1
|
Nong Y, Liu Q, Xu J, Wei G, Liao Y, Zhou Y, Chen X, Zhang XY. Peptides derived from the α-helical structure of large yellow croaker (Larimichthys crocea) CXCL8 demonstrate potent bactericidal effects. FISH & SHELLFISH IMMUNOLOGY 2025; 165:110505. [PMID: 40541674 DOI: 10.1016/j.fsi.2025.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 06/03/2025] [Accepted: 06/17/2025] [Indexed: 06/22/2025]
Abstract
Bacterial diseases pose a significant threat to the large yellow croaker aquaculture industry, and the overuse of antibiotics has exacerbated the issue of bacterial resistance. Consequently, there is an urgent need for antimicrobial peptides as alternatives to traditional antibiotics. In this study, a 13-amino acid peptide, AVV13N, was designed by truncating the carboxyl-terminal region of the large yellow croaker CXCL8 protein and amidating its carboxyl terminus. A derivative peptide, AVK13N, was subsequently synthesized through amino acid substitution. In vitro assays demonstrated that both peptides exhibit broad-spectrum antimicrobial activity, with AVK13N showing significantly stronger efficacy than AVV13N. Cytotoxicity and hemolytic activity tests confirmed that these two peptides have low cytotoxicity and minimal hemolytic effects. Stability analysis further revealed that two peptides maintain their bactericidal activity under varying temperatures and pH levels, and in the presence of most physiological salts. Mechanistically, the two peptides depolarize the bacterial cytoplasmic membrane and enhance membrane permeability by binding to lipopolysaccharide (LPS), ultimately disrupting bacterial cell structure, thus exerting bactericidal effects. In vivo experiments demonstrated that both peptides improve the survival rate of zebrafish (Danio rerio) infected with P. plecoglossicida, with AVK13N exhibiting a particularly pronounced protective effect. These findings not only elucidate the direct bactericidal activity of the carboxyl-terminal α-helical peptides derived from large yellow croaker CXCL8, but also underscore their potential as therapeutic agents for the prevention and control of bacterial diseases in fish.
Collapse
Affiliation(s)
- Yanhong Nong
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qionglin Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Xu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gonghong Wei
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yining Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Zhou
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Xiang-Yang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Vertebral Bone Marrow Clot towards the Routine Clinical Scenario in Spine Surgeries: What about the Antimicrobial Properties? Int J Mol Sci 2023; 24:ijms24021744. [PMID: 36675259 PMCID: PMC9865225 DOI: 10.3390/ijms24021744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Exploring innovative techniques and treatments to improve spinal fusion procedures is a global challenge. Here, we provide a scientific opinion on the ability of a vertebral bone marrow (vBM) clot to provide a local combined delivery system not only of stem cells, signaling biomolecules and anti-inflammatory factors but also of molecules and proteins endowed with antimicrobial properties. This opinion is based on the evaluation of the intrinsic basic properties of the vBM, that contains mesenchymal stem cells (MSCs), and on the coagulation process that led to the conversion of fibrinogen into fibrin fibers that enmesh cells, plasma but above all platelets, to form the clot. We emphasize that vBM clot, being a powerful source of MSCs and platelets, would allow the release of antimicrobial proteins and molecules, mainly cathelicidin LL- 37, hepcidin, kinocidins and cationic host defense peptides, that are per se gifted with direct and/or indirect antimicrobial effects. We additionally highlight that further studies are needed to deepen this knowledge and to propose vBM clot as multifunctional bioscaffold able to target all the main key challenges for spinal fusion surgery.
Collapse
|
3
|
Immune Modulation Ability of Hepcidin from Teleost Fish. Animals (Basel) 2022; 12:ani12121586. [PMID: 35739922 PMCID: PMC9219549 DOI: 10.3390/ani12121586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Antimicrobial peptides are part of the fish defense system, which can directly eliminate pathogenic microorganisms and, at the same time, regulate the immune response against them. This study evaluated the immunomodulatory effects of the antimicrobial peptide hepcidin in both juvenile fish and fish leukocyte cells. The results showed that hepcidin increased the expression of TNF-α, IL-1β, and IL-10 cytokines in leukocyte cells from trout. Moreover, the mRNA expressions of the same cytokines were up-regulated in different immune tissue of sea bass, confirming in vitro results. This study provides new insights into immunomodulatory function complementary to hepcidin’s previously established antimicrobial activity modulating the pro- and anti-inflammatory responses in teleost fish. Abstract Antimicrobial peptides (AMP) play an essential role in the innate immune system, modulating the defense response. In a previous study, we demonstrated the antimicrobial activity of synthetic hepcidin (hep20) from rainbow trout (Oncorhynchus mykiss), and its protective effect in European sea bass (Dicentrarchus labrax) challenged with Vibrio anguillarum. Additionally, we described the uptake and distribution of hep20 in different tissues and leukocyte cells. Interestingly, various AMPs characterized in high vertebrates, called host defense peptides (HDPs), also possess immunomodulation activity. For that reason, the present study explores the immunomodulatory abilities of hep20 through in vitro and in vivo studies. First, a monocyte/macrophage RTS-11 cell line from rainbow trout was used to evaluate hep20 effects on pro- and anti-inflammatory cytokines in fish leukocyte cells. Next, the European sea bass juveniles were used to determine if hep20 can regulate the expression of cytokines in fish immune tissues. The results show that hep20 was uptake inner to RTS-11 cells and was able to induce the expression of IL-10, IL-1β, and TNFα at transcriptional and protein levels. Then, the European sea bass juveniles were given intraperitoneal injections of the peptide. At 1, 3, 7, 14, and 21 days post-injection (dpi), IL-10, IL -1β, and TNFα mRNA were quantified in the anterior gut, spleen, and head kidney. The hep20 was able to up-regulate cytokine gene expression in these tissues, mainly in the head kidney. Furthermore, the evaluated cytokines showed a cyclical tendency of higher to lesser expression. Finally, a bioinformatics analysis showed that the structure adopted by hep20 is similar to the γ-core domain described for cysteine-stabilized AMP, defined as immunomodulatory and antimicrobial, which could explain the ability of hep20 to regulate the cytokine expression. This study provides new insights into immunomodulatory function complementary to the previously established antimicrobial activity of hep20, suggesting a role as an HDP in teleost fish. These facts are likely to be associated with molecular functions underpinning the protective effect of fish hepcidin against pathogens.
Collapse
|
4
|
Ravenscroft H, El Karim I, Krasnodembskaya AD, Gilmore B, About I, Lundy FT. Novel Antibacterial Properties of the Human Dental Pulp Multipotent Mesenchymal Stromal Cell Secretome. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:956-969. [PMID: 35339427 PMCID: PMC12178332 DOI: 10.1016/j.ajpath.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
It is well recognized that clearance of bacterial infection within the dental pulp precedes pulpal regeneration. However, although the regenerative potential of the human dental pulp has been investigated extensively, its antimicrobial potential remains to be examined in detail. In the current study bactericidal assays were used to demonstrate that the secretome of dental pulp multipotent mesenchymal stromal cells (MSCs) has direct antibacterial activity against the archetypal Gram-positive and Gram-negative bacteria, Staphylococcus aureus and Escherichia coli, respectively, as well as the oral pathogens Streptococcus mutans, Lactobacillus acidophilus, and Fusobacterium nucleatum. Furthermore, a cytokine/growth factor array, enzyme-linked immunosorbent assays, and antibody blocking were used to show that cytokines and growth factors present in the dental pulp MSC secretome, including hepatocyte growth factor, angiopoietin-1, IL-6, and IL-8, contribute to this novel antibacterial activity. This study elucidated a novel and diverse antimicrobial secretome from human dental pulp MSCs, suggesting that these cells contribute to the antibacterial properties of the dental pulp. With this improved understanding of the secretome of dental pulp MSCs and its novel antibacterial activity, new evidence for the ability of the dental pulp to fight infection and restore functional competence is emerging, providing further support for the biological basis of pulpal repair and regeneration.
Collapse
Affiliation(s)
- Harriet Ravenscroft
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ikhlas El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Brendan Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Imad About
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Aix Marseille University, Marseille, France
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
5
|
LcCCL28-25, Derived from Piscine Chemokine, Exhibits Antimicrobial Activity against Gram-Negative and Gram-Positive Bacteria In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0251521. [PMID: 35616397 PMCID: PMC9241943 DOI: 10.1128/spectrum.02515-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are currently recognized as potentially promising antibiotic substitutes. Fish are an important seawater/freshwater medicinal biological resource, and the antimicrobial peptides and proteins that are key components of their innate immune systems are potential candidates for the development of novel antibacterial agents. The rainbow trout Oncorhynchus mykiss chemokine CK11 (omCK11), classified in the C-C motif chemokine ligand 27/28 (CCL27/28) family, is the only CC-type chemokine reported to play a direct antibacterial role in the immune response; however, its antibacterial domain remains unknown. In this study, we analyzed the structure-activity relationship of omCK11 and identified the antibacterial C-terminal domain. Additionally, we performed structure-function analyses of CCL27/28 proteins from different, representative freshwater and seawater fishes, revealing their shared C-terminal antibacterial domains. Surprisingly, a synthesized cationic peptide (named lcCCL28-25), derived from the large yellow croaker Larimichthys crocea CCL28, exhibited broad-spectrum and the most acceptable bactericidal activity, as well as antibiofilm activity and negligible hemolytic and cytotoxic activity in vitro. Additionally, lcCCL28-25 conferred a protective effect in the thighs of neutropenic mice infected with Staphylococcus aureus. SYTOX green fluorescence and electron microscopy experiments revealed that lcCCL28-25 was capable of rapidly destroying the integrity and permeability of the bacterial cell membrane. Overall, this study aided in the advancement of antibacterial CC-type chemokine research and also suggested a new strategy for exploring novel AMPs. Additionally, the efficacy of lcCCL28-25 in in vivo antibacterial activity in a mammalian model revealed that this compound could be a promising agent for the development of peptide-based antibacterial therapeutics. IMPORTANCE The primary function of chemokines has been described as recruiting and activating leukocytes to participate in the immune response. Some chemokines are also broad-spectrum antibacterial proteins in mammals. The Oncorhynchus mykiss chemokine CK11 (omCK11) is the first reported and currently the only CC-type antibacterial chemokine. The present study identified the antibacterial domain of omCK11. Structure-function analysis of various fish CCL27/28 proteins identified a novel antibacterial peptide (lcCCL28-25) from Larimichthys crocea CCL28 that exhibited broad-spectrum and the most acceptable bactericidal activity in vitro, as well as a protective effect in a Staphylococcus aureus infection mouse model. The antibacterial mechanisms included membrane disruption and permeation. This study advanced the field of antibacterial chemokine research in fish and also suggested a new strategy for exploring novel AMPs. The novel peptide lcCCL28-25 may prove to be an effective antibacterial agent.
Collapse
|
6
|
Sáenz-Martínez DE, Santana PA, Aróstica M, Forero JC, Guzmán F, Mercado L. Immunodetection of rainbow trout IL-8 cleaved-peptide: Tissue bioavailability and potential antibacterial activity in a bacterial infection context. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104182. [PMID: 34166719 DOI: 10.1016/j.dci.2021.104182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chemokines such as IL-8 are part of an important group of proinflammatory response molecules, as well as cell recruitment. However, it has been described in both higher vertebrates and fish that IL-8 has an additional functional role by acting as an antimicrobial effector, either directly or by cleavage of a peptide derived from its C-terminal end. Nevertheless, it is still unknown whether this fragment is released in the context of infection by bacterial pathogens and if it could be immunodetected in tissues of infected salmonids. Therefore, the objective of this research was to demonstrate that the C-terminal end of IL-8 from Oncorhynchus mykiss is cleaved, retaining its antibacterial properties, and that is detectable in tissues of infected rainbow trout. SDS-PAGE and mass spectrometry demonstrated the cleavage of a fragment of about 2 kDa when the recombinant IL-8 was subjected to acidic conditions. By chemical synthesis, it was possible to synthesize this fragment called omIL-8α80-97 peptide, which has antibacterial activity against Gram-negative and Gram-positive bacteria at concentrations over 10 μM. Besides, by fluorescence microscopy, it was possible to locate the omIL-8α80-97 peptide both on the cell surface and in the cytoplasm of the bacteria, as well as inside the monocyte/macrophage-like cell. Finally, by indirect ELISA, Western blot, and mass spectrometry, the presence of the fragment derived from the C-terminal end of IL-8 was detected in the spleen of trout infected with Piscirickettsia salmonis. The results reported in this work present the first evidence about the immunodetection of an antibacterial, and probably cell-penetrating peptide cleaved from the C-terminal end of IL-8 in monocyte/macrophage-like cell and tissue of infected rainbow trout.
Collapse
Affiliation(s)
- Daniel E Sáenz-Martínez
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Paula A Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile.
| | - Mónica Aróstica
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Juan C Forero
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Luis Mercado
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
7
|
Recent Advances in the Discovery and Function of Antimicrobial Molecules in Platelets. Int J Mol Sci 2021; 22:ijms221910230. [PMID: 34638568 PMCID: PMC8508203 DOI: 10.3390/ijms221910230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
The conventional function described for platelets is maintaining vascular integrity. Nevertheless, increasing evidence reveals that platelets can additionally play a crucial role in responding against microorganisms. Activated platelets release molecules with antimicrobial activity. This ability was first demonstrated in rabbit serum after coagulation and later in rabbit platelets stimulated with thrombin. Currently, multiple discoveries have allowed the identification and characterization of PMPs (platelet microbicidal proteins) and opened the way to identify kinocidins and CHDPs (cationic host defense peptides) in human platelets. These molecules are endowed with microbicidal activity through different mechanisms that broaden the platelet participation in normal and pathologic conditions. Therefore, this review aims to integrate the currently described platelet molecules with antimicrobial properties by summarizing the pathways towards their identification, characterization, and functional evaluation that have promoted new avenues for studying platelets based on kinocidins and CHDPs secretion.
Collapse
|
8
|
Konger RL, Derr-Yellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. Int J Mol Sci 2021; 22:ijms22168634. [PMID: 34445339 PMCID: PMC8395473 DOI: 10.3390/ijms22168634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.
Collapse
Affiliation(s)
- Raymond L. Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-317-274-4154
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Terrence Katona
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
| | - Xiaoling Xuei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
| | - Ed Ronald Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew J. Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of Dermatology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, Wang J, Waschek JA, Ferguson AL, Lee KF, Yount NY, Yeaman MR, Wong GCL. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci U S A 2021; 118:e1917623117. [PMID: 33372152 PMCID: PMC7817161 DOI: 10.1073/pnas.1917623117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Liana C Chan
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Huiyuan Wang
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Juelline Lieng
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Mandy Hung
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Jennifer Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nannette Y Yount
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Michael R Yeaman
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509;
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
10
|
Dishman AF, Lee MW, de Anda J, Lee EY, He J, Huppler AR, Wong GCL, Volkman BF. Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1. ACS Infect Dis 2020; 6:1204-1213. [PMID: 32243126 PMCID: PMC7258946 DOI: 10.1021/acsinfecdis.0c00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Antimicrobial peptides (AMPs) are
a class of molecules which generally
kill pathogens via preferential cell membrane disruption. Chemokines
are a family of signaling proteins that direct immune cell migration
and share a conserved α–β tertiary structure. Recently,
it was found that a subset of chemokines can also function as AMPs,
including CCL20, CXCL4, and XCL1. It is therefore surprising that
machine learning based analysis predicts that CCL20 and CXCL4’s
α-helices are membrane disruptive, while XCL1’s helix
is not. XCL1, however, is the only chemokine known to be a metamorphic
protein which can interconvert reversibly between two distinct native
structures (a β-sheet dimer and the α–β chemokine
structure). Here, we investigate XCL1’s antimicrobial mechanism
of action with a focus on the role of metamorphic folding. We demonstrate
that XCL1 is a molecular “Swiss army knife” that can
refold into different structures for distinct context-dependent functions:
whereas the α–β chemokine structure controls cell
migration by binding to G-Protein Coupled Receptors (GPCRs), we find
using small angle X-ray scattering (SAXS) that only the β-sheet
and unfolded XCL1 structures can induce negative Gaussian curvature
(NGC) in membranes, the type of curvature topologically required for
membrane permeation. Moreover, the membrane remodeling activity of
XCL1’s β-sheet structure is strongly dependent on membrane
composition: XCL1 selectively remodels bacterial model membranes but
not mammalian model membranes. Interestingly, XCL1 also permeates
fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense
which requires Th17 mediated cell-based responses. These observations
suggest that metamorphic XCL1 is capable of a versatile multimodal
form of antimicrobial defense.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Michelle W. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ernest Y. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jie He
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Anna R. Huppler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| |
Collapse
|
11
|
Unifying structural signature of eukaryotic α-helical host defense peptides. Proc Natl Acad Sci U S A 2019; 116:6944-6953. [PMID: 30877253 DOI: 10.1073/pnas.1819250116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.
Collapse
|
12
|
Alfituri OA, Ajibola O, Brewer JM, Garside P, Benson RA, Peel T, Morrison LJ, Mabbott NA. Effects of host-derived chemokines on the motility and viability of Trypanosoma brucei. Parasite Immunol 2019; 41:e12609. [PMID: 30525202 PMCID: PMC6767366 DOI: 10.1111/pim.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/29/2018] [Indexed: 12/04/2022]
Abstract
African trypanosomes (Trypanosoma brucei spp.) are extracellular, hemoflagellate, protozoan parasites. Mammalian infection begins when the tsetse fly vector injects trypanosomes into the skin during blood feeding. The trypanosomes then reach the draining lymph nodes before disseminating systemically. Intravital imaging of the skin post-tsetse fly bite revealed that trypanosomes were observed both extravascularly and intravascularly in the lymphatic vessels. Whether host-derived cues play a role in the attraction of the trypanosomes towards the lymphatic vessels to aid their dissemination from the site of infection is not known. Since chemokines can mediate the attraction of leucocytes towards the lymphatics, in vitro chemotaxis assays were used to determine whether chemokines might also act as chemoattractants for trypanosomes. Although microarray data suggested that the chemokines CCL8, CCL19, CCL21, CCL27 and CXCL12 were highly expressed in mouse skin, they did not stimulate the chemotaxis of T brucei. Certain chemokines also possess potent antimicrobial properties. However, none of the chemokines tested exerted any parasiticidal effects on T brucei. Thus, our data suggest that host-derived chemokines do not act as chemoattractants for T brucei. Identification of the mechanisms used by trypanosomes to establish host infection will aid the development of novel approaches to block disease transmission.
Collapse
Affiliation(s)
- Omar A. Alfituri
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| | - Olumide Ajibola
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
- Department of MicrobiologyFederal University Birnin KebbiBirnin KebbiNigeria
| | - James M. Brewer
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Paul Garside
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Robert A. Benson
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Tamlyn Peel
- Centre for Inflammation Biology and Cancer ImmunologyFaculty of Life SciencesKing's College LondonLondonUK
| | - Liam J. Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
The Role of Platelets in Antimicrobial Host Defense. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J 2018; 16:16. [PMID: 30026673 PMCID: PMC6048695 DOI: 10.1186/s12959-018-0170-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets are small non-nucleated cell fragments and the second most abundant cell that play crucial role in managing vascular integrity and regulating hemostasis. Recent finding shows, beyond its hemostatic function platelets also play a main role in fighting against pathogen including viruses. With their receptors, platelet interacts with viral pathogen and this interaction between platelets and viral pathogens result in activation of platelets. Activated platelet releases different molecules that have antiviral activity including kinocidins and other platelet microbicidal peptides. In addition, activated platelet has antiviral role by different mechanism including; phagocytosis of viral pathogen, produce reactive oxygen species and interact with and activate other immune cells. In other side, antiplatelet treatments are one of defending mechanism of viral pathogen. This narrative review summarizes what is known regarding the role of human platelets in fighting viral pathogen.
Collapse
Affiliation(s)
- Masresha Seyoum
- University of Gondar hospital, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
15
|
Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018; 29:2127-2139. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.
Collapse
|
16
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
17
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
18
|
Santana PA, Salinas N, Álvarez CA, Mercado LA, Guzmán F. Alpha-helical domain from IL-8 of salmonids: Mechanism of action and identification of a novel antimicrobial function. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2018; 88:173-184. [PMID: 29432957 DOI: 10.1016/j.semcdb.2018.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
20
|
Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci 2017; 18:ijms18091852. [PMID: 28841158 PMCID: PMC5618501 DOI: 10.3390/ijms18091852] [Citation(s) in RCA: 857] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Earlier research primarily attributed the effects of mesenchymal stem cell (MSC) therapies to their capacity for local engrafting and differentiating into multiple tissue types. However, recent studies have revealed that implanted cells do not survive for long, and that the benefits of MSC therapy could be due to the vast array of bioactive factors they produce, which play an important role in the regulation of key biologic processes. Secretome derivatives, such as conditioned media or exosomes, may present considerable advantages over cells for manufacturing, storage, handling, product shelf life and their potential as a ready-to-go biologic product. Nevertheless, regulatory requirements for manufacturing and quality control will be necessary to establish the safety and efficacy profile of these products. Among MSCs, human uterine cervical stem cells (hUCESCs) may be a good candidate for obtaining secretome-derived products. hUCESCs are obtained by Pap cervical smear, which is a less invasive and painful method than those used for obtaining other MSCs (for example, from bone marrow or adipose tissue). Moreover, due to easy isolation and a high proliferative rate, it is possible to obtain large amounts of hUCESCs or secretome-derived products for research and clinical use.
Collapse
|
21
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
22
|
The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action. Infect Immun 2015; 84:459-66. [PMID: 26597988 DOI: 10.1128/iai.01030-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans.
Collapse
|
23
|
Mariani E, Canella V, Berlingeri A, Bielli A, Cattini L, Landini MP, Kon E, Marcacci M, Di Matteo B, Filardo G. Leukocyte presence does not increase microbicidal activity of Platelet-rich Plasma in vitro. BMC Microbiol 2015. [PMID: 26223356 PMCID: PMC4520275 DOI: 10.1186/s12866-015-0482-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Human platelets are a rich reservoir of molecules that promote regenerative processes and microbicidal activity. This activity might be increased by concentration in platelet-rich plasma (PRP) products and modulated by the presence of leukocytes. Despite extensive use in clinical procedures, only few studies have investigated PRP’s real microbicidal potential. Therefore, this study aimed at comparing the in vitro microbicidal activity of platelets and leukocyte-enriched PRP (L-PRP) to pure platelet-rich plasma (P-PRP) and the contribution of leukocytes to microbicidal properties. Antimicrobial effects of P- and L-PRP were tested against Escherichia Coli, Staphylococcus Aureus, Klebsiella Pneumoniae, Pseudomonas Aeruginosa and Enterococcus Faecalis. Furthermore, L-PRP was frozen (L-PRP cryo) to assess whether the preparation maintained in vitro characteristics. Microbicidal proteins released by the three preparations were also evaluated. Results L-PRP, L-PRP cryo and P-PRP generally induced comparable bacterial growth inhibition for up to 4 h’ incubation, range 1–4 log. MIP-1α, RANTES, GRO-α, IL-8, NAP-2, SDF-1α and IL-6 showed strong microbicidal potential. Conclusions We found in vitro antibacterial activity of L-PRP and P-PRP and the possibility to cryopreserve L-PRP, without important changes to its effectiveness; similar microbicidal activity between preparations containing or not leukocytes; and the contribution of three new molecules (NAP-2, SDF-1α and IL-6).
Collapse
Affiliation(s)
- Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy. .,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Valentina Canella
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Andrea Berlingeri
- Unit of Clinical Microbiology, St. Orsola University Hospital, University of Bologna, Bologna, Italy.
| | - Alessandra Bielli
- Unit of Clinical Microbiology, St. Orsola University Hospital, University of Bologna, Bologna, Italy.
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Maria Paola Landini
- Unit of Clinical Microbiology, St. Orsola University Hospital, University of Bologna, Bologna, Italy.
| | - Elizaveta Kon
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, Italy.
| | - Maurilio Marcacci
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, Italy.
| | - Berardo Di Matteo
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, Italy.
| | - Giuseppe Filardo
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, Italy.
| |
Collapse
|
24
|
Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents. Int J Mol Sci 2015; 16:12958-85. [PMID: 26062132 PMCID: PMC4490481 DOI: 10.3390/ijms160612958] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/03/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.
Collapse
|
25
|
Mariani E, Filardo G, Canella V, Berlingeri A, Bielli A, Cattini L, Landini MP, Kon E, Marcacci M, Facchini A. Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy 2015; 16:1294-304. [PMID: 25108654 DOI: 10.1016/j.jcyt.2014.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND AIMS Platelet-rich plasma (PRP), a blood derivative rich in platelets, is a relatively new technique used in tissue regeneration and engineering. The increased quantity of platelets makes this formulation of considerable value for their role in tissue healing and microbicidal activity. This activity was investigated against five of the most important strains involved in nosocomial infections (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus faecalis) to understand the prophylactic role of pure (P)-PRP. Microbicidal proteins released from activated P-PRP platelets were also determined. METHODS The microbicidal activity of P-PRP and platelet-poor plasma (PPP) was evaluated on different concentrations of the five bacterial strains incubated for 1, 2, 4 and 18 h and plated on agar for 18-24 h. P-PRP and PPP-released microbicidal proteins were evaluated by means of multiplex bead-based immunoassays. RESULTS P-PRP and PPP inhibited bacterial growth for up to 2 h of incubation. The effect of P-PRP was significantly higher than that of PPP, mainly at the low seeding concentrations and/or shorter incubation times, depending on the bacterial strain. Chemokine (C-C motif) ligand-3, chemokine (C-C motif) ligand-5 and chemokine (C-X-C motif) ligand-1 were the molecules mostly related to Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus faecalis inhibition. Escherichia coli and Klebsiella pneumoniae were less influenced. CONCLUSIONS The present results show that P-PRP might supply an early protection against bacterial contaminations during surgical interventions because the inhibitory activity is already evident from the first hour of treatment, which suggests that physiological molecules supplied in loco might be important in the time frame needed for the activation of the innate immune response.
Collapse
Affiliation(s)
- Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Giuseppe Filardo
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Valentina Canella
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Andrea Berlingeri
- Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Regional Reference Centre for Microbiological Emergencies, Bologna, Italy
| | - Alessandra Bielli
- Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Regional Reference Centre for Microbiological Emergencies, Bologna, Italy
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maria Paola Landini
- Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Regional Reference Centre for Microbiological Emergencies, Bologna, Italy
| | - Elizaveta Kon
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maurilio Marcacci
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Andrea Facchini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
|
27
|
Söbirk SK, Mörgelin M, Egesten A, Bates P, Shannon O, Collin M. Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro. PLoS One 2013; 8:e58129. [PMID: 23533582 PMCID: PMC3606167 DOI: 10.1371/journal.pone.0058129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.
Collapse
Affiliation(s)
- Sara K Söbirk
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
28
|
Eliasson M, Olin AI, Malmström JA, Mörgelin M, Bodelsson M, Collin M, Egesten A. Characterization of released polypeptides during an interferon-γ-dependent antibacterial response in airway epithelial cells. J Interferon Cytokine Res 2012; 32:524-33. [PMID: 22909116 DOI: 10.1089/jir.2012.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When pathogenic bacteria breach the epithelial lining at mucosal surfaces, rapidly available innate immune mechanisms are critical to halt the infection. In the present study, we characterized the production of antibacterial polypeptides released by epithelial cells. IFN-γ, but neither TNF nor IL-1β alone, induced release of antibacterial activity to a cell culture medium, causing a lytic appearance of killed bacteria as revealed by electron microscopy. Addition of the protein streptococcal inhibitor of complement, derived from Streptococcus pyogenes, known for its ability to neutralize antimicrobial polypeptides (AMPs), reduced the antibacterial activity of the medium. Characterization of the antibacterial incubation medium using mass spectrometric approaches and ELISAs, displayed presence of several classical AMPs, antibacterial chemokines, as well as complement factors and proteases that may interfere with bacterial killing. Many were constitutively produced, that is, being released by cells incubated in a medium alone. While a combination of IFN-γ and TNF did not increase bacterial killing, the presence of TNF boosted the amounts and detectable number of AMPs, including antibacterial chemokines. However, the methods applied in the study failed to single out certain AMPs as critical mediators, but rather demonstrate the broad range of molecules involved. Since many AMPs are highly amphiphatic in nature (i.e., cationic and hydrophobic), it is possible that difficulties in optimizing recovery present limitations in the context investigated. The findings demonstrate that epithelial cells have a constitutive production of AMPs and that IFN-γ is an important inducer of an antibacterial response in which is likely to be a critical part of the innate host defense against pathogenic bacteria at mucosal surfaces.
Collapse
Affiliation(s)
- Mette Eliasson
- Section for Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012; 52:337-60. [PMID: 22235859 DOI: 10.1146/annurev-pharmtox-010611-134535] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.
Collapse
Affiliation(s)
- Nannette Y Yount
- Divisions of Infectious Diseases and Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | |
Collapse
|
30
|
Yount NY, Cohen SE, Kupferwasser D, Waring AJ, Ruchala P, Sharma S, Wasserman K, Jung CL, Yeaman MR. Context mediates antimicrobial efficacy of kinocidin congener peptide RP-1. PLoS One 2011; 6:e26727. [PMID: 22073187 PMCID: PMC3208557 DOI: 10.1371/journal.pone.0026727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/02/2011] [Indexed: 11/21/2022] Open
Abstract
Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible ((S)) or resistant ((R)) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized ST(S) and CA strains at both pH, whereas permeabilization was modest for ST(R) or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH- and target-cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context-specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity.
Collapse
Affiliation(s)
- Nannette Y. Yount
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Samuel E. Cohen
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Deborah Kupferwasser
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Alan J. Waring
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Division of Molecular Medicine, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Shantanu Sharma
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California, United States of America
| | - Karlman Wasserman
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- Division of Pulmonary / Critical Care Medicine, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Chun-Ling Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael R. Yeaman
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Division of Molecular Medicine, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
| |
Collapse
|
31
|
Nguyen LT, Kwakman PHS, Chan DI, Liu Z, de Boer L, Zaat SAJ, Vogel HJ. Exploring platelet chemokine antimicrobial activity: nuclear magnetic resonance backbone dynamics of NAP-2 and TC-1. Antimicrob Agents Chemother 2011; 55:2074-83. [PMID: 21321145 PMCID: PMC3088234 DOI: 10.1128/aac.01351-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/04/2011] [Indexed: 11/20/2022] Open
Abstract
The platelet chemokines neutrophil-activating peptide-2 (NAP-2) and thrombocidin-1 (TC-1) differ by only two amino acids at their carboxy-terminal ends. Nevertheless, they display a significant difference in their direct antimicrobial activities, with the longer NAP-2 being inactive and TC-1 being active. In an attempt to rationalize this difference in activity, we studied the structure and the dynamics of both proteins by nuclear magnetic resonance (NMR) spectroscopy. Using 15N isotope-labeled protein, we confirmed that the two monomeric proteins essentially have the same overall structure in aqueous solution. However, NMR relaxation measurements provided evidence that the negatively charged carboxy-terminal residues of NAP-2 experience a restricted motion, whereas the carboxy-terminal end of TC-1 moves in an unrestricted manner. The same behavior was also seen in molecular dynamic simulations of both proteins. Detailed analysis of the protein motions through model-free analysis, as well as a determination of their overall correlation times, provided evidence for the existence of a monomer-dimer equilibrium in solution, which seemed to be more prevalent for TC-1. This finding was supported by diffusion NMR experiments. Dimerization generates a larger cationic surface area that would increase the antimicrobial activities of these chemokines. Moreover, these data also show that the negatively charged carboxy-terminal end of NAP-2 (which is absent in TC-1) folds back over part of the positively charged helical region of the protein and, in doing so, interferes with the direct antimicrobial activity.
Collapse
Affiliation(s)
- Leonard T. Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Paulus H. S. Kwakman
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - David I. Chan
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Zhihong Liu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Leonie de Boer
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Yeaman MR. Bacterial-platelet interactions: virulence meets host defense. Future Microbiol 2010; 5:471-506. [PMID: 20210555 DOI: 10.2217/fmb.09.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Platelets have historically been viewed as cell fragments that only mediate blood coagulation. Yet, platelets have as - or perhaps even more - important roles in tissue remodeling, modulation of inflammation and antimicrobial host defense. It is evident that platelets interact with prokaryotes directly and indirectly through multiple molecular and cellular mechanisms. The important roles of platelets in antibacterial host defense can be exemplified through contemporary themes in platelet immunobiology. Platelets have unambiguous structures and functions of host defense effector cells. Recent discoveries reveal platelet expression of toll-like and purinonergic receptors, which enable detection and response to bacterial infection, degranulation of an array of microbicidal peptides and coordination of other molecular and cellular host defenses. From multiple perspectives, platelets are now increasingly recognized as critical innate immune effector cells that also bridge and facilitate optimization of adaptive immunity. It follows that clinical deficiencies in platelet quantity or quality are now recognized correlates of increased risk and severity of bacterial and other infections. Along these lines, new evidence suggests that certain prokaryotic organisms may be capable of exploiting platelet interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved highly coordinated means by which to seize opportunities to bind to surfaces of activated platelets, and exploit them to establish or propagate infection. Hence, it is conceivable that certain bacterial pathogens subvert platelet functions. From these perspectives, the net consequences of bacterial virulence versus platelet host defenses likely decide initial steps towards the ultimate result of infection versus immunity.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Harbor-UCLA Medical Center, 1124 West Carson Street, RB-2, Torrance, CA 90502, USA.
| |
Collapse
|
33
|
Abstract
Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, St. John's Cardiovascular Research Center, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA 90502, USA.
| |
Collapse
|
34
|
Kotarsky K, Sitnik KM, Stenstad H, Kotarsky H, Schmidtchen A, Koslowski M, Wehkamp J, Agace WW. A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 2010; 3:40-8. [PMID: 19812544 DOI: 10.1038/mi.2009.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal-derived chemokines have a central role in orchestrating immune cell influx into the normal and inflamed intestine. Here, we identify the chemokine CCL6 as one of the most abundant chemokines constitutively expressed by both murine small intestinal and colonic epithelial cells. CCL6 protein localized to crypt epithelial cells, was detected in the gut lumen and reached high concentrations at the mucosal surface. Its expression was further enhanced in the small intestine following in vivo administration of LPS or after stimulation of the small intestinal epithelial cell line, mIC(c12), with IFNgamma, IL-4 or TNFalpha. Recombinant- and intestinal-derived CCL6 bound to a subset of the intestinal microflora and displayed antibacterial activity. Finally, the human homologs to CCL6, CCL14 and CCL15 were also constitutively expressed at high levels in human intestinal epithelium, were further enhanced in inflammatory bowel disease and displayed similar antibacterial activity. These findings identify a novel role for constitutively expressed, epithelial-derived chemokines as antimicrobial peptides in the intestinal mucosa.
Collapse
Affiliation(s)
- K Kotarsky
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Structure-function studies of chemokine-derived carboxy-terminal antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:1062-72. [PMID: 20004172 DOI: 10.1016/j.bbamem.2009.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 11/21/2022]
Abstract
Recent reports which show that several chemokines can act as direct microbicidal agents have drawn renewed attention to these chemotactic signalling proteins. Here we present a structure-function analysis of peptides derived from the human chemokines macrophage inflammatory protein-3alpha (MIP-3alpha/CCL20), interleukin-8 (IL-8), neutrophil activating protein-2 (NAP-2) and thrombocidin-1 (TC-1). These peptides encompass the C-terminal alpha-helices of these chemokines, which have been suggested to be important for the direct antimicrobial activities. Far-UV CD spectroscopy showed that the peptides are unstructured in aqueous solution and that a membrane mimetic solvent is required to induce a helical secondary structure. A co-solvent mixture was used to determine solution structures of the peptides by two-dimensional (1)H-NMR spectroscopy. The highly cationic peptide, MIP-3alpha(51-70), had the most pronounced antimicrobial activity and displayed an amphipathic structure. A shorter version of this peptide, MIP-3alpha(59-70), remained antimicrobial but its structure and mechanism of action were unlike that of the former peptide. The NAP-2 and TC-1 proteins differ in their sequences only by the deletion of two C-terminal residues in TC-1, but intact TC-1 is a very potent antimicrobial while NAP-2 is inactive. The corresponding C-terminal peptides, NAP-2(50-70) and TC-1(50-68), had very limited and no bactericidal activity, respectively. This suggests that other regions of TC-1 contribute to its bactericidal activity. Altogether, this work provides a rational structural basis for the biological activities of these peptides and proteins and highlights the importance of experimental characterization of peptide fragments as distinct entities because their activities and structural properties may differ substantially from their parent proteins.
Collapse
|
36
|
Bourbigot S, Fardy L, Waring AJ, Yeaman MR, Booth V. Structure of chemokine-derived antimicrobial Peptide interleukin-8alpha and interaction with detergent micelles and oriented lipid bilayers. Biochemistry 2009; 48:10509-21. [PMID: 19813761 DOI: 10.1021/bi901311p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin-8alpha (IL-8alpha) is an antimicrobial peptide derived from the chemokine IL-8. Solution NMR was used to determine the atomic-resolution structure of IL-8alpha in SDS micelles. Solid-state NMR and tryptophan fluorescence were used to probe the interaction of IL-8alpha with model membranes. The peptide interacted differently with anionic versus purely zwitterionic micelles or bilayers. Tryptophan fluorescence demonstrated a deeper position of Trp4 in SDS micelles and POPC/POPG bilayers compared to pure POPC bilayers, consistent with (2)H order parameters, which also indicated a deeper position of the peptide in POPC/POPG bilayers compared to POPC bilayers. Paramagnetic probe data showed that IL-8alpha was situated roughly parallel to the SDS micelle surface, with a slight tilt that positioned the N-terminus more deeply in the micelle compared to the C-terminus. (15)N solid-state NMR spectra indicated a similar, nearly parallel position for the peptide in POPC/POPG bilayers. (31)P and (2)H solid-state NMR demonstrated that the peptide did not induce the formation of any nonlamellar phases and did not significantly disrupt bilayer orientation in aligned model membranes composed of POPC or POPC and POPG.
Collapse
Affiliation(s)
- Sarah Bourbigot
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | | | | | | | | |
Collapse
|
37
|
Zhao X, Town JR, Li F, Li W, Zhang X, Gordon JR. Blockade of neutrophil responses in aspiration pneumonia via ELR-CXC chemokine antagonism does not predispose to airway bacterial outgrowth. Pulm Pharmacol Ther 2009; 23:22-8. [PMID: 19751843 DOI: 10.1016/j.pupt.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/26/2022]
Abstract
Pneumonia associated with aspiration of bacterial-laden gastric contents is characterized by Glu-Leu-Arg (ELR)-CXC chemokine (e.g., CXC2L1, CXCL8) expression leading to local neutrophil sequestration. This neutrophil response is designed to be protective, but overly aggressive responses can be pathogenic in themselves. Herein we assessed whether blocking neutrophil responses in a guinea pig model of aspiration pneumonia would foster airway bacterial growth. Guinea pigs (n=5) were challenged intranasally with saline, acidified saline or acidified gastric contents (35mg/kg body weight, pH 2.0) and treated subcutaneously with 250mug/kg of the human ELR-CXC chemokine antagonist CXCL8((3-72))K11R/G31P (G31P) or saline. After 20h the animals' airway inflammatory responses and bacterial burdens were assessed. A loss of vascular integrity was apparent in the lungs of the saline-treated aspiration pneumonia animals (12.07+/-1.3% of the pleural surfaces exhibited hemorrhagic consolidation, 4.6x10(6) RBC/ml bronchoalveolar lavage fluid [BALF]), as was a pulmonary neutrophilia. The BAL fluids contained gram-negative and -positive bacteria (total load, 6.3+/-3.2x10(7) CFU/ml BALF) that are associated with nosocomial infections in humans. The G31P-treatments attenuated the pulmonary vascular complications (2.27+/-0.5% pleural surface hemorrhagic consolidation, 0.46x10(6) RBC/ml BALF), and reduced the pulmonary neutrophilia by >/=86%. The G31P-treatments did not lead to significant changes in the airway bacterial loads (total load, 3.46+/-1.8x10(7) CFU/ml BALF). This data indicates that attenuation of the pulmonary neutrophil response in aspiration pneumonia reduces pathology very significantly but does not reduce the efficiency of pulmonary bacterial clearance.
Collapse
Affiliation(s)
- Xixing Zhao
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Bourbigot S, Dodd E, Horwood C, Cumby N, Fardy L, Welch WH, Ramjan Z, Sharma S, Waring AJ, Yeaman MR, Booth V. Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles. Biopolymers 2009; 91:1-13. [PMID: 18712851 DOI: 10.1002/bip.21071] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.
Collapse
Affiliation(s)
- Sarah Bourbigot
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Egesten A, Olin AI, Linge HM, Yadav M, Mörgelin M, Karlsson A, Collin M. SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 2009; 4:e4769. [PMID: 19274094 PMCID: PMC2652026 DOI: 10.1371/journal.pone.0004769] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/31/2009] [Indexed: 02/02/2023] Open
Abstract
Background CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP–10/CXCL10 and I–TAC/CXCL11, are antibacterial for Streptococcus pyogenes. Methodology/Principal Findings SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/CXCL11, PF4/CXCL4, GROα/CXCL1, GROβ/CXCL2, GROγ/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12, BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3α/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3α/CCL20, and releases a 6 kDa CXCL9 fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not activate the receptor CXCR3 but retains its antibacterial activity. Conclusions/Significance SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a major antimicrobial on inflamed epithelium.
Collapse
Affiliation(s)
- Arne Egesten
- Division of Respiratory Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders I. Olin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Helena M. Linge
- Division of Respiratory Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Manisha Yadav
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna Karlsson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
40
|
Björstad A, Askarieh G, Brown KL, Christenson K, Forsman H, Onnheim K, Li HN, Teneberg S, Maier O, Hoekstra D, Dahlgren C, Davidson DJ, Bylund J. The host defense peptide LL-37 selectively permeabilizes apoptotic leukocytes. Antimicrob Agents Chemother 2009; 53:1027-38. [PMID: 19075071 PMCID: PMC2650579 DOI: 10.1128/aac.01310-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/16/2008] [Accepted: 12/02/2008] [Indexed: 01/01/2023] Open
Abstract
LL-37 is a cationic host defense peptide that is highly expressed during acute inflammation and that kills bacteria by poorly defined mechanisms, resulting in permeabilization of microbial membranes. High concentrations of LL-37 have also been reported to have cytotoxic effects against eukaryotic cells, but the peptide is clearly capable of differentiating between membranes with different compositions (eukaryotic versus bacterial membranes). Eukaryotic cells such as leukocytes change their membrane composition during apoptotic cell death, when they are turned into nonfunctional but structurally intact entities. We tested whether LL-37 exerted specific activity on apoptotic cells and found that the peptide selectively permeabilized the membranes of apoptotic human leukocytes, leaving viable cells unaffected. This activity was seemingly analogous to the direct microbicidal effect of LL-37, in that it was rapid, independent of known surface receptors and/or active cell signaling, and inhibitable by serum components such as high-density lipoprotein. A similar selective permeabilization of apoptotic cells was recorded for both NK cells and neutrophils. In the latter cell type, LL-37 permeabilized both the plasma and granule membranes, resulting in the release of both lactate dehydrogenase and myeloperoxidase. Apoptosis is a way for inflammatory cells to die silently and minimize collateral tissue damage by retaining tissue-damaging and proinflammatory substances within intact membranes. Permeabilization of apoptotic leukocytes by LL-37, accompanied by the leakage of cytoplasmic as well as intragranular molecules, may thus shift the balance between pro- and anti-inflammatory signals and in this way be of importance for the termination of acute inflammation.
Collapse
Affiliation(s)
- Ase Björstad
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Quinn GA, Tarwater PM, Cole AM. Subversion of interleukin-1-mediated host defence by a nasal carrier strain of Staphylococcus aureus. Immunology 2008; 128:e222-9. [PMID: 19740308 DOI: 10.1111/j.1365-2567.2008.02952.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus, a major source of nosocomial and community-acquired infections, has a nasal carriage rate exceeding 25% in the human population. To elucidate host-pathogen interactions pertaining to nasal carriage, we examined the role of interleukin-1 (IL-1) in the colonization of human nasal epithelial cells (NEC) by a nasal carrier strain and a non-carrier strain of S. aureus. Using an organotypic model of the nasal epithelium, we observed that inoculation with a non-carrier strain of S. aureus induced production of IL-1 from NEC, but the expression of this cytokine was significantly reduced when NEC were inoculated with a carrier strain. Moreover, both IL-1alpha and IL-1beta significantly decreased the growth of the nasal carrier strain of S. aureus (P < 0.001, n = 17 to n = 25); however the growth of the non-carrier strain was unaffected. Interestingly, it was found that several nasal carrier strains of S. aureus form quorum-dependent biofilms, which can be partially inhibited when preincubated with IL-1alpha. Taken together these data suggest that, although nasal carrier strains of S. aureus are sensitive to IL-1, they display a significant colonization advantage by both preventing the host from expressing IL-1 and elaborating a protective biofilm.
Collapse
Affiliation(s)
- Gerry A Quinn
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | | | | |
Collapse
|
42
|
Abstract
It is said that nature is the greatest innovator, yet molecular conservation can be equally powerful. One key requirement for the survival of any host is its ability to defend against infection, predation and competition. Recent discoveries, including the presence of a multidimensional structural signature, have revealed a previously unforeseen structural and functional congruence among host defence effector molecules spanning all kingdoms of life. Antimicrobial peptides, kinocidins, polypeptide venoms and other molecules that were once thought to be distinct in form and function now appear to be members of an ancient family of host defence effectors. These molecules probably descended from archetype predecessors that emerged during the beginning of life on earth. Understanding how nature has sustained these host defence molecules with a potent efficacy in the face of dynamic microbial evolution should provide new opportunities to prevent or treat life-threatening infections.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, LAC-Harbour UCLA Medical Center, Torrance, California 90509, USA.
| | | |
Collapse
|
43
|
Yount NY, Andrés MT, Fierro JF, Yeaman MR. The gamma-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2862-72. [PMID: 17916323 DOI: 10.1016/j.bbamem.2007.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/21/2007] [Accepted: 07/27/2007] [Indexed: 11/16/2022]
Abstract
Kaliocin-1 is a 31-residue peptide derived from human lactoferrin, and with antimicrobial properties that recapitulate those of its 611 amino acid parent holoprotein. As kaliocin-1 is a cysteine-stabilized peptide, it was of interest to determine whether it contained a multidimensional gamma-core signature recently identified as common to virtually all classes of disulfide-stabilized antimicrobial peptides. Importantly, sequence and structural analyses identified an iteration of this multidimensional antimicrobial signature in kaliocin-1. Further, the gamma-core motif was found to be highly conserved in the transferrin family of proteins across the phylogenetic spectrum. Previous studies suggested that the mechanism by which kaliocin-1 exerts anti-candidal efficacy depends on mitochondrial perturbation without cell membrane permeabilization. Interestingly, results of a yeast two-hybrid screening analysis identified an interaction between kaliocin-1 and mitochondrial initiation factor 2 in a Saccharomyces cerevisiae model system. Taken together, these data extend the repertoire of antimicrobial peptides that contain gamma-core motifs, and suggest that the motif is conserved within large native as well as antimicrobial peptide subcomponents of transferrin family proteins. Finally, these results substantiate the hypothesis that antimicrobial activity associated with host defense effector proteins containing a gamma-core motif may correspond to targets common to fungal mitochondria or their bacterial ancestors.
Collapse
Affiliation(s)
- Nannette Y Yount
- Division of Infectious Diseases, LAC-Harbor UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | |
Collapse
|