1
|
Barnes M, Burton D, Marsden K, Kullman S. Early disruptions in vitamin D receptor signaling induces persistent developmental behavior deficits in zebrafish larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645997. [PMID: 40235984 PMCID: PMC11996324 DOI: 10.1101/2025.03.28.645997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A critical function of the nervous system is to rapidly process sensory information and initiate appropriate behavioral responses. Defects in sensory processing and behavior selection are commonly observed in neuro-psychiatric conditions including anxiety, autism (ASD), and schizophrenia. The etiology of sensory processing disorders remains equivocal; however, it is hypothesized that extrinsic environmental factors can play fundamental roles. In this study we examine the importance of vitamin D (1α, 25-dihydroxyvitamin D3) receptor signaling during early life stage development on sensory processing and neurobehavioral health outcomes. While vitamin D has traditionally been associated with mineral ion homeostasis, accumulating evidence suggests non-calcemic roles for vitamin D including early neurodevelopment. Here we demonstrate that systemic disruption of vitamin D receptor (VDR) signaling with a conditional dominant negative (dnVDR) transgenic zebrafish line results in specific visual and acoustic sensorimotor behavior defects. Induction of dnVDR between 24-72 hours post fertilization (hpf) results in modulation of visual motor response with demonstrate attenuation in acute activity and hypolocomotion across multiple swimming metrics when assayed at 6- and 28-days post fertilization (dpf). Disruption in VDR signaling additionally resulted in a strong and specific attenuation of the Long-Latency C-bends (LLC) within the acoustic startle response at 6 dpf while Short-Latency C-bends (SLC) were moderately impacted. Pre-pulse inhibition (PPI) was not impacted in young larvae however exhibited a significantly attenuated response at 28 dpf suggesting an inability to properly modulate their startle responses later in development and persistent effects of VDR modulation during early development. Overall, our data demonstrate that modulation of vitamin D signaling during critical windows of development irreversibly disrupts the development of neuronal circuitry associated with sensory processing behaviors which may have significant implications to neurobehavioral health outcomes.
Collapse
|
2
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024; 27:1391-1404. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Kouba BR, Rodrigues ALS. Neuroplasticity-related effects of vitamin D relevant to its neuroprotective effects: A narrative review. Pharmacol Biochem Behav 2024; 245:173899. [PMID: 39447683 DOI: 10.1016/j.pbb.2024.173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pathophysiology of a wide range of central nervous system (CNS) disorders, such as neurodegenerative and psychiatric diseases, has been associated with impairment of neurogenic and synaptogenic processes. Therefore, pharmacological and/or nutritional strategies based on the stimulation and/or restoration of these processes may have beneficial effects against diseases in which these processes are impaired. In this context, vitamin D has emerged as a promising neuroprotective compound. Due to its pleiotropic properties, it can interact with multiple molecular targets and thereby affect different cell types, including neurons and glial cells. This neurosteroid contributes to CNS homeostasis by non-genomic and genomic mechanisms through its interaction with vitamin D receptors (VDRs). Among several properties of this vitamin, its role in neuronal proliferation and differentiation as well as in synaptic plasticity has received attention. Considering this background, this narrative review aims to highlight the neuroplasticity-related mechanisms of vitamin D that may be associated with its neuroprotective effects.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|
4
|
Doumit M, El-Mallah C, El-Makkawi A, Obeid O, Kobeissy F, Darwish H, Abou-Kheir W. Vitamin D Deficiency Does Not Affect Cognition and Neurogenesis in Adult C57Bl/6 Mice. Nutrients 2024; 16:2938. [PMID: 39275253 PMCID: PMC11396937 DOI: 10.3390/nu16172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Vitamin D deficiency is a global problem. Vitamin D, the vitamin D receptor, and its enzymes are found throughout neuronal, ependymal, and glial cells in the brain and are implicated in certain processes and mechanisms in the brain. To investigate the processes affected by vitamin D deficiency in adults, we studied vitamin D deficient, control, and supplemented diets over 6 weeks in male and female C57Bl/6 mice. The effect of the vitamin D diets on proliferation in the neurogenic niches, changes in glial cells, as well as on memory, locomotion, and anxiety-like behavior, was investigated. Six weeks on a deficient diet was adequate time to reach deficiency. However, vitamin D deficiency and supplementation did not affect proliferation, neurogenesis, or astrocyte changes, and this was reflected on behavioral measures. Supplementation only affected microglia in the dentate gyrus of female mice. Indicating that vitamin D deficiency and supplementation do not affect these processes over a 6-week period.
Collapse
Affiliation(s)
- Mark Doumit
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Carla El-Mallah
- Department of Nutrition and Food Science, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Alaa El-Makkawi
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Science, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Hala Darwish
- Hariri School of Nursing, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
5
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Gáll Z, Csüdör Á, Sável IG, Kelemen K, Kolcsár M. Cholecalciferol Supplementation Impacts Behavior and Hippocampal Neuroglial Reorganization in Vitamin D-Deficient Rats. Nutrients 2024; 16:2326. [PMID: 39064769 PMCID: PMC11279879 DOI: 10.3390/nu16142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D deficiency (VDD) is widespread around the world and has been extensively documented to affect various health conditions, including the cognitive functioning of the brain. Serum 25-hydroxylated forms of vitamin D are traditionally used to determine vitamin D status. However, there is now evidence that cholecalciferol activation can occur and be controlled by locally expressed enzymes in the brain. This study aimed to investigate the effects of cholecalciferol supplementation on cognitive function in rats who underwent transient VDD in adulthood. Thirty-six adult Wistar rats were administered paricalcitol (seven doses of 32 ng injected every other day) along with a "vitamin D-free" diet to induce VDD, which was confirmed using a LC-MS/MS serum analysis of the cholecalciferol and 25-hydroxyvitamin D3 levels. Treatment was performed by including 1000 IU/kg and 10,000 IU/kg cholecalciferol in the diet. Cognitive performance was evaluated using the novel object recognition (NOR), Morris water maze (MWM), and radial arm maze (RAM) tests. An immunohistochemical analysis of the brain regions involved in learning and memory was performed by quantifying the neurons, astrocytes, and microglia labelled with anti-neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) antibodies, respectively. The vitamin D deficient group showed the lowest performance in both the MWM and RAM tests. In contrast, the cholecalciferol-treated groups exhibited a faster learning curve. However, no difference was detected between the groups in the NOR test. On the other hand, differences in the cellular organization of the hippocampus and amygdala were observed between the groups. Cholecalciferol supplementation decreased the density of the Iba-1- and GFAP-labeled cells in the hilus and cornu Ammonis 3 (CA3) regions of the hippocampus and in the amygdala. These results support vitamin D's substantial role in learning and memory. They also highlight that subtle changes of cognitive function induced by transient VDD could be reversed by cholecalciferol supplementation. Further studies are needed to better understand VDD and cholecalciferol's effects on the brain structure and function.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Ágnes Csüdör
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - István-Gábor Sável
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Melinda Kolcsár
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| |
Collapse
|
7
|
Renteria KM, Constantine E, Teoh CM, Cooper A, Lozano N, Bauer S, Koh GY. Combination of vitamin D 3 and fructooligosaccharides upregulates colonic vitamin D receptor in C57BL/6J mice and affects anxiety-related behavior in a sex-specific manner. Nutr Res 2024; 125:16-26. [PMID: 38432179 DOI: 10.1016/j.nutres.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Depression and anxiety disorders are among the most common mental health disorders that affect US adults today, frequently related to vitamin D (VD) insufficiency. Along with VD, growing evidence suggests gut microbiota likely play a role in neuropsychiatric disorders. Here, we investigated if modulation of gut microbiota would disrupt host VD status and promote behaviors related to depression and anxiety in adult mice. Six-week-old male and female C57BL/6J mice (n = 10/mice/group) were randomly assigned to receive (1) control diet (CTR), control diet treated with antibiotics (AB), control diet with total 5000 IU of VD (VD), VD treated with antibiotics (VD + AB), VD supplemented with 5% w/w fructooligosaccharides (FOS; VF), and VF diet treated with antibiotics (VF + AB), respectively, for 8 weeks. Our study demonstrated that VD status was not affected by antibiotic regimen. VD alone ameliorates anxiety-related behavior in female mice, and that combination with FOS (i.e., VF) did not further improve the outcome. Male mice, in contrast, exhibit greater anxiety with VF, but not VD, when compared with CTR mice. Colonic VD receptor was elevated in VF-treated mice in both sexes, compared with CTR, which was positively correlated to colonic TPH1, a rate-limiting enzyme for serotonin synthesis. Taken together, our data indicate that the effect of VF on anxiety-related behavior is sex-specific, which may partially be attributed to the activation of colonic VD signaling and subsequent serotonin synthesis. The synergistic or additive effect of VD and FOS on mood disorders remained to be investigated.
Collapse
Affiliation(s)
- Karisa M Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Ethan Constantine
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Chin May Teoh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Analynn Cooper
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Nissi Lozano
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Spenser Bauer
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
8
|
Van Ankum EM, Majcher KB, Dolovich AT, Johnston JD, Flegel KP, Boughner JC. Food texture and vitamin D influence mouse mandible form and molar roots. Anat Rec (Hoboken) 2024; 307:611-632. [PMID: 37702738 DOI: 10.1002/ar.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Industrialization influenced several facets of lifestyle, including softer nutrient-poor diets that contributed to vitamin D deficiency in post-industrzialized populations, with concomitantly increased dental problems. Here we simulated a post-industrialized diet in a mouse model to test the effects of diet texture and vitamin D level on mandible and third molar (M3) forms. Mice were raised on a soft diet with vitamin D (VitD) or without it (NoD), or on a hard diet with vitamin D. We hypothesized that a VitD/hard diet is optimal for normal mandible and tooth root form, as well as for timely M3 initiation. Subsets of adult NoD/soft and VitD/soft groups were bred to produce embryos that were micro-computed tomography (μCT) scanned to stage M3 development. M3 stage did not differ between embryos from mothers fed VitD and NoD diets, indicating that vitamin D does not affect timing of M3 onset. Sacrificed adult mice were μCT-scanned, their mandibles 3D-landmarked and M3 roots were measured. Principal component (PC) analysis described the largest proportion of mandible shape variance (PC1, 30.1%) related to diet texture, and nominal shape variance (PC2, 13.8%) related to vitamin D. Mice fed a soft diet had shorter, relatively narrower, and somewhat differently shaped mandibles that recapitulated findings in human populations. ANOVA and other multivariate tests found significantly wider M3 roots and larger root canals in mice fed a soft diet, with vitamin D having little effect. Altogether our experiments using a mouse model contribute new insights about how a post-industrial diet may influence human craniodental variation.
Collapse
Affiliation(s)
- Elsa M Van Ankum
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Kadin B Majcher
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Allan T Dolovich
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Kennedy P Flegel
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
9
|
Renteria K, Nguyen H, Koh GY. The role of vitamin D in depression and anxiety disorders: a review of the literature. Nutr Neurosci 2024; 27:262-270. [PMID: 36877601 DOI: 10.1080/1028415x.2023.2186318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Prevalence of mental health disorders continue to increase worldwide. Over the past decades, suboptimal vitamin D (VD) levels and gut dysbiosis have been associated with neurological dysfunction and psychiatric disorders. METHODS In this review, we examined the available literature on VD and mental health disorders, particularly depression and anxiety, in both clinical and pre-clinical studies. RESULTS Our extensive review failed to find a link between VD deficiency, depression, and anxiety-related behavior in preclinical animal models. However, strong evidence suggests that VD supplementation may alleviate symptoms in chronically stressed rodents, with some promising evidence from clinical studies. Further, fecal microbiota transplantations suggest a potential role of gut microbiota in neuropsychiatric disorders, although the underlying mechanisms remain to be fully elucidated. It has been postulated that serotonin, primarily produced by gut bacteria, may be a crucial factor. Hence, whether VD has the ability to impact gut microbiota and modulate serotonin synthesis warrants further investigation. CONCLUSIONS Taken together, literature has suggested that VD may serve as a key regulator in the gut-brain axis to modulate gut microbiota and alleviate symptoms of depression and anxiety. The inconsistent results of VD supplementation in clinical studies, particularly among VD deficient participants, suggests that current intake recommendations may need to be re-evaluated for individuals at-risk (i.e. prior to diagnosis) of developing depression and/or anxiety.
Collapse
Affiliation(s)
- Karisa Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Hien Nguyen
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| |
Collapse
|
10
|
Shea MK, Xuan AY, Booth SL. Vitamin D, Alzheimer's disease and related dementia. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:185-219. [PMID: 38777413 DOI: 10.1016/bs.afnr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vitamin D has been proposed as a potential strategy to mitigate age-related cognitive decline and dementia, including Alzheimer's dementia, the predominant type of dementia. Rodent studies have provided insight into the potential mechanisms underlying the role of vitamin D in Alzheimer's disease and dementia. However, inconsistencies with respect to age, sex, and genetic background of the rodent models used poses some limitations regarding scientific rigor and translation. Several human observational studies have evaluated the association of vitamin D status with cognitive decline and dementia, and the results are conflicting. Randomized clinical trials of vitamin D supplementation have included cognitive outcomes. However, most of the available trials have not been designed specifically to test the effect of vitamin D on age-related cognitive decline and dementia, so it remains questionable how much additional vitamin D will improve cognitive performance. Here we evaluate the strengths and limitations of the available evidence regarding the role of vitamin D in AD, cognitive decline, dementia.
Collapse
Affiliation(s)
- M Kyla Shea
- Tufts University USDA Human Nutrition Research Center on Aging.
| | - Andrew Y Xuan
- Tufts University USDA Human Nutrition Research Center on Aging
| | - Sarah L Booth
- Tufts University USDA Human Nutrition Research Center on Aging
| |
Collapse
|
11
|
Máčová L, Kancheva R, Bičíková M. Molecular Regulation of the CNS by Vitamin D. Physiol Res 2023; 72:S339-S356. [PMID: 38116771 DOI: 10.33549/physiolres.935248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Vitamin D is a lipid-soluble vitamin that can be found in some foods. It is also produced endogenously (in the presence of ultraviolet light), transported through the blood to the targets organs and this is the reason to consider vitamin D as a hormone. It is known that vitamin D has genomic and non-genomic effects. This review is focused mainly on the vitamin D receptors, the importance of vitamin D as a neuromodulator, the role of vitamin D in the pathophysiology of devastating neurological disorders such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and the benefit of vitamin D and its derivates in alleviating these disorders.
Collapse
Affiliation(s)
- L Máčová
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
12
|
Kalejahi P, Kheirouri S, Noorazar SG. A randomized controlled trial of Vitamin D supplementation in Iranian patients with schizophrenia: Effects on serum levels of glycogen synthase kinase-3β and symptom severity. Int J Psychiatry Med 2023; 58:559-575. [PMID: 37545122 DOI: 10.1177/00912174231193303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Growing evidence has shown that hypovitaminosis D is a risk factor for developing schizophrenia and comorbid conditions. Therefore, this study aimed to examine the effect of vitamin D supplementation on serum levels of vitamin D, metabolic factors related to insulin resistance (IR) and the severity of the disorder in patients with schizophrenia. METHODS Forty-eight chronic male patients with schizophrenia with vitamin D deficiency (≤20 ng/mL= (≤50 nmol/l) were selected and randomly assigned to vitamin D treatment and placebo groups. Subjects were supplemented for 8 weeks with vitamin D (2000 IU/day) or placebo. RESULTS Within-group comparison revealed that the vitamin D group had a significant reduction in waist circumference, Positive and Negative Syndrome Scale - total score (PANSS-TS), and glycogen synthase kinase 3 beta (GSK-3β) levels (P = .022, P = <.001 and P = .013, respectively). On the other hand, the placebo group showed a significant increase in the level of fasting serum insulin and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (P = .003 and P = .003). The between-group comparison showed a significant difference in terms of PANSS-TS, GSK-3β, fasting serum insulin (FSI), and HOMA-IR (P = .022, P = .048, P = .013 and P = .014 respectively). CONCLUSIONS Among vitamin D deficient patients with schizophrenia, vitamin D supplementation may affect GSK-3 β, an important biomarker in schizophrenia and insulin resistance. In addition, vitamin D supplementation in such patients may reduce the disorder's symptom severity.
Collapse
Affiliation(s)
- Parinaz Kalejahi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Gholamreza Noorazar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
14
|
Kose S, Kutlu MD, Kara S, Polat S, Akillioglu K. Investigation of the protective effect of long-term exercise on molecular pathways and behaviours in scopolamine induced alzheimer's disease-like condition. Brain Res 2023; 1814:148429. [PMID: 37269967 DOI: 10.1016/j.brainres.2023.148429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Despite research, the role of exercise in treatment and prevention of neurodegenerative diseases remains unclear. Our study, investigated that protective effect of treadmill exercise on molecular pathways and cognitive behaviours in a scopolamine-induced model of Alzheimer's disease. For that purpose, male Balb/c mice subjected to exercise for 12 weeks. During the last 4 weeks of exercise, mice were given an injection of scopolamine (2 mg/kg). Following injection, open field test and Morris water maze test were used to assess emotional-cognitive behaviour. Hippocampus and prefrontal cortex of mice were isolated, and levels of BDNF, TrkB, and p-GSK3ßSer389 were assessed by western blotting, and levels of APP and Aß-40 were analysed by immunohistochemistry. In our study, scopolamine administration increased anxiety-like behaviour in open field test, while negatively affecting spatial learning and memory in Morris water maze test. We found that exercise had a protective effect against cognitive and emotional decline. Scopolamine decreased levels of p-GSK3ßSer389, BDNF in hippocampus and prefrontal cortex.Whereas TrkB decreased in hippocampus and increased in prefrontal cortex. There was an increase in p-GSK3ßSer389, BDNF, TrkB in the hippocampus, and p-GSK3ßSer389, BDNF in the prefrontal cortex in the exercise + scopolamine group. Immunohistochemical analysis showed that scopolamine administration increased APP and Aß-40 in hippocampus and prefrontal cortex in neuronal and perineuronal areas whereas Aß-40 and APP were reduced in exercise + scopolamine groups. In conclusion, long-term exercise may have a protective effect against scopolamine-induced impairments in cognitive-emotional behaviour. It can be suggested that this protective effect is mediated by increased BDNF levels and GSK3ßSer389 phosphorylation.
Collapse
Affiliation(s)
- Seda Kose
- Cukurova University Medical Faculty, Department of Physiology, Division of Neurophysiology, Adana 01330, Turkey.
| | - Meltem Donmez Kutlu
- Cukurova University Medical Faculty, Department of Physiology, Division of Neurophysiology, Adana 01330, Turkey
| | - Samet Kara
- Cukurova University Medical Faculty, Department of Histology and Embryology, Adana 01330, Turkey
| | - Sait Polat
- Cukurova University Medical Faculty, Department of Histology and Embryology, Adana 01330, Turkey
| | - Kubra Akillioglu
- Cukurova University Medical Faculty, Department of Physiology, Division of Neurophysiology, Adana 01330, Turkey
| |
Collapse
|
15
|
Lapmanee S, Bhubhanil S, Sriwong S, Yuajit C, Wongchitrat P, Teerapornpuntakit J, Suntornsaratoon P, Charoenphandhu J, Charoenphandhu N. Oral calcium and vitamin D supplements differentially alter exploratory, anxiety-like behaviors and memory in male rats. PLoS One 2023; 18:e0290106. [PMID: 37566598 PMCID: PMC10420380 DOI: 10.1371/journal.pone.0290106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Oral calcium and calcium plus vitamin D supplements are commonly prescribed to several groups of patients, e.g., osteoporosis, fracture, and calcium deficiency. Adequate and steady extracellular calcium levels are essential for neuronal activity, whereas certain forms of calcium supplement (e.g., CaCO3) probably interfere with memory function. However, it was unclear whether a long-term use of ionized calcium (calcium chloride in drinking water ad libitum), vitamin D supplement (oral gavage) or the combination of both affected anxiety and memory, the latter of which was probably dependent on the hippocampal neurogenesis. Here, we aimed to determine the effects of calcium and/or vitamin D supplement on the anxiety- and memory-related behaviors and the expression of doublecortin (DCX), an indirect proxy indicator of hippocampal neurogenesis. Eight-week-old male Wistar rats were divided into 4 groups, i.e., control, calcium chloride-, 400 UI/kg vitamin D3-, and calcium chloride plus vitamin D-treated groups. After 4 weeks of treatment, anxiety-, exploration- and recognition memory-related behaviors were evaluated by elevated pulse-maze (EPM), open field test (OFT), and novel object recognition (NOR), respectively. The hippocampi were investigated for the expression of DCX protein by Western blot analysis. We found that oral calcium supplement increased exploratory behavior as evaluated by OFT and the recognition index in NOR test without any effect on anxiety behavior in EPM. On the other hand, vitamin D supplement was found to reduce anxiety-like behaviors. Significant upregulation of DCX protein expression was observed in the hippocampus of both calcium- and vitamin D-treated rats, suggesting their positive effects on neurogenesis. In conclusion, oral calcium and vitamin D supplements positively affected exploratory, anxiety-like behaviors and/or memory in male rats. Thus, they potentially benefit on mood and memory in osteoporotic patients beyond bone metabolism.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Siriwan Sriwong
- Laboratory Animal Center, Thammasat University, Pathum Thani, Thailand
| | - Chaowalit Yuajit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Nakon Pathom, Thailand
| | - Jarinthorn Teerapornpuntakit
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jantarima Charoenphandhu
- Physiology Division, Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
16
|
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The Synaptic and Circuit Functions of Vitamin D in Neurodevelopment Disorders. Neuropsychiatr Dis Treat 2023; 19:1515-1530. [PMID: 37424961 PMCID: PMC10327924 DOI: 10.2147/ndt.s407731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Vitamin D deficiency/insufficiency is a public health issue around the world. According to epidemiological studies, low vitamin D levels have been associated with an increased risk of some neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). Animal models reveal that vitamin D has a variety of impacts on the synapses and circuits in the brain. A lack of vitamin D affects the expression of synaptic proteins, as well as the synthesis and metabolism of various neurotransmitters. Depending on where vitamin D receptors (VDRs) are expressed, vitamin D may also regulate certain neuronal circuits through the endocannabinoid signaling, mTOR pathway and oxytocin signaling. While inconsistently, some data suggest that vitamin D supplementation may be able to reduce the core symptoms of ASD and ADHD. This review emphasizes vitamin D's role in the synaptic and circuit mechanisms of neurodevelopmental disorders including ASD and ADHD. Future application of vitamin D in these disorders will depend on both basic research and clinical studies, in order to make the transition from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaoshan Ye
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| | - Qionglin Zhou
- International School of Public Health and One Health, Hainan Medical University, Haikou, People’s Republic of China
| | - Pengcheng Ren
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, People’s Republic of China
| | - Wei Xiang
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
| | - Le Xiao
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
17
|
Lisakovska O, Labudzynskyi D, Khomenko A, Isaev D, Savotchenko A, Kasatkina L, Savosko S, Veliky M, Shymanskyi I. Brain vitamin D3-auto/paracrine system in relation to structural, neurophysiological, and behavioral disturbances associated with glucocorticoid-induced neurotoxicity. Front Cell Neurosci 2023; 17:1133400. [PMID: 37020845 PMCID: PMC10067932 DOI: 10.3389/fncel.2023.1133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/22/2023] Open
Abstract
IntroductionVitamin D3 (VD3) is a potent para/autocrine regulator and neurosteroid that can strongly influence nerve cell function and counteract the negative effects of glucocorticoid (GC) therapy. The aim of the study was to reveal the relationship between VD3 status and behavioral, structural-functional and molecular changes associated with GC-induced neurotoxicity.MethodsFemale Wistar rats received synthetic GC prednisolone (5 mg/kg b.w.) with or without VD3 (1000 IU/kg b.w.) for 30 days. Behavioral, histological, physiological, biochemical, molecular biological (RT-PCR, Western blotting) methods, and ELISA were used.Results and discussionThere was no difference in open field test (OFT), while forced swim test (FST) showed an increase in immobility time and a decrease in active behavior in prednisolone-treated rats, indicative of depressive changes. GC increased the perikaryon area, enlarged the size of the nuclei, and caused a slight reduction of cell density in CA1-CA3 hippocampal sections. We established a GC-induced decrease in the long-term potentiation (LTP) in CA1-CA3 hippocampal synapses, the amplitude of high K+-stimulated exocytosis, and the rate of Ca2+-dependent fusion of synaptic vesicles with synaptic plasma membranes. These changes were accompanied by an increase in nitration and poly(ADP)-ribosylation of cerebral proteins, suggesting the development of oxidative-nitrosative stress. Prednisolone upregulated the expression and phosphorylation of NF-κB p65 subunit at Ser311, whereas downregulating IκB. GC loading depleted the circulating pool of 25OHD3 in serum and CSF, elevated VDR mRNA and protein levels but had an inhibitory effect on CYP24A1 and VDBP expression. Vitamin D3 supplementation had an antidepressant-like effect, decreasing the immobility time and stimulating active behavior. VD3 caused a decrease in the size of the perikaryon and nucleus in CA1 hippocampal area. We found a recovery in depolarization-induced fusion of synaptic vesicles and long-term synaptic plasticity after VD3 treatment. VD3 diminished the intensity of oxidative-nitrosative stress, and suppressed the NF-κB activation. Its ameliorative effect on GC-induced neuroanatomical and behavioral abnormalities was accompanied by the 25OHD3 repletion and partial restoration of the VD3-auto/paracrine system.ConclusionGC-induced neurotoxicity and behavioral disturbances are associated with increased oxidative-nitrosative stress and impairments of VD3 metabolism. Thus, VD3 can be effective in preventing structural and functional abnormalities in the brain and behavior changes caused by long-term GC administration.
Collapse
Affiliation(s)
- Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
- *Correspondence: Olha Lisakovska,
| | - Dmytro Labudzynskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Anna Khomenko
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alina Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Ludmila Kasatkina
- Research Laboratory for Young Scientists, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Serhii Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykola Veliky
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Ihor Shymanskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
18
|
Atcheson RJ, Burne THJ, Dawson PA. Serum sulfate level and Slc13a1 mRNA expression remain unaltered in a mouse model of moderate vitamin D deficiency. Mol Cell Biochem 2022:10.1007/s11010-022-04634-7. [PMID: 36566486 DOI: 10.1007/s11010-022-04634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022]
Abstract
Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.
Collapse
Affiliation(s)
- Ranita J Atcheson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
19
|
Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective? Front Neurol 2022; 13:796933. [PMID: 35651353 PMCID: PMC9149265 DOI: 10.3389/fneur.2022.796933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Vitamin D insufficiency during childhood has been linked to the development of multiple sclerosis (MS), typically an adult-onset inflammatory demyelinating disease of the central nervous system (CNS). Since vitamin D was known to have immunoregulatory properties on both innate and adaptive immunity, it was hypothesized that low vitamin D resulted in aberrant immune responses and the development of MS. However, vitamin D receptors are present on many cell types, including neurons, oligodendrocytes, astrocytes and microglia, and vitamin D has profound effects on development and function of the CNS. This leads to the possibility that low vitamin D may alter the CNS in a manner that makes it vulnerable to inflammation and the development of MS. This review analysis the role of vitamin D in the immune and nervous system, and how vitamin D insufficiency in children may contribute to the development of MS.
Collapse
Affiliation(s)
- Sara E Gombash
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Sawdai
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Amy E Lovett-Racke
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
The Interplay between Vitamin D, Exposure of Anticholinergic Antipsychotics and Cognition in Schizophrenia. Biomedicines 2022; 10:biomedicines10051096. [PMID: 35625833 PMCID: PMC9138360 DOI: 10.3390/biomedicines10051096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023] Open
Abstract
Vitamin D deficiency is a frequent finding in schizophrenia and may contribute to neurocognitive dysfunction, a core element of the disease. However, there is limited knowledge about the neuropsychological profile of vitamin D deficiency-related cognitive deficits and their underlying molecular mechanisms. As an inductor of cytochrome P450 3A4, a lack of vitamin D might aggravate cognitive deficits by increased exposure to anticholinergic antipsychotics. This cross-sectional study aims to assess the relationship between 25-OH-vitamin D-serum concentrations, anticholinergic drug exposure and neurocognitive functioning (Brief Assessment of Cognition in Schizophrenia, BACS, and Trail Making Test, TMT) in 141 patients with schizophrenia. The anticholinergic drug exposure was estimated by adjusting the concentration of each drug for its individual muscarinic receptor affinity. Using regression analysis, we observed a positive relationship between vitamin D levels and processing speed (TMT-A and BACS Symbol Coding) as well as executive functioning (TMT-B and BACS Tower of London). Moreover, a negative impact of vitamin D on anticholinergic drug exposure emerged, but the latter did not significantly affect cognition. When other cognitive items were included as regressors, the impact of vitamin D remained only significant for the TMT-A. Among the different cognitive impairments in schizophrenia, vitamin D deficiency may most directly affect processing speed, which in turn may aggravate deficits in executive functioning. This finding is not explained by a cytochrome P450-mediated increased exposure to anticholinergic antipsychotics.
Collapse
|
21
|
Soni KK, Jeong HS, Jang S. Neurons for Ejaculation and Factors Affecting Ejaculation. BIOLOGY 2022; 11:686. [PMID: 35625414 PMCID: PMC9138817 DOI: 10.3390/biology11050686] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022]
Abstract
Ejaculation is a reflex and the last stage of intercourse in male mammals. It consists of two coordinated phases, emission and expulsion. The emission phase consists of secretions from the vas deferens, seminal vesicle, prostate, and Cowper's gland. Once these contents reach the posterior urethra, movement of the contents becomes inevitable, followed by the expulsion phase. The urogenital organs are synchronized during this complete event. The L3-L4 (lumbar) segment, the spinal cord region responsible for ejaculation, nerve cell bodies, also called lumbar spinothalamic (LSt) cells, which are denoted as spinal ejaculation generators or lumbar spinothalamic cells [Lst]. Lst cells activation causes ejaculation. These Lst cells coordinate with [autonomic] parasympathetic and sympathetic assistance in ejaculation. The presence of a spinal ejaculatory generator has recently been confirmed in humans. Different types of ejaculatory dysfunction in humans include premature ejaculation (PE), retrograde ejaculation (RE), delayed ejaculation (DE), and anejaculation (AE). The most common form of ejaculatory dysfunction studied is premature ejaculation. The least common forms of ejaculation studied are delayed ejaculation and anejaculation. Despite the confirmation of Lst in humans, there is insufficient research on animals mimicking human ejaculatory dysfunction.
Collapse
Affiliation(s)
| | | | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea;
| |
Collapse
|
22
|
Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of Neural Stem Cells and Vitamin D Receptor (VDR)-Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 2022; 59:4065-4105. [PMID: 35476289 DOI: 10.1007/s12035-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Specific stem cell-based therapies for treating Alzheimer's disease, Parkinson's disease, and schizophrenia are gaining importance in recent years. Accumulating data is providing further support by demonstrating the efficacy of neural stem cells in enhancing the neurogenesis in the aging brain. In addition to stem cells, recent studies have shown the efficacy of supplementing vitamin D in promoting neurogenesis and neuronal survival. Studies have also demonstrated the presence of mutational variants and single-nucleotide polymorphisms of the vitamin D receptor (VDR) in neurological disorders; however, implications of these mutations in the pathophysiology and response to drug treatment are yet to be explored. Hence, in this article, we have reviewed recent reports pertaining to the role of neural stem cells and VDR-mediated cellular signaling cascades that are involved in enhancing the neurogenesis through Wnt/β-catenin and Sonic Hedgehog pathways. This review benefits neurobiologists and pharmaceutical industry experts to develop stem cell-based and vitamin D-based therapies to better treat the patients suffering from neurological diseases.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - R Rajalakshmi
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - C M Ramya
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
23
|
Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV. Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr Neurosci 2022; 25:823-834. [PMID: 32912107 PMCID: PMC7947031 DOI: 10.1080/1028415x.2020.1815331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: L-DOPA, the predominant therapy for Parkinson's disease (PD) is associated with motor deficits after prolonged use. The nigrostriatal tract, a primary target of neurodegeneration in PD, contains abundant Vitamin-D receptors, suggesting a potential role for VD in the disease. Therefore, we tested the impact of Vitamin D3 (VD3) in a mouse model of PD.Methods: PD was induced in adult male C57BL6 mice by a single intrastriatal injection of 6-hydroxydopamine. Two weeks post lesion, these mice received injections of a vehicle, VD3, L-DOPA, or a combination of VD3/L-DOPA and compared with sham controls. Treatment lasted three weeks, during which motor-cognitive neurobehaviour was assessed. Five weeks post lesion, brains were collected and striatal levels of the following proteins assessed: tyrosine hydroxylase (TH), dopamine decarboxylase (DDC), monoamine oxidase (MAO-B), Catechol-O-methyl transferase (COMT), dopamine transporter (DAT), brain-derived neurotrophic factor (BDNF), microglia marker (CD11b), inflammation (IL-1β), apoptotic signaling (BAX) and oxidative stress (p47phox).Results: Treatment with VD3 attenuated behavioural deficits induced by 6-OHDA, protein associated with dopamine metabolism and biomarkers of oxidative stress. VD3 significantly increased contralateral wall touches, exploratory motor and cognitive activities. VD3 significantly enhanced the expression of TH, DAT, BDNF, while significantly reducing expression of MAO-B, CD11b, IL-I β and p47phox.Conclusion: VD3 reversed some of the 6-OHDA induced changes in proteins involved in modulating the dopamine system, behavioural deficits and oxidative stress biomarkers. The data suggests that VD3 might be beneficial in reducing L-DOPA dosage, thereby reducing problems associated with dosage and prolonged use of L-DOPA in PD management.
Collapse
Affiliation(s)
- Adedamola Bayo-Olugbami
- Department of Physiology, Adeleke University, Ede, Nigeria
- Neuroscience & Inflammation unit, Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | | | - Abdulbasit Amin
- Neuroscience & Inflammation unit, Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, USA
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, USA
| | - Bamidele Victor Owoyele
- Neuroscience & Inflammation unit, Department of Physiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
24
|
Wyrwoll CS, Papini MG, Chivers EK, Yuan J, Pavlos NJ, Lucas RM, Bierwirth PN, Larcombe AN. Long-term exposure of mice to 890 ppm atmospheric CO 2 alters growth trajectories and elicits hyperactive behaviours in young adulthood. J Physiol 2022; 600:1439-1453. [PMID: 34731494 DOI: 10.1113/jp282179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023] Open
Abstract
Atmospheric carbon dioxide (CO2 ) levels are currently at 418 parts per million (ppm), and by 2100 may exceed 900 ppm. The biological effects of lifetime exposure to CO2 at these levels is unknown. Previously we have shown that mouse lung function is altered by long-term exposure to 890 ppm CO2 . Here, we assess the broader systemic physiological responses to this exposure. Mice were exposed to either 460 or 890 ppm from preconception to 3 months of age, and assessed for effects on developmental, renal and osteological parameters. Locomotor, memory, learning and anxiety-like behaviours of the mice were also assessed. Exposure to 890 ppm CO2 increased birthweight, decreased female body weight after weaning, and, as young adults, resulted in reduced engagement in memory/learning tasks, and hyperactivity in both sexes in comparison to controls. There were no clear anxiety, learning or memory changes. Renal and osteological parameters were minimally affected. Overall, this study shows that exposure of mice to 890 ppm CO2 from preconception to young adulthood alters growth and some behaviours, with limited evidence of compensatory changes in acid-base balance. These findings highlight the potential for a direct effect of increased atmospheric CO2 on mammalian health outcomes. KEY POINTS: Long-term exposure to elevated levels of atmospheric CO2 is an uncontrolled experiment already underway. This is the first known study to assess non-respiratory physiological impacts of long-term (conception to young adulthood) exposure of mice to CO2 at levels that may arise in the atmosphere due to global emissions. Exposure to elevated CO2 , in comparison to control mice, altered growth patterns in early life and resulted in hyperactive behaviours in young adulthood. Renal and bone parameters, which are important to balance acid-base levels to compensate for increased CO2 exposure, remained relatively unaffected. This work adds to the body of evidence regarding the effects of carbon emissions on mammalian health and highlights a potential future burden of disease.
Collapse
Affiliation(s)
- Caitlin S Wyrwoll
- School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Melissa G Papini
- School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia.,Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Emily K Chivers
- School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia.,Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Robyn M Lucas
- Emeritus Faculty, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Phil N Bierwirth
- Emeritus Faculty, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia.,Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Australia
| |
Collapse
|
25
|
Al-Amin MM, Sullivan RKP, Alexander S, Carter DA, Bradford D, Burne THJ, Burne THJ. Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus. AIMS Neurosci 2022; 9:31-56. [PMID: 35434279 PMCID: PMC8941191 DOI: 10.3934/neuroscience.2022004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.
Collapse
Affiliation(s)
- Md. Mamun Al-Amin
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | | | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - David A. Carter
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Australian E-Health Research Centre, CSIRO, Pullenvale 4069, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia,* Correspondence: ; Tel: +61 733466371; Fax: +61 733466301
| | | | | | | |
Collapse
|
26
|
Coskuner ER, Ozkan B. Premature Ejaculation and Endocrine Disorders: A Literature Review. World J Mens Health 2022; 40:38-51. [PMID: 33831976 PMCID: PMC8761237 DOI: 10.5534/wjmh.200184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
Premature ejaculation (PE) is the most common male sexual dysfunction, with 30% of men experiencing PE worldwide. According to the generally accepted classification, there are two types of PE: lifetime PE and acquired PE. Various biological and psychological causes are known to be involved in the etiology of PE. However, due to the incomplete definition and etiopathogenesis of PE, there is no effective treatment. Although clinical and animal studies indicate that hormones play a role in controlling the ejaculation process, the precise endocrine mechanisms are unclear. In addition, little is known about the role of endocrine disorders in PE etiology. However, there is evidence that diabetes mellitus (DM), obesity, metabolic syndrome (MetS), thyroid gland disorders, pituitary gland disorders, and vitamin D deficiency affect the prevalence of PE. Moreover, it has been reported that the prevalence of PE decreases with treatment of these endocrine disorders. In this review, the relationship between PE and DM, MetS, obesity, vitamin D deficiency, and thyroid and pituitary gland disorders is summarized.
Collapse
Affiliation(s)
- Enis Rauf Coskuner
- Department of Urology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey.
| | - Burak Ozkan
- Department of Urology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
27
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
28
|
Zhu W, Ding Q, Wang L, Xu G, Diao Y, Qu S, Chen S, Shi Y. Vitamin D3 alleviates pulmonary fibrosis by regulating the MAPK pathway via targeting PSAT1 expression in vivo and in vitro. Int Immunopharmacol 2021; 101:108212. [PMID: 34656907 DOI: 10.1016/j.intimp.2021.108212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. However, there are insufficient drugs available for IPF treatment, and the currently used drugs are accompanied by many adverse reactions. Deficiency of vitamin D3 (VD3) in the development of IPF and the potential role of VD3 in the treatment of IPF have attracted increasing attention. In vivo experimental results showed that VD3 could increase the survival rate in bleomycin (BLM)-induced models, relieve lung inflammation, reduce hydroxyproline content, and inhibit collagen deposition and cell apoptosis. We further performed proteomics analysis and screened 251 target proteins that reflect VD3 intervention in BLM-induced animal models. These target proteins were involved in acute inflammation, oxidative stress, antioxidant activity and extracellular matrix binding. Combined with the comprehensive analysis of clinical samples, PSAT1 was screened out as a candidate target related to IPF disease and VD3 treatment. Through further computational analysis, the MAPK signaling pathway was considered to be the most probable candidate pathway for VD3 function targeting IPF. In in vivo experiments, VD3 inhibited BLM-induced expression of PSAT1 and phosphorylation of p38 and ERK1/2 in mouse lung tissue. The experiments of cell proliferation and western blot confirmed that VD3 inhibited the expression of PSAT1 and the activation of the mitogen-activated protein kinase (MAPK) pathway in human pulmonary fibroblasts (HPF). Furthermore, experiments with transfection plasmids overexpressing PSAT1 proved that VD3 could attenuate the proliferation and differentiation of HPF by suppressing the effect of PSAT1 on the MAPK signaling pathway. Finally, we confirmed that vitamin D receptor (VDR) could occupy the PSAT1 promoter to reveal the transcriptional regulation effect of VD3 on PSAT1. In conclusion, VD3 exerted a therapeutic effect on IPF by down-regulating the MAPK signaling pathway via targeting the expression of PSAT1.
Collapse
Affiliation(s)
- Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Chen
- Shenzhen Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
29
|
Şencan Z, Bayar Muluk N, Şahan MH. Smell Regions in Patients with Vitamin D Deficiency: An MRI Evaluation. J Neurol Surg B Skull Base 2021; 82:593-600. [PMID: 34513566 DOI: 10.1055/s-0040-1722227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/29/2020] [Indexed: 10/22/2022] Open
Abstract
Objective We investigated the effects of vitamin D deficiency in the peripheral and central smell regions by magnetic resonance imaging (MRI). Methods This retrospective study included 29 patients (12 males, 17 females) with 25-dihydroxy vitamin D3 [25(OH) 2 D 3 ] deficiency (group 1) and 34 subjects without 25(OH) 2 D 3 deficiency (14 males, 20 females) (group 2). Using cranial MRIs, the peripheral (olfactory bulb [OB] volume and olfactory sulcus [OS] depth) and central (insular gyrus and corpus amygdala) smell regions were evaluated. Results The OB volume and OS depth values of the 25(OH) 2 D3 deficiency group were significantly lower than those of the control group ( p < 0.05). For the central smell regions, the insular gyrus and corpus amygdala areas of the 25(OH) 2 D3 deficiency group were nonsignificantly lower than those in the control group ( p > 0.05). There were positive correlations between OB volumes, OS depths, and insular gyrus and corpus amygdala areas bilaterally in the 25(OH) 2 D3 deficiency group separately and in all subjects (groups 1 and 2) ( p < 0.05). In the 25(OH) 2 D3 deficiency group, as the 25(OH) 2 D3 values became lower, the insular gyrus area values decreased bilaterally ( p < 0.05). In females, the corpus amygdala area values were lower than in males ( p < 0.05). Conclusion Since vitamin D3 deficiency affected the peripheral and central smell regions negatively, we recommend evaluating patients' vitamin D levels as a health policy to prevent vitamin D3 deficiency-related cranial smell region problems. Moreover, sunlight exposure is very important to increase vitamin D levels, and the public should be informed about this topic.
Collapse
Affiliation(s)
- Ziya Şencan
- ENT Department, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Nuray Bayar Muluk
- ENT Department, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mehmet Hamdi Şahan
- Radiology Department, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
30
|
Zhou Y, Xue Y, Bao A, Han L, Bao W, Xia C, Tian X, Zhang M. Effect of Vitamin D Deficiency and Supplementation in Lactation and Early Life on Allergic Airway Inflammation and the Expression of Autophagy-Related Genes in an Ovalbumin Mouse Model. J Inflamm Res 2021; 14:4125-4141. [PMID: 34466017 PMCID: PMC8403027 DOI: 10.2147/jir.s321642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Objective Vitamin D is involved in various physiological and pathological processes, including inflammation and autophagy. We aimed to investigate the effects of dietary vitamin D deficiency or supplementation initiated in lactation and early life on inflammation and autophagy in an ovalbumin (OVA) mouse model. Methods Female BALB/c were fed with vitamin D-deficient, sufficient or supplemented diets throughout lactation and their offspring followed the same diet after weaning. Offspring were then sensitized and challenged with OVA, airway resistance (RL) was measured, and their serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected. Alveolar macrophages (AMs) were isolated from lung tissue and cultured with different concentrations of 1,25(OH)2D3. The expressions of autophagy-related (ATG) proteins including light-chain 3 (LC3), Beclin-1, and ATG5, and NF-κB p65 in lung tissue and AMs were measured. Results OVA sensitization and challenge induced dramatic allergic airway inflammation and higher RL in the vitamin D-deficient group compared with vitamin D-sufficient or the supplemented group. The expression of ATGs including LC3, Beclin-1, and ATG5, and NF-κB p65 in lung tissue in the vitamin D-deficient OVA-mediated group was increased compared with vitamin D-supplemented OVA-mediated group. There was correlation between the expression of LC3 mRNA and inflammatory cell numbers and cytokines in BALF. In vitro, 1,25(OH)2D3 also regulated the expression of LC3, Beclin-1, ATG5, and NF-κB p65 mRNA in AMs in a time- and dose-dependent manner. Conclusion Deficiency of vitamin D in early life may aggravate allergic airway inflammation, and maintaining sufficient vitamin D during early life is necessary for lung health. Vitamin D may modulate autophagy in lungs of OVA sensitized/challenged mice, thus playing a protective role in OVA-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Aihua Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Chao Xia
- Department of Gerontology, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| |
Collapse
|
31
|
Cui X, McGrath JJ, Burne THJ, Eyles DW. Vitamin D and schizophrenia: 20 years on. Mol Psychiatry 2021; 26:2708-2720. [PMID: 33500553 PMCID: PMC8505257 DOI: 10.1038/s41380-021-01025-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Many epidemiological studies have highlighted the link between vitamin D deficiency and schizophrenia. In particular, two prominent studies report an association between neonatal vitamin D deficiency and an increased risk of schizophrenia. In parallel, much has been learnt about the role of vitamin D in the developing central nervous system over the last two decades. Studies in rodent models of developmental vitamin D (DVD)-deficiency describe how brain development is altered leading to a range of neurobiological and behavioral phenotypes of interest to schizophrenia. While glutamate and gamma aminobutyric acid (GABA) systems have been little investigated in these models, alterations in developing dopamine systems are frequently reported. There have been far more studies reporting patients with schizophrenia have an increased risk of vitamin D deficiency compared to well controls. Here we have conducted a systematic review and meta-analysis that basically confirms this association and extends this to first-episode psychosis. However, patients with schizophrenia also have poorer general health, poorer diets, are frequently less active and also have an increased risk of other medical conditions, all factors which reduce circulating vitamin D levels. Therefore, we would urge caution in any causal interpretation of this association. We also summarize the inconsistent results from existing vitamin D supplementation trials in patients with schizophrenia. In respect to animal models of adult vitamin D deficiency, such exposures produce subtle neurochemical alterations and effects on cognition but do not appear to produce behavioral phenotypes of relevance to schizophrenia. We conclude, the hypothesis that vitamin D deficiency during early life may increase the risk of schizophrenia remains plausible and warrants ongoing research.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
| | - John J McGrath
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
- National Centre for Register-Based Research, Aarhus University, 8000, Aarhus, Denmark
| | - Thomas H J Burne
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia.
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia.
| |
Collapse
|
32
|
Sultan S. Neuroimaging changes associated with vitamin D Deficiency - a narrative review. Nutr Neurosci 2021; 25:1650-1658. [PMID: 33641639 DOI: 10.1080/1028415x.2021.1888206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ABSTRACTEmerging evidence suggests the role of vitamin D in brain health and its implication in the pathogenesis of cognitive impairment. The Aim of this review is to summarize current evidence on neuroimaging changes seen in vitamin D deficient individuals. Cross-sectional and longitudinal studies have consistently found an association between low serum 25 hydroxyvitamin D and cognitive impairment. Furthermore, investigating the association between serum 25 hydroxyvitamin D and neuroimaging abnormalities could provide an insight into the potential mechanisms underlying the association with cognitive impairment. Animal studies have demonstrated structural changes in the cerebral cortex and hippocampus of vitamin D deficient mice. Neuroimaging studies of the brain have shown increased white matter hyperintensities in periventricular, cortical, and juxtacortical areas and grey matter atrophy of the hippocampus, anterior cingulate cortex, and left calcarine sulcus in elderly with vitamin D deficiency.
Collapse
Affiliation(s)
- Sadia Sultan
- Department of Laboratory medicine, College of Applied Medical sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
33
|
Olivier K, Reinders LA, Clarke MW, Crew RC, Pereira G, Maloney SK, Wyrwoll CS. Maternal, Placental, and Fetal Responses to Intermittent Heat Exposure During Late Gestation in Mice. Reprod Sci 2021; 28:416-425. [PMID: 32804351 DOI: 10.1007/s43032-020-00291-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
Abstract
Physiological adaptations during heat exposure are critical in pregnancy. Maternal thermoregulation has to accommodate the increased metabolic load of the developing fetus. Here, we assess the consequences of intermittent heat exposure, as occurs in heat waves, for maternal adaptations during pregnancy, and chronic feto-placental outcomes. Following timed mating, C57BL/6J mice were allocated to either standard animal housing temperature conditions (SH) or housing at a temperature within the thermoneutral zone (TNZ). A subset of the TNZ group was exposed to 37 °C for 8 h a day from E15.5 to E17.5 to simulate a heat wave (HW). Maternal weight gain, food intake, rectal temperature, and nesting behaviors were measured across gestation. Fetal and placental tissues were collected at E18.5. With heat exposure, maternal rectal temperature increased while food intake and nest complexity decreased. Maternal daily weight gain initially decreased due to heat exposure, but on the last day of exposure, it was comparable to the other experimental groups. These maternal responses during heat exposure impacted on the fetus, with restrictions in placental and fetal development evident just before birth. Thus, the vascular portion of the placenta, and the relative fetal head size, was smaller. Furthermore, SH and TNZ animals demonstrated distinct differences in food intake and nesting behavior during pregnancy, reinforcing the need for caution in extrapolating from animal models to humans when housing occurs outside of thermoneutral zone conditions. This study highlights the direct effects of temperature conditions on health in pregnancy and provides a foundation for future studies to investigate fetal health consequences that are associated with intermittent heat exposure.
Collapse
Affiliation(s)
- Karike Olivier
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Lauren A Reinders
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Michael W Clarke
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, 6009, Australia
| | - Rachael C Crew
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Gavin Pereira
- School of Public Health, Curtin University, Bentley, 6102, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Caitlin S Wyrwoll
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
34
|
Panza F, La Montagna M, Lampignano L, Zupo R, Bortone I, Castellana F, Sardone R, Borraccino L, Dibello V, Resta E, Altamura M, Daniele A, Lozupone M. Vitamin D in the development and progression of alzheimer's disease: implications for clinical management. Expert Rev Neurother 2021; 21:287-301. [PMID: 33406925 DOI: 10.1080/14737175.2021.1873768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Although the pathophysiological bases of Alzheimer's disease (AD) remain incompletely understood and disease-modifying therapies are not available, intervention on modifiable risk factors is warranted. Research on nutrition and dietary components is challenging and controversies still persist about the role of micro- and macronutrients and health outcomes in dementia. Importantly, results of preclinical investigations have shown that vitamin D triggers different neural pathways that may be protective against these neurodegenerative mechanisms, including the deposition of amyloid plaques, inflammatory processes, neurofibrillary degeneration, glutamatergic excitotoxicity, excessive intraneuronal calcium influx, and oxidative stress, although its relationship with AD still needs to be fully understood. AREAS COVERED The authors analyzed the recent evidence about the effects of vitamin D insufficiency on AD and the role of supplementation. EXPERT OPINION Both insufficient (25-49.9 ng/ml) and deficient levels (<25 ng/ml) of vitamin D may contribute to an increased susceptibility to AD. However, further well-designed prospective studies are needed for a better understanding of the involvement of low vitamin D concentrations in the AD natural history. Randomized clinical trials will also be necessary to address the issue of causality and determine whether vitamin D supplementation may be effective for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Francesco Panza
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luisa Lampignano
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy
| | - Roberta Zupo
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy
| | - Ilaria Bortone
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy
| | - Fabio Castellana
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy
| | - Rodolfo Sardone
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy
| | - Luisa Borraccino
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Dibello
- Frailty Phenotypes Research Unit, "Salus in Apulia Study", National Institute of Gastroenterology "Saverio De Bellis", Research Hospital, Bari, Italy.,Department of Orofacial Pain & Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, The Netherlands
| | - Emanuela Resta
- Department of Cardiac, Thoracic, and Vascular Science, Institute of Respiratory Disease, University of Bari Aldo Moro, Bari, Italy.,Translational Medicine & Management of Health Systems, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
35
|
Abstract
It has been 20 years since we first proposed vitamin D as a "possible" neurosteroid.( 1 ) Our work over the last two decades, particularly results from our cellular and animal models, has confirmed the numerous ways in which vitamin D differentiates the developing brain. As a result, vitamin D can now confidently take its place among all other steroids known to regulate brain development.( 2 ) Others have concentrated on the possible neuroprotective functions of vitamin D in adult brains. Here these data are integrated, and possible mechanisms outlined for the various roles vitamin D appears to play in both developing and mature brains and how such actions shape behavior. There is now also good evidence linking gestational and/or neonatal vitamin D deficiency with an increased risk of neurodevelopmental disorders, such as schizophrenia and autism, and adult vitamin D deficiency with certain degenerative conditions. In this mini-review, the focus is on what we have learned over these past 20 years regarding the genomic and nongenomic actions of vitamin D in shaping brain development, neurophysiology, and behavior in animal models. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Darryl Walter Eyles
- Queensland Centre for Mental Health ResearchThe Park Centre for Mental HealthWacolAustralia
- Queensland Brain InstituteUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
36
|
Wang X, Jiao X, Xu M, Wang B, Li J, Yang F, Zhang L, Xu L, Yu X. Effects of circulating vitamin D concentrations on emotion, behavior and attention: A cross-sectional study in preschool children with follow-up behavior experiments in juvenile mice. J Affect Disord 2020; 275:290-298. [PMID: 32734921 DOI: 10.1016/j.jad.2020.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although few studies show that vitamin D (VitD) deficiency has a negative effect on children's emotion and behavior, the effects of the excessive VitD and the appropriate 25(OH)D concentration have never been reported. We investigated the effect of the deficient and excessive VitD on emotion, behavior and attention. METHODS 351 preschool children in a multicenter study in Shanghai, China that had serum 25(OH)D measurements and emotion, behavior and attention measures were included in the analyses. In animal experiments, C57 mice were randomly assigned to three groups (n = 8): control (C) group, VitD deficiency (VDD) group, and VitD overdose (VDO) group. The emotion, behavior and attention of juvenile mice were evaluated through the behavioral experiments. RESULTS There was an "U" relationship between serum 25(OH)D concentration and emotion, behavior and attention. Compared with 20-40 ng/mL group, the odds ratios (ORs) were 1.5 (1.0, 4.8) for emotional problem, 3.8 (1.2, 12.1) for conduct problem and 1.8 (1.1, 5.7) for inattention in <20 ng/mL group. Meanwhile, compared with 20-40 ng/mL group, ORs were 9.5 (2.9, 31.4) for impulsive hyperactivity, and 3.9 (1.2, 12.9) for conduct problem in >40 ng/mL group. Consistent with the results in children, animal experiments showed that the attention level decreased in VDD group, while the anxiety level, hyperactive level and aggressiveness in VDD group and VDO group were significantly increased, respectively. LIMITATIONS 25(OH)D measurements were only available in one season. CONCLUSION The deficient and excessive VitD status both adversely affected children's emotion, behavior and attention.
Collapse
Affiliation(s)
- Xirui Wang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai 200127, China
| | - Xianting Jiao
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Xuhui, Shanghai 200030, China
| | - Bin Wang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai 200127, China
| | - Juan Li
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai 200127, China
| | - Fan Yang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai 200127, China
| | - Lishan Zhang
- Department of Child Health Care, Shanghai Pudong Maternal and Child Health Care Institution, Pudong, Shanghai 201399, China
| | - Lei Xu
- Department of Child Health Care, Shanghai Pudong Maternal and Child Health Care Institution, Pudong, Shanghai 201399, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai 200127, China; MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, China.
| |
Collapse
|
37
|
Low Vitamin D and Its Association with Cognitive Impairment and Dementia. J Aging Res 2020; 2020:6097820. [PMID: 32399297 PMCID: PMC7210535 DOI: 10.1155/2020/6097820] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin D is a neurosteroid hormone that regulates neurotransmitters and neurotrophins. It has anti-inflammatory, antioxidant, and neuroprotective properties. It increases neurotrophic factors such as nerve growth factor which further promotes brain health. Moreover, it is also helpful in the prevention of amyloid accumulation and promotes amyloid clearance. Emerging evidence suggests its role in the reduction of Alzheimer's disease hallmarks such as amyloid-beta and phosphorylated tau. Many preclinical studies have supported the hypothesis that vitamin D leads to attentional, behavioral problems and cognitive impairment. Cross-sectional studies have consistently found that vitamin D levels are significantly low in individuals with Alzheimer's disease and cognitive impairment compared to healthy adults. Longitudinal studies and meta-analysis have also exhibited an association of low vitamin D with cognitive impairment and Alzheimer's disease. Despite such evidence, the causal association cannot be sufficiently answered. In contrast to observational studies, findings from interventional studies have produced mixed results on the role of vitamin D supplementation in the prevention and treatment of cognitive impairment and dementia. The biggest issue of the existing RCTs is their small sample size, lack of consensus over the dose, and age of initiation of vitamin D supplements to prevent cognitive impairment. Therefore, there is a need for large double-blind randomized control trials to assess the benefits of vitamin D supplementation in the prevention and treatment of cognitive impairment.
Collapse
|
38
|
Genome-Wide Association Study of Opioid Cessation. J Clin Med 2020; 9:jcm9010180. [PMID: 31936517 PMCID: PMC7019731 DOI: 10.3390/jcm9010180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
The United States is experiencing an epidemic of opioid use disorder (OUD) and overdose-related deaths. However, the genetic basis for the ability to discontinue opioid use has not been investigated. We performed a genome-wide association study (GWAS) of opioid cessation (defined as abstinence from illicit opioids for >1 year or <6 months before the interview date) in 1130 African American (AA) and 2919 European ancestry (EA) participants recruited for genetic studies of substance use disorders and who met lifetime Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) criteria for OUD. Association tests performed separately within each ethnic group were combined by meta-analysis with results obtained from the Comorbidity and Trauma Study. Although there were no genome-wide significant associations, we found suggestive associations with nine independent loci, including three which are biologically relevant: rs4740988 in PTPRD (pAA + EA = 2.24 × 10−6), rs36098404 in MYOM2 (pEA = 2.24 × 10−6), and rs592026 in SNAP25-AS1 (pEA = 6.53 × 10−6). Significant pathways identified in persons of European ancestry (EA) are related to vitamin D metabolism (p = 3.79 × 10−2) and fibroblast growth factor (FGF) signaling (p = 2.39 × 10−2). UK Biobank traits including smoking and drinking cessation and chronic back pain were significantly associated with opioid cessation using GWAS-derived polygenic risk scores. These results provide evidence for genetic influences on opioid cessation, suggest genetic overlap with other relevant traits, and may indicate potential novel therapeutic targets for OUD.
Collapse
|
39
|
Alzghoul L. Role of Vitamin D in Autism Spectrum Disorder. Curr Pharm Des 2020; 25:4357-4367. [DOI: 10.2174/1381612825666191122092215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
:
Autism spectrum disorder (ASD) is a pervasive developmental disorder with heterogeneous etiology.
Vitamin D can function as a fat-soluble vitamin as well as a hormone, and can exert its effect through both genomic
and non-genomic mechanisms. In the last decades, several studies have examined the relationship between
vitamin D levels and ASD. These studies demonstrated that low vitamin D status in early development has been
hypothesized as an environmental risk factor for ASD. Both in vivo and in vitro studies have demonstrated that
vitamin D deficiency in early life can alter brain development, dysregulates neurotransmitter balance in the brain,
decreases body and brain antioxidant ability, and alters the immune system in ways that resemble pathological
features commonly seen in ASD. In this review, we focused on the association between vitamin D and ASD. In
addition, the above-mentioned mechanisms of action that link vitamin D deficiency with ASD were also discussed.
Finally, clinical trials of vitamin D supplementation treatment of ASD have also been discussed.
Collapse
Affiliation(s)
- Loai Alzghoul
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
40
|
Gaughran F, Stringer D, Berk M, Smith S, Taylor D, Whiskey E, Landau S, Murray R, McGuire P, Gardner-Sood P, Wojewodka G, Ciufolini S, Jordan H, Clarke J, Allen L, Krivoy A, Stubbs B, Lowe P, Arbuthnott M, Rathod S, Boardman A, Firdosi M, McGrath JJ. Vitamin D supplementation compared to placebo in people with First Episode psychosis - Neuroprotection Design (DFEND): a protocol for a randomised, double-blind, placebo-controlled, parallel-group trial. Trials 2020; 21:14. [PMID: 31907006 PMCID: PMC6945550 DOI: 10.1186/s13063-019-3758-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background People experiencing their first episode of psychosis are often deficient in vitamin D. Observational studies have reported an association between low vitamin D concentrations and poorer subsequent health outcomes in psychosis. A vitamin D deficiency in neonates and children has been linked to a later increased risk of schizophrenia and psychotic-like experiences. This trial aims to examine the effect of high-dose vitamin D supplementation on outcomes in early psychosis. We hypothesise that vitamin D supplementation will be associated with better mental health outcomes. Methods/design The DFEND study is a multicentre double-blind placebo-controlled parallel-group trial of vitamin D supplementation in people with early psychosis. Patients with an ICD-10 diagnosis of functional psychosis will be randomised in a 1:1 ratio to receive either 120,000 IU/month of vitamin D (cholecalciferol) or a matched placebo for 6 months. The primary outcome is the total Positive and Negative Syndrome Scale (PANSS) score at the 6-month follow-up for all patients. Secondary outcomes include assessment of mood (Calgary Depression Scale), general function (Global Assessment of Functioning), cardiovascular risk (body mass index, waist circumference, C-reactive protein, cholesterol and HbA1c) and vitamin D levels at the 6-month follow-up. Additionally, 3- and 6-month total PANSS scores will be analysed for those with inadequate vitamin D levels at the baseline. Discussion The DFEND study is the first trial to examine whether vitamin D supplementation in early psychosis is associated with better mental health outcomes. The findings of this study may help to resolve the clinical equipoise regarding the benefits and cost-effectiveness of routine vitamin D supplementation in people with psychosis. Trial registration ISRCTN, ISRCTN12424842. Registered on 25 February 2015.
Collapse
Affiliation(s)
- Fiona Gaughran
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK. .,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK.
| | - Dominic Stringer
- Department of Biostatistics and Health Informatics, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Michael Berk
- Deakin University and Barwon Health, Ryrie Street, Geelong, Victoria, 3220, Australia
| | - Shubulade Smith
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - David Taylor
- South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Eromona Whiskey
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Sabine Landau
- Department of Biostatistics and Health Informatics, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Robin Murray
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Philip McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Poonam Gardner-Sood
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Gabriella Wojewodka
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Simone Ciufolini
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Harriet Jordan
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jessie Clarke
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lauren Allen
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Amir Krivoy
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Brendon Stubbs
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK.,South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Philippa Lowe
- Carer Expert and Chair of Trustees, Rethink Mental Illness, 89 Albert Embankment, London, SE1 7TP, UK
| | | | - Shanaya Rathod
- Clinical Trials Facility, Research Department, Tom Rudd Unit, Moorgreen Hospital, Southampton, SO3 03J, UK
| | - Andrew Boardman
- Cheshire & Wirral Partnership NHS Trust, Churton House, Countess of Chester Health Park, Chester, CH2 1BQ, UK
| | - Mudasir Firdosi
- South West London and St George's Mental Health NHS Trust, Queen Mary's Hospital, Roehampton Lane, London, SW15 5PN, UK
| | - John J McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.,National Centre for Register-Based Research, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
41
|
Kasatkina LA, Tarasenko AS, Krupko OO, Kuchmerovska TM, Lisakovska OO, Trikash IO. Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int J Biochem Cell Biol 2019; 119:105665. [PMID: 31821883 DOI: 10.1016/j.biocel.2019.105665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Vitamin D3 is among the major neurosteroids whose role in developing and adult brain is intensively studied now. Its active form 1,25(OH)2D3 regulates the expression and functioning of a range of brain-specific proteins, which orchestrate the neurotransmitter turnover, neurogenesis and neuroplasticity. Despite numerous studies of the vitamin D role in normal and pathological brain function, there is little evidence on the mechanisms of alterations in excitatory and inhibitory neurotransmission under vitamin D deficiency (VDD). Using the animal model we characterized the dysfunction of excitatory and inhibitory neurotransmission under alimentary VDD. The shift between unstimulated and evoked GABA release under VDD was largely reversed after treatment of VDD, whereas the impairments in glutamatergic system were only partially recovered after 1-month vitamin D3 supplementation. The increase of the external glutamate level and unstimulated GABA release in brain nerve terminals was associated with intensified ROS production and higher [Ca2+]i in presynapse. The negative allosteric modulation of presynaptic mGlu7 receptors significantly enhanced exocytotic GABA release, which was decreased under VDD, thereby suggesting the neuroprotective effect of such modulation of inhibitory neurotransmission. Synaptic plasma membranes and cytosolic proteins contribute to the decreased stimulated release of neurotransmitter, by being the crucial components, whose functional state is impaired under VDD. The critical changes with synaptic vesicles occurred at the docking step of the process, whereas malfunctioning of synaptic cytosolic proteins impacted the fusion event foremost. The decreased amplitude of exocytosis was inherent for non-excitable cells as well, as evidenced by lower platelet degranulation. Our data suggest the presynaptic dysfunction and proinflammatory shift as the early events in the pathogenesis of VDD-associated disorders and provide evidences for the neuroprotective role of vitamin D3.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine
| | - Alla S Tarasenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine
| | - Olga O Krupko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine
| | - Tamara M Kuchmerovska
- The Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030 Ukraine
| | - Olha O Lisakovska
- The Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030 Ukraine
| | - Irene O Trikash
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine.
| |
Collapse
|
42
|
Gan J, Galer P, Ma D, Chen C, Xiong T. The Effect of Vitamin D Supplementation on Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Child Adolesc Psychopharmacol 2019; 29:670-687. [PMID: 31368773 DOI: 10.1089/cap.2019.0059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: A systematic review and meta-analysis of randomized controlled trials (RCTs) were conducted to assess the benefits and harms of vitamin D supplementation for attention-deficit/hyperactivity disorder (ADHD) patients. Methods: We followed the standard methodological procedures of the Cochrane Handbook for Systematic Reviews of Intervention. PubMed, Embase, the Cochrane Central Register of Controlled Trials, Science and Conference Proceedings Citation Index-Social Science and Humanities (Web of Science), ClincalTrials.gov, and World Health Organization's International Clinical Trials Registry Platform were searched for RCTs in January 2019. Independently, two authors (J.G., T.X.) extracted data, assessed the risk of bias, combined the data, and graded evidence quality using the Grading of Recommendations Assessment, Development, and Evaluation approach. Our primary outcomes were assessed through rating scales of ADHD severity. Secondary outcomes measured were the possible adverse effects of vitamin D supplementation and vitamin D status after supplementation for ADHD. Results: We included four RCTs with 256 children addressing vitamin D supplementation as adjunctive therapy to methylphenidate on ADHD symptoms. Vitamin D supplementation demonstrated a small but statistically significant improvement in ADHD total scores, inattention scores, hyperactivity scores, and behavior scores. The improvement was likely limited due to the low to very low quality of evidence in the literature. There was no statistically significant improvement in oppositional scores. Reported adverse events in the vitamin D group were mild and not significantly different from the control group. Vitamin D supplementation increased serum vitamin D levels and the ratio of patients with sufficient vitamin D levels. Conclusions: Vitamin D supplementation as adjunctive therapy to methylphenidate appeared to reduce ADHD symptoms without serious adverse events, associated with improved vitamin D status. However, considering the generally low strength of evidence, well-designed RCTs are needed to determine the efficacy and safety of vitamin D supplementation for both children and adults with ADHD, especially in the setting of a combination of vitamin D and other ADHD treatments.
Collapse
Affiliation(s)
- Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Peter Galer
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chao Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tao Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Cagigal C, Silva T, Jesus M, Silva C. Does Diet Affect the Symptoms of ADHD? Curr Pharm Biotechnol 2019; 20:130-136. [PMID: 30255748 DOI: 10.2174/1389201019666180925140733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is the most common psychiatric diagnosis in childhood and adolescence, with an estimated worldwide-pooled prevalence of 5,29%. The type of treatment depends on several factors. Psychopharmacological treatment entails undesirable side effects, with unclear long-term benefits, which has led the scientific community to investigate other therapeutic approaches, such as dietary interventions. METHOD The authors conducted a classical review on the current treatment recommended in individuals with ADHD diagnosis, their dietary patterns, as well as dietary factors possibly implicated in the etiology and treatment of this disorder. An extensive bibliographic research was carried out in the databases PubMed, The Cochrane Library and the National Guideline Clearinghouse. DISCUSSION The most common dietary interventions in the case of ADHD are food supplementation diets (e.g. PUFAs, vitamins) and elimination diets. Supplementation with omega-3 PUFAs lacks further studies that can validate them as an effective therapeutic approach in this disorder. Also, regarding vitamin supplementation, studies are not consistent as to their role in the etiology of ADHD. Elimination diets are unclear as to the benefits provided in individuals with ADHD. Children with ADHD are less likely to engage in healthy lifestyle behaviors than non-ADHD youth. CONCLUSION There is no clear evidence that supports dietary interventions for the treatment of ADHD. The effects of unhealthy diet patterns in ADHD individuals are not yet fully understood and, like the general population, children with ADHD may benefit from a healthy lifestyle.
Collapse
Affiliation(s)
- César Cagigal
- Department of Psychiatry, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Tánia Silva
- Department of Psychiatry, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Mariana Jesus
- Department of Psychiatry, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Carla Silva
- Department of Psychiatry, Coimbra Hospital and University Centre, Coimbra, Portugal
| |
Collapse
|
44
|
Canat L, Degirmentepe RB, Atalay HA, Çakir SS, Alkan I, Çulha MG, Ozbir S, Canat M. Low serum vitamin D is associated with an increased likelihood of acquired premature ejaculation. Int Braz J Urol 2019; 45:621-628. [PMID: 31063279 PMCID: PMC6786110 DOI: 10.1590/s1677-5538.ibju.2018.0887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: To investigate the relationship between 25-hydroxyvitamin D (25 (OH) D) levels and acquired premature ejaculation (PE). Materials and Methods: A total of 97 patients with acquired PE and 64 healthy men as a control group selected from volunteers without PE attending our Andrology Outpatient Clinic between November 2016 and April 2017 were included the study. All patients were considered to have acquired PE if they fulfilled the criteria of the second Ad Hoc International Society for Sexual Medicine Committee. Premature ejaculation diagnostic tool questionnaires were used to assessment of PE and all participants were instructed to record intravaginal ejaculatory latency time. Vitamin D levels were evaluated in all participants using high performance liquid chromatography method included in the study. Results: Compared to men without PE, the patients with acquired PE had significantly lower 25 (OH) D levels (12.0 ± 4.5 ng/mL vs. 18.2 ± 7.4 ng/mL, p < 0.001). In the logistic regression analysis, 25 (OH) D was found to be an independent risk factor for acquired PE, with estimated odds ratios (95% CI) of 0.639 (0.460-0.887, p = 0.007) and the area under curve of the ROC curve of 25 (OH) D diagnosing acquired PE was 0.770 (95% CI: 0.695 to 0.844, p < 0.001). The best cut-off value was 16 ng/mL with a sensitivity of 60.9%, specificity of 83.5%, PPV of 70.9%, and NPV of 76.4% to indicate acquired PE. Conclusions: This study demonstrates that lower vitamin D levels are associated with the acquired PE. The result of our study showed that the role of serum vitamin D levels should be investigate in the etiology of acquired PE. Perhaps supplementation of vitamin D in men with acquired PE will ameliorate the sexual health of these patients.
Collapse
Affiliation(s)
- Lütfi Canat
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | | | - Hasan Anil Atalay
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Suleyman Sami Çakir
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Ilter Alkan
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Gokhan Çulha
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Sait Ozbir
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Masum Canat
- Department of Endocrinology and Metabolism, Şişli Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
45
|
Abstract
Vitamin D, a fat-soluble vitamin, plays a role not only in calcium and phosphate homeostasis but also in several other functions, including cell growth and neuromuscular and immune function. The deficiency of vitamin D is highly prevalent throughout the world and has been suggested to be associated with an enhanced risk of major depressive disorder (MDD) and anxiety disorders. Therefore, vitamin D supplementation has been investigated for the prevention and treatment of these disorders. This review presents preclinical and clinical evidence of the effects of vitamin D supplementation in these disorders. Although preclinical studies provide limited evidence on the possible mechanisms underlying the beneficial effects of vitamin D for the management of these disorders, most of the clinical studies have indicated that vitamin D supplementation is associated with the reduction of symptoms of depression and anxiety, particularly when the supplementation was carried out in individuals with an MDD diagnosis (of the 13 studies in which MDD diagnosis was established, 12 had positive results with vitamin supplementation). However, some heterogeneity in the outcomes was observed and might be associated with an absence of overt psychiatric symptoms in several studies, genetic polymorphisms that alter vitamin D metabolism and bioavailability, differences in the supplementation regimen (monotherapy, adjunctive therapy, or large bolus dosing), and levels of 25-hydroxyvitamin D3 (25(OH)D) at baseline (individuals with low vitamin D status may respond better) and attained after supplementation. Additionally, factors such as sex, age, and symptom severity also need to be further explored in relation to the effects of vitamin D. Therefore, although vitamin D may hold significant potential for mental health, further preclinical and clinical studies are clearly necessary to better understand its role on mood/affect modulation.
Collapse
|
46
|
Newman LA, Baraiolo J, Mokler DJ, Rabinowitz AG, Galler JR, McGaughy JA. Prenatal Protein Malnutrition Produces Resistance to Distraction Similar to Noradrenergic Deafferentation of the Prelimbic Cortex in a Sustained Attention Task. Front Neurosci 2019; 13:123. [PMID: 30853881 PMCID: PMC6396814 DOI: 10.3389/fnins.2019.00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/03/2022] Open
Abstract
Exposure to malnutrition early in development increases likelihood of neuropsychiatric disorders, affective processing disorders, and attentional problems later in life. Many of these impairments are hypothesized to arise from impaired development of the prefrontal cortex. The current experiments examine the impact of prenatal malnutrition on the noradrenergic and cholinergic axons in the prefrontal cortex to determine if these changes contribute to the attentional deficits seen in prenatal protein malnourished rats (6% casein vs. 25% casein). Because prenatally malnourished animals had significant decreases in noradrenergic fibers in the prelimbic cortex with spared innervation in the anterior cingulate cortex and showed no changes in acetylcholine innervation of the prefrontal cortex, we compared deficits produced by malnutrition to those produced in adult rats by noradrenergic lesions of the prelimbic cortex. All animals were able to perform the baseline sustained attention task accurately. However, with the addition of visual distractors to the sustained attention task, animals that were prenatally malnourished and those that were noradrenergically lesioned showed cognitive rigidity, i.e., were less distractible than control animals. All groups showed similar changes in behavior when exposed to withholding reinforcement, suggesting specific attentional impairments rather than global difficulties in understanding response rules, bottom-up perceptual problems, or cognitive impairments secondary to dysfunction in sensitivity to reinforcement contingencies. These data suggest that prenatal protein malnutrition leads to deficits in noradrenergic innervation of the prelimbic cortex associated with cognitive rigidity.
Collapse
Affiliation(s)
- Lori A. Newman
- Department of Psychology, University of New Hampshire, Durham, NH, United States
- Department of Psychological Science, Vassar College, Poughkeepsie, NY, United States
| | - Jaime Baraiolo
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - David J. Mokler
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | | | - Janina R. Galler
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA, United States
| | - Jill A. McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
47
|
Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci 2019; 42:293-306. [PMID: 30795846 DOI: 10.1016/j.tins.2019.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Over a billion people worldwide are affected by vitamin D deficiency. Although vitamin D deficiency is associated with impaired cognition, the mechanisms mediating this link are poorly understood. The extracellular matrix (ECM) has now emerged as an important participant of synaptic plasticity and a new hypothesis is that vitamin D may interact with aggregates of the ECM, perineuronal nets (PNNs), to regulate brain plasticity. Dysregulation of PNNs caused by vitamin D deficiency may contribute to the presentation of cognitive deficits. Understanding the molecular mechanisms underpinning the role of vitamin D in brain plasticity and cognition could help identify ways to treat cognitive symptoms in schizophrenia and other neuropsychiatric conditions.
Collapse
|
48
|
Adult vitamin D deficiency disrupts hippocampal-dependent learning and structural brain connectivity in BALB/c mice. Brain Struct Funct 2019; 224:1315-1329. [PMID: 30712221 DOI: 10.1007/s00429-019-01840-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Converging evidence from human and animal studies support an association between vitamin D deficiency and cognitive impairment. Previous studies have shown that hippocampal volume is reduced in adults with vitamin D deficiency as well as in a range of disorders, such as schizophrenia. The aim of the current study was to examine the effect of adult vitamin D (AVD) deficiency on hippocampal-dependent spatial learning, and hippocampal volume and connectivity in healthy adult mice. Ten-week-old male BALB/c mice were fed a control (vitamin D 1500 IU/kg) or vitamin D-depleted (vitamin D 0 IU/kg) diet for a minimum of 10 weeks. The mice were then tested for hippocampal-dependent spatial learning using active place avoidance (APA) and on tests of muscle and motor coordination (rotarod and grip strength). The mice were perfused and brains collected to acquire ex vivo structural and diffusion-weighted images using a 16.4 T MRI scanner. We also performed immunohistochemistry to quantify perineuronal nets (PNNs) and parvalbumin (PV) interneurons in various brain regions. AVD-deficient mice had a lower latency to enter the shock zone on APA, compared to control mice, suggesting impaired hippocampal-dependent spatial learning. There were no differences in rotarod or grip strength, indicating that AVD deficiency did not have an impact on muscle or motor coordination. AVD deficiency did not have an impact on hippocampal volume. However, AVD-deficient mice displayed a disrupted network centred on the right hippocampus with abnormal connectomes among 29 nodes. We found a reduction in PNN positive cells, but no change in PV, centred on the hippocampus. Our results provide compelling evidence to show that AVD deficiency in otherwise healthy adult mice may play a key role in hippocampal-dependent learning and memory formation. We suggest that the spatial learning deficits could be due to the disruption of right hippocampal structural connectivity.
Collapse
|
49
|
Decreased Serum Level of Gamma-amino Butyric Acid in Egyptian Infertile Females with Polycystic Ovary Syndrome is Correlated with Dyslipidemia, Total Testosterone and 25(OH) Vitamin D Levels. J Med Biochem 2019; 38:512-518. [PMID: 31496917 PMCID: PMC6708297 DOI: 10.2478/jomb-2018-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders around the world. Increasing evidence suggests that neurotransmitter Gamma-aminobutyric acid (GABA) is involved in the pathogenesis of PCOS through its central role in the hypothalamus. However, the peripheral role of GABA in PCOS has not been sufficiently investigated in spite of its existence in peripheral organs. First, the aim of this study is to, investigate serum GABA level in Egyptian PCOS patients. Second, to explore the correlation between serum GABA level with Body Mass Index (BMI), dyslipidemia, totaltestosterone and 25 (OH) vitamin D. Methods Eighty PCOS patients and eighty age-matched healthy females were included in this study. All parameters were assessed colourimetrically or with ELISA. Results PCOS patients exhibited significantly decreased serum GABA level compared to controls (p < 0.001). There was a significant positive correlation between serum GABA and 25(OH) vitamin D levels (r = 0.26, p = 0.018), and a significant negative correlation with total testosterone (r = - 0.3, p = 0.02), total cholesterol (TC) (r = - 0.31, p = 0.01) and LDL-Cholesterol (LDL-C) (r = - 0.23, p = 0.045), respectively. Conclusions The findings of this study suggest that disrupted GABA level in the peripheral circulation is an additional contributing factor to PCOS manifestations. GABA deficiency was correlated with 25 (OH) vitamin D deficiency, dyslipidemia, and total testosterone. Further investigations for GABA adjustment might provide a promising means for better management of PCOS symptoms.
Collapse
|
50
|
Li HH, Xu ZD, Wang B, Feng JY, Dong HY, Jia FY. Clinical improvement following vitamin D3 supplementation in children with chronic tic disorders. Neuropsychiatr Dis Treat 2019; 15:2443-2450. [PMID: 31933522 PMCID: PMC6716592 DOI: 10.2147/ndt.s212322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Vitamin D deficiency has been found in children with chronic tic disorders (CTDs). Our previous data showed that serum 25-hydroxyvitamin D [25(OH)D] level in children with CTDs was lower than that of the healthy controls and lower serum 25(OH)D level was associated with increased severity of the tic disorder. Thus, we intend to further verify this phenomenon and examine the effect of vitamin D3 on CTDs. PATIENTS AND METHODS In total, 120 children with CTDs and 140 normal controls were enrolled in this study, with 36/120 of those in the CTD group receiving vitamin D3 treatment for 3 months. The Yale Global Tic Severity Scale (YGTSS) and Clinical Global Impression of Severity of Illness (CGI-SI) were, respectively, used to evaluate the tic severity. High-performance liquid chromatography and tandem mass spectrometry were used to measure serum 25(OH)D level. RESULTS Those children with CTDs exhibited significantly lower 25(OH)D levels than did healthy controls, and these reduced 25(OH)D levels were linked to increasing severity of tic symptoms. After treatment with supplemental vitamin D3, serum 25(OH)D level and scores of YGTSS total, motor tics, phonic tics, total tic, impairment, and CGI-SI improved significantly in children with CTDs without any adverse reactions. CONCLUSION Supplementation vitamin D3, given its low cost and excellent safety, may be an effective means of improving symptoms in certain children with CTDs.
Collapse
Affiliation(s)
- Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Zhi-Da Xu
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China.,Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bing Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Jun-Yan Feng
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Han-Yu Dong
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China.,Neurological Research Center of the First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|