1
|
Romero J, Toral-Rios D, Yu J, Paul SM, Cashikar AG. 25-hydroxycholesterol promotes brain cytokine production and leukocyte infiltration in a mouse model of lipopolysaccharide-induced neuroinflammation. J Neuroinflammation 2024; 21:251. [PMID: 39369253 PMCID: PMC11456242 DOI: 10.1186/s12974-024-03233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroinflammation has been implicated in the pathogenesis of several neurologic and psychiatric disorders. Microglia are key drivers of neuroinflammation and, in response to different inflammatory stimuli, overexpress a proinflammatory signature of genes. Among these, Ch25h is a gene overexpressed in brain tissue from Alzheimer's disease as well as various mouse models of neuroinflammation. Ch25h encodes cholesterol 25-hydroxylase, an enzyme upregulated in activated microglia under conditions of neuroinflammation, that hydroxylates cholesterol to form 25-hydroxycholesterol (25HC). 25HC can be further metabolized to 7α,25-dihydroxycholesterol, which is a potent chemoattractant of leukocytes. We have previously shown that 25HC increases the production and secretion of the proinflammatory cytokine, IL-1β, by primary mouse microglia treated with lipopolysaccharide (LPS). In the present study, wildtype (WT) and Ch25h-knockout (KO) mice were peripherally administered LPS to induce an inflammatory state in the brain. In LPS-treated WT mice, Ch25h expression and 25HC levels increased in the brain relative to vehicle-treated WT mice. Among LPS-treated WT mice, females produced significantly higher levels of 25HC and showed transcriptomic changes reflecting higher levels of cytokine production and leukocyte migration than WT male mice. However, females were similar to males among LPS-treated KO mice. Ch25h-deficiency coincided with decreased microglial activation in response to systemic LPS. Proinflammatory cytokine production and intra-parenchymal infiltration of leukocytes were significantly lower in KO compared to WT mice. Amounts of IL-1β and IL-6 in the brain strongly correlated with 25HC levels. Our results suggest a proinflammatory role for 25HC in the brain following peripheral administration of LPS.
Collapse
Affiliation(s)
- Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Jinsheng Yu
- Department of Genetics & Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 425 S Euclid Ave, Campus Box 8134, St Louis, MO, 63110, USA
| | - Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 425 S Euclid Ave, Campus Box 8134, St Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Sarmin N, Roknuzzaman ASM, Sarker R, Rashid MO, Hasan A, Qusar MMAS, Kabir ER, Islam MR, Mahmud ZA. Exploring the role of interleukin-1β and interleukin-6 in the pathophysiology of obsessive-compulsive disorder. PLoS One 2024; 19:e0306125. [PMID: 38924009 PMCID: PMC11207128 DOI: 10.1371/journal.pone.0306125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a highly prevalent neuropsychiatric disorder. Recently, there has been a growing interest in investigating the association between pro-inflammatory cytokines and the pathogenesis of OCD. However, studies targeting interleukin-1β (IL-1β) and interleukin-6 (IL-6) in OCD are limited. Therefore, the present study aimed to explore the potential role of pro-inflammatory cytokines IL-1β and IL-6 in the pathophysiology and development of OCD. METHODS This study recruited 58 OCD patients and 30 age-sex-matched healthy controls (HCs). A qualified psychiatrist diagnosed OCD patients and assessed HCs based on the Diagnostic and Statistical Manual for Mental Health Disorders, 5th edition (DSM-5) criteria. We measured the severity of OCD using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Serum IL-1β and IL-6 levels were measured using ELISA kits following the appropriate methods. RESULTS The results showed that serum IL-1β levels were significantly elevated in OCD patients compared to HCs (23.68±1.65 pg/ml vs. 15.75±1.02 pg/ml; p = 0.002). Similarly, OCD patients exhibited significantly higher serum IL-6 levels than HCs (44.97±0.73 pg/ml vs. 37.04±0.35 pg/ml; p<0.001). We observed both cytokines were positively correlated with the Y-BOCS scores in OCD patients (IL-1β: r = 0.380, p = 0.015; IL-6: r = 0.324, p = 0.026) which indicates their role in disease pathophysiology. CONCLUSION These results suggest that serum IL-1β and IL-6 levels may be associated with the pathophysiology of OCD. Also, these cytokines levels in blood samples can serve as early risk assessment tools for the development of OCD. We recommend further studies in a large and homogeneous population to support these findings.
Collapse
Affiliation(s)
- Nisat Sarmin
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | | | - Rapty Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Mamun-or- Rashid
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Ahasanul Hasan
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | | | | | | | - Zobaer Al Mahmud
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Kim DH, Lee WW. IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw 2024; 24:e21. [PMID: 38974214 PMCID: PMC11224669 DOI: 10.4110/in.2024.24.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
- Institute of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
4
|
Shu Y, Peng F, Zhao B, Liu C, Li Q, Li H, Wang Y, Jiang Y, Lu T, Wang Q, Sun J, Feng H, Lu Z, Liu X, Wang J, Qiu W. Transfer of patient's peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflammation 2023; 20:164. [PMID: 37443034 DOI: 10.1186/s12974-023-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood-brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients. METHODS In this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients' peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2-/-Il2rg-/-SirpαNODFlk2-/- mice. RESULTS We found that engraftment of patients' PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1β as a hub gene implicated in pathological changes. We further demonstrated that Il-1β was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors. CONCLUSIONS Our study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient's lymphocytes.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qihui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Li YC, Li Y, Zhang YN, Zhao Q, Zhang PL, Sun MR, Liu BL, Yang H, Li P. Muscone and (+)-Borneol Cooperatively Strengthen CREB Induction of Claudin 5 in IL-1 β-Induced Endothelium Injury. Antioxidants (Basel) 2022; 11:antiox11081455. [PMID: 35892657 PMCID: PMC9394259 DOI: 10.3390/antiox11081455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Claudin 5 is one of the major proteins of tight junctions and is responsible for cerebrovascular integrity and BBB function. Muscone and (+)-borneol is the major ingredient of moschus and borneolum, respectively, with antioxidative and anti-inflammatory activities. This study investigated whether muscone and (+)-borneol combination protected claudin 5 by targeting ROS-mediated IL-1β accumulation. Muscone and (+)-borneol reduced cerebral infarct volume and cerebrovascular leakage with claudin 5 protection in mice after stroke, largely due to inhibiting ROS accumulation and inflammatory infiltrate of microglia. Muscone reduced ROS and then blocked the CaN/Erk1/2 pathway to decrease IL-1β release, while (+)-borneol removed mitochondrial ROS and attenuated the SDH/Hif-1α pathway to inhibit IL-1β transcription, thereby jointly reducing IL-1β production. Accumulated IL-1β disrupted cAMP/CREB activation and attenuated transcriptional regulation of claudin 5. Muscone and (+)-borneol combination cooperatively protected BBB function by blocking IL-1β-mediated cAMP/CREB/claudin 5 cascades. Mutation of Ser133 site of CREB or knockdown of claudin 5 weakened the effects of muscone and (+)-borneol on upregulation of TEER value and downregulation of FITC-dextran permeability, suggesting that targeting CREB/claudin 5 was an important strategy to protect vascular integrity. This study provided ideas for the studies of synergistic protection against ischemic brain injury about the active ingredients of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
| | - Yi Li
- Correspondence: (Y.L.); (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| | | | | | | | | | | | | | - Ping Li
- Correspondence: (Y.L.); (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| |
Collapse
|
6
|
The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int J Mol Sci 2022; 23:ijms23031731. [PMID: 35163653 PMCID: PMC8915186 DOI: 10.3390/ijms23031731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
The interleukin-1 receptor type 1 (IL-1R1) holds pivotal roles in the immune system, as it is positioned at the “epicenter” of the inflammatory signaling networks. Increased levels of the cytokine IL-1 are a recognized feature of the immune response in the central nervous system (CNS) during injury and disease, i.e., neuroinflammation. Despite IL-1/IL-1R1 signaling within the CNS having been the subject of several studies, the roles of IL-1R1 in the CNS cellular milieu still cause controversy. Without much doubt, however, the persistent activation of the IL-1/IL-1R1 signaling pathway is intimately linked with the pathogenesis of a plethora of CNS disease states, ranging from Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), all the way to schizophrenia and prion diseases. Importantly, a growing body of evidence is showing that blocking IL-1R1 signaling via pharmacological or genetic means in different experimental models of said CNS diseases leads to reduced neuroinflammation and delayed disease progression. The aim of this paper is to review the recent progress in the study of the biological roles of IL-1R1, as well as to highlight key aspects that render IL-1R1 a promising target for the development of novel disease-modifying treatments for multiple CNS indications.
Collapse
|
7
|
Miranda-Ribera A, Serena G, Liu J, Fasano A, Kingsbury MA, Fiorentino MR. The Zonulin-transgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers 2021; 10:2000299. [PMID: 34775911 DOI: 10.1080/21688370.2021.2000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gut-brain axis hypothesis suggests that interactions in the intestinal milieu are critically involved in regulating brain function. Several studies point to a gut-microbiota-brain connection linking an impaired intestinal barrier and altered gut microbiota composition to neurological disorders involving neuroinflammation. Increased gut permeability allows luminal antigens to cross the gut epithelium, and via the blood stream and an impaired blood-brain barrier (BBB) enters the brain impacting its function. Pre-haptoglobin 2 (pHP2), the precursor protein to mature HP2, is the first characterized member of the zonulin family of structurally related proteins. pHP 2 has been identified in humans as the thus far only endogenous regulator of epithelial and endothelial tight junctions (TJs). We have leveraged the Zonulin-transgenic mouse (Ztm) that expresses a murine pHP2 (zonulin) to determine the role of increased gut permeability and its synergy with a dysbiotic intestinal microbiota on brain function and behavior. Here we show that Ztm mice display sex-dependent behavioral abnormalities accompanied by altered gene expression of BBB TJs and increased expression of brain inflammatory genes. Antibiotic depletion of the gut microbiota in Ztm mice downregulated brain inflammatory markers ameliorating some anxiety-like behavior. Overall, we show that zonulin-dependent alterations in gut permeability and dysbiosis of the gut microbiota are associated with an altered BBB integrity, neuroinflammation, and behavioral changes that are partially ameliorated by microbiota depletion. Our results suggest the Ztm model as a tool for the study of the cross-talk between the microbiome/gut and the brain in the context of neurobehavioral/neuroinflammatory disorders.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gloria Serena
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA.,Lurie Center for Autism, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Olivera GC, Vetter L, Tesoriero C, Del Gallo F, Hedberg G, Basile J, Rottenberg ME. Role of T cells during the cerebral infection with Trypanosoma brucei. PLoS Negl Trop Dis 2021; 15:e0009764. [PMID: 34587172 PMCID: PMC8530334 DOI: 10.1371/journal.pntd.0009764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/21/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
The infection by Trypanosoma brucei brucei (T.b.b.), a protozoan parasite, is characterized by an early-systemic stage followed by a late stage in which parasites invade the brain parenchyma in a T cell-dependent manner. Here we found that early after infection effector-memory T cells were predominant among brain T cells, whereas, during the encephalitic stage T cells acquired a tissue resident memory phenotype (TRM) and expressed PD1. Both CD4 and CD8 T cells were independently redundant for the penetration of T.b.b. and other leukocytes into the brain parenchyma. The role of lymphoid cells during the T.b.b. infection was studied by comparing T- and B-cell deficient rag1-/- and WT mice. Early after infection, parasites located in circumventricular organs, brain structures with increased vascular permeability, particularly in the median eminence (ME), paced closed to the sleep-wake regulatory arcuate nucleus of the hypothalamus (Arc). Whereas parasite levels in the ME were higher in rag1-/- than in WT mice, leukocytes were instead reduced. Rag1-/- infected mice showed increased levels of meca32 mRNA coding for a blood /hypothalamus endothelial molecule absent in the blood-brain-barrier (BBB). Both immune and metabolic transcripts were elevated in the ME/Arc of WT and rag1-/- mice early after infection, except for ifng mRNA, which levels were only increased in WT mice. Finally, using a non-invasive sleep-wake cycle assessment method we proposed a putative role of lymphocytes in mediating sleep alterations during the infection with T.b.b. Thus, the majority of T cells in the brain during the early stage of T.b.b. infection expressed an effector-memory phenotype while TRM cells developed in the late stage of infection. T cells and parasites invade the ME/Arc altering the metabolic and inflammatory responses during the early stage of infection and modulating sleep disturbances. Trypanosoma brucei (T.b.) causes an early systemic and a late encephalitic infection characterized by sleep alterations. In rodent models, brain invasion by T.b. brucei (T.b.b.) is strictly dependent on T cells. However, an in-depth characterization of T cell functions and phenotypes in the outcome of T.b.b. infection is still lacking. Here we found that during the early stage of infection of mice, most brain T cells differentiated into memory cells, and acquired a tissue-resident memory phenotype during the encephalitic stage. CD4 and CD8 T cells were redundant for the invasion of other T cells and parasites into the brain. Early after infection T.b.b. and leukocytes invade different circumventricular organs (brain areas that lack a blood-brain barrier) including the median eminence (ME) located close to sleep-regulating arcuate nucleus (Arc). T.b.b. infection induced the expression of immune and metabolic molecules in this area. Lymphocytes modulated 1) the levels of invading parasites and leukocytes in the ME; 2) the structure of the blood/ hypothalamus interphase and 3) the expression of IFN-γ in the ME/Arc early after infection. Lymphocytes may also be involved in the regulation of sleep alterations observed in African trypanosomiasis.
Collapse
Affiliation(s)
- Gabriela C. Olivera
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Tesoriero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gustav Hedberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Basile
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
9
|
Venugopal J, Wang J, Mawri J, Guo C, Eitzman D. Interleukin-1 receptor inhibition reduces stroke size in a murine model of sickle cell disease. Haematologica 2021; 106:2469-2477. [PMID: 32817286 PMCID: PMC8409048 DOI: 10.3324/haematol.2020.252395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
Sickle cell disease (SCD) is associated with chronic hemolytic anemia and a heightened inflammatory state. The causal role of inflammatory pathways in stroke associated with SCD is unclear. Therefore, the hypothesis that deletion of the non-hematopoietic interleukin-1 receptor (IL-1R) pool may be beneficial in SCD was pursued. Since potential deleterious effects of IL-1R signaling in SCD could be mediated via downstream production of interleukin-6 (IL-6), the role of the nonhematopoietic IL-6 pool was also addressed. Bone marrow transplantation (BMT) from SCD to wild-type (WT) recipient mice was used to generate SCD mice (Wt,SCDbmt). In order to generate mice with nonhematopoietic deficiency of IL-1R or IL-6, SCD marrow was transplanted into IL-1R deficient (IL1R-/-,SCDbmt) or IL-6 deficient recipients (IL6-/-, SCDbmt). Blood counts, reticulocytes, soluble E-selectin (sEsel), and IL-6 levels were analyzed 14-15 weeks post-BMT. Ischemic stroke was induced by middle cerebral artery (MCA) photothrombosis at 16 weeks post-BMT. A separate group of Wt,SCDbmt mice was given the IL-1R inhibitor, anakinra, following stroke induction. Seventy-two hours after MCA occlusion, stroke volume was assessed by staining brain sections with 2,3,5-triphenyltetrazolium chloride. Formalin-fixed brain sections were also stained for macrophages with MAC3, for endothelial activation with ICAM-1, and for loss of blood brain barrier integrity with fibrin (ogen) staining. All SCD mice generated by BMT were anemic and the severity of anemia was not different between Wt,SCDbmt, IL1R-/-,SCDbmt, and IL-6-/-,SCDbmt mice. Three days following MCA occlusion, stroke volume was significantly reduced in IL1R-/-,SCDbmt mice compared to Wt,SCDbmt mice and IL6-/-,SCDbmt mice. Plasma levels of sEsel were lower in IL1R-/-,SCDbmt compared to Wt,SCDbmt and IL-6-/-,SCDbmt mice. Post-stroke treatment of Wt,SCDbmt mice with anakinra decreased stroke size, leukocyte infiltration, ICAM-1 expression, and fibrin(ogen) accumulation compared to vehicle-treated mice. Deficiency of non-hematopoietic IL-1R or treatment with an IL-1R antagonist is sufficient to confer protection against the increased stroke size associated with SCD. These effects of IL1R deficiency are associated with reduced endothelial activation, leukocyte infiltration, and blood brain barrier disruption, and are independent of non-hematopoietic IL-6 signaling.
Collapse
Affiliation(s)
- Jessica Venugopal
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | - Jintao Wang
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | | | - Chiao Guo
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | - Daniel Eitzman
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1. Front Immunol 2021; 12:688254. [PMID: 34093593 PMCID: PMC8176952 DOI: 10.3389/fimmu.2021.688254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - James B. Watson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Yates AG, Jogia T, Gillespie ER, Couch Y, Ruitenberg MJ, Anthony DC. Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury. J Neuroinflammation 2021; 18:15. [PMID: 33407641 PMCID: PMC7788822 DOI: 10.1186/s12974-020-02050-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The acute phase response (APR) to CNS insults contributes to the overall magnitude and nature of the systemic inflammatory response. Aspects of this response are thought to drive secondary inflammatory pathology at the lesion site, and suppression of the APR can therefore afford some neuroprotection. In this study, we examined the APR in a mouse model of traumatic spinal cord injury (SCI), along with its relationship to neutrophil recruitment during the immediate aftermath of the insult. We specifically investigated the effect of IL-1 receptor antagonist (IL-1RA) administration on the APR and leukocyte recruitment to the injured spinal cord. METHODS Adult female C57BL/6 mice underwent either a 70kD contusive SCI, or sham surgery, and tissue was collected at 2, 6, 12, and 24 hours post-operation. For IL-1RA experiments, SCI mice received two intraperitoneal injections of human IL-1RA (100mg/kg), or saline as control, immediately following, and 5 hours after impact, and animals were sacrificed 6 hours later. Blood, spleen, liver and spinal cord were collected to study markers of central and peripheral inflammation by flow cytometry, immunohistochemistry and qPCR. Results were analysed by two-way ANOVA or student's t-test, as appropriate. RESULTS SCI induced a robust APR, hallmarked by elevated hepatic expression of pro-inflammatory marker genes and a significantly increased neutrophil presence in the blood, liver and spleen of these animals, as early as 2 hours after injury. This peripheral response preceded significant neutrophil infiltration of the spinal cord, which peaked 24 hours post-SCI. Although expression of IL-1RA was also induced in the liver following SCI, its response was delayed compared to IL-1β. Exogenous administration of IL-1RA during this putative therapeutic window was able to suppress the hepatic APR, as evidenced by a reduction in CXCL1 and SAA-2 expression as well as a significant decrease in neutrophil infiltration in both the liver and the injured spinal cord itself. CONCLUSIONS Our data indicate that peripheral administration of IL-1RA can attenuate the APR which in turn reduces immune cell infiltration at the spinal cord lesion site. We propose IL-1RA treatment as a viable therapeutic strategy to minimise the harmful effects of SCI-induced inflammation.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, The University of Oxford, Oxford, UK
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel C Anthony
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
12
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
13
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
14
|
Hauptmann J, Johann L, Marini F, Kitic M, Colombo E, Mufazalov IA, Krueger M, Karram K, Moos S, Wanke F, Kurschus FC, Klein M, Cardoso S, Strauß J, Bolisetty S, Lühder F, Schwaninger M, Binder H, Bechman I, Bopp T, Agarwal A, Soares MP, Regen T, Waisman A. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol 2020; 140:549-567. [PMID: 32651669 PMCID: PMC7498485 DOI: 10.1007/s00401-020-02187-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Federico Marini
- Center of Thrombosis and Hemostasis Mainz (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maja Kitic
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisa Colombo
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Krueger
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area Roche Innovation Center, Basel, Switzerland
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Judith Strauß
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Subhashini Bolisetty
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ingo Bechman
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Ofon E, Noyes H, Ebo’o Eyanga V, Njiokou F, Koffi M, Fogue P, Hertz-Fowler C, MacLeod A, Matovu E, Simo G. Association between IL1 gene polymorphism and human African trypanosomiasis in populations of sleeping sickness foci of southern Cameroon. PLoS Negl Trop Dis 2019; 13:e0007283. [PMID: 30908482 PMCID: PMC6448947 DOI: 10.1371/journal.pntd.0007283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/04/2019] [Accepted: 03/07/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by infections due to Trypanosoma brucei subspecies. In addition to the well-established environmental and behavioural risks of becoming infected, there is evidence for a genetic component to the response to trypanosome infection. We undertook a candidate gene case-control study to investigate genetic associations further. METHODOLOGY We genotyped one polymorphism in each of seven genes (IL1A, IL1RN, IL4RN, IL6, HP, HPR, and HLA-G) in 73 cases and 250 controls collected from 19 ethno-linguistic subgroups stratified into three major ethno-linguistic groups, 2 pooled ethno-linguistic groups and 11 ethno-linguistic subgroups from three Cameroonian HAT foci. The seven polymorphic loci tested consisted of three SNPs, three variable numbers of tandem repeat (VNTR) and one INDEL. RESULTS We found that the genotype (TT) and minor allele (T) of IL1A gene as well as the genotype 1A3A of IL1RN were associated with an increased risk of getting Trypanosoma brucei gambiense and develop HAT when all data were analysed together and also when stratified by the three major ethno-linguistic groups, 2 pooled ethno-linguistic subgroups and 11 ethno-linguistic subgroups. CONCLUSION This study revealed that one SNP rs1800794 of IL1A and one VNTR rs2234663 of IL1RN were associated with the increased risk to be infected by Trypanosoma brucei gambiense and develop sleeping sickness in southern Cameroon. The minor allele T and the genotype TT of SNP rs1800794 in IL1A as well as the genotype 1A3A of IL1RN rs2234663 VNTR seem to increase the risk of getting Trypanosoma brucei gambiense infections and develop sleeping sickness in southern Cameroon.
Collapse
Affiliation(s)
- Elvis Ofon
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Ebo’o Eyanga
- MINSANTE, Divisional Centre for Diseases, PNLTHA, Ministry of Public Health, Yaoundé, Cameroon
| | - Flobert Njiokou
- Laboratory of Molecular Biology, Department of Animal Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé (UJLoG), UFR Environnement-Santé, Laboratoire des Interactions Hôte- Microorganismes-Environnement et Evolution (LIHME) Daloa, Côte d’Ivoire
| | - Pythagore Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Bio-security, Makerere University, Kampala, Uganda
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | |
Collapse
|
16
|
Wong R, Lénárt N, Hill L, Toms L, Coutts G, Martinecz B, Császár E, Nyiri G, Papaemmanouil A, Waisman A, Müller W, Schwaninger M, Rothwell N, Francis S, Pinteaux E, Denés A, Allan SM. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav Immun 2019; 76:126-138. [PMID: 30453020 PMCID: PMC6363965 DOI: 10.1016/j.bbi.2018.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.
Collapse
Affiliation(s)
- Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Nikolett Lénárt
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Laura Hill
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Lauren Toms
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Graham Coutts
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Bernadett Martinecz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Eszter Császár
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Athina Papaemmanouil
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | - Nancy Rothwell
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Sheila Francis
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, S10 2RX Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Adam Denés
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK.
| |
Collapse
|
17
|
Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B, Witcher KG, Wang Y, Negray CE, Vegesna RS, Sheridan JF, Godbout JP, Robson MJ, Blakely RD, Popovich PG, Bilbo SD, Quan N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity 2019; 50:317-333.e6. [PMID: 30683620 DOI: 10.1016/j.immuni.2018.12.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel P Nemeth
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Yufen Wang
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christina E Negray
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rekha S Vegesna
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Pflieger FJ, Hernandez J, Schweighöfer H, Herden C, Rosengarten B, Rummel C. The role of neutrophil granulocytes in immune-to-brain communication. Temperature (Austin) 2018; 5:296-307. [PMID: 30574524 DOI: 10.1080/23328940.2018.1538598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022] Open
Abstract
Immune-to-brain communication has been studied in a variety of experimental models. Crucial insights into signalling and mechanisms were previously revealed in studies investigating fever induction pathways. The scientific community has primarily focused on neuronal and humoral pathways in the manifestation of this response. Emerging evidence has now shown that immune-to-brain signalling via immune cells is pivotal for normal brain function and brain pathology. The present manuscript aims to provide a brief overview on the current understanding of how immune cells signal to the brain. Insights are summarized on the potential physiological significance of some immune cells signalling from the periphery to the brain. A particular focus is laid on the role of neutrophil granulocytes. As such, IL-1β expressing neutrophil granulocytes have been shown to transfer inflammatory information to the brain and contribute to prolonged behavioural changes due to septic encephalopathy in rats during severe systemic inflammation induced by the bacterial component and TLR4 agonist lipopolysaccharide. Modulation of immune cell recruitment to the brain is discussed by various confounding factors including sleep, exercise, the nutritional status e.g. obesity, leptin and omega 3 fatty acids, and psychological or inflammatory stressors. The physiological significance of immune cell mediated communication between the immune system and the brain is highlighted by the fact that systemic inflammatory insults can exacerbate ongoing brain pathologies via immune cell trafficking. New insights into mechanisms and mediators of immune cell mediated immune-to-brain communication are important for the development of new therapeutic strategies and the better understanding of existing ones. Abbreviations: ACTH: adrenocorticotropic hormone; BBB: blood-brain barrier; BBI: blood-brain interface; CD: cluster of differentiation; CINC: cytokine-induced neutrophil chemoattractant; CRH: corticotropin releasing hormone; CVOs: circumventricular organs; CXCR: chemokine receptor; DAPI: 40:6-diamidino-2-phenylindole dilactate; DHA: docosahexaenoid acid; ICAM: intracellular adhesion molecule; IL: interleukin; i.p.: intraperitoneal; i.v.: intravenous; KC: keratinocytes-derived chemokine; LPS: lipopolysaccharide; MIP: macrophage inflammatory protein; MS: multiple sclerosis; NFκB: nuclear factor kappa B; NF-IL6: nuclear factor IL-6; PCTR: protectin conjugates in tissue regeneration; PG: prostaglandin; p.i.: post injection; PVN: paraventricular nucleus; ra: receptor antagonist; STAT3: signal transducer and activator of transcription 3; TIMP: tissue inhibitors of metalloproteinases; TLR: toll-like receptor; TNFα: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Hanna Schweighöfer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Abstract
A rapidly growing body of evidence supports the premise that neuroinflammation plays an important role in initiating and sustaining seizures in a range of pediatric epilepsies. Clinical and experimental evidence indicate that neuroinflammation is both an outcome and a contributor to seizures. In this manner, seizures that arise from an initial insult (e.g. infection, trauma, genetic mutation) contribute to an inflammatory response that subsequently promotes recurrent seizures. This cyclical relationship between seizures and neuroinflammation has been described as a 'vicious cycle.' Studies of human tissue resected for surgical treatment of refractory epilepsy have reported activated inflammatory and immune signaling pathways, while animal models have been used to demonstrate that key inflammatory mediators lead to increased seizure susceptibility. Further characterization of the molecular mechanisms involved in this cycle may ultimately enable the development of new therapeutic approaches for the treatment of epilepsy. In this brief review we focus on key inflammatory mediators that have become prominent in recent literature of epilepsy, including newly characterized microRNAs and their potential role in neuroinflammatory signaling.
Collapse
Affiliation(s)
- Shruti Bagla
- Division of Hematology/Oncology, Department of Pediatrics, Room 3L22, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201, USA
| | - Alan A Dombkowski
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Room 3L22, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201, USA
| |
Collapse
|
20
|
Jin Y, Wei F, Dai X, Qi M, Ma Y. Anti-inflammatory effect of 4-methylcyclopentadecanone in rats submitted to ischemic stroke. Fundam Clin Pharmacol 2018; 32:270-278. [PMID: 29344983 DOI: 10.1111/fcp.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/31/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the anti-inflammatory effect of 4-methylcyclopentadecanone (4-MCPC) in rats suffering from a cerebral ischemia/reperfusion (I/R) injury. In this study, the focal cerebral ischemia in rats was induced by middle cerebral artery occlusion (MCAO) for 2 h, and the rats were treated with 4-MCPC (8 mg/kg) just 0.5 h before reperfusion. The ischemic infarct volume was recorded 24 h after the MCAO. In addition, myeloperoxidase (MPO) activity and TNF-α and IL-1β levels in the ischemic cerebral cortex were determined by ELISA, while nuclear translocation of NF-κB p65 subunit and expression of p-IκBα were investigated by Western blotting. Our results showed that 4-MCPC treatment decreased infarct volume significantly, compared with I/R group (16.8%±7.5% vs. 39.7%±10.9%); it reduced MPO activity (0.43 ± 0.10 vs. 1.00 ± 0.51 U/g) and expression levels of TNF-α (18.90 ± 3.65 vs. 35.87 ± 4.87 ng/g) and IL-1β (1.68 ± 0.23 vs. 2.67 ± 0.38 ng/g) in ischemic brain tissues of rats. Further study revealed that 4-MCPC treatment markedly reduced nuclear translocation of NF-κB p65 subunit and expression of p-IκBα in ischemic cerebral cortex. Taken together, our results suggest that 4-MCPC protects against cerebral I/R injury and displays anti-inflammatory actions through inhibition of the NF-κB signal pathway.
Collapse
Affiliation(s)
- Yan Jin
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China.,Shandong Freda Pharmaceutical Group Co., Ltd., 250101, Jinan, China
| | - Fang Wei
- Weifang People's Hospital, 261000, Weifang, China
| | - Xiaoli Dai
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China
| | - Min Qi
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, 250101, Jinan, China
| |
Collapse
|
21
|
Magalhães TNC, Weiler M, Teixeira CVL, Hayata T, Moraes AS, Boldrini VO, dos Santos LM, de Campos BM, de Rezende TJR, Joaquim HPG, Talib LL, Forlenza OV, Cendes F, Balthazar MLF. Systemic Inflammation and Multimodal Biomarkers in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Mol Neurobiol 2017; 55:5689-5697. [DOI: 10.1007/s12035-017-0795-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022]
|
22
|
Addington CP, Roussas A, Dutta D, Stabenfeldt SE. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights 2015; 10:43-60. [PMID: 25983552 PMCID: PMC4429653 DOI: 10.4137/bmi.s20062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) affects 5.3 million Americans annually. Despite the many long-term deficits associated with TBI, there currently are no clinically available therapies that directly address the underlying pathologies contributing to these deficits. Preclinical studies have investigated various therapeutic approaches for TBI: two such approaches are stem cell transplantation and delivery of bioactive factors to mitigate the biochemical insult affiliated with TBI. However, success with either of these approaches has been limited largely due to the complexity of the injury microenvironment. As such, this review outlines the many factors of the injury microenvironment that mediate endogenous neural regeneration after TBI and the corresponding bioengineering approaches that harness these inherent signaling mechanisms to further amplify regenerative efforts.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Adam Roussas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dipankar Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
23
|
Durrant DM, Daniels BP, Klein RS. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:4095-106. [PMID: 25200953 DOI: 10.4049/jimmunol.1401192] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immune cell entry into the virally infected CNS is vital for promoting viral clearance yet may contribute to neuropathology if not rigorously regulated. We previously showed that signaling through IL-1R1 is critical for effector T cell reactivation and virologic control within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1(-/-) mice also display increased parenchymal penetration of CD8(+) T cells despite lack of CD4-mediated full activation, suggesting dysregulation of molecular components of CNS immune privilege. In this study, we show that IL-1 signaling regulates the CNS entry of virus-specific lymphocytes, promoting protective immune responses to CNS viral infections that limit immunopathology. Analysis of blood-brain barrier function in the WNV-infected IL-1R1(-/-) mice revealed no alterations in permeability. However, parenchymal proinflammatory chemokine expression, including CCL2, CCL5, and CXCL10, was significantly upregulated, whereas microvasculature CXCL12 expression was significantly decreased in the absence of IL-1 signaling. We show that during WNV infection, CD11b(+)CD45(hi) infiltrating cells (macrophages) are the primary producers of IL-1β within the CNS and, through the use of an in vitro blood-brain barrier model, that IL-1β promotes CXCR4-mediated T cell adhesion to brain microvasculature endothelial cells. Of interest, IFNγ(+) and CD69(+) WNV-primed T cells were able to overcome CXCL12-mediated adhesion via downregulation of CXCR4. These data indicate that infiltrating IL-1β-producing leukocytes contribute to cellular interactions at endothelial barriers that impart protective CNS inflammation by regulating the parenchymal entry of CXCR4(+) virus-specific T cells during WNV infection.
Collapse
Affiliation(s)
- Douglas M Durrant
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian P Daniels
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110; and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
24
|
Quan N. In-depth conversation: spectrum and kinetics of neuroimmune afferent pathways. Brain Behav Immun 2014; 40:1-8. [PMID: 24566385 PMCID: PMC6088807 DOI: 10.1016/j.bbi.2014.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/14/2023] Open
Abstract
Since my last review on neuroimmune communication afferents in 2008, this area has witnessed substantial growth. At a basic science level, numerous new and exciting phenomena have been described, adding both depth and complexity to the crosstalk between the immune system and the nervous system. At a translational level, accumulating evidence indicates neuroimmune interaction could be a contributing factor for many disease states, as well as an effective physiological mechanism that coordinates the activities of these two systems in healthy individuals or during tissue distress. Furthermore, new evidence suggests neuroimmune interactions are inherently dynamic: varying activities in either the nervous system or the immune system could impact interactions between them. In this review I will attempt to integrate multifarious, and sometimes disparate, findings into a modified conceptual framework that describes the concordance of neuroimmune communication through the cooperative connection between these two systems and the dysfunction that may arise when their inappropriate crosstalk occurs.
Collapse
Affiliation(s)
- Ning Quan
- Institute for Behavior Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 2014; 5:143. [PMID: 24778633 PMCID: PMC3985001 DOI: 10.3389/fimmu.2014.00143] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/19/2014] [Indexed: 01/03/2023] Open
Abstract
The nervous and immune systems have long been considered as compartments that perform separate and different functions. However, recent clinical, epidemiological, and experimental data have suggested that the pathogenesis of several immune-mediated disorders, such as multiple sclerosis (MS), might involve factors, hormones, and neural mediators that link the immune and nervous system. These molecules are members of the same superfamily, which allow the mutual and bi-directional neural-immune interaction. More recently, the discovery of leptin, one of the most abundant adipocyte-derived hormones that control food intake and metabolism, has suggested that nutritional/metabolic status, acting at central level, can control immune self-tolerance, since it promotes experimental autoimmune encephalomyelitis, an animal model of MS. Here, we summarize the most recent advances and the key players linking the central nervous system, immune tolerance, and the metabolic status. Understanding this coordinated interaction may pave the way for novel therapeutic approaches to increase host defense and suppress immune-mediated disorders.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy ; Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia , Roma , Italy
| | - Gianni Marone
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy ; Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base e Cliniche, Università di Napoli "Federico II" , Napoli , Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno , Salerno , Italy ; IRCCS Multimedica , Milano , Italy
| |
Collapse
|
26
|
Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 2014. [PMID: 24778633 DOI: 10.3389/fimmu.2014.00143/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nervous and immune systems have long been considered as compartments that perform separate and different functions. However, recent clinical, epidemiological, and experimental data have suggested that the pathogenesis of several immune-mediated disorders, such as multiple sclerosis (MS), might involve factors, hormones, and neural mediators that link the immune and nervous system. These molecules are members of the same superfamily, which allow the mutual and bi-directional neural-immune interaction. More recently, the discovery of leptin, one of the most abundant adipocyte-derived hormones that control food intake and metabolism, has suggested that nutritional/metabolic status, acting at central level, can control immune self-tolerance, since it promotes experimental autoimmune encephalomyelitis, an animal model of MS. Here, we summarize the most recent advances and the key players linking the central nervous system, immune tolerance, and the metabolic status. Understanding this coordinated interaction may pave the way for novel therapeutic approaches to increase host defense and suppress immune-mediated disorders.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche , Napoli , Italy ; Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia , Roma , Italy
| | - Gianni Marone
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II" , Napoli , Italy ; Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base e Cliniche, Università di Napoli "Federico II" , Napoli , Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno , Salerno , Italy ; IRCCS Multimedica , Milano , Italy
| |
Collapse
|
27
|
Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 2013; 66:80-101. [PMID: 24335193 PMCID: PMC3880465 DOI: 10.1124/pr.113.008144] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Comorbid depression and chronic pain are highly prevalent in individuals suffering from physical illness. Here, we critically examine the possibility that inflammation is the common mediator of this comorbidity, and we explore the implications of this hypothesis. Inflammation signals the brain to induce sickness responses that include increased pain and negative affect. This is a typical and adaptive response to acute inflammation. However, chronic inflammation induces a transition from these typical sickness behaviors into depression and chronic pain. Several mechanisms can account for the high comorbidity of pain and depression that stem from the precipitating inflammation in physically ill patients. These mechanisms include direct effects of cytokines on the neuronal environment or indirect effects via downregulation of G protein-coupled receptor kinase 2, activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase that generates neurotropic kynurenine metabolites, increased brain extracellular glutamate, and the switch of GABAergic neurotransmission from inhibition to excitation. Despite the existence of many neuroimmune candidate mechanisms for the co-occurrence of depression and chronic pain, little work has been devoted so far to critically assess their mediating role in these comorbid symptoms. Understanding neuroimmune mechanisms that underlie depression and pain comorbidity may yield effective pharmaceutical targets that can treat both conditions simultaneously beyond traditional antidepressants and analgesics.
Collapse
Affiliation(s)
- A K Walker
- Department of Symptom Research Laboratory of Neuroimmunology of Cancer-Related Symptoms at the Institute of Biosciences and Technology, Texas A&M Health Sciences Center, 2121 W. Holcombe Boulevard, Room 1025, Houston, TX 77030.
| | | | | | | |
Collapse
|
28
|
Pascual-García M, Rué L, León T, Julve J, Carbó JM, Matalonga J, Auer H, Celada A, Escolà-Gil JC, Steffensen KR, Pérez-Navarro E, Valledor AF. Reciprocal negative cross-talk between liver X receptors (LXRs) and STAT1: effects on IFN-γ-induced inflammatory responses and LXR-dependent gene expression. THE JOURNAL OF IMMUNOLOGY 2013; 190:6520-32. [PMID: 23686490 DOI: 10.4049/jimmunol.1201393] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Liver X receptors (LXRs) exert key functions in lipid homeostasis and in control of inflammation. In this study we have explored the impact of LXR activation on the macrophage response to the endogenous inflammatory cytokine IFN-γ. Transcriptional profiling studies demonstrate that ∼38% of the IFN-γ-induced transcriptional response is repressed by LXR activation in macrophages. LXRs also mediated inhibitory effects on selected IFN-γ-induced genes in primary microglia and in a model of IFN-γ-induced neuroinflammation in vivo. LXR activation resulted in reduced STAT1 recruitment to the promoters tested in this study without affecting STAT1 phosphorylation. A closer look into the mechanism revealed that SUMOylation of LXRs, but not the presence of nuclear receptor corepressor 1, was required for repression of the NO synthase 2 promoter. We have also analyzed whether IFN-γ signaling exerts reciprocal effects on LXR targets. Treatment with IFN-γ inhibited, in a STAT1-dependent manner, the LXR-dependent upregulation of selective targets, including ATP-binding cassette A1 (ABCA1) and sterol response element binding protein 1c. Downregulation of ABCA1 expression correlated with decreased cholesterol efflux to apolipoprotein A1 in macrophages stimulated with IFN-γ. The inhibitory effects of IFN-γ on LXR signaling did not involve reduced binding of LXR/retinoid X receptor heterodimers to target gene promoters. However, overexpression of the coactivator CREB-binding protein/p300 reduced the inhibitory actions of IFN-γ on the Abca1 promoter, suggesting that competition for CREB-binding protein may contribute to STAT1-dependent downregulation of LXR targets. The results from this study suggest an important level of bidirectional negative cross-talk between IFN-γ/STAT1 and LXRs with implications both in the control of IFN-γ-mediated immune responses and in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Mónica Pascual-García
- Nuclear Receptor Group, Department of Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Murta V, Pitossi FJ, Ferrari CC. CNS response to a second pro-inflammatory event depends on whether the primary demyelinating lesion is active or resolved. Brain Behav Immun 2012; 26:1102-15. [PMID: 22824737 DOI: 10.1016/j.bbi.2012.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/16/2022] Open
Abstract
Interleukin-1β (IL-1β) is considered to be one of the most important mediators in the pathogenesis of inflammatory diseases, particularly in neurodegenerative diseases such as multiple sclerosis (MS). MS is a chronic inflammatory disease characterized by demyelination and remyelination events, with unpredictable relapsing and remitting episodes that seldom worsen MS lesions. We proposed to study the effect of a unique component of the inflammatory process, IL-1β, and evaluate its effect in repeated episodes, similar to the relapsing-remitting MS pathology. Using adenoviral vectors, we developed a model of focal demyelination/remyelination triggered by the chronic expression of IL-1β. The long-term expression of IL-1β in the striatum produced blood-brain barrier (BBB) breakdown, demyelination, microglial/macrophage activation, and neutrophil infiltration but no overt neuronal degeneration. This demyelinating process was followed by complete remyelination of the area. This simple model allows us to study demyelination and remyelination independently of the autoimmune and adaptive immune components. Re-exposure to this cytokine when the first inflammatory response was still unresolved generated a lesion with decreased neuroinflammation, demyelination, axonal injury and glial response. However, a second long-term expression of IL-1β when the first lesion was resolved could not be differentiated from the first event. In this study, we demonstrated that the response to a second inflammatory stimulus varies depending on whether the initial lesion is still active or has been resolved. Considering that anti-inflammatory treatments have shown little improvement in MS patients, studies about the behavior of specific components of the inflammatory process should be taken into account to develop new therapeutic tools.
Collapse
Affiliation(s)
- Veronica Murta
- Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | | | | |
Collapse
|
30
|
Ferrari CC, Tarelli R. Parkinson's disease and systemic inflammation. PARKINSONS DISEASE 2011; 2011:436813. [PMID: 21403862 PMCID: PMC3049348 DOI: 10.4061/2011/436813] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/07/2011] [Indexed: 12/20/2022]
Abstract
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
Collapse
Affiliation(s)
- Carina C Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | | |
Collapse
|
31
|
Li Q, Powell N, Zhang H, Belevych N, Ching S, Chen Q, Sheridan J, Whitacre C, Quan N. Endothelial IL-1R1 is a critical mediator of EAE pathogenesis. Brain Behav Immun 2011; 25:160-7. [PMID: 20854891 PMCID: PMC2991628 DOI: 10.1016/j.bbi.2010.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022] Open
Abstract
Interleukin-1 (IL-1) has been implicated in the disease progression of multiple sclerosis (MS). In the animal model of MS, experimental autoimmune encephalomyelitis (EAE), the induction of disease is significantly attenuated in mice lacking the type I IL-1 receptor (IL-1R1). In this study, we created a transgenic mouse (eIL-1R1 kd) in which IL-1R1 expression is knocked down specifically in endothelial cells. Induction of EAE in eIL-1R1 kd mice results in a decrease in incidence, severity and delayed onset of EAE. In addition, eIL-1R1 kd mice show significant decrease in VCAM-1 expression and diminished CD45(+) and CD3(+) infiltrating leukocytes in the spinal cord in animals challenged with EAE. Further, IL-1 and IL-23 stimulate IL-17 production by splenocytes from both wild type and the eIL-1R1 kd animals. Similarly, IL-1 and IL-23 synergistically stimulate splenocytes proliferation in these two strains of animals. After immunization with MOG(79-96), although eIL-1R1 kd mice displayed greatly reduced clinical scores, their splenocytes produced IL-17 and proliferated in response to a second MOG challenge, similar to wild type animals. These findings indicate a critical role for endothelial IL-1R1 in mediating the pathogenesis of EAE, and describe a new model that can be used to study endothelial IL-1R1.
Collapse
Affiliation(s)
- Qiming Li
- Corresponding author. Tel: 614-292-1657; fax: 614-247-6945. (N. Quan)
| | - Nicole Powell
- Corresponding author. Tel: 614-292-1657; fax: 614-247-6945. (N. Quan)
| | | | | | | | | | | | | | - Ning Quan
- Corresponding author. Tel: 614-292-1657; fax: 614-247-6945. (N. Quan)
| |
Collapse
|
32
|
Kim JE, Ryu HJ, Yeo SI, Kang TC. P2X7 receptor regulates leukocyte infiltrations in rat frontoparietal cortex following status epilepticus. J Neuroinflammation 2010; 7:65. [PMID: 20939924 PMCID: PMC2964655 DOI: 10.1186/1742-2094-7-65] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the present study, we investigated the roles of P2X7 receptor in recruitment and infiltration of neutrophil during epileptogenesis in rat epilepsy models. METHODS Status epilepticus (SE) was induced by pilocarpine in rats that were intracerebroventricularly infused with either saline, 2',3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP), or IL-1Ra (interleukin 1 receptor antagonist) prior to SE induction. Thereafter, we performed immunohistochemical studies for myeloperoxidase (MPO), CD68, interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2). RESULTS In saline-infused animals, neutrophils and monocytes were observed in frontoparietal cortex (FPC) at 1 day and 2 days after SE, respectively. In BzATP-infused animals, infiltrations of neutrophils and monocytes into the FPC were detected at 12 hr and 1 day after SE, respectively. In OxATP-infused animals, neutrophils and monocytes infiltrated into the FPC at 1 day and 2 days after SE, respectively. However, the numbers of both classes of leukocytes were significantly lower than those observed in the saline-infused group. In piriform cortex (PC), massive leukocyte infiltration was detected in layers III/IV of saline-infused animals at 1-4 days after induction of SE. BzATP or OxATP infusion did not affect neutrophil infiltration in the PC. In addition, P2X7 receptor-mediated MCP-1 (released from microglia)/MIP-2 (released from astrocytes) regulation was related to SE-induced leukocyte infiltration in an IL-1β-independent manner. CONCLUSIONS Our findings suggest that selective regulation of P2X7 receptor-mediated neutrophil infiltration may provide new therapeutic approaches to SE or epilepsy.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | - Hea Jin Ryu
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | - Seong-Il Yeo
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| |
Collapse
|
33
|
Drevets DA, Dillon MJ, Schawang JE, Stoner JA, Leenen PJM. IFN-gamma triggers CCR2-independent monocyte entry into the brain during systemic infection by virulent Listeria monocytogenes. Brain Behav Immun 2010; 24:919-29. [PMID: 20211719 DOI: 10.1016/j.bbi.2010.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/17/2010] [Accepted: 02/28/2010] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes (Lm) is a bacterial pathogen that infects the brain via parasitized monocytes. CCR2 is important for monocyte migration into the brain after it is infected, but the degree of CCR2 involvement in monocyte migration to the CNS during systemic infection is less clear. Our recent data demonstrate that systemic infection with non-neuroinvasive DeltaactA Lm mutants triggers IFN-gamma-dependent brain influxes of Ly-6C(high) monocytes. Studies presented here tested the extent to which CCR2 and IFN-gamma are essential for monocyte migration to the brain during systemic infection with virulent Lm. For this, we assessed expression of monocyte-attracting chemokines in brains of normal and IFN-gamma mice during infection and tested the degree to which brain influxes of Ly-6C(high) monocytes were inhibited in chemokine- and chemokine receptor-deficient mice. In normal mice, systemic infection induced up-regulation of CCR2-binding (CCL2, CCL7, CCL8, CCL12) and CXCR3-binding chemokines (CXCL9, CXCL10). IFN-gamma mice had negligible mRNA and protein expression of CXCR3-binding chemokines, whereas expression of CCR2-binding chemokines was reduced, but remained significant. In addition, infection-triggered monocyte influxes were significantly reduced in IFN-gamma mice. Remarkably, brain monocyte influxes were normal during infection of CXCR3-, CCL2-, CCR1-, CCR5-, and CX3CR1-deficient mice. Influxes were transiently reduced in CCR2(-/-) mice, corresponding with retention of monocytes in the bone marrow but this was eventually overcome during infection. These data show that IFN-gamma is critical for triggering brain influxes of Ly-6C(high) monocytes during systemic infection with virulent Lm. This initial burst of monocyte migration is largely independent of individual chemokine receptors.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.
| | | | | | | | | |
Collapse
|
34
|
Rummel C, Inoue W, Poole S, Luheshi GN. Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 2010; 15:523-34. [PMID: 19773811 DOI: 10.1038/mp.2009.98] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The appetite suppressing hormone leptin has emerged as an important modulator of immune function and is now considered to be a critical link between energy balance and host defense responses to pathogens. These 'adaptive' responses can, in situations of severe and sustained systemic inflammation, lead to adverse effects including brain damage that is partly mediated by neutrophil recruitment into the brain. We examined the contribution of leptin to this process in leptin-deficient (ob/ob), -resistant (db/db) and wild-type (WT) mice injected intraperitoneally with a septic dose of lipopolysaccharide (LPS). This treatment induced a dramatic increase in the number of neutrophils entering the brain of WT mice, an effect that was almost totally abolished in the mutant mice and correlated with a significant reduction in the mRNA levels of interleukin-1beta, intracellular adhesion molecule-1 and neutrophil-specific chemokines. These effects were reversed with leptin replenishment in ob/ob mice leading to recovery of neutrophil recruitment into the brain. Moreover, 48 h food deprivation in WT mice, which decreased circulating leptin levels, attenuated the LPS-induced neutrophil recruitment as did a single injection of an anti-leptin antiserum 4 h before LPS treatment in WT mice. These results provide the first demonstration that leptin has a critical role in leukocyte recruitment to the brain following severe systemic inflammation with possible implications for individuals with altered leptin levels such as during obesity or starvation.
Collapse
Affiliation(s)
- C Rummel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
35
|
Mathieu P, Battista D, Depino A, Roca V, Graciarena M, Pitossi F. The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 2009; 112:1368-85. [PMID: 20028453 DOI: 10.1111/j.1471-4159.2009.06548.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The differentiation of neural stem cells toward a neuronal phenotype is determined by the extracellular and intracellular factors that form the neurogenic niche. In this review, we discuss the available data on the functional role of inflammation and in particular, pro- and anti-inflammatory cytokines, on neuronal differentiation from endogenous and transplanted neural stem/progenitor cells. In addition, we discuss the role of microglial cell activation on these processes and the fact that microglial cell activation is not univocally associated with a pro-inflammatory milieu. We conclude that brain cytokines could be regarded as part of the endogenous neurogenic niche. In addition, we propose that accumulating evidence suggests that pro-inflammatory cytokines have a negative effect on neuronal differentiation, while anti-inflammatory cytokines exert an opposite effect. The clarification of the functional role of cytokines on neuronal differentiation will be relevant not only to better understand adult neurogenesis, but also to envisage complementary treatments to modulate cytokine action that could increase the therapeutic benefit of future progenitor/stem cell-based therapies.
Collapse
Affiliation(s)
- Patricia Mathieu
- Institute Leloir Foundation-IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
36
|
Hainard A, Tiberti N, Robin X, Lejon V, Ngoyi DM, Matovu E, Enyaru JC, Fouda C, Ndung'u JM, Lisacek F, Müller M, Turck N, Sanchez JC. A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 2009; 3:e459. [PMID: 19554086 PMCID: PMC2696178 DOI: 10.1371/journal.pntd.0000459] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite. METHODS Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and 5 WBC/microL) patients. The concentration of H-FABP, GSTP-1 and S100beta in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1beta, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-gamma, TNF-alpha, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays. RESULTS CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity. CONCLUSION This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.
Collapse
Affiliation(s)
- Alexandre Hainard
- Biomedical Proteomics Research Group, Medical University Centre, Geneva, Switzerland
| | - Natalia Tiberti
- Biomedical Proteomics Research Group, Medical University Centre, Geneva, Switzerland
| | - Xavier Robin
- Biomedical Proteomics Research Group, Medical University Centre, Geneva, Switzerland
| | - Veerle Lejon
- Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Enock Matovu
- Department of Veterinary Parasitology and Microbiology, Faculty of Science, Makerere University, Kampala, Uganda
| | - John Charles Enyaru
- Department of Biochemistry, Faculty of Science, Makerere University, Kampala, Uganda
| | - Catherine Fouda
- Biomedical Proteomics Research Group, Medical University Centre, Geneva, Switzerland
| | | | - Frédérique Lisacek
- Swiss Institute of Bioinformatics, Medical University Centre, Geneva, Switzerland
| | - Markus Müller
- Swiss Institute of Bioinformatics, Medical University Centre, Geneva, Switzerland
| | - Natacha Turck
- Biomedical Proteomics Research Group, Medical University Centre, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Biomedical Proteomics Research Group, Medical University Centre, Geneva, Switzerland
| |
Collapse
|
37
|
Levy MR. Cancer Fatigue: A Neurobiological Review for Psychiatrists. PSYCHOSOMATICS 2008; 49:283-91. [DOI: 10.1176/appi.psy.49.4.283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Quan N. Immune-to-brain signaling: how important are the blood-brain barrier-independent pathways? Mol Neurobiol 2008; 37:142-52. [PMID: 18563639 DOI: 10.1007/s12035-008-8026-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/09/2008] [Indexed: 10/21/2022]
Abstract
A conceptual obstacle for understanding immune-to-brain signaling is the issue of the blood-brain barrier (BBB). In the last 30 years, several pathways have been investigated to address the question of how peripheral immune signals are transmitted into the brain. These pathways can be categorized into two types: BBB-dependent pathways and BBB-independent pathways. BBB-dependent pathways involve the BBB as a relay station or porous barrier, whereas BBB-independent pathways use neuronal routes that bypass the BBB. Recently, a complete BBB-dependent ascending pathway for immune-to-brain signaling has been described. Details of BBB-independent pathways are still under construction. In this review, I will summarize the current progress in unraveling immune-to-brain signaling pathways. In addition, I will provide a critical analysis of the literature to point to areas where our knowledge of the immunological afferent signaling to the central nervous system is still sorely lacking.
Collapse
Affiliation(s)
- Ning Quan
- Institute of Behavior Medicine, Ohio State University, 4179 Postle Hall, 305 W. 12th Ave, Columbus, OH 43210-1094, USA.
| |
Collapse
|
39
|
Shaftel SS, Griffin WST, O'Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008; 5:7. [PMID: 18302763 PMCID: PMC2335091 DOI: 10.1186/1742-2094-5-7] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/26/2008] [Indexed: 12/15/2022] Open
Abstract
Elevation of the proinflammatory cytokine Interleukin-1 (IL-1) is an integral part of the local tissue reaction to central nervous system (CNS) insult. The discovery of increased IL-1 levels in patients following acute injury and in chronic neurodegenerative disease laid the foundation for two decades of research that has provided important details regarding IL-1's biology and function in the CNS. IL-1 elevation is now recognized as a critical component of the brain's patterned response to insults, termed neuroinflammation, and of leukocyte recruitment to the CNS. These processes are believed to underlie IL-1's function in the setting of acute brain injury, where it has been ascribed potential roles in repair as well as in exacerbation of damage. Explorations of IL-1's role in chronic neurodegenerative disease have mainly focused on Alzheimer disease (AD), where indirect evidence has implicated it in disease pathogenesis. However, recent observations in animal models challenge earlier assumptions that IL-1 elevation and resulting neuroinflammatory processes play a purely detrimental role in AD, and prompt a need for new characterizations of IL-1 function. Potentially adaptive functions of IL-1 elevation in AD warrant further mechanistic studies, and provide evidence that enhancement of these effects may help to alleviate the pathologic burden of disease.
Collapse
Affiliation(s)
- Solomon S Shaftel
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | | | |
Collapse
|
40
|
Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion. J Neurosci 2008; 28:1649-58. [PMID: 18272685 DOI: 10.1523/jneurosci.5205-07.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-kappaB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1beta were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-kappaB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.
Collapse
|
41
|
Conti B, Tabarean I, Sanchez-Alavez M, Davis C, Brownell S, Behrens M, Bartfai T. Cytokine Receptors in the Brain. CYTOKINES AND THE BRAIN 2008. [DOI: 10.1016/s1567-7443(07)10002-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Ching S, Zhang H, Belevych N, He L, Lai W, Pu XA, Jaeger LB, Chen Q, Quan N. Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J Neurosci 2007; 27:10476-86. [PMID: 17898219 PMCID: PMC6673171 DOI: 10.1523/jneurosci.3357-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 12/22/2022] Open
Abstract
Interleukin-1 (IL-1) has been implicated as a critical mediator of neuroimmune communication. In the brain, the functional receptor for IL-1, type 1 IL-1 receptor (IL-1R1), is localized primarily to the endothelial cells. In this study, we created an endothelial-specific IL-1R1 knockdown model to test the role of endothelial IL-1R1 in mediating the effects of IL-1. Neuronal activation in the hypothalamus was measured by c-fos expression in the paraventricular nucleus and the ventromedial preoptic area. In addition, two specific sickness symptoms, febrile response and reduction of locomotor activity, were studied. Intracerebroventricular injection of IL-1 induced leukocyte infiltration into the CNS, activation of hypothalamic neurons, fever, and reduced locomotor activity in normal mice. Endothelial-specific knockdown of IL-1R1 abrogated all these responses. Intraperitoneal injection of IL-1 also induced neuronal activation in the hypothalamus, fever, and reduced locomotor activity, without inducing leukocyte infiltration into the brain. Endothelial-specific knockdown of IL-1R1 suppressed intraperitoneal IL-1-induced fever, but not the induction of c-fos in hypothalamus. When IL-1 was given intravenously, endothelial knockdown of IL-1R1 abolished intravenous IL-1-induced CNS activation and the two monitored sickness symptoms. In addition, endothelial-specific knockdown of IL-1R1 blocked the induction of cyclooxygenase-2 expression induced by all three routes of IL-1 administration. These results show that the effects of intravenous and intracerebroventricular IL-1 are mediated by endothelial IL-1R1, whereas the effects of intraperitoneal IL-1 are partially dependent on endothelial IL-1R1.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-an Pu
- Center for Neurobiology, Ohio State University, Columbus, Ohio 43210-1094, and
| | - Laura B. Jaeger
- Department of Pharmacology and Physiology, St. Louis University, St. Louis, Missouri 63106
| | | | | |
Collapse
|
43
|
Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O'Banion MK. Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 2007; 27:9301-9. [PMID: 17728444 PMCID: PMC6673122 DOI: 10.1523/jneurosci.1418-07.2007] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The proinflammatory cytokine interleukin-1beta (IL-1beta) plays a significant role in leukocyte recruitment to the CNS. Although acute effects of IL-1beta signaling in the mouse brain have been well described, studies elucidating the downstream effects of sustained upregulation have been lacking. Using the recently described IL-1beta(XAT) transgenic mouse model, we triggered sustained unilateral hippocampal overexpression of IL-1beta. Transgene induction led to blood-brain barrier leakage, induction of MCP-1 (monocyte chemoattractant protein 1) (CCL2), ICAM-1 (intercellular adhesion molecule 1), and dramatic infiltration of CD45-positive leukocytes comprised of neutrophils, T-cells, macrophages, and dendritic cells. Despite prolonged cellular infiltration of the hippocampus, there was no evidence of neuronal degeneration. Surprisingly, neutrophils were observed in the hippocampal parenchyma as late as 1 year after transgene induction. Their presence was coincident with upregulation of the potent neutrophil chemotactic chemokines KC (keratinocyte-derived chemokine) (CXCL1) and MIP-2 (macrophage inflammatory protein 2) (CXCL2). Knock-out of their sole receptor CXCR2 abrogated neutrophil infiltration but failed to reduce leakage of the blood-brain barrier.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Kerry O'Banion
- Departments of Neurobiology and Anatomy
- Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
44
|
Ching S, Zhang H, Chen Q, Quan N. Differential expression of extracellular matrix and adhesion molecule genes in the brain of juvenile versus adult mice in responses to intracerebroventricular administration of IL-1. Neuroimmunomodulation 2007; 14:46-56. [PMID: 17700040 DOI: 10.1159/000107288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 03/01/2007] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Intracerebroventricular (ICV) injection of interleukin-1 (IL-1) stimulates the recruitment of leukocytes into the central nervous system at different time points in juvenile versus adult mice. Our results showed that leukocytes entered brain parenchyma at 8 and 16 h after injection in juvenile and adult mice, respectively. This study compares the differential gene expression patterns of extracellular matrix and adhesion molecules in the brain of juvenile and adult mice. METHODS We analyzed these gene expressions in mice brains by microarray and real-time PCR at 2 and 8 h after ICV IL-1. RESULTS After ICV IL-1, the following genes were significantly upregulated in both juvenile and adult mice: LAMbeta1-1, MMP17, TGFbeta, THBS3 and VCAM1 were upregulated at 2 h after injection; LAMbeta1-1 and TGFbeta were upregulated at 8 h. Additional changes were found in adult mice only: CNTN1, ECM1, ICAM1 and LAMalpha4 were upregulated at 2 h after injection; COL4alpha1, MMP3 and VCAM1 were upregulated at 8 h; TIMP4 was downregulated. Comparing juvenile and adult mice, real-time PCR analysis showed that there was more induction of TGFbeta at 8 h and a stronger downregulation of TIMP4 at 2 h after injection in juvenile mice. Higher expression of MMP17 was found in juvenile mice, compared to adult mice, at both 2 and 8 h after injection. CONCLUSIONS These data show distinct expression patterns of molecules related to the extracellular matrix and adhesion molecules in juvenile versus adult mice, and suggest that increased expression of MMP17 and TGFbeta and decreased expression of TIMP4 may contribute to the accelerated recruitment of leukocytes into the central nervous system in juvenile animals.
Collapse
Affiliation(s)
- San Ching
- Department of Oral Biology, Ohio State University, Columbus, Ohio, USA.
| | | | | | | |
Collapse
|
45
|
Courtin D, Milet J, Jamonneau V, Yeminanga CS, Kumeso VKB, Bilengue CMM, Betard C, Garcia A. Association between human African trypanosomiasis and the IL6 gene in a Congolese population. INFECTION GENETICS AND EVOLUTION 2007; 7:60-8. [PMID: 16720107 DOI: 10.1016/j.meegid.2006.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/31/2006] [Accepted: 04/01/2006] [Indexed: 12/01/2022]
Abstract
Despite the importance of behavioural and environmental risk factors, there are arguments consistent with the existence of a genetic susceptibility to human African trypanosomiasis (HAT). A candidate gene association study was conducted in the Democratic Republic of Congo using a family-based sample which included a total of 353 subjects (86 trios; one case and parents (n=258) and 23 families with more than one case and parents (n=95)). Polymorphisms located on the IL1alpha, IL4, IL6, IL8, IL10, TNFalpha and IFNgamma genes were genotyped after re-sequencing of the genes for extensive SNP search. The T allele of the IL6(4339) SNP was significantly associated with a decreased risk of developing the disease (p=0.0006) and a suggestive association was observed for the IL1alpha(5417 T) SNP and an increased risk of developing the disease. These results suggest that genetic variability of the IL6 and to a lesser extent the IL1alpha gene are involved in the development of HAT. For the TNFalpha and IL10 gene polymorphisms, association results obtained here were different from those we observed in another population living under different epidemiologic conditions. This underlines the complexity of the interactions existing between host genetic polymorphisms, parasite diversity and behavioural and environmental risk factors in HAT.
Collapse
Affiliation(s)
- David Courtin
- Institut de Recherche pour le Développement, Unité de recherche 010: Santé de la mère et de l'enfant en milieu tropical, Faculté de pharmacie, 4 Avenue de l'observatoire, 75270 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Goehler LE, Erisir A, Gaykema RPA. Neural-immune interface in the rat area postrema. Neuroscience 2006; 140:1415-34. [PMID: 16650942 DOI: 10.1016/j.neuroscience.2006.03.048] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/13/2006] [Accepted: 03/06/2006] [Indexed: 01/10/2023]
Abstract
The area postrema functions as one interface between the immune system and the brain. Immune cells within the area postrema express immunoreactivity for the pro-inflammatory cytokine, interleukin-1beta following challenge with immune stimulants, including lipopolysaccharide (from bacterial cell walls). As a circumventricular organ, the area postrema accesses circulating immune-derived mediators, but also receives direct primary viscerosensory signals via the vagus nerve. Neurons in the area postrema contribute to central autonomic network neurocircuitry implicated in brain-mediated host defense responses. These experiments were directed toward clarifying relationships between immune cells and neurons in the area postrema, with a view toward potential mechanisms by which they may communicate. We used antisera directed toward markers indicating microglia (CR3/CD11b; OX-42), resident macrophages (CD163; ED-2), or dendritic cell-like phenotypes (major histocompability complex class II; OX-6), in area postrema sections from lipopolysaccharide-treated rats processed for light, laser scanning confocal, and electron microscopy. Lipopolysaccharide treatment induced interleukin-1beta-like immunoreactivity in immune cells that either associated with the vasculature (perivascular cells, a subtype of macrophage) or associated with neuronal elements (dendritic-like, and unknown phenotype). Electron microscopic analysis revealed that some immune cells, including interleukin-1beta-positive cells, evinced membrane apposition with neuronal elements, including dendrites and terminals, that could derive from inputs to the area postrema such as vagal sensory fibers, or intrinsic area postrema neurons. This arrangement provides an anatomical substrate by which immune cells could directly and specifically influence individual neurons in the area postrema, that may support the induction and/or maintenance of brain responses to inflammation.
Collapse
Affiliation(s)
- L E Goehler
- Program in Sensory and Systems Neuroscience, Department of Psychology and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
47
|
Ching S, Zhang H, Lai W, Quan N. Peripheral injection of lipopolysaccharide prevents brain recruitment of leukocytes induced by central injection of interleukin-1. Neuroscience 2006; 137:717-26. [PMID: 16360283 DOI: 10.1016/j.neuroscience.2005.08.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/08/2005] [Accepted: 08/26/2005] [Indexed: 01/06/2023]
Abstract
I.c.v. injection of interleukin-1beta induces infiltration of leukocytes into the brain. I.p. injection of bacterial endotoxin lipopolysaccharide induces the expression of interleukin-1 in the CNS without causing the entry of leukocytes into the brain. This suggests that during systemic inflammation trafficking of potentially damaging leukocytes into the CNS is inhibited. In this study, we investigated the effects of peripheral injection of lipopolysaccharide on brain leukocyte recruitment induced by i.c.v.-interleukin-1 in mice. I.c.v.-interleukin-1 induced widespread infiltration of leukocytes into the brain 16 h after the injection. Pretreatment with i.p.-lipopolysaccharide 2 h before the i.c.v. interleukin-1 injection completely blocked interleukin-1-induced leukocyte infiltration, whereas i.p.-LPS only attenuated the effect of interleukin-1 if it was given 12 h before i.c.v. interleukin-1 injection. I.p.-lipopolysaccharide given 24 h before i.c.v. interleukin-1 injection did not alter interleukin-1 induced leukocyte infiltration. I.c.v.-interleukin-1 induced expression of p- and e-selectins in brain vasculatures prior to the appearance of leukocytes in the brain parenchyma. Induction of p- and e-selectin was inhibited by the pretreatment of i.p.-lipopolysaccharide 2 h, but not 24 h, before i.c.v.-interleukin-1 injection. I.c.v.-interleukin-1-induced leukocyte infiltration was diminished in both e- and p- selectin knockout animals. These results suggest that systemic inflammation actively inhibits recruitment of leukocytes by CNS. Inhibition of the expression of p- and e-selectins is a mechanism by which peripheral inflammation regulate CNS leukocyte recruitment.
Collapse
Affiliation(s)
- S Ching
- Department of Oral Biology, Ohio State University, 4161 Postle Hall, 305 West 12th Avenue, Columbus, 43210-1094, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Interleukin-1 is a pro-inflammatory cytokine that has numerous biological effects, including activation of many inflammatory processes (through activation of T cells, for example), induction of expression of acute-phase proteins, an important function in neuroimmune responses and direct effects on the brain itself. There is now extensive evidence to support the direct involvement of interleukin-1 in the neuronal injury that occurs in both acute and chronic neurodegenerative disorders. This article discusses the key evidence of a role for interleukin-1 in acute neurodegeneration - for example, stroke and brain trauma - and provides a rationale for targeting the interleukin-1 system as a therapeutic strategy.
Collapse
Affiliation(s)
- Stuart M Allan
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK.
| | | | | |
Collapse
|