1
|
Teixeira SC, Melo Fernandes TAD, Souza GD, Rosini AM, Fajardo Martínez AF, Gomes AO, Alves RN, Lopes DS, Silva MVD, Beraldo-Neto E, Clissa PB, Barbosa BF, Ávila VDMR, Ferro EAV. MjTX-II, a Lys49-PLA 2 from Bothrops moojeni snake venom, restricts Toxoplasma gondii infection via ROS and VEGF regulation. Chem Biol Interact 2025; 409:111417. [PMID: 39922520 DOI: 10.1016/j.cbi.2025.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Owing to the lack of efficient therapy and emerging resistance strains, toxoplasmosis affects about one-third of the world's population. Also, pregnancy-related infection can cause vertical transmission and result in fetal death. Despite the global efforts to combat Toxoplasma gondii infection, conventional therapies have been associated with serious side effects. Therefore, it is relevant to search for effective and less-toxic treatments of toxoplasmosis. In this scenario, snake venoms emerged as a promising source of therapeutic molecules due to their wide variety of biological effects. The present study investigated the anti-T. gondii effects of MjTX-II, a Lys49-PLA2 isolated from Bothrops moojeni, in trophoblast cells and villous explants from the third trimester of pregnancy. We found that non-cytotoxic doses of MjTX-II impaired parasite invasion and intracellular growth in BeWo cells. Also, MjTX-II-pre-treated T. gondii tachyzoites exhibited irregular rough surfaces, papules, and dimples, suggesting a possible action directly on the parasites. Moreover, MjTX-II was able to modulate the host environment by increasing ROS and cytokine levels involved in the control of infection. In addition, we observed that MjTX-II decreased VEGF levels and the addition of rVEGF increased T. gondii growth in BeWo cells. Through molecular docking simulations, we verified that MjTX-II is able to bind VEGFR2 and ICAM-1 receptors associated with parasite proliferation and dissemination. This work contributes to the discovery of therapeutic targets against T. gondii infection and for the development of effective and low-toxic antiparasitic molecules against congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | | | | | | | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Castro-Amorim J, Pinto AV, Mukherjee AK, Ramos MJ, Fernandes PA. Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A 2 toxin. Chem Sci 2025; 16:1974-1985. [PMID: 39759936 PMCID: PMC11694569 DOI: 10.1039/d4sc06511e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Snake venom-secreted phospholipases A2 (svPLA2s) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLA2s hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLA2s is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease. We study a member of the svPLA2 family, the Myotoxin-I, which is part of the venom of the Central American pit viper terciopelo (Bothrops asper), a ubiquitous but highly aggressive and dangerous species responsible for the most problematic snakebites in its habitat. Furthermore, PLA2 enzymes are a paradigm of interfacial enzymology, as the complex membrane-enzyme interaction is as important as is crucial for its catalytic process. Here, we explore the detailed interaction between svPLA2 and a 1 : 1 POPC/POPS membrane, and how enzyme binding affects membrane structure and dynamics. We further investigated the two most widely accepted reaction mechanisms for svPLA2s: the 'single-water mechanism' and the 'assisted-water mechanism', using umbrella sampling simulations at the PBE/MM level of theory. We demonstrate that both pathways are catalytically viable. While both pathways occur in two steps, the single-water mechanism yielded a lower activation free energy barrier (20.14 kcal mol-1) for POPC hydrolysis, consistent with experimental and computational values obtained for human PLA2. The reaction mechanisms are similar, albeit not identical, and can be generalized to svPLA2 from most viper species. Furthermore, our findings demonstrate that the sole small molecule inhibitor currently undergoing clinical trials for snakebite is a perfect transition state analog. Thus, understanding snake venom sPLA2 chemistry will help find new, effective small molecule inhibitors with anti-snake venom efficacy.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ashis K Mukherjee
- Institute of Advanced Study in Science and Technology Vigyan Path Garchuk, Paschim Boragaon Guwahati-781035 Assam India
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
3
|
Salvador GHM, Cardoso FF, Lomonte B, Fontes MRM. Inhibitors and activators for myotoxic phospholipase A 2-like toxins from snake venoms - A structural overview. Biochimie 2024; 227:231-247. [PMID: 39089640 DOI: 10.1016/j.biochi.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Snakebite envenomations result in acute and chronic physical and psychological health effects on their victims, leading to a substantial socio-economic burden in tropical and subtropical countries. Local necrosis is one of the serious effects caused by envenomation, primarily induced by snake venoms from the Viperidae family through the direct action of components collectively denominated as myotoxins, including the phopholipase A2-like (PLA2-like) toxins. Considering the limitations of antivenoms in preventing the rapid development of local tissue damage caused by envenomation, the use of small molecule therapeutics has been suggested as potential first-aid treatments or as adjuvants to antivenom therapy. In this review, we provide an overview of the structural interactions of molecules exhibiting inhibitory activity toward PLA2-like toxins. Additionally, we discuss the implications for the myotoxic mechanism of PLA2-like toxins and the molecules involved in their activation, highlighting key differences between activators and inhibitors. Finally, we integrate all these results to propose a classification of inhibitors into three different classes and five sub-classes. Taking into account the structural and affinity information, we compare the different inhibitors/ligands to gain a deeper understanding of the structural basis for the effective inhibition of PLA2-like toxins. By offering these insights, we aim to contribute to the search for new and efficient inhibitor molecules to complement and improve current therapy by conventional antivenoms.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil
| | - Fábio F Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente-SP, Brazil.
| |
Collapse
|
4
|
Wiezel GA, Oliveira IS, Ferreira IG, Bordon KCF, Arantes EC. Hyperglycosylation impairs the inhibitory activity of rCdtPLI2, the first recombinant beta-phospholipase A 2 inhibitor. Int J Biol Macromol 2024; 280:135581. [PMID: 39270892 DOI: 10.1016/j.ijbiomac.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Diniz EADS, da Silva DP, Ferreira SDS, Fernandes-Pedrosa MDF, Vieira DS. Temperature effect in the inhibition of PLA 2 activity of Bothrops brazili venom by Rosmarinic and Chlorogenic acids, experimental and computational approaches. J Biomol Struct Dyn 2024; 42:5238-5252. [PMID: 37378497 DOI: 10.1080/07391102.2023.2226912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Myotoxicity caused by snakebite envenoming emerges as one of the main problems of ophidic accidents as it is not well neutralized by the current serum therapy. A promising alternative is to search for efficient small molecule inhibitors that can act against multiple venom components. Phospholipase A2 (PLA2) is frequently found in snake venom and is usually associated with myotoxicity. Thus it represents an excellent target for the search of new treatments. This work reports the effect of temperature in the inhibition of catalytic properties of PLA2 from Bothrops brazili venom by Rosmarinic (RSM) and Chlorogenic (CHL) acids through experimental and computational approaches. Three temperatures were evaluated (25, 37 and 50 °C). In the experimental section, enzymatic assays showed that RSM is a better inhibitor in all three temperatures. At 50 °C, the inhibition efficiency decayed significantly for both acids. Docking studies revealed that both ligands bind to the hydrophobic channel of the protein dimer where the phospholipid binds in the catalytic process, interacting with several functional residues. In this context, RSM presents better interaction energies due to stronger interactions with chain B of the dimer. Molecular dynamics simulations showed that RSM can establish selective interactions with ARG112B of PLA2, which is located next to residues of the putative Membrane Disruption Site in PLA2-like structures. The affinity of RSM and CHL acids towards PLA2 is mainly driven by electrostatic interactions, especially salt bridge interactions established with residues ARG33B (for CHL) and ARG112B (RSM) and hydrogen bonds with residue ASP89A. The inability of CHL to establish a stable interaction with ARG112B was identified as the reason for its lower inhibition efficiency compared to RSM at the three temperatures. Furthermore, extensive structural analysis was performed to explain the lower inhibition efficiency at 50 °C for both ligands. The analysis performed in this work provides important information for the future design of new inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Davi Serradella Vieira
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av Senador Salgado Filho, Natal-RN, Brazil
| |
Collapse
|
6
|
López-Dávila AJ, Lomonte B, Gutiérrez JM. Alterations of the skeletal muscle contractile apparatus in necrosis induced by myotoxic snake venom phospholipases A 2: a mini-review. J Muscle Res Cell Motil 2024; 45:69-77. [PMID: 38063951 PMCID: PMC11096208 DOI: 10.1007/s10974-023-09662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/07/2023] [Indexed: 05/16/2024]
Abstract
Skeletal muscle necrosis is a common clinical manifestation of snakebite envenoming. The predominant myotoxic components in snake venoms are catalytically-active phospholipases A2 (PLA2) and PLA2 homologs devoid of enzymatic activity, which have been used as models to investigate various aspects of muscle degeneration. This review addresses the changes in the contractile apparatus of skeletal muscle induced by these toxins. Myotoxic components initially disrupt the integrity of sarcolemma, generating a calcium influx that causes various degenerative events, including hypercontraction of myofilaments. There is removal of specific sarcomeric proteins, owing to the hydrolytic action of muscle calpains and proteinases from invading inflammatory cells, causing an initial redistribution followed by widespread degradation of myofibrillar material. Experiments using skinned cardiomyocytes and skeletal muscle fibers show that these myotoxins do not directly affect the contractile apparatus, implying that hypercontraction is due to cytosolic calcium increase secondary to sarcolemmal damage. Such drastic hypercontraction may contribute to muscle damage by generating mechanical stress and further sarcolemmal damage.
Collapse
Affiliation(s)
- Alfredo Jesús López-Dávila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
7
|
Santhosh KH, Krishna V, Kemparaju K, Manjunatha H, Shashi Kumar R, Mukherjee A, Gomez Mejiba SE, Ramirez DC, Ravindranath BS. β-keto amyrin isolated from Cryptostegia grandiflora R. br. inhibits inflammation caused by Daboia russellii viper venom: Direct binding of β-keto amyrin to phospholipase A 2. Toxicon 2024; 241:107679. [PMID: 38447765 PMCID: PMC11194115 DOI: 10.1016/j.toxicon.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The search for mechanism-based anti-inflammatory therapies is of fundamental importance to avoid undesired off-target effects. Phospholipase A2 (PLA2) activity is a potential molecular target for anti-inflammatory drugs because it fuels arachidonic acid needed to synthesize inflammation mediators, such as prostaglandins. Herein, we aim to investigate the molecular mechanism by which β-keto amyrin isolated from a methanolic extract of Cryptostegia grandiflora R. Br. Leaves can inhibit inflammation caused by Daboia russellii viper (DR) venom that mainly contains PLA2. We found that β-keto amyrin neutralizes DR venom-induced paw-edema in a mouse model. Molecular docking of PLA2 with β-keto amyrin complex resulted in a higher binding energy score of -8.86 kcal/mol and an inhibition constant of 611.7 nM. Diclofenac had a binding energy of -7.04 kcal/mol and an IC50 value of 620 nM, which predicts a poorer binding interaction than β-keto amyrin. The higher conformational stability of β-keto amyrin interaction compared to diclofenac is confirmed by molecular dynamics simulation. β-keto amyrin isolated from C. grandiflora inhibits the PLA2 activity contained in Daboia russellii viper venom. The anti-inflammatory property of β-keto amyrin is due to its direct binding into the active site of PLA2, thus inhibiting its enzyme activity.
Collapse
Affiliation(s)
- K H Santhosh
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta-577451, Karnataka, India
| | - V Krishna
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta-577451, Karnataka, India
| | - K Kemparaju
- Department of Biochemistry, University of Mysore, Manasa Gangotri Campus, Mysore-57006, Karnataka, India
| | - H Manjunatha
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore- 56005, Karnataka, India
| | - R Shashi Kumar
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta-577451, Karnataka, India
| | - A Mukherjee
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - S E Gomez Mejiba
- Laboratory of Nutrition and Experimental Therapeutics, CCT-San Luis-National University of San Luis, San Luis, 5700-San Luis, Argentina.
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine. CCT-San Luis-National University of San Luis, San Luis, 5700-San Luis, Argentina.
| | - B S Ravindranath
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India.
| |
Collapse
|
8
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
9
|
de Oliveira ALN, Lacerda MT, Ramos MJ, Fernandes PA. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins (Basel) 2024; 16:71. [PMID: 38393149 PMCID: PMC10893444 DOI: 10.3390/toxins16020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Pedro A. Fernandes
- Requimte-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-000 Porto, Portugal; (A.L.N.d.O.); (M.T.L.); (M.J.R.)
| |
Collapse
|
10
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
11
|
López-Dávila AJ, Weber N, Nayak A, Fritz L, Moustafa KR, Gand LV, Wehry E, Kraft T, Thum T, Fernández J, Gutiérrez JM, Lomonte B. Skeletal muscle fiber hypercontraction induced by Bothrops asper myotoxic phospholipases A 2 ex vivo does not involve a direct action on the contractile apparatus. Pflugers Arch 2023; 475:1193-1202. [PMID: 37474774 PMCID: PMC10499977 DOI: 10.1007/s00424-023-02840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to the massive influx of Ca2+ resulting from cell membrane damage. However, the possibility of myotoxins having, in addition, a direct effect on the contractile machinery of skeletal muscle fibers when internalized has not been investigated. This question is here addressed by using an ex vivo model of single-skinned muscle fibers, which lack membranes but retain an intact contractile apparatus. Rabbit psoas skinned fibers were exposed to two types of myotoxins of Bothrops asper venom: Mt-I, a catalytically active Asp49 sPLA2 enzyme, and Mt-II, a Lys49 sPLA2-like protein devoid of phospholipolytic activity. Neither of these myotoxins affected the main parameters of force development in striated muscle sarcomeres of the skinned fibers. Moreover, no microscopical alterations were evidenced after their exposure to Mt-I or Mt-II. In contrast to the lack of effects on skinned muscle fibers, both myotoxins induced a strong hypercontraction in myotubes differentiated from murine C2C12 myoblasts, with drastic morphological alterations that reproduce those described in myonecrotic tissue in vivo. As neither Mt-I nor Mt-II showed direct effects upon the contractile apparatus of skinned fibers, it is concluded that the mechanism of hypercontraction triggered by both myotoxins in patients involves indirect effects, i.e., the large cytosolic Ca2+ increase after sarcolemma permeabilization.
Collapse
Affiliation(s)
- Alfredo Jesús López-Dávila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Leon Fritz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kian Rami Moustafa
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Luis Vincens Gand
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Enke Wehry
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
12
|
Henrickson A, Montina T, Hazendonk P, Lomonte B, Neves-Ferreira AGC, Demeler B. SDS-induced hexameric oligomerization of myotoxin-II from Bothrops asper assessed by sedimentation velocity and nuclear magnetic resonance. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:445-457. [PMID: 37209172 PMCID: PMC10526984 DOI: 10.1007/s00249-023-01658-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023]
Abstract
We report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A2 homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution. We observed the formation of a stable and discrete, hexameric form of myotoxin-II, but only in the presence of small amounts of SDS. In SDS-free medium, myotoxin-II was insensitive to mass action and remained monomeric at all concentrations examined (up to 3 mg/ml, 218.2 μM). At SDS concentrations above the critical micelle concentration, only dimers and trimers were observed, and at intermediate SDS concentrations, aggregates larger than hexamers were observed. We found that the amount of SDS required to form a stable hexamer varies with protein concentration, suggesting the need for a precise stoichiometry of free SDS molecules. The discovery of a stable hexameric species in the presence of a phospholipid mimetic suggests a possible physiological role for this oligomeric form, and may shed light on the poorly understood membrane-disrupting mechanism of this myotoxic protein class.
Collapse
Affiliation(s)
- Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología San José, Universidad de Costa Rica, San José, Costa Rica
| | | | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.
| |
Collapse
|
13
|
Belchor MN, Costa CRDC, Roggero A, Moraes LLF, Samelo R, Annunciato I, de Oliveira MA, Sousa SF, Toyama MH. In Silico Evaluation of Quercetin Methylated Derivatives on the Interaction with Secretory Phospholipases A2 from Crotalus durissus terrificus and Bothrops jararacussu. Pharmaceuticals (Basel) 2023; 16:ph16040597. [PMID: 37111354 PMCID: PMC10143728 DOI: 10.3390/ph16040597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Quercetin derivatives have already shown their anti-inflammatory potential, inhibiting essential enzymes involved in this process. Among diverse pro-inflammatory toxins from snake venoms, phospholipase A2 is one of the most abundant in some species, such as Crotalus durissus terrificus and Bothrops jararacussu from the Viperidae family. These enzymes can induce the inflammatory process through hydrolysis at the sn-2 position of glycerophospholipids. Hence, elucidating the main residues involved in the biological effects of these macromolecules can help to identify potential compounds with inhibitory activity. In silico tools were used in this study to evaluate the potential of quercetin methylated derivatives in the inhibition of bothropstoxin I (BthTX-I) and II (BthTX-II) from Bothrops jararacussu and phospholipase A2 from Crotalus durissus terrificus. The use of a transitional analogous and two classical inhibitors of phospholipase A2 guided this work to find the role of residues involved in the phospholipid anchoring and the subsequent development of the inflammatory process. First, main cavities were studied, revealing the best regions to be inhibited by a compound. Focusing on these regions, molecular docking assays were made to show main interactions between each compound. Results reveal that analogue and inhibitors, Varespladib (Var) and p-bromophenacyl bromide (BPB), guided quercetins derivatives analysis, revealing that Leu2, Phe5, Tyr28, glycine in the calcium-binding loop, His48, Asp49 of BthTX-II and Cdtspla2 were the main residues to be inhibited. 3MQ exhibited great interaction with the active site, similar to Var results, while Q anchored better in the BthTX-II active site. However, strong interactions in the C-terminal region, highlighting His120, seem to be crucial to decreasing contacts with phospholipid and BthTX-II. Hence, quercetin derivatives anchor differently with each toxin and further in vitro and in vivo studies are essential to elucidate these data.
Collapse
Affiliation(s)
- Mariana Novo Belchor
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Caroline Ramos da Cruz Costa
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Airam Roggero
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Laila L F Moraes
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Ricardo Samelo
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Isabelly Annunciato
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Marcos Antonio de Oliveira
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Sergio F Sousa
- Unit of Applied Biomolecular Sciences (UCIBIO), REQUIMTE-BioSIM-Medicine Faculty, Porto University, 4050-345 Porto, Portugal
| | - Marcos Hikari Toyama
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| |
Collapse
|
14
|
Castro-Amorim J, Novo de Oliveira A, Da Silva SL, Soares AM, Mukherjee AK, Ramos MJ, Fernandes PA. Catalytically Active Snake Venom PLA 2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J Med Chem 2023; 66:5364-5376. [PMID: 37018514 PMCID: PMC10150362 DOI: 10.1021/acs.jmedchem.3c00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Novo de Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Saulo Luís Da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Andreimar M Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Rondônia 76812-245, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Rondônia 76805-846, Brazil
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Salvador GHM, Pinto ÊKR, Ortolani PL, Fortes-Dias CL, Cavalcante WLG, Soares AM, Lomonte B, Lewin MR, Fontes MRM. Structural basis of the myotoxic inhibition of the Bothrops pirajai PrTX-I by the synthetic varespladib. Biochimie 2023; 207:1-10. [PMID: 36403756 DOI: 10.1016/j.biochi.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Varespladib (LY315920) is a potent inhibitor of human group IIA phospholipase A2 (PLA2) originally developed to control inflammatory cascades of diseases associated with high or dysregulated levels of endogenous PLA2. Recently, varespladib was also found to inhibit snake venom PLA2 and PLA2-like toxins. Herein, ex vivo neuromuscular blocking activity assays were used to test the inhibitory activity of varespladib. The binding affinity between varespladib and a PLA2-like toxin was quantified and compared with other potential inhibitors for this class of proteins. Crystallographic and bioinformatic studies showed that varespladib binds to PrTX-I and BthTX-I into their hydrophobic channels, similarly to other previously characterized PLA2-like myotoxins. However, a new finding is that an additional varespladib binds to the MDiS region, a particular site that is related to muscle cell disruption by these toxins. The present results further advance the characterization of the molecular interactions of varespladib with PLA2-like myotoxins and provide additional evidence for this compound as a promising inhibitor candidate for different PLA2 and PLA2-like toxins.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Êmylle K R Pinto
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Paula L Ortolani
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Brazil
| | | | - Walter L G Cavalcante
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, LABIOPROT, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia e Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EPIAMO, Porto Velho, RO, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Ophirex, Inc. Corte Madera, CA, 94925, USA; Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
16
|
Structural and functional studies of a snake venom phospholipase A 2-like protein complexed to an inhibitor from Tabernaemontana catharinensis. Biochimie 2023; 206:105-115. [PMID: 36273763 DOI: 10.1016/j.biochi.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Snake envenomation is an ongoing global health problem and tropical neglected disease that afflicts millions of people each year. The only specific treatment, antivenom, has several limitations that affects its proper distribution to the victims and its efficacy against local effects, such as myonecrosis. The main responsible for this consequence are the phospholipases A2 (PLA2) and PLA2-like proteins, such as BthTX-I from Bothrops jararacussu. Folk medicine resorts to plants such as Tabernaemontana catharinensis to palliate these and other snakebite effects. Here, we evaluated the effect of its root bark extract and one of its isolated compounds, 12-methoxy-4-methyl-voachalotine (MMV), against the in vitro paralysis and muscle damage induced by BthTX-I. Secondary and quaternary structures of BthTX-I were not modified by the interaction with MMV. Instead, this compound interacted in an unprecedented way with the region inside the toxin hydrophobic channel and promoted a structural change in Val31, loop 58-71 and Membrane Disruption Site. Thus, we hypothesize that MMV inhibits PLA2-like proteins by preventing entrance of fatty acid into the hydrophobic channel. These data may explain the traditional use of T. catharinensis extract and confirm MMV as a promising candidate to complement antivenom or a structural guide to develop more effective inhibitors.
Collapse
|
17
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
18
|
Mora-Obando D, Lomonte B, Pla D, Guerrero-Vargas JA, Ayerbe-González S, Gutiérrez JM, Sasa M, Calvete JJ. Half a century of research on Bothrops asper venom variation: Biological and biomedical implications. Toxicon 2022; 221:106983. [DOI: 10.1016/j.toxicon.2022.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
|
19
|
Chiang LC, Chien KY, Su HY, Chen YC, Mao YC, Wu WG. Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects. Toxins (Basel) 2022; 14:toxins14090643. [PMID: 36136582 PMCID: PMC9501293 DOI: 10.3390/toxins14090643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Reports of bite from Protobothrops mucrosquamatus (Pmu) are frequent in Taiwan, and its wide-spread distribution and diverse habitats drove us to investigate its envenoming effects and relevant venom variations. We used reversed-phase high-performance liquid chromatography and mass spectrometry to analyze 163 Pmu venom samples collected from northern and southeastern Taiwan. Twenty-two major protein fractions were separated and analyzed, and their contents were determined semi-quantitatively. The results showed that despite the trivial differences in the protein family, there is an existing variation in acidic phospholipases A2s, serine proteinases, metalloproteinases, C-type lectin-like proteins, and other less abundant components in the Pmu venoms. Moreover, clinical manifestations of 209 Pmu envenomed patients hospitalized in northern or southeastern Taiwan revealed significant differences in local symptoms, such as ecchymosis and blistering. The mechanism of these local effects and possibly relevant venom components were examined. Further analysis showed that certain venom components with inter-population variation might work alone or synergistically with others to aggravate the local effects. Therefore, our findings of the venom variation may help one to improve antivenom production and better understand and manage Pmu bites.
Collapse
Affiliation(s)
- Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan County 333, Taiwan
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan County 333, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan County 333, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung County 824, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung County 840, Taiwan
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung County 811, Taiwan
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
- Department of Emergency Medicine, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yan-Chiao Mao
- Department of Emergency Medicine, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
- College of Medicine, National Chung Hsing University, Taichung City 402, Taiwan
- Correspondence: (Y.-C.M.); (W.-G.W.)
| | - Wen-Guey Wu
- College of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
- Correspondence: (Y.-C.M.); (W.-G.W.)
| |
Collapse
|
20
|
Dias ÊR, de Oliveira LA, Sales Lauria PS, Bordon KDCF, Rodrigues Domênico AM, da Silva Guerreiro ML, Wiezel GA, Cardoso IA, Rossini BC, Marino CL, Pimenta DC, Arantes EC, Casais-e-Silva LL, Branco A, dos Santos LD, Biondi I. Bothrops leucurus snake venom protein profile, isolation and biological characterization of its major toxin PLA2s-likeds. Toxicon 2022; 213:27-42. [DOI: 10.1016/j.toxicon.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
|
21
|
Solving the microheterogeneity of Bothrops asper myotoxin-II by high-resolution mass spectrometry: Insights into C-terminal region variability in Lys49-phospholipase A2 homologs. Toxicon 2022; 210:123-131. [DOI: 10.1016/j.toxicon.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
|
22
|
Soares BS, Rocha SLG, Bastos VA, Lima DB, Carvalho PC, Gozzo FC, Demeler B, Williams TL, Arnold J, Henrickson A, Jørgensen TJD, Souza TACB, Perales J, Valente RH, Lomonte B, Gomes-Neto F, Neves-Ferreira AGC. Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Front Mol Biosci 2022; 8:787368. [PMID: 35155563 PMCID: PMC8830425 DOI: 10.3389/fmolb.2021.787368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023] Open
Abstract
DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa antitoxin targets myotoxic phospholipases A2, which account for most local tissue damage of viperid snakebites. We investigated the noncovalent complex formed between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion chromatography indicated that DM64 is monomeric in solution and binds equimolar amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were unsuccessful. Obtaining recombinant protein to pursue structural studies was also challenging. Classical molecular modeling techniques were impaired by the lack of templates with more than 25% sequence identity with DM64. An integrative structural biology approach was then applied to generate a three-dimensional model of the inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulin-like domains of DM64. Distance constraints generated by cross-linking mass spectrometry of the complex guided the docking of DM64 domains to the crystal structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS), molecular modeling, and molecular dynamics simulations indicated that the DM64-myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Inter-protein cross-links and limited hydrolysis analyses shed light on the inhibitor's regions involved with toxin interaction, revealing the critical participation of the first, third, and fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the quaternary structure of the toxin. The first domain of DM64 interacts with the functional site of the toxin putatively associated with membrane anchorage. We propose that both mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present topological characterization of this toxin-antitoxin complex constitutes an essential step toward the rational design of novel peptide-based antivenom therapies targeting snake venom myotoxins.
Collapse
Affiliation(s)
- Barbara S. Soares
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Viviane A. Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Diogo B. Lima
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Paulo C. Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Fabio C. Gozzo
- Dalton Mass Spectrometry Laboratory, University of Campinas, Campinas, Brazil
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Tayler L. Williams
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Janelle Arnold
- Department of Environmental Science, Princeton University, Princeton, NJ, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tatiana A. C. B. Souza
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Richard H. Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Bruno Lomonte
- Clodomiro Picado Institute, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
23
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Barbosa ED, Lima Neto JX, Bezerra KS, Oliveira JIN, Machado LD, Fulco UL. Quantum Biochemical Investigation of Lys49-PLA 2 from Bothrops moojeni. J Phys Chem B 2021; 125:12972-12980. [PMID: 34793159 DOI: 10.1021/acs.jpcb.1c07298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Envenomation via snakebites occurs largely in areas where it is harder to access the hospital. Its mortality rate and sequelae acquired by the survivors symbolize a big challenge for antivenom therapy. In particular, the homologous phospholipase A2 (Lys49-PLA2) proteins can induce myonecrosis and are not effectively neutralized by current treatments. Thus, by taking advantage of crystallographic structures of Bothrops moojeni Lys49-PLA2 complexed with VRD (varespladib) and AIN (aspirin), a quantum biochemistry study based on the molecular fractionation with conjugate cap scheme within the density functional theory formalism is performed to unveil these complexes' detailed interaction energies. The calculations revealed that important interactions between ligands and the Lys49-PLA2 pocket could occur up to a pocket radius of r = 6.5 (5.0 Å) for VRD (AIN), with the total interaction energy of the VRD ligand being higher than that of the AIN ligand, which is well-correlated with the experimental binding affinity. Furthermore, we have identified the role played by the amino acids LYS0069, LYS0049, LEU0005, ILE0009, CYS0029, GLY0030, HIS0048, PRO0018, ALA0019, CYS0045, TYR0052, TYR0022, PRO0125*, and PHE0126* (LYS0069, LYS0049, GLY0032, LEU0002, and LEU0005) in the VRD↔Lys49-PLA2 (AIN↔Lys49-PLA2) complex. Our simulations are a valuable tool to support the big challenge for neutralizing the damages in victims of snakebites.
Collapse
Affiliation(s)
- E D Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - L D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| |
Collapse
|
25
|
BthTX-II from Bothrops jararacussu venom has variants with different oligomeric assemblies: An example of snake venom phospholipases A 2 versatility. Int J Biol Macromol 2021; 191:255-266. [PMID: 34547312 DOI: 10.1016/j.ijbiomac.2021.09.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Phospholipases A2 (PLA2s) are found in almost every venomous snake family. In snakebites, some PLA2s can quickly cause local myonecrosis, which may lead to permanent sequelae if antivenom is administered belatedly. They hydrolyse phospholipids in membranes through a catalytic calcium ions-dependent mechanism. BthTX-II is a basic PLA2 and the second major component in the venom of Bothrops jararacussu. Herein, using the software SEQUENCE SLIDER, which integrates crystallographic, mass spectrometry and genetic data, we characterized the primary, tertiary and quaternary structure of two BthTX-II variants (called a and b), which diverge in 7 residues. Crystallographic structure BthTX-IIa is in a Tense-state with its distorted calcium binding loop buried in the dimer interface, contrarily, the novel BthTX-IIb structure is a monomer in a Relax-state with a fatty acid in the hydrophobic channel. Structural data in solution reveals that both variants are monomeric in neutral physiological conditions and mostly dimeric in an acidic environment, being catalytic active in both situations. Therefore, we propose two myotoxic mechanisms for BthTX-II, a catalytic one associated with the monomeric assembly, whereas the other has a calcium independent activity related to its C-terminal region, adopting a dimeric conformation similar to PLA2-like proteins.
Collapse
|
26
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
27
|
Ethnopharmacologic screening of medicinal plants used traditionally by tribal people of Madhya Pradesh, India, for the treatment of snakebites. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
López-Dávila AJ, Weber N, Kraft T, Matinmehr F, Arias-Hidalgo M, Fernández J, Lomonte B, Gutiérrez JM. Cytotoxicity of snake venom Lys49 PLA2-like myotoxin on rat cardiomyocytes ex vivo does not involve a direct action on the contractile apparatus. Sci Rep 2021; 11:19452. [PMID: 34593882 PMCID: PMC8484475 DOI: 10.1038/s41598-021-98594-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Viperid snake venoms contain a unique family of cytotoxic proteins, the Lys49 PLA2 homologs, which are devoid of enzymatic activity but disrupt the integrity of cell membranes. They are known to induce skeletal muscle damage and are therefore named 'myotoxins'. Single intact and skinned (devoid of membranes and cytoplasm but with intact sarcomeric proteins) rat cardiomyocytes were used to analyze the cytotoxic action of a myotoxin, from the venom of Bothrops asper. The toxin induced rapid hypercontraction of intact cardiomyocytes, associated with an increase in the cytosolic concentration of calcium and with cell membrane disruption. Hypercontraction of intact cardiomyocytes was abrogated by the myosin inhibitor para-aminoblebbistatin (AmBleb). No toxin-induced changes of key parameters of force development were observed in skinned cardiomyocytes. Thus, although myosin is a key effector of the observed hypercontraction, a direct effect of the toxin on the sarcomeric proteins -including the actomyosin complex- is not part of the mechanism of cytotoxicity. Owing to the sensitivity of intact cardiomyocytes to the cytotoxic action of myotoxin, this ex vivo model is a valuable tool to explore in further detail the mechanism of action of this group of snake venom toxins.
Collapse
Affiliation(s)
| | - Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, 30625, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Faramarz Matinmehr
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Mariela Arias-Hidalgo
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
29
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
30
|
Cañas CA, Castro-Herrera F, Castaño-Valencia S. Clinical syndromes associated with Viperidae family snake envenomation in southwestern Colombia. Trans R Soc Trop Med Hyg 2021; 115:51-56. [PMID: 32879965 DOI: 10.1093/trstmh/traa081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In southwestern Colombia there is a notable variety of snakes that belong to the Viperidae family (vipers). The particular clinical manifestation related to species is poorly reported. METHODS Based on a prospective study about envenomation caused by vipers from 2011 to 2019 at the Fundación Valle del Lili Hospital, Cali, in southwest Colombia, we selected cases of admitted patients in which the snakes responsible were fully identified. They were cataloged by clinical syndrome according to prevalent signs (edema-inducing, necrotizing, blister-inducing, procoagulant, anticoagulant or myotoxic) and were related to the species that caused the envenomation. RESULTS From a cohort of 53 patients, 21 patients (16 males [72.7%]) with an average age of 35 (3-69) y were included. The syndromes associated with envenomation were anticoagulant and necrotizing effects of Bothrops asper (five patients [22.7%]), blister-inducing and anticoagulant effects of Bothrops rhombeatus (five [22.7%]), anticoagulant effects of Bothrops punctatus (three patients [13.6%]), edema-inducing and anticoagulant effects of Bothriechis schlegelii (five [22.7%]), edema-inducing and myotoxic effects of Bothrocophias colombianus (one [4.5%]), edema-inducing and myotoxic effects of Bothrocophias myersi (one [4.5%]) and edema-inducing effects of Porthidium nasutum (one [4.5%]). CONCLUSION In southwestern Colombia there is notable variety in species of snakes belonging to the family Viperidae (vipers) whose envenomation causes various clinical syndromes.
Collapse
Affiliation(s)
- Carlos A Cañas
- Department of Internal Medicine, Fundación Valle del Lili, Universidad Icesi, Cali 760032, Colombia
| | - Fernando Castro-Herrera
- Department of Physiological Science, Faculty of Health Sciences, Universidad del Valle, Cali 760032, Colombia
| | - Santiago Castaño-Valencia
- Department of Physiological Science, Faculty of Health Sciences, Universidad del Valle, Cali 760032, Colombia
| |
Collapse
|
31
|
Salvador GHM, Borges RJ, Lomonte B, Lewin MR, Fontes MRM. The synthetic varespladib molecule is a multi-functional inhibitor for PLA 2 and PLA 2-like ophidic toxins. Biochim Biophys Acta Gen Subj 2021; 1865:129913. [PMID: 33865953 DOI: 10.1016/j.bbagen.2021.129913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The treatment for snakebites is early administration of antivenom, which can be highly effective in inhibiting the systemic effects of snake venoms, but is less effective in the treatment of extra-circulatory and local effects. To complement standard-of-care treatments such as antibody-based antivenoms, natural and synthetic small molecules have been proposed for the inhibition of key venom components such as phospholipase A2 (PLA2) and PLA2-like toxins. Varespladib (compound LY315920) is a synthetic molecule developed and clinically tested aiming to block inflammatory cascades of several diseases associated with high PLA2s. Recent studies have demonstrated this molecule is able to potently inhibit snake venom catalytic PLA2 and PLA2-like toxins. METHODS In vivo and in vitro techniques were used to evaluate the inhibitory effect of varespladib against MjTX-I. X-ray crystallography was used to reveal details of the interaction between these molecules. A new methodology that combines crystallography, mass spectroscopy and phylogenetic data was used to review its primary sequence. RESULTS Varespladib was able to inhibit the myotoxic and cytotoxic effects of MjTX-I. Structural analysis revealed a particular inhibitory mechanism of MjTX-I when compared to other PLA2-like myotoxin, presenting an oligomeric-independent function. CONCLUSION Results suggest the effectiveness of varespladib for the inhibition of MjTX-I, in similarity with other PLA2 and PLA2-like toxins. GENERAL SIGNIFICANCE Varespladib appears to be a promissory molecule in the treatment of local effects led by PLA2 and PLA2-like toxins (oligomeric dependent and independent), indicating that this is a multifunctional or broadly specific inhibitor for different toxins within this superfamily.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Rafael J Borges
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
32
|
Ranéia E Silva PA, de Lima DS, Mesquita Luiz JP, Câmara NOS, Alves-Filho JCF, Pontillo A, Bortoluci KR, Faquim-Mauro EL. Inflammatory effect of Bothropstoxin-I from Bothrops jararacussu venom mediated by NLRP3 inflammasome involves ATP and P2X7 receptor. Clin Sci (Lond) 2021; 135:687-701. [PMID: 33620070 DOI: 10.1042/cs20201419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1β and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1β production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5'-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.
Collapse
Affiliation(s)
- Priscila Andrade Ranéia E Silva
- Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - João Paulo Mesquita Luiz
- Department of Pharmacology and Department of Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - José Carlos Farias Alves-Filho
- Department of Pharmacology and Department of Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Karina Ramalho Bortoluci
- Department of Biological Sciences and Center for Cellular and Molecular Therapy (CTC-Mol),Federal University of São Paulo, São Paulo, Brazil
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
33
|
In-solution structural studies involving a phospholipase A 2-like myotoxin and a natural inhibitor: Plasticity of oligomeric assembly affects mechanisms of inhibition. Biochimie 2020; 181:145-153. [PMID: 33333169 DOI: 10.1016/j.biochi.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/02/2023]
Abstract
Snakebite envenomation has been categorized by World Health Organization as a category A neglected tropical disease, since it causes chronic psychological disorders, physical disablement and death. Ophidian accidents may cause local myonecrosis that cause drastic sequelae, which are not efficiently neutralized via serum therapy. Phospholipase A2-like (PLA2-like) myotoxins have a major role in the local effects caused by several snake venoms. We previously demonstrated that chicoric acid (CA) is an efficient inhibitor of the BthTX-I myotoxin and solved the X-ray structure of complex. Herein, we assess the oligomeric behavior of the BthTX-I/CA complex in solution under different physical-chemical conditions and using toxin obtained by two different biochemical methodologies to fully elucidate structural bases of inhibition of myotoxins by CA. We demonstrated the ability of PLA2-like proteins to form different oligomeric assemblies in the presence of certain inhibitors, which can also be modulated by buffer polarity change. In the presence of ethanol, BthTX-I/CA remains predominantly in a monomeric conformation, which prevents it from being in its active form (dimeric conformation). In contrast, in the absence of ethanol, the tetramer assembly was observed, which hid key regions of the protein responsible for docking and disruption of the muscle membrane. Therefore, the "plasticity" of these proteins with regard to their abilities to form oligomeric assemblies is a key issue for the future development of therapeutic agents to complement of serum therapy.
Collapse
|
34
|
The allosteric activation mechanism of a phospholipase A 2-like toxin from Bothrops jararacussu venom: a dynamic description. Sci Rep 2020; 10:16252. [PMID: 33004851 PMCID: PMC7529814 DOI: 10.1038/s41598-020-73134-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
The activation process of phospholipase A2-like (PLA2-like) toxins is a key step in their molecular mechanism, which involves oligomeric changes leading to the exposure of specific sites. Few studies have focused on the characterization of allosteric activators and the features that distinguish them from inhibitors. Herein, a comprehensive study with the BthTX-I toxin from Bothrops jararacussu venom bound or unbound to α-tocopherol (αT) was carried out. The oligomerization state of BthTX-I bound or unbound to αT in solution was studied and indicated that the toxin is predominantly monomeric but tends to oligomerize when complexed with αT. In silico molecular simulations showed the toxin presents higher conformational changes in the absence of αT,
which suggests that it is important to stabilize the structure of the toxin. The transition between the two states (active/inactive) was also studied, showing that only the unbound BthTX-I system could migrate to the inactive state. In contrast, the presence of αT induces the toxin to leave the inactive state, guiding it towards the active state, with more regions exposed to the solvent, particularly its active site. Finally, the structural determinants necessary for a molecule to be an inhibitor or activator were analyzed in light of the obtained results.
Collapse
|
35
|
Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom. Toxins (Basel) 2020; 12:toxins12090606. [PMID: 32962193 PMCID: PMC7551604 DOI: 10.3390/toxins12090606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: Bacterial resistance is a worldwide public health problem, requiring new therapeutic options. An alternative approach to this problem is the use of animal toxins isolated from snake venom, such as phospholipases A2 (PLA2), which have important antimicrobial activities. Bothropserythromelas is one of the snake species in the northeast of Brazil that attracts great medical-scientific interest. Here, we aimed to purify and characterize a PLA2 from B. erythromelas, searching for heterologous activities against bacterial biofilms. Methods: Venom extraction and quantification were followed by reverse-phase high-performance liquid chromatography (RP-HPLC) in C18 column, matrix-assisted ionization time-of-flight (MALDI-ToF) mass spectrometry, and sequencing by Edman degradation. All experiments were monitored by specific activity using a 4-nitro-3-(octanoyloxy) benzoic acid (4N3OBA) substrate. In addition, hemolytic tests and antibacterial tests including action against Escherichiacoli, Staphylococcusaureus, and Acinetobacterbaumannii were carried out. Moreover, tests of antibiofilm action against A. baumannii were also performed. Results: PLA2, after one purification step, presented 31 N-terminal amino acid residues and a molecular weight of 13.6564 Da, with enzymatic activity confirmed in 0.06 µM concentration. Antibacterial activity against S. aureus (IC50 = 30.2 µM) and antibiofilm activity against A. baumannii (IC50 = 1.1 µM) were observed. Conclusions: This is the first time that PLA2 purified from B. erythromelas venom has appeared as an alternative candidate in studies of new antibacterial medicines.
Collapse
|
36
|
González Rodríguez II, Francisco AF, Moreira-Dill LS, Quintero A, Guimarães CLS, Fernandes CAH, Takeda AAS, Zanchi FB, Caldeira CAS, Pereira PS, Fontes MRM, Zuliani JP, Soares AM. Isolation and structural characterization of bioactive compound from Aristolochia sprucei aqueous extract with anti-myotoxic activity. Toxicon X 2020; 7:100049. [PMID: 32613196 PMCID: PMC7322210 DOI: 10.1016/j.toxcx.2020.100049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/26/2022] Open
Abstract
A bioactive compound isolated from the stem extract of Aristolochia sprucei through High Performance Liquid Chromatography (HPLC) was identified via Nuclear Magnetic Resonance (NMR) as the aristolochic acid (AA). This compound showed an inhibitory effect over the myotoxic activity of Bothrops jararacussu and Bothrops asper venoms, being also effective against the indirect hemolytic activity of B. asper venom. Besides, AA also inhibited the myotoxic activity of BthTX-I and MTX-II with an efficiency greater than 60% against both myotoxins. Docking predictions revealed an interesting mechanism, through which the AA displays an interaction profile consistent with its inhibiting abilities, binding to both active and putative sites of svPLA2. Overall, the present findings indicate that AA may bind to critical regions of myotoxic Asp 49 and Lys49-PLA2s from snake venoms, highlighting the relevance of domains comprising the active and putative sites to inhibit these toxins.
Collapse
Affiliation(s)
- Isela I González Rodríguez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Aleff F Francisco
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil.,Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Leandro S Moreira-Dill
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Aristides Quintero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil.,Centro de Informaciones e Investigaciones Toxicológicas y Químicas Aplicadas (CEIITOXQUIA) and Departamento de Química, FCNYE, Universidad Autónoma de Chiriquí, UNACHI, David, Panama
| | - César L S Guimarães
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.,Instituto Brasileiro Do Meio Ambiente e Dos Recursos Naturais Renováveis, IBAMA, Porto Velho, RO, Brazil
| | - Carlos A H Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Fernando B Zanchi
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.,Instituto Nacional de Ciência e Tecnologia Em Epidemiologia da Amazônia Ocidental, INCT - EpiAmO, Brazil
| | - Cléopatra A S Caldeira
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Paulo S Pereira
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, UNAERP, Ribeirão Preto, SP, Brazil.,Instituto Federal de Goiás, IFG, Goiania, GO, Brazil
| | - Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Juliana P Zuliani
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.,Laboratório de Imunologia Celular Aplicada a Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.,Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil.,Instituto Nacional de Ciência e Tecnologia Em Epidemiologia da Amazônia Ocidental, INCT - EpiAmO, Brazil
| |
Collapse
|
37
|
Teixeira SC, Borges BC, Oliveira VQ, Carregosa LS, Bastos LA, Santos IA, Jardim ACG, Melo FF, Freitas LM, Rodrigues VM, Lopes DS. Insights into the antiviral activity of phospholipases A 2 (PLA 2s) from snake venoms. Int J Biol Macromol 2020; 164:616-625. [PMID: 32698062 PMCID: PMC7368918 DOI: 10.1016/j.ijbiomac.2020.07.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- S C Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - B C Borges
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - V Q Oliveira
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L S Carregosa
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L A Bastos
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - I A Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - A C G Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - F F Melo
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L M Freitas
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - V M Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - D S Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil; Institute of Health Sciences, Department of Bio-Function, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
38
|
Cardoso FF, Gomes AAS, Dreyer TR, Cavalcante WLG, Dal Pai M, Gallacci M, Fontes MRM. Neutralization of a bothropic PLA 2-like protein by caftaric acid, a novel potent inhibitor of ophidian myotoxicity. Biochimie 2020; 170:163-172. [PMID: 31978419 DOI: 10.1016/j.biochi.2020.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022]
Abstract
Envenoming by snakebite is an important global health issue that has received little attention, leading the World Health Organization to naming it as neglected tropical disease. Several snakebites present serious local symptoms manifested on victims that may not be efficiently neutralized by serum therapy. Phospholipase A2-like (PLA2-like) toxins are present in Viperidae venoms and are responsible for local myotoxic activity. Herein, we investigated the association between BthTX-I toxin and caftaric acid (CFT), a molecule present in plants. CFT neutralized neuromuscular blocking and muscle-damaging activities promoted by BthTX-I. Calorimetric and light-scattering assays demonstrated that CFT inhibitor interacted with dimeric BthTX-I. Bioinformatics simulations indicated that CFT inhibitor binds to the toxin's hydrophobic channel (HCh). According to the current myotoxic mechanism, three different regions of PLA2-like toxins have specific tasks: protein allosteric activation (HCh), membrane dockage (MDoS), and membrane rupture (MDiS). We propose CFT inhibitor interferes with the allosteric activation, which is related to the conformation change leading to the exposure/alignment of MDoS/MDiS region. This is the first report of a PLA2-like toxin fully inhibited by a compound that interacts only with its HCh region. Thus, CFT is a novel candidate to complement serum therapy and improve the treatment of snakebite.
Collapse
Affiliation(s)
- Fábio F Cardoso
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Antoniel A S Gomes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Thiago R Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Walter L G Cavalcante
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Maeli Dal Pai
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Márcia Gallacci
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
39
|
Boeno CN, Paloschi MV, Lopes JA, Pires WL, Setúbal SDS, Evangelista JR, Soares AM, Zuliani JP. Inflammasome Activation Induced by a Snake Venom Lys49-Phospholipase A 2 Homologue. Toxins (Basel) 2019; 12:toxins12010022. [PMID: 31906173 PMCID: PMC7020408 DOI: 10.3390/toxins12010022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Snake venom phospholipases A2 (PLA2s) have hemolytic, anticoagulant, myotoxic, oedematogenic, bactericidal, and inflammatory actions. BthTX-I, a Lys49-PLA2 isolated from Bothrops jararacussu venom, is an example of Lys49-PLA2 that presents such actions. NLRP3 is a cytosolic receptor from the NLR family responsible for inflammasome activation via caspase-1 activation and IL-1β liberation. The study of NLRs that recognize tissue damage and activate the inflammasome is relevant in envenomation. Methods: Male mice (18–20 g) received an intramuscular injection of BthTX-I or sterile saline. The serum was collected for creatine-kinase (CK), lactate dehydrogenase (LDH), and interleukin-1β (IL-1β) assays, and muscle was removed for inflammasome activation immunoblotting and qRT-PCR expression for nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 receptor (NLRP3) inflammasome components. Results: BthTX-I-induced inflammation and myonecrosis, shown by intravital microscope, and LDH and CK release, respectively. Mouse treatment with A438079, a P2X7 receptor antagonist, did not modify these effects. BthTX-I induced inflammasome activation in muscle, but P2X7R participation in this effect was not observed. Conclusion: Together, the results showed for the first time that BthTX-I in gastrocnemius muscle induces inflammation and consequently, inflammasome activation via NLRP3 with caspase-1 activation and IL-1β liberation.
Collapse
Affiliation(s)
- Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Weverson Luciano Pires
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Jaína Rodrigues Evangelista
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, 76812-245 Porto Velho-RO, Brazil;
- Centro Universitário São Lucas, UniSL, 76805-846 Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, 76812-245 Porto Velho-RO, Brazil;
- Correspondence: ; Tel.: +55-69-3219-6010; Fax: +55-69-3219-6000
| |
Collapse
|
40
|
Brenes H, Loría GD, Lomonte B. Potent virucidal activity against Flaviviridae of a group IIA phospholipase A 2 isolated from the venom of Bothrops asper. Biologicals 2019; 63:48-52. [PMID: 31839332 DOI: 10.1016/j.biologicals.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022] Open
Abstract
Secreted phospholipase A2 (sPLA2) molecules are small, calcium-dependent enzymes involved in many biological processes. Viperid venoms possess gIIA sPLA2s and sPLA2-like proteins, both having homology to human gIIA sPLA2, an innate immunity enzyme. We evaluated the antiviral action of Mt-I (catalytically-active sPLA2) and Mt-II (catalytically-inactive variant) isolated from the venom of Bothrops asper, against a diverse group of viruses. Yellow Fever and Dengue (enveloped) viruses were highly susceptible to inactivation by the snake proteins, in contrast to Sabin (non-enveloped; Polio vaccine strain), and Influenza A, Herpes simplex 1 and 2, and Vesicular Stomatitis (enveloped) viruses. Titration of the antiviral effect against Dengue virus revealed Mt-I to be highly potent (IC50 0.5-2 ng/mL), whereas Mt-II was 1000-fold weaker. This large difference suggested a requirement for PLA2 activity, which was confirmed by chemical inactivation of Mt-I. A synthetic peptide representing the membrane-disrupting region of Mt-II, previously shown to have bactericidal effect, lacked antiviral action, suggesting that the weak virucidal effect observed for Mt-II is likely caused by contamination with traces of Mt-I. On the other hand, Mt-I was demonstrated to act by a direct virucidal mechanism prior to infection, and not by an independent effect on host cells, either pretreated, or exposed to Mt-I after virus infection. Interestingly, DENV2 propagated in mosquito cells was much more sensitive to the action of Mt-I, compared to human cell-propagated virus. Therefore, differences in envelope membrane composition may be crucially involved in the observed virucidal action of PLA2 enzymes.
Collapse
Affiliation(s)
- Hebleen Brenes
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, Cartago, Costa Rica.
| | - Gilbert D Loría
- Sección de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), and Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
41
|
Structural basis for phospholipase A 2-like toxin inhibition by the synthetic compound Varespladib (LY315920). Sci Rep 2019; 9:17203. [PMID: 31748642 PMCID: PMC6868273 DOI: 10.1038/s41598-019-53755-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023] Open
Abstract
The World Health Organization recently listed snakebite envenoming as a Neglected Tropical Disease, proposing strategies to significantly reduce the global burden of this complex pathology by 2030. In this context, effective adjuvant treatments to complement conventional antivenom therapy based on inhibitory molecules for specific venom toxins have gained renewed interest. Varespladib (LY315920) is a synthetic molecule clinically tested to block inflammatory cascades of several diseases associated with elevated levels of secreted phospholipase A2 (sPLA2). Most recently, Varespladib was tested against several whole snake venoms and isolated PLA2 toxins, demonstrating potent inhibitory activity. Herein, we describe the first structural and functional study of the complex between Varespladib and a PLA2-like snake venom toxin (MjTX-II). In vitro and in vivo experiments showed this compound’s capacity to inhibit the cytotoxic and myotoxic effects of MjTX-II from the medically important South American snake, Bothrops moojeni. Crystallographic and bioinformatics analyses revealed interactions of Varespladib with two specific regions of the toxin, suggesting inhibition occurs by physical blockage of its allosteric activation, preventing the alignment of its functional sites and, consequently, impairing its ability to disrupt membranes. Furthermore, based on the analysis of several crystallographic structures, a distinction between toxin activators and inhibitors is proposed.
Collapse
|
42
|
Bustillo S, Fernández J, Chaves-Araya S, Angulo Y, Leiva LC, Lomonte B. Isolation of two basic phospholipases A2 from Bothrops diporus snake venom: Comparative characterization and synergism between Asp49 and Lys49 variants. Toxicon 2019; 168:113-121. [DOI: 10.1016/j.toxicon.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022]
|
43
|
Inhibition of snake venom induced sterile inflammation and PLA2 activity by Titanium dioxide Nanoparticles in experimental animals. Sci Rep 2019; 9:11175. [PMID: 31371738 PMCID: PMC6671979 DOI: 10.1038/s41598-019-47557-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
Sterile inflammation (SI) is an essential process in response to snakebite and injury. The venom induced pathophysiological response to sterile inflammation results into many harmful and deleterious effects that ultimately leads to death. The available treatment for snakebite is antiserum which does not provide enough protection against venom-induced pathophysiological changes like haemorrhage, necrosis, nephrotoxicity and often develop hypersensitive reactions. In order to overcome these hindrances, scientists around the globe are searching for an alternative therapy to provide better treatment to the snake envenomation patients. In the present study TiO2 (Titanium dioxide)-NPs (Nanoparticles) has been assessed for antisnake venom activity and its potential to be used as an antidote. In this study, the synthesis of TiO2-NPs arrays has been demonstrated on p-type Silicon Si < 100 > substrate (∼30 ohm-cm) and the surface topography has been detected by Field-emission scanning electron microscopy (FESEM). The TiO2-NPs successfully neutralized the Daboia russelii venom (DRV) and Naja kaouthia venom (NKV)-induced lethal activity. Viper venom induced haemorrhagic, coagulant and anticoagulant activities were effectively neutralized both in in-vitro and in vivo studies. The cobra and viper venoms-induced sterile inflammatory molecules (IL-6, HMGB1, HSP70, HSP90, S100B and vWF) were effectively neutralised by the TiO2-NPs in experimental animals.
Collapse
|
44
|
SDS-induced oligomerization of Lys49-phospholipase A 2 from snake venom. Sci Rep 2019; 9:2330. [PMID: 30787342 PMCID: PMC6382788 DOI: 10.1038/s41598-019-38861-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Phospholipase A2 (PLA2) is one of the representative toxic components of snake venom. PLA2s are categorized into several subgroups according to the amino acid at position 49, which comprises either Asp49, Lys49, Arg49 or Ser49. Previous studies suggested that the Lys49-PLA2 assembles into an extremely stable dimer. Although the behavior on Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing or non-reducing conditions suggested the presence of intermolecular disulfide bonds, these bonds were not observed in the crystal structure of Lys49-PLA2. The reason for this discrepancy between the crystal structure and SDS-PAGE of Lys49-PLA2 remains unknown. In this study, we analyzed a Lys49-PLA2 homologue from Protobothrops flavoviridis (PflLys49-PLA2 BPII), by biophysical analyses including X-ray crystallography, SDS-PAGE, native-mass spectrometry, and analytical ultracentrifugation. The results demonstrated that PflLys49-PLA2 BPII spontaneously oligomerized in the presence of SDS, which is one of the strongest protein denaturants.
Collapse
|
45
|
Salvador GHM, Cardoso FF, Gomes AA, Cavalcante WLG, Gallacci M, Fontes MRM. Search for efficient inhibitors of myotoxic activity induced by ophidian phospholipase A 2-like proteins using functional, structural and bioinformatics approaches. Sci Rep 2019; 9:510. [PMID: 30679550 PMCID: PMC6346006 DOI: 10.1038/s41598-018-36839-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 02/01/2023] Open
Abstract
Ophidian accidents are considered an important neglected tropical disease by the World Health Organization. Particularly in Latin America, Bothrops snakes are responsible for the majority of the snakebite envenomings that are not efficiently treated by conventional serum therapy. Thus, the search for simple and efficient inhibitors to complement this therapy is a promising research area, and a combination of functional and structural assays have been used to test candidate ligands against specific ophidian venom compounds. Herein, we tested a commercial drug (acetylsalicylic acid, ASA) and a plant compound with antiophidian properties (rosmarinic acid, RA) using myographic, crystallographic and bioinformatics experiments with a phospholipase A2-like toxin, MjTX-II. MjTX-II/RA and MjTX-II/ASA crystal structures were solved at high resolution and revealed the presence of ligands bound to different regions of the toxin. However, in vitro myographic assays showed that only RA is able to prevent the myotoxic effects of MjTX-II. In agreement with functional results, molecular dynamics simulations showed that the RA molecule remains tightly bound to the toxin throughout the calculations, whereas ASA molecules tend to dissociate. This approach aids the design of effective inhibitors of PLA2-like toxins and, eventually, may complement serum therapy.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Depto. de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Fábio Florença Cardoso
- Depto. de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Antoniel A Gomes
- Depto. de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Walter L G Cavalcante
- Depto. de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
- Depto. de Farmacologia, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcia Gallacci
- Depto. de Farmacologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Depto. de Física e Biofísica, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
46
|
Cardoso FF, Borges RJ, Dreyer TR, Salvador GH, Cavalcante WL, Pai MD, Gallacci M, Fontes MR. Structural basis of phospholipase A2-like myotoxin inhibition by chicoric acid, a novel potent inhibitor of ophidian toxins. Biochim Biophys Acta Gen Subj 2018; 1862:2728-2737. [DOI: 10.1016/j.bbagen.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
47
|
Structural and functional characterization of suramin-bound MjTX-I from Bothrops moojeni suggests a particular myotoxic mechanism. Sci Rep 2018; 8:10317. [PMID: 29985425 PMCID: PMC6037679 DOI: 10.1038/s41598-018-28584-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022] Open
Abstract
Local myonecrosis is the main event resulting from snakebite envenomation by the Bothrops genus and, frequently, it is not efficiently neutralized by antivenom administration. Proteases, phospholipases A2 (PLA2) and PLA2-like toxins are found in venom related to muscle damage. Functional sites responsible for PLA2-like toxins activity have been proposed recently; they consist of a membrane docking-site and a membrane rupture-site. Herein, a combination of functional, biophysical and crystallographic techniques was used to characterize the interaction between suramin and MjTX-I (a PLA2-like toxin from Bothrops moojeni venom). Functional in vitro neuromuscular assays were performed to study the biological effects of the protein-ligand interaction, demonstrating that suramin neutralizes the myotoxic effect of MjTX-I. Calorimetric assays showed two different binding events: (i) inhibitor-protein interactions and (ii) toxin oligomerization processes. These hypotheses were also corroborated with dynamic light and small angle X-ray scattering assays. The crystal structure of the MjTX-I/suramin showed a totally different interaction mode compared to other PLA2-like/suramin complexes. Thus, we suggested a novel myotoxic mechanism for MjTX-I that may be inhibited by suramin. These results can further contribute to the search for inhibitors that will efficiently counteract local myonecrosis in order to be used as an adjuvant of conventional serum therapy.
Collapse
|
48
|
A myotoxic Lys49 phospholipase A2-homologue is the major component of the venom of Bothrops cotiara from Misiones, Argentina. Toxicon 2018; 148:143-148. [DOI: 10.1016/j.toxicon.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/11/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
|
49
|
Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon 2018; 148:123-131. [PMID: 29698755 DOI: 10.1016/j.toxicon.2018.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/04/2018] [Accepted: 04/22/2018] [Indexed: 12/20/2022]
Abstract
Snakebite envenoming by viperid species, and by some elapids, is characterized by a complex pattern of tissue damage at the anatomical site of venom injection. In severe cases, tissue destruction may be so extensive as to lead to permanent sequelae, with serious pathophysiological, social and psychological consequences. Significant advances have been performed in the study of venom-induced tissue damage, including identification and characterization of the toxins involved, insights into the mechanisms of action of venoms and toxins, and study of tissue responses to venom-induced injury. Nevertheless, much remains to be known and understood on the pathogenesis of these alterations. This review focuses on some of the pending issues in the topic of snake venom-induced local tissue damage. The traditional 'reductionist' approach, which has predominated in the study of snake venoms and their actions, needs to be complemented by more integrative and holistic perspectives aimed at capturing the complexity of these pathological alterations. Future advances in the study of these topics will certainly pave the way for innovative therapeutic interventions, with the goal of reducing the impact of this aspect of snakebite envenoming.
Collapse
|
50
|
Salvador GH, dos Santos JI, Borges RJ, Fontes MR. Structural evidence for a fatty acid-independent myotoxic mechanism for a phospholipase A2-like toxin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:473-481. [DOI: 10.1016/j.bbapap.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|