structure, membrane potential, and intracellular Ca2+ were revealed by annexin A5-FITC, Mito-tracker, TMRM, and Fluo 8-AM staining, respectively. The distribution of cytochrome c was investigated by immunofluorescence. The ultrastructure of mitochondria was studied by electron microscopy. RESULTS Analysis of temporal relationships between mitochondrial changes and PS exposure showed that fragmentation of the mitochondrial network and loss of mitochondrial membrane potential occurred before PS exposure. Mitochondrial changes proceeded caspase-independently, while PS exposure was caspase dependent. Interestingly, prRGCs recovered quickly from these mitochondrial changes but not from PS exposure at the plasma membrane. Correlative light and electron microscopy showed that stress-induced decrease in mitochondrial area, length and cristae number was reversible. Intracellular Ca2+ was elevated during this stage of reversible mitochondrial injury, but there was no sign of mitochondrial cytochrome c release. CONCLUSIONS Our study demonstrates that RGCs with impaired mitochondrial structure and function can fully recover if there is no mitochondrial cytochrome c release yet, and no PS is exposed at the plasma membrane. This finding indicates that there is a time window for rescuing dying or injured RGCs, by simply removing the cell death stimulus. Video Abstract.
Collapse
Affiliation(s)
- Wenting You
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Kèvin Knoops
- The Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Iris Boesten
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Marc A M J van Zandvoort
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Institute of Molecular Cardiovascular Research (IMCAR), Universitätsklinikum Aachen, 52074, Aachen, Germany
| | - Birke J Benedikter
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands.
| |
Collapse
|
26
|
Caron C, Bertolin G. Cristae shaping and dynamics in mitochondrial function. J Cell Sci 2024; 137:jcs260986. [PMID: 38197774 DOI: 10.1242/jcs.260986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.
Collapse
Affiliation(s)
- Claire Caron
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | - Giulia Bertolin
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
27
|
Domingues CEC, Inoue LVB, Gregorc A, Ansaloni LS, Malaspina O, Mathias da Silva EC. Ultrastructural Changes in the Midgut of Brazilian Native Stingless Bee Melipona scutellaris Exposed to Fungicide Pyraclostrobin. TOXICS 2023; 11:1028. [PMID: 38133429 PMCID: PMC10748086 DOI: 10.3390/toxics11121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can affect forager bees. The goal of our study was to evaluate the effects of sublethal concentrations of pyraclostrobin on the midgut ultrastructure of M. scutellaris forager workers. The bees were collected from three non-parental colonies and kept under laboratory conditions. The bees were orally exposed continuously for five days to pyraclostrobin in syrup at concentrations of 0.125 ng a.i./µL (FG1) and 0.005 ng a.i./µL (FG2). The control bees (CTL) were fed a no-fungicide sucrose solution, and the acetone solvent control bees (CAC) received a sucrose solution containing acetone. At the end of the exposure, the midguts were sampled, fixed in Karnovsky solution, and routinely processed for transmission electron microscopy. Ultrastructural analysis demonstrated that both the fungicide concentrations altered the midgut, such as cytoplasmic vacuolization (more intense in FG1), the presence of an atypical nuclear morphology, and slightly dilated mitochondrial cristae in the bees from the FG1 and FG2 groups (both more intense in FG1). Additionally, there was an alteration in the ultrastructure of the spherocrystals (FG1), which could be the result of cellular metabolism impairment and the excretion of toxic metabolites in the digestive cells as a response to fungicide exposure. The results indicate that ingested pyraclostrobin induced cytotoxic effects in the midgut of native stingless bees. These cellular ultrastructural responses of the midgut are a prelude to a reduced survival rate, as observed in previous studies.
Collapse
Affiliation(s)
- Caio E. C. Domingues
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia (L.S.A.)
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)—“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil; (L.V.B.I.); (O.M.)
| | - Lais V. B. Inoue
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)—“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil; (L.V.B.I.); (O.M.)
| | - Aleš Gregorc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia (L.S.A.)
| | - Leticia S. Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia (L.S.A.)
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)—“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil; (L.V.B.I.); (O.M.)
| | - Elaine C. Mathias da Silva
- Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Departamento de Biologia (DBio), Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil;
| |
Collapse
|
28
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
29
|
Noone J, Damiot A, Kenny H, Chery I, Zahariev A, Normand S, Crampes F, de Glisezinski I, Rochfort KD, Laurens C, Bareille MP, Simon C, Bergouignan A, Blanc S, O'Gorman DJ. The impact of 60 days of -6° head down tilt bed rest on mitochondrial content, respiration and regulators of mitochondrial dynamics. J Physiol 2023. [PMID: 38050414 DOI: 10.1113/jp284734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
It is unclear how skeletal muscle metabolism and mitochondrial function adapt to long duration bed rest and whether changes can be prevented by nutritional intervention. The present study aimed (1) to assess the effect of prolonged bed rest on skeletal muscle mitochondrial function and dynamics and (2) to determine whether micronutrient supplementation would mitigate the adverse metabolic effect of bed rest. Participants were maintained in energy balance throughout 60 days of bed rest with micronutrient supplementation (INT) (body mass index: 23.747 ± 1.877 kg m-2 ; 34.80 ± 7.451 years; n = 10) or without (control) (body mass index: 24.087 ± 2.088 kg m-2 ; 33.50 ± 8.541 years; n = 10). Indirect calorimetry and dual-energy x-ray absorptiometry were used for measures of energy expenditure, exercise capacity and body composition. Mitochondrial respiration was determined by high-resolution respirometry in permeabilized muscle fibre bundles from vastus lateralis biopsies. Protein and mRNA analysis further examined the metabolic changes relating to regulators of mitochondrial dynamics induced by bed rest. INT was not sufficient in preserving whole body metabolic changes conducive of a decrease in body mass, fat-free mass and exercise capacity within both groups. Mitochondrial respiration, OPA1 and Drp1 protein expression decreased with bed rest, with an increase pDrp1s616 . This reduction in mitochondrial respiration was explained through an observed decrease in mitochondrial content (mtDNA:nDNA). Changes in regulators of mitochondrial dynamics indicate an increase in mitochondrial fission driven by a decrease in inner mitochondrial membrane fusion (OPA1) and increased pDrp1s616 . KEY POINTS: Sixty days of -6° head down tilt bed rest leads to significant changes in body composition, exercise capacity and whole-body substrate metabolism. Micronutrient supplementation throughout bed rest did not preserve whole body metabolic changes. Bed rest results in a decrease in skeletal muscle mitochondrial respiratory capacity, mainly as a result of an observed decrease in mitochondrial content. Prolonged bed rest ensues changes in key regulators of mitochondrial dynamics. OPA1 and Drp1 are significantly reduced, with an increase in pDrp1s616 following bed rest indicative of an increase in mitochondrial fission. Given the reduction in mitochondrial content following 60 days of bed rest, the maintenance of regulators of mitophagy in line with the increase in regulators of mitochondrial fission may act to maintain mitochondrial respiration to meet energy demands.
Collapse
Affiliation(s)
- John Noone
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Anthony Damiot
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Helena Kenny
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | - Isabelle Chery
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Alexandre Zahariev
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Sylvie Normand
- CarMen Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - François Crampes
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
| | - Isabelle de Glisezinski
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
| | - Keith D Rochfort
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Claire Laurens
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - Audrey Bergouignan
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
- Anschutz Health and Wellness Center, Aurora, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO, USA
| | - Stéphane Blanc
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Donal J O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
30
|
Castro V, Pérez-Berna AJ, Calvo G, Pereiro E, Gastaminza P. Three-Dimensional Remodeling of SARS-CoV2-Infected Cells Revealed by Cryogenic Soft X-ray Tomography. ACS NANO 2023; 17:22708-22721. [PMID: 37939169 PMCID: PMC10690842 DOI: 10.1021/acsnano.3c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Plus-strand RNA viruses are proficient at remodeling host cell membranes for optimal viral genome replication and the production of infectious progeny. These ultrastructural alterations result in the formation of viral membranous organelles and may be observed by different imaging techniques, providing nanometric resolution. Guided by confocal and electron microscopy, this study describes the generation of wide-field volumes using cryogenic soft-X-ray tomography (cryo-SXT) on SARS-CoV-2-infected human lung adenocarcinoma cells. Confocal microscopy showed accumulation of double-stranded RNA (dsRNA) and nucleocapsid (N) protein in compact perinuclear structures, preferentially found around centrosomes at late stages of the infection. Transmission electron microscopy (TEM) showed accumulation of membranous structures in the vicinity of the infected cell nucleus, forming a viral replication organelle containing characteristic double-membrane vesicles and virus-like particles within larger vesicular structures. Cryo-SXT revealed viral replication organelles very similar to those observed by TEM but indicated that the vesicular organelle observed in TEM sections is indeed a vesiculo-tubular network that is enlarged and elongated at late stages of the infection. Overall, our data provide additional insight into the molecular architecture of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Victoria Castro
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| | | | - Gema Calvo
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| | - Eva Pereiro
- ALBA
Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain
| | - Pablo Gastaminza
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| |
Collapse
|
31
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
32
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524176. [PMID: 36711707 PMCID: PMC9882235 DOI: 10.1101/2023.01.16.524176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Paula P. Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Virly Y. Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Juan C. Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Bridget E. Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Current address: Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China
| | - Julie L. McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Current address: Massachusetts Institute of Technology, Biology, Cambridge, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Leillani L. Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Harvard Medical School, Boston, USA
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| |
Collapse
|
33
|
He E, Ren J, Wang L, Li F, Li L, Ye T, Jiao Y, Li D, Wang J, Wang Y, Gao R, Zhang Y. A Mitochondrion-Inspired Magnesium-Oxygen Biobattery with High Energy Density In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304141. [PMID: 37478834 DOI: 10.1002/adma.202304141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.
Collapse
Affiliation(s)
- Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Junye Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
34
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
35
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
36
|
Maddison DC, Malik B, Amadio L, Bis-Brewer DM, Züchner S, Peters OM, Smith GA. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep 2023; 42:112883. [PMID: 37498742 PMCID: PMC10840514 DOI: 10.1016/j.celrep.2023.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bilal Malik
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leonardo Amadio
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
37
|
Siemers KM, Klein AK, Baack ML. Mitochondrial Dysfunction in PCOS: Insights into Reproductive Organ Pathophysiology. Int J Mol Sci 2023; 24:13123. [PMID: 37685928 PMCID: PMC10488260 DOI: 10.3390/ijms241713123] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex, but relatively common endocrine disorder associated with chronic anovulation, hyperandrogenism, and micro-polycystic ovaries. In addition to reduced fertility, people with PCOS have a higher risk of obesity, insulin resistance, and metabolic disease, all comorbidities that are associated with mitochondrial dysfunction. This review summarizes human and animal data that report mitochondrial dysfunction and metabolic dysregulation in PCOS to better understand how mitochondria impact reproductive organ pathophysiology. This in-depth review considers all the elements regulating mitochondrial quantity and quality, from mitochondrial biogenesis under the transcriptional regulation of both the nuclear and mitochondrial genome to the ultrastructural and functional complexes that regulate cellular metabolism and reactive oxygen species production, as well as the dynamics that regulate subcellular interactions that are key to mitochondrial quality control. When any of these mitochondrial functions are disrupted, the energetic equilibrium within the cell changes, cell processes can fail, and cell death can occur. If this process is ongoing, it affects tissue and organ function, causing disease. The objective of this review is to consolidate and classify a broad number of PCOS studies to understand how various mitochondrial processes impact reproductive organs, including the ovary (oocytes and granulosa cells), uterus, placenta, and circulation, causing reproductive pathophysiology. A secondary objective is to uncover the potential role of mitochondria in the transgenerational transmission of PCOS and metabolic disorders.
Collapse
Affiliation(s)
- Kyle M. Siemers
- Physician Scientist (MD/Ph.D.) Program, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA;
| | - Abigail K. Klein
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Lee Medical Building, 414 E. Clark St., Sioux Falls, SD 57069, USA;
| | - Michelle L. Baack
- Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA
- Environmental Influences on Health and Disease Group, Sanford Research, 2301 E. 60th St., Sioux Falls, SD 57104, USA
| |
Collapse
|
38
|
Lubeck M, Derkum NH, Naha R, Strohm R, Driessen MD, Belgardt BF, Roden M, Stühler K, Anand R, Reichert AS, Kondadi AK. MIC26 and MIC27 are bona fide subunits of the MICOS complex in mitochondria and do not exist as glycosylated apolipoproteins. PLoS One 2023; 18:e0286756. [PMID: 37279200 DOI: 10.1371/journal.pone.0286756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Impairments of mitochondrial functions are linked to human ageing and pathologies such as cancer, cardiomyopathy, neurodegeneration and diabetes. Specifically, aberrations in ultrastructure of mitochondrial inner membrane (IM) and factors regulating them are linked to diabetes. The development of diabetes is connected to the 'Mitochondrial Contact Site and Cristae Organising System' (MICOS) complex which is a large membrane protein complex defining the IM architecture. MIC26 and MIC27 are homologous apolipoproteins of the MICOS complex. MIC26 has been reported as a 22 kDa mitochondrial and a 55 kDa glycosylated and secreted protein. The molecular and functional relationship between these MIC26 isoforms has not been investigated. In order to understand their molecular roles, we depleted MIC26 using siRNA and further generated MIC26 and MIC27 knockouts (KOs) in four different human cell lines. In these KOs, we used four anti-MIC26 antibodies and consistently detected the loss of mitochondrial MIC26 (22 kDa) and MIC27 (30 kDa) but not the loss of intracellular or secreted 55 kDa protein. Thus, the protein assigned earlier as 55 kDa MIC26 is nonspecific. We further excluded the presence of a glycosylated, high-molecular weight MIC27 protein. Next, we probed GFP- and myc-tagged variants of MIC26 with antibodies against GFP and myc respectively. Again, only the mitochondrial versions of these tagged proteins were detected but not the corresponding high-molecular weight MIC26, suggesting that MIC26 is indeed not post-translationally modified. Mutagenesis of predicted glycosylation sites in MIC26 also did not affect the detection of the 55 kDa protein band. Mass spectrometry of a band excised from an SDS gel around 55 kDa could not confirm the presence of any peptides derived from MIC26. Taken together, we conclude that both MIC26 and MIC27 are exclusively localized in mitochondria and that the observed phenotypes reported previously are exclusively due to their mitochondrial function.
Collapse
Affiliation(s)
- Melissa Lubeck
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nick H Derkum
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ritam Naha
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Strohm
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc D Driessen
- Medical Faculty and University Hospital, Institute of Molecular Medicine, Protein Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
- Medical Faculty and University Hospital Düsseldorf, Department of Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Medical Faculty and University Hospital, Institute of Molecular Medicine, Protein Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Polajnar J, Kuhelj A, Janža R, Žnidaršič N, Simčič T, Virant-Doberlet M. Leafhopper males compensate for unclear directional cues in vibration-mediated mate localization. Sci Rep 2023; 13:8879. [PMID: 37264041 PMCID: PMC10235090 DOI: 10.1038/s41598-023-35057-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Ambient noise and transmission properties of the substrate pose challenges in vibrational signal-mediated mating behavior of arthropods, because vibrational signal production is energetically demanding. We explored implications of these challenges in the leafhopper Aphrodes makarovi (Insecta: Hemiptera: Cicadellidae) by exposing males to various kinds of vibrational noise on a natural substrate and challenging them to find the source of the female playback. Contrary to expectations, males exposed to noise were at least as efficient as control males on account of similar searching success with less signaling effort, while playing back male-female duets allowed the males to switch to satellite behavior and locate the target without signaling, as expected. We found altered mitochondrial structure in males with high signaling effort that likely indicate early damaging processes at the cellular level in tymbal muscle, but no relation between biochemical markers of oxidative stress and signaling effort. Analysis of signal transmission revealed ambiguous amplitude gradients, which might explain relatively low searching success, but it also indicates the existence of behavioral adaptations to complex vibrational environments. We conclude that the observed searching tactic, emphasizing speed rather than thorough evaluation of directional cues, may compensate for unclear stimuli when the target is near.
Collapse
Affiliation(s)
- Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia.
| | - Anka Kuhelj
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Rok Janža
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Tatjana Simčič
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| |
Collapse
|
40
|
Jing H, Liu Z, Wu B, Tu K, Liu Z, Sun X, Zhou L. Physiological and molecular responses to hypoxia stress in Manila clam Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106428. [PMID: 36889128 DOI: 10.1016/j.aquatox.2023.106428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Hypoxia has become one of the major environmental problems in the aquaculture industry. As one of the most commercially important bivalves, Manila clam Ruditapes philippinarum may be suffering substantial mortality attributable to hypoxia. The physiological and molecular responses to hypoxia stress in Manila clam were evaluated at two levels of low dissolved oxygen: 0.5 mg/L (DO 0.5 mg/L) and 2.0 mg/L (DO 2.0 mg/L). With the prolongation of hypoxia stress, the mortality rate was 100% at 156 h under DO 0.5 mg/L. In contrast, 50% of clams survived after 240 h of stress at DO 2.0 mg/L. After the hypoxia stress, some severe structural damages were observed in gill, axe foot, hepatopancreas tissues, such as cell rupture and mitochondrial vacuolization. For the hypoxia-stressed clams, the significant rise and decline of enzyme activity (LDH and T-AOC) was observed in gills, in contrast to the reduction of glycogen content. Furthermore, the expression levels of genes related to energy metabolism (SDH, PK, Na+/K+-ATPase, NF-κB and HIF-1α) was significantly affected by the hypoxia stress. It is therefore suggested that the short-term survival of clams under hypoxia may be dependent on stress protection by antioxidants, energy allocation, and tissue energy reserves (such as glycogen stores). Despite this, the prolongation of hypoxia stress at DO 2.0 mg/L may cause the irreversible damages of cellular structures in clam tissues, eventually leading to the death of clams. We therefore support the hypothesis that the extent of hypoxia impacts on marine bivalves may be underestimated in the coastal areas.
Collapse
Affiliation(s)
- Hao Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR. China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR. China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR. China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR. China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, PR. China
| | - Zhengmin Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR. China; School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, PR. China
| | - Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR. China.
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR. China.
| |
Collapse
|
41
|
Morris S, Molina-Riquelme I, Barrientos G, Bravo F, Aedo G, Gómez W, Lagos D, Verdejo H, Peischard S, Seebohm G, Psathaki OE, Eisner V, Busch KB. Inner mitochondrial membrane structure and fusion dynamics are altered in senescent human iPSC-derived and primary rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148949. [PMID: 36493857 DOI: 10.1016/j.bbabio.2022.148949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Dysfunction of the aging heart is a major cause of death in the human population. Amongst other tasks, mitochondria are pivotal to supply the working heart with ATP. The mitochondrial inner membrane (IMM) ultrastructure is tailored to meet these demands and to provide nano-compartments for specific tasks. Thus, function and morphology are closely coupled. Senescent cardiomyocytes from the mouse heart display alterations of the inner mitochondrial membrane. To study the relation between inner mitochondrial membrane architecture, dynamics and function is hardly possible in living organisms. Here, we present two cardiomyocyte senescence cell models that allow in cellular studies of mitochondrial performance. We show that doxorubicin treatment transforms human iPSC-derived cardiomyocytes and rat neonatal cardiomyocytes in an aged phenotype. The treated cardiomyocytes display double-strand breaks in the nDNA, have β-galactosidase activity, possess enlarged nuclei, and show p21 upregulation. Most importantly, they also display a compromised inner mitochondrial structure. This prompted us to test whether the dynamics of the inner membrane was also altered. We found that the exchange of IMM components after organelle fusion was faster in doxorubicin-treated cells than in control cells, with no change in mitochondrial fusion dynamics at the meso-scale. Such altered IMM morphology and dynamics may have important implications for local OXPHOS protein organization, exchange of damaged components, and eventually the mitochondrial bioenergetics function of the aged cardiomyocyte.
Collapse
Affiliation(s)
- Silke Morris
- Institute of Integrative Cell Biology and Physiology, Schlossplatz 5, Faculty of Biology, University of Muenster, 48149 Muenster, North-Rhine-Westphalia, Germany
| | - Isidora Molina-Riquelme
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Gonzalo Barrientos
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Francisco Bravo
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Geraldine Aedo
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Wileidy Gómez
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Daniel Lagos
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Hugo Verdejo
- Facultad de Medicina, División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, North-Rhine-Westphalia, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, North-Rhine-Westphalia, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - Verónica Eisner
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile.
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, Schlossplatz 5, Faculty of Biology, University of Muenster, 48149 Muenster, North-Rhine-Westphalia, Germany.
| |
Collapse
|
42
|
Muñoz-Gómez SA, Cadena LR, Gardiner AT, Leger MM, Sheikh S, Connell LB, Bilý T, Kopejtka K, Beatty JT, Koblížek M, Roger AJ, Slamovits CH, Lukeš J, Hashimi H. Intracytoplasmic-membrane development in alphaproteobacteria involves the homolog of the mitochondrial crista-developing protein Mic60. Curr Biol 2023; 33:1099-1111.e6. [PMID: 36921606 DOI: 10.1016/j.cub.2023.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Lawrence Rudy Cadena
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Alastair T Gardiner
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Michelle M Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003 Catalonia, Spain
| | - Shaghayegh Sheikh
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Louise B Connell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tomáš Bilý
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Karel Kopejtka
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Claudio H Slamovits
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
43
|
Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol 2023; 324:R242-R248. [PMID: 36572555 PMCID: PMC9902215 DOI: 10.1152/ajpregu.00254.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Our current understanding of variation in mitochondrial performance is incomplete. The production of ATP via oxidative phosphorylation is dependent, in part, on the structure of the inner mitochondrial membrane. Morphology of the inner membrane is crucial for the formation of the proton gradient across the inner membrane and, therefore, ATP synthesis. The inner mitochondrial membrane is dynamic, changing shape and surface area. These changes alter density (amount per volume) of the inner mitochondrial membrane within the confined space of the mitochondrion. Because the number of electron transport system proteins within the inner mitochondrial membrane changes with inner mitochondrial membrane area, a change in the amount of inner membrane alters the capacity for ATP production within the organelle. This review outlines the evidence that the association between ATP synthases, inner mitochondrial membrane density, and mitochondrial density (number of mitochondria per cell) impacts ATP production by mitochondria. Furthermore, we consider possible constraints on the capacity of mitochondria to produce ATP by increasing inner mitochondrial membrane density.
Collapse
Affiliation(s)
- Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Hailey A Parry
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
44
|
Mitochondrial remodelling is essential for female germ cell differentiation and survival. PLoS Genet 2023; 19:e1010610. [PMID: 36696418 PMCID: PMC9901744 DOI: 10.1371/journal.pgen.1010610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.
Collapse
|
45
|
Afzal A, Beavers WN, Skaar EP, Calhoun MC, Richardson KA, Landstreet SR, Cliffel DE, Wright D, Bastarache JA, Ware LB. Ultraviolet light oxidation of fresh hemoglobin eliminates aggregate formation seen in commercially sourced hemoglobin. Blood Cells Mol Dis 2023; 98:102699. [PMID: 36027791 PMCID: PMC10024311 DOI: 10.1016/j.bcmd.2022.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Elevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe3+, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time. These CAgg were intensely autofluorescent, altered intracellular structures (such as mitochondria), formed in multiple cell types and with different media composition, and formed regardless of the presence or absence of cells. An in-depth chemical analysis of these CAgg revealed that they contain inorganic components and are not pure hemoglobin. To oxidize freshly isolated hemoglobin without addition of an oxidizing agent, we developed a novel method to convert ferrous CFH to ferric CFH using ultraviolet light without the need for additional redox agents. Unlike commercial ferric hemoglobin, treatment of cells with the fresh ferric hemoglobin did not lead to CAgg formation. These studies suggest that commercially sourced CFH may contain stabilizers and additives which contribute to CAgg formation.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological Surgery, Division of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisina State University and Agricultural and Mechanical College, Baton Rouge, LA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Stuart R Landstreet
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - David Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
46
|
Lysakowski A, Govindaraju AC, Raphael RM. Structural and functional diversity of mitochondria in vestibular/cochlear hair cells and vestibular calyx afferents. Hear Res 2022; 426:108612. [PMID: 36223702 PMCID: PMC12058273 DOI: 10.1016/j.heares.2022.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Mitochondria supply energy in the form of ATP to drive a plethora of cellular processes. In heart and liver cells, mitochondria occupy over 20% of the cellular volume and the major need for ATP is easily identifiable - i.e., to drive cross-bridge recycling in cardiac cells or biosynthetic machinery in liver cells. In vestibular and cochlear hair cells the overall cellular mitochondrial volume is much less, and mitochondria structure varies dramatically in different regions of the cell. The regional demands for ATP and cellular forces that govern mitochondrial structure and localization are not well understood. Below we review our current understanding of the heterogeneity of form and function in hair cell mitochondria. A particular focus of this review will be on regional specialization in vestibular hair cells, where large mitochondria are found beneath the cuticular plate in close association with the striated organelle. Recent findings on the role of mitochondria in hair cell death and aging are covered along with potential therapeutic approaches. Potential avenues for future research are discussed, including the need for integrated computational modeling of mitochondrial function in hair cells and the vestibular afferent calyx.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, Chicago, IL 60605, USA.
| | | | | |
Collapse
|
47
|
Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry 2022; 12:464. [PMID: 36344514 PMCID: PMC9640700 DOI: 10.1038/s41398-022-02233-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine (DA) is a major monoamine neurotransmitter in the brain and has essential roles in higher functions of the brain. Malfunctions of dopaminergic signaling have been implicated in various mental disorders such as addiction, attention deficit/hyperactivity disorder, Huntington's disease, Parkinson's disease (PD), and schizophrenia. The pathogenesis of PD and schizophrenia involves the interplay of mitochondrial defect and DA metabolism abnormalities. This article focuses on this issue in schizophrenia. It started with the introduction of metabolism, behavioral action, and physiology of DA, followed by reviewing evidence for malfunctions of dopaminergic signaling in patients with schizophrenia. Then it provided an overview of multiple facets of mitochondrial physiology before summarizing mitochondrial defects reported in clinical studies with schizophrenia patients. Finally, it discussed the interplay between DA metabolism abnormalities and mitochondrial defects and outlined some clinical studies showing effects of combination therapy of antipsychotics and antioxidants in treating patients with schizophrenia. The update and integration of these lines of information may advance our understanding of the etiology, pathogenesis, phenomenology, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
- Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Fan Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Lv XH, Cong XX, Nan JL, Lu XM, Zhu QL, Shen J, Wang BB, Wang ZT, Zhou RY, Chen WA, Su L, Chen X, Li ZZ, Lin YN. Anti-diabetic drug canagliflozin hinders skeletal muscle regeneration in mice. Acta Pharmacol Sin 2022; 43:2651-2665. [PMID: 35217814 PMCID: PMC9525290 DOI: 10.1038/s41401-022-00878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
Abstract
Canagliflozin is an antidiabetic medicine that inhibits sodium-glucose cotransporter 2 (SGLT2) in proximal tubules. Recently, it was reported to have several noncanonical effects other than SGLT2 inhibiting. However, the effects of canagliflozin on skeletal muscle regeneration remain largely unexplored. Thus, in vivo muscle contractile properties recovery in mice ischemic lower limbs following gliflozins treatment was evaluated. The C2C12 myoblast differentiation after gliflozins treatment was also assessed in vitro. As a result, both in vivo and in vitro data indicate that canagliflozin impairs intrinsic myogenic regeneration, thus hindering ischemic limb muscle contractile properties, fatigue resistance recovery, and tissue regeneration. Mitochondrial structure and activity are both disrupted by canagliflozin in myoblasts. Single-cell RNA sequencing of ischemic tibialis anterior reveals a decrease in leucyl-tRNA synthetase 2 (LARS2) in muscle stem cells attributable to canagliflozin. Further investigation explicates the noncanonical function of LARS2, which plays pivotal roles in regulating myoblast differentiation and muscle regeneration by affecting mitochondrial structure and activity. Enhanced expression of LARS2 restores the differentiation of canagliflozin-treated myoblasts, and accelerates ischemic skeletal muscle regeneration in canagliflozin-treated mice. Our data suggest that canagliflozin directly impairs ischemic skeletal muscle recovery in mice by downregulating LARS2 expression in muscle stem cells, and that LARS2 may be a promising therapeutic target for injured skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xin-Huang Lv
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Xia Cong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jin-Liang Nan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xing-Mei Lu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qian-Li Zhu
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Shen
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bei-Bei Wang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Ting Wang
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ri-Yong Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei-An Chen
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lan Su
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao Chen
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zheng-Zheng Li
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yi-Nuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
49
|
Mdivi-1 Induced Mitochondrial Fusion as a Potential Mechanism to Enhance Stress Tolerance in Wheat. Life (Basel) 2022; 12:life12091386. [PMID: 36143422 PMCID: PMC9503966 DOI: 10.3390/life12091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Mitochondria play a key role in providing energy to cells. This paper is dedicated to elucidating mitochondria-dependent mechanisms that may enhance abiotic stress tolerance in wheat. Mitochondria are constantly undergoing dynamic processes of fusion and fission. In plants, stressful conditions tend to favor mitochondrial fusion processes. The role of mitochondrial fusion was studied by applying Mdivi-1, an inhibitor of mitochondrial fission, to wheat roots subjected to a wounding stress. Increased mitochondrial functional activity and upregulation of genes involved in energy metabolism suggest that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to reduce the effects of stress. Abstract Mitochondria play a key role in providing energy to cells. These organelles are constantly undergoing dynamic processes of fusion and fission that change in stressful conditions. The role of mitochondrial fusion in wheat root cells was studied using Mdivi-1, an inhibitor of the mitochondrial fragmentation protein Drp1. The effect of the inhibitor was studied on mitochondrial dynamics in the roots of wheat seedlings subjected to a wounding stress, simulated by excision. Treatment of the stressed roots with the inhibitor increased the size of the mitochondria, enhanced their functional activity, and elevated their membrane potentials. Mitochondrial fusion was accompanied by a decrease in ROS formation and associated cell damage. Exposure to Mdivi-1 also upregulated genes encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an energy sensor AMP-dependent protein sucrose non-fermenting-related kinase (SnRK1), suggesting that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to mitigate the effects of stress.
Collapse
|
50
|
Zhang G, Wang Y, Lin J, Wang B, Mohsin A, Cheng Z, Hao W, Gao WQ, Xu H, Guo M. Biological activity reduction and mitochondrial and lysosomal dysfunction of mesenchymal stem cells aging in vitro. Stem Cell Res Ther 2022; 13:411. [PMID: 35964126 PMCID: PMC9375398 DOI: 10.1186/s13287-022-03107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been extensively used for the treatment of various diseases in preclinical and clinical trials. In vitro propagation is needed to attain enough cells for clinical use. However, cell aging and viability reduction caused by long-time culture have not been thoroughly investigated, especially for the function of mitochondria and lysosomes. Therefore, this study was designed to detect mitochondrial and lysosomal activity, morphological and functional changes in human umbilical cord MSCs (UMSCs) after long-time culture. METHODS First, we examined cell activities, including proliferation and immigration ability, differentiation potential, and immunosuppressive capacity of UMSCs at an early and late passages as P4 (named UMSC-P4) and P9 (named UMSC-P9), respectively. Then, we compared the mitochondrial morphology of UMSC-P4 and UMSC-P9 using the electronic microscope and MitoTracker Red dyes. Furthermore, we investigated mitochondrial function, including mitochondrial membrane potential, antioxidative ability, apoptosis, and ferroptosis detected by respective probe. Cell energy metabolism was tested by mass spectrometry. In addition, we compared the lysosomal morphology of UMSC-P4 and UMSC-P9 by electronic microscope and lysoTracker Red dyes. Finally, the transcriptome sequence was performed to analyze the total gene expression of these cells. RESULTS It was found that UMSC-P9 exhibited a reduced biological activity and showed an impaired mitochondrial morphology with disordered structure, reduced mitochondrial crista, and mitochondrial fragments. They also displayed decreased mitochondrial membrane potential, antioxidative ability, tricarboxylic acid cycle activity and energy production. At the same time, apoptosis and ferroptosis were increased. In addition, UMSC-P9, relative to UMSC-P4, showed undegraded materials in their lysosomes, the enhancement in lysosomal membrane permeability, the reduction in autophagy and phagocytosis. Moreover, transcriptome sequence analysis also revealed a reduction of cell function, metabolism, mitochondrial biogenesis, DNA replication and repair, and an increase of gene expression related to cell senescence, cancer, diseases, and infection in UMSC-P9. CONCLUSION This study indicates that in vitro long-time culturing of MSCs can cause mitochondrial and lysosomal dysfunction, probably contributing to the decline of cell activity and cell aging. Therefore, the morphology and function of mitochondria and lysosomes can be regarded as two important parameters to monitor cell viability, and they can also serve as two important indicators for optimizing in vitro culture conditions.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329#, 130 Meilong Road, Shanghai, 200237, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuli Wang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329#, 130 Meilong Road, Shanghai, 200237, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329#, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Zhimin Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329#, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|