1
|
Stenwall A, Uggla AL, Weibust D, Fahlström M, Ryttlefors M, Latini F. The Bulb, the Brain and the Being: New Insights into Olfactory System Anatomy, Organization and Connectivity. Brain Sci 2025; 15:368. [PMID: 40309830 PMCID: PMC12025486 DOI: 10.3390/brainsci15040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Olfaction is in many ways the least understood sensory modality. Its organization and connectivity are still under debate. The aim of this study was to investigate the anatomy of the olfactory system by using a cadaver fiber dissection technique and in vivo tractography to attain a deeper understanding of the subcortical connectivity and organization. METHODS Ten cerebral hemispheres were used in this study for white matter dissection according to Klingler's technique. Measurements of different cortical structures and interhemispheric symmetry were compared. Diffusion tensor imaging sequences from twenty-five healthy individuals from the Human Connectome Project dataset were used to explore the connectivity of the olfactory system using DSI Studio. White matter connectivity between the following were reconstructed in vivo: (1) Olfactory bulb to primary olfactory cortices; (2) Olfactory bulb to secondary olfactory cortices; (3) Primary to secondary olfactory cortices. The DTI metrics of the identified major associative, projection and commissural pathways were subsequently correlated with olfactory function and cognition in seventy-five healthy individuals with Spearman's rank correlation and the Benjamini-Hochberg method for false discoveries (CI 95%, p < 0.05) using R. RESULTS 1. The dissection showed that the lateral stria was significantly longer on the left side and projected towards the amygdala, the entorhinal and piriform cortex. 2. The medial stria was not evident as a consistent white matter structure. 3. Both dissection and tractography showed that major associative white matter pathways such as the uncinate fasciculus, the inferior fronto-occipital fasciculus and cingulum supported the connectivity between olfactory areas together with the anterior commissure. 4. No significant correlation was found between DTI metrics and sensory or cognition test results. CONCLUSIONS We present the first combined fiber dissection analysis and tractography of the olfactory system. We propose a novel definition where the primary olfactory network is defined by the olfactory tract/bulb and primary olfactory cortices through the lateral stria only. The uncinate fasciculus, inferior fronto-occipital fasciculus and cingulum are the associative pathways supporting the connectivity between primary and secondary olfactory areas together with the anterior commissure. We suggest considering these structures as a secondary olfactory network. Further work is needed to attain a deeper understanding of the pathological and physiological implications of the olfactory system.
Collapse
Affiliation(s)
- Anton Stenwall
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (A.-L.U.); (D.W.); (M.R.)
| | - Aino-Linnea Uggla
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (A.-L.U.); (D.W.); (M.R.)
| | - David Weibust
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (A.-L.U.); (D.W.); (M.R.)
| | - Markus Fahlström
- Department of Radiology and Nuclear Medicine, Uppsala University, 751 85 Uppsala, Sweden;
| | - Mats Ryttlefors
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (A.-L.U.); (D.W.); (M.R.)
| | - Francesco Latini
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (A.-L.U.); (D.W.); (M.R.)
| |
Collapse
|
2
|
Oltra J, Kalpouzos G, Ekström I, Larsson M, Li Y, Qiu C, Laukka EJ. Cerebrovascular burden and neurodegeneration linked to 15-year odor identification decline in older adults. Front Aging Neurosci 2025; 17:1539508. [PMID: 40196179 PMCID: PMC11973317 DOI: 10.3389/fnagi.2025.1539508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Background The mechanisms underlying olfactory decline in aging need further investigation. Noticeably, the longitudinal relationship of biological markers with olfaction remains underexplored. We investigated whether baseline levels and progression of microvascular lesions and brain atrophy are associated with odor identification (OID) decline. Methods The association between structural MRI markers and OID decline was examined in participants from the SNAC-K MRI study who were free from dementia at baseline (n = 401, mean age = 70.2 years, 60% females). OID was repeatedly assessed over 15 years. Presence of lacunes, white matter hyperintensities (WMH), perivascular spaces (PVS), and lateral ventricular, hippocampal, amygdalar, and total gray matter (GM) volumes were assessed up to 6 years, concurrent with the first 6 years of olfactory assessments. Results Higher PVS count and lower hippocampal and GM volumes at baseline were associated with accelerated OID decline (pFWE < 0.05). Longitudinally (n = 225), presence of lacunes at follow-up, faster WMH volume and PVS count increases, faster lateral ventricular enlargement, and faster hippocampal, amygdalar, and GM atrophy were associated with accelerated OID decline (p FWE < 0.05). Conclusion Olfactory decline is related to both increased cerebrovascular burden and accelerated brain atrophy over time.
Collapse
Affiliation(s)
- Javier Oltra
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Ingrid Ekström
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Maria Larsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Yuanjing Li
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Chengxuan Qiu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Erika J. Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
3
|
Deiana G, He J, Cabrera-Mendoza B, Ciccocioppo R, Napolioni V, Polimanti R. Brain-wide pleiotropy investigation of alcohol drinking and tobacco smoking behaviors. Transl Psychiatry 2025; 15:61. [PMID: 39979292 PMCID: PMC11842717 DOI: 10.1038/s41398-025-03288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
To investigate the pleiotropic mechanisms linking brain structure and function to alcohol drinking and tobacco smoking, we integrated genome-wide data generated by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN; up to 805,431 participants) with information related to 3935 brain imaging-derived phenotypes (IDPs) available from UK Biobank (N = 33,224). We observed global genetic correlation of smoking behaviors with white matter hyperintensities, the morphology of the superior longitudinal fasciculus, and the mean thickness of pole-occipital. With respect to the latter brain IDP, we identified a local genetic correlation with age at which the individual began smoking regularly (hg38 chr2:35,895,678-36,640,246: rho = 1, p = 1.01 × 10-5). This region has been previously associated with smoking initiation, educational attainment, chronotype, and cortical thickness. Our genetically informed causal inference analysis using both latent causal variable approach and Mendelian randomization linked the activity of prefrontal and premotor cortex and that of superior and inferior precentral sulci, and cingulate sulci to the number of alcoholic drinks per week (genetic causality proportion, gcp = 0.38, p = 8.9 × 10-4, rho = -0.18 ± 0.07; inverse variance weighting, IVW beta = -0.04, 95%CI = -0.07--0.01). This relationship could be related to the role of these brain regions in the modulation of reward-seeking motivation and the processing of social cues. Overall, our brain-wide investigation highlighted that different pleiotropic mechanisms likely contribute to the relationship of brain structure and function with alcohol drinking and tobacco smoking, suggesting decision-making activities and chemosensory processing as modulators of propensity towards alcohol and tobacco consumption.
Collapse
Affiliation(s)
- Giovanni Deiana
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jun He
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Roberto Ciccocioppo
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare System, West Haven, CT, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
4
|
Abstract
OBJECTIVES We investigated the relationship between olfactory function and depression and suggested future research in this area from rhinology. METHODS We independently searched 5 databases (PubMed, SCOPUS, Embase, the Web of Science, and the Cochrane database) for recent studies published from December 2019 to the present. From the obtained studies, we reviewed the findings on olfactory function and depression using a questionnaire to measure depression and olfactory tests. RESULTS The olfactory function test score based on the UPSIT-40 (standardized mean difference = -.37 [-.66; -.08], P = .0123) was significantly lower in the depression group than in the control group. The olfactory function score based on the Sniffin' sticks test for identification, discrimination, and threshold was lower in the depression group than in the control. A meta-analysis of the studies showed that depressed patients showed lower olfactory function than the control group. CONCLUSIONS AND SIGNIFICANCE The findings revealed that an understanding of the relationship between olfaction and depression can be determined using an analysis methodology and a standardized olfactory test. Olfactory functioning and processing are highly integrated with emotion and memory through projections from the olfactory bulb to the central areas.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology, School of Medicine, Ewha Womans University of Korea, Seoul, Korea
| | - Jung Ho Bae
- Department of Otorhinolaryngology, School of Medicine, Ewha Womans University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Bouhaben J, Delgado-Lima AH, Delgado-Losada ML. Olfactory Identification as a Biomarker for Cognitive Impairment: Insights from Healthy Aging, Subjective Cognitive Decline, and Mild Cognitive Impairment. Eur J Investig Health Psychol Educ 2024; 14:2978-3000. [PMID: 39727504 DOI: 10.3390/ejihpe14120196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction: This study aims to investigate the relationship between olfactory identification (OI) and cognitive impairment by examining OI abilities across various stages of cognitive deterioration. Methods: A total of 264 participants were divided into three groups based on cognitive status: cognitively healthy, subjective cognitive, and mild cognitive impairment. All participants were assessed using the Sniffin' Sticks Olfactory Identification test and a comprehensive neuropsychological test battery. Results: Our results highlight the main effects of age and cognitive status on OI scores. Regarding cognitive abilities, OI is associated with measures of short-term memory, long-term, working memory, and selective attention. Finally, logistic regression models showed that OI is a significant predictor for discriminating SCD from CH, MCI from CH, and MCI from SCD. Discussion: These findings suggest the addition of olfactory identification measures in neuropsychological assessments could improve the early detection of individuals at risk for cognitive impairment.
Collapse
Affiliation(s)
- Jaime Bouhaben
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Alice Helena Delgado-Lima
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - María Luisa Delgado-Losada
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
6
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Raghuraman R, Aoun A, Herman M, Shetler CO, Nahmani E, Hussaini SA. Lateral Entorhinal Cortex Dysfunction in Alzheimer's Disease Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589589. [PMID: 38659892 PMCID: PMC11042344 DOI: 10.1101/2024.04.15.589589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In Alzheimer's disease (AD), the formation of amyloid beta and neurofibrillary tangles (NFTs) leads to neuronal loss in entorhinal cortex (EC), a crucial brain region involved in memory and navigation. These pathological changes are concurrent with the onset of memory-related issues in AD patients with symptoms of forgetfulness such as misplacing items, disorientation in familiar environments etc. The lateral EC (LEC) is associated with non-spatial memory processing including object recognition. Since in LEC, neurons fire in response to objects (object cells) and at locations previously occupied by objects (trace cells), pathology in this region could lead to dysfunction in object location coding. In this paper we show that a transgenic mouse model, EC-App/Tau, which expresses both APP and tau primarily in the EC region, have deficits in LEC-specific memory tasks. Using in vivo single-unit electrophysiology recordings we show that the LEC neurons are hyperactive with low information content and high sparsity compared to the controls indicating poor firing fidelity. We finally show that object cells and trace cells fire less precisely in the EC-App/Tau mice compared to controls indicating poor encoding of objects. Overall, we show that AD pathology causes erratic firing of LEC neurons and object coding defects leading to LEC-specific memory impairment.
Collapse
|
8
|
Diez I, Ortiz-Terán L, Ng TSC, Albers MW, Marshall G, Orwig W, Kim CM, Bueichekú E, Montal V, Olofsson J, Vannini P, El Fahkri G, Sperling R, Johnson K, Jacobs HIL, Sepulcre J. Tau propagation in the brain olfactory circuits is associated with smell perception changes in aging. Nat Commun 2024; 15:4809. [PMID: 38844444 PMCID: PMC11156945 DOI: 10.1038/s41467-024-48462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.
Collapse
Affiliation(s)
- Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- UMASS Memorial Medical Center, UMASS Chan Medical School, Worcester, MA, USA
| | - Thomas S C Ng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gad Marshall
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Orwig
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard University, Department of Psychology, Cambridge, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Montal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jonas Olofsson
- Stockholm University, Department of Psychology, Stockholm, Sweden
| | - Patrizia Vannini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fahkri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
9
|
Deiana G, He J, Cabrera-Mendoza B, Ciccocioppo R, Napolioni V, Polimanti R. Brain-wide pleiotropy investigation of alcohol drinking and tobacco smoking behaviors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307989. [PMID: 38854122 PMCID: PMC11160805 DOI: 10.1101/2024.05.27.24307989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
To investigate the pleiotropic mechanisms linking brain structure and function to alcohol drinking and tobacco smoking, we integrated genome-wide data generated by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN; up to 805,431 participants) with information related to 3,935 brain imaging-derived phenotypes (IDPs) available from UK Biobank (N=33,224). We observed global genetic correlation of smoking behaviors with white matter hyperintensities, the morphology of the superior longitudinal fasciculus, and the mean thickness of pole-occipital. With respect to the latter brain IDP, we identified a local genetic correlation with age at which the individual began smoking regularly (hg38 chr2:35,895,678-36,640,246: rho=1, p=1.01×10 -5 ). This region has been previously associated with smoking initiation, educational attainment, chronotype, and cortical thickness. Our genetically informed causal inference analysis using both latent causal variable approach and Mendelian randomization linked the activity of prefrontal and premotor cortex and that of superior and inferior precentral sulci, and cingulate sulci to the number of alcoholic drinks per week (genetic causality proportion, gcp=0.38, p=8.9×10 -4 , rho=-0.18±0.07; inverse variance weighting, IVW beta=-0.04, 95%CI=-0.07 - -0.01). This relationship could be related to the role of these brain regions in the modulation of reward-seeking motivation and the processing of social cues. Overall, our brain-wide investigation highlighted that different pleiotropic mechanisms likely contribute to the relationship of brain structure and function with alcohol drinking and tobacco smoking, suggesting decision-making activities and chemosensory processing as modulators of propensity towards alcohol and tobacco consumption.
Collapse
|
10
|
Chalençon L, Midroit M, Athanassi A, Thevenet M, Breton M, Forest J, Richard M, Didier A, Mandairon N. Age-related differences in perception and coding of attractive odorants in mice. Neurobiol Aging 2024; 137:8-18. [PMID: 38394723 DOI: 10.1016/j.neurobiolaging.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.
Collapse
Affiliation(s)
- Laura Chalençon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Maëllie Midroit
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anna Athanassi
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marc Thevenet
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marine Breton
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Jérémy Forest
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marion Richard
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anne Didier
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France; Institut Universitaire de France (IUF), France
| | - Nathalie Mandairon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France.
| |
Collapse
|
11
|
Kamath V, Chen H, Shrestha S, Mechanic-Hamilton D, Deal JA, Mosley TH, Schneider ALC. Normative Data for the 12-Item Sniffin' Sticks Odor Identification Test in Older Adults. Arch Clin Neuropsychol 2024; 39:335-346. [PMID: 37883325 PMCID: PMC11042920 DOI: 10.1093/arclin/acad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Quantitative olfactory assessment has demonstrated clinical utility for the evaluation of a range of neurologic, psychiatric, and sinonasal conditions. Here, we provide age, sex, race, and education-specific normative data for the 12-item Sniffin Sticks Odor Identification Test (SSOIT-12) in older Black and White U.S. adults without preclinical or clinical dementia or sinonasal disease. METHOD A sample of 2,224 Atherosclerosis Risk in Communities study participants aged 66-89 years were included. A normative regression equation was developed using a linear model for the association of age, sex, race, and education with odor identification score. Regression-based normative mean scores and percentiles were generated by age, sex, race, and education groups. RESULTS Participants (mean age = 74 years, 59% women, 20% Black, 48% > high school education) had a mean SSOIT-12 score of 9.8. Age, sex, race, and education were all associated with odor identification performance (all ps < .05). A linear regression model for the predicted SSOIT-12 score was developed for use with an individual's actual SSOIT-12 score in order to calculate the Z-score and corresponding percentile for a specific age, sex, race, and education group. Data are also reported in tabular format. CONCLUSIONS Our study provides SSOIT-12 normative data obtained from a large population of White and Black older adults without preclinical or clinical dementia or sinonasal disease living in the USA. These findings can aid clinicians in assessing the degree of olfactory loss, establishing concordance with a person's perception of olfactory difficulties and quantitatively monitoring changes in olfactory performance over time.
Collapse
Affiliation(s)
- Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Srishti Shrestha
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dawn Mechanic-Hamilton
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
- Cochlear Center for Hearing and Public Health, Baltimore, MD 21287, USA
| | - Thomas H Mosley
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Vance DE, Del Bene VA, Kamath V, Frank JS, Billings R, Cho DY, Byun JY, Jacob A, Anderson JN, Visscher K, Triebel K, Martin KM, Li W, Puga F, Fazeli PL. Does Olfactory Training Improve Brain Function and Cognition? A Systematic Review. Neuropsychol Rev 2024; 34:155-191. [PMID: 36725781 PMCID: PMC9891899 DOI: 10.1007/s11065-022-09573-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/01/2022] [Indexed: 02/03/2023]
Abstract
Olfactory training (OT), or smell training,consists of repeated exposure to odorants over time with the intended neuroplastic effect of improving or remediating olfactory functioning. Declines in olfaction parallel declines in cognition in various pathological conditions and aging. Research suggests a dynamic neural connection exists between olfaction and cognition. Thus, if OT can improve olfaction, could OT also improve cognition and support brain function? To answer this question, we conducted a systematic review of the literature to determine whether there is evidence that OT translates to improved cognition or altered brain morphology and connectivity that supports cognition. Across three databases (MEDLINE, Scopus, & Embase), 18 articles were identified in this systematic review. Overall, the reviewed studies provided emerging evidence that OT is associated with improved global cognition, and in particular, verbal fluency and verbal learning/memory. OT is also associated with increases in the volume/size of olfactory-related brain regions, including the olfactory bulb and hippocampus, and altered functional connectivity. Interestingly, these positive effects were not limited to patients with smell loss (i.e., hyposmia & anosmia) but normosmic (i.e., normal ability to smell) participants benefitted as well. Implications for practice and research are provided.
Collapse
Affiliation(s)
- David E Vance
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA.
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Sandson Frank
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Rebecca Billings
- UAB Libraries, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Do-Yeon Cho
- Department of Surgery, Veterans Affairs, University of Alabama at Birmingham, & Division of Otolaryngology, Birmingham, AL, USA
| | - Jun Y Byun
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Alexandra Jacob
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph N Anderson
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina Visscher
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen Triebel
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karli M Martin
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Puga
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| |
Collapse
|
13
|
Carreiras M, Quiñones I, Chen HA, Vázquez‐Araujo L, Small D, Frost R. Sniffing out meaning: Chemosensory and semantic neural network changes in sommeliers. Hum Brain Mapp 2024; 45:e26564. [PMID: 38339911 PMCID: PMC10823763 DOI: 10.1002/hbm.26564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
Wine tasting is a very complex process that integrates a combination of sensation, language, and memory. Taste and smell provide perceptual information that, together with the semantic narrative that converts flavor into words, seem to be processed differently between sommeliers and naïve wine consumers. We investigate whether sommeliers' wine experience shapes only chemosensory processing, as has been previously demonstrated, or if it also modulates the way in which the taste and olfactory circuits interact with the semantic network. Combining diffusion-weighted images and fMRI (activation and connectivity) we investigated whether brain response to tasting wine differs between sommeliers and nonexperts (1) in the sensory neural circuits representing flavor and/or (2) in the neural circuits for language and memory. We demonstrate that training in wine tasting shapes the microstructure of the left and right superior longitudinal fasciculus. Using mediation analysis, we showed that the experience modulates the relationship between fractional anisotropy and behavior: the higher the fractional anisotropy the higher the capacity to recognize wine complexity. In addition, we found functional differences between sommeliers and naïve consumers affecting the flavor sensory circuit, but also regions involved in semantic operations. The former reflects a capacity for differential sensory processing, while the latter reflects sommeliers' ability to attend to relevant sensory inputs and translate them into complex verbal descriptions. The enhanced synchronization between these apparently independent circuits suggests that sommeliers integrated these descriptions with previous semantic knowledge to optimize their capacity to distinguish between subtle differences in the qualitative character of the wine.
Collapse
Affiliation(s)
- Manuel Carreiras
- BCBL, Basque center of Cognition, Brain and LanguageDonostia‐San SebastianSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Department of Basque Language and CommunicationUniversity of the Basque Country EHU/UPVBilbaoSpain
| | - Ileana Quiñones
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Biodonostia Health Research InstituteDonostia‐San SebastianSpain
| | - H. Alexander Chen
- Yale School of MedicineNew HavenConnecticutUSA
- The Modern Diet and Physiology Research CenterNew HavenConnecticutUSA
| | | | - Dana Small
- Yale School of MedicineNew HavenConnecticutUSA
- The Modern Diet and Physiology Research CenterNew HavenConnecticutUSA
| | - Ram Frost
- BCBL, Basque center of Cognition, Brain and LanguageDonostia‐San SebastianSpain
- The Hebrew UniversityJerusalemIsrael
- Haskins LaboratoriesNew HavenConnecticutUSA
| |
Collapse
|
14
|
Kamath V, Jiang K, Manning KJ, Mackin RS, Walker KA, Powell D, Lin FR, Chen H, Brenowitz WD, Yaffe K, Simonsick EM, Deal JA. Olfactory Dysfunction and Depression Trajectories in Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glad139. [PMID: 37357824 PMCID: PMC10733184 DOI: 10.1093/gerona/glad139] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND We examined the relationship between baseline olfactory performance and incident significant depressive symptoms and longitudinal depression trajectories in well-functioning older adults. Inflammation and cognitive status were examined as potential mediators. METHODS Older adults (n = 2 125, 71-82 years, 51% female, 37% Black) completed an odor identification task at Year 3 (our study baseline) of the Health, Aging, and Body Composition study. Cognitive assessments, depressive symptoms, and inflammatory markers were ascertained across multiple visits over 8 years. Discrete-time complementary log-log models, group-based trajectory models, and multivariable-adjusted multinomial logistic regression were employed to assess the relationship between baseline olfaction and incident depression and longitudinal depression trajectories. Mediation analysis assessed the influence of cognitive status on these relationships. RESULTS Individuals with lower olfaction had an increased risk of developing significant depressive symptoms at follow-up (hazard ratio = 1.04, 95% confidence interval [CI]: 1.00, 1.08). Of the 3 patterns of longitudinal depression scores identified (stable low, stable moderate, and stable high), poorer olfaction was associated with a 6% higher risk of membership in the stable moderate (relative risk ratio [RRR] = 1.06, 95% CI: 1.02, 1.10)/stable high (RRR = 1.06, 95% CI: 1.00, 1.12) groups, compared to the stable low group. Poor cognitive status, but not inflammation, partially mediated the relationship between olfactory performance and incident depression symptom severity. CONCLUSIONS Suboptimal olfaction could serve as a prognostic indicator of vulnerability for the development of late-life depression. These findings underscore the need for a greater understanding of olfaction in late-life depression and the demographic, cognitive, and biological factors that influence these relationships over time.
Collapse
Affiliation(s)
- Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kening Jiang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kevin J Manning
- Department of Psychiatry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Danielle Powell
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Frank R Lin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Willa D Brenowitz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- Kaiser Permanente Center for Health Research, Portland, Oregon, USA
| | - Kristine Yaffe
- San Francisco VA Medical Center, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Eleanor M Simonsick
- Longitudinal Studies Section, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Bothwell AR, Resnick SM, Ferrucci L, Tian Q. Associations of olfactory function with brain structural and functional outcomes. A systematic review. Ageing Res Rev 2023; 92:102095. [PMID: 37913831 PMCID: PMC10872938 DOI: 10.1016/j.arr.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
In aging, olfactory deficits have been associated with lower cognition and motor function. Olfactory dysfunction is also one of the earliest features of neurodegenerative disease. A comprehensive review of the neural correlates of olfactive function may reveal mechanisms underlying the associations among olfaction, cognition, motor function, and neurodegenerative diseases. Here, we summarize existing knowledge on the relationship between brain structural and functional measures and olfaction in older adults without and with cognitive impairment, including Alzheimer's disease. We identified 33 eligible studies (30 MRI/DTI,3 fMRI); 31 were cross-sectional, most assessed odor identification, and few examined multiple brain areas. Lower olfactory function was associated with smaller volumes in the temporal lobe (hippocampus,parahippocampal gyrus,fusiform gyrus), olfactory-related regions (piriform cortex,amygdala,entorhinal cortex), pre- and postcentral gyri, and globus pallidus. During aging, olfactory impairment may be associated with pathology in brain areas important for motor function and cognition, especially memory. Future longitudinal studies that include neuroimaging across different brain areas are warranted to determine the neurobiological changes underlying olfactory changes in the aging brain and the progression of neurodegeneration.
Collapse
Affiliation(s)
- Adam R Bothwell
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Shrestha S, Zhu X, Sullivan KJ, Blackshear C, Deal JA, Sharrett AR, Kamath V, Schneider ALC, Jack CR, Huang J, Palta P, Reid RI, Knopman DS, Gottesman RF, Chen H, Windham BG, Griswold ME, Mosley TH. Association of Olfaction and Microstructural Integrity of Brain Tissue in Community-Dwelling Adults: Atherosclerosis Risk in Communities Neurocognitive Study. Neurology 2023; 101:e1328-e1340. [PMID: 37541841 PMCID: PMC10558165 DOI: 10.1212/wnl.0000000000207636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Research on olfaction and brain neuropathology may help understand brain regions associated with normal olfaction and dementia pathophysiology. To identify early regional brain structures affected in poor olfaction, we examined cross-sectional associations of microstructural integrity of the brain with olfaction in the Atherosclerosis Risk in Communities Neurocognitive Study. METHODS Participants were selected from a prospective cohort study of community-dwelling adults; selection criteria included the following: evidence of cognitive impairment, participation in a previous MRI study, and a random sample of cognitively normal participants. Microstructural integrity was measured by 2 diffusion tensor imaging (DTI) measures, fractional anisotropy (FA) and mean diffusivity (MD), and olfaction by a 12-item odor identification test at the same visit. Higher FA and MD values indicate better and worse microstructural integrity, respectively, and higher odor identification scores indicate better olfaction. We used brain region-specific linear regression models to examine associations between DTI measures and olfaction, adjusting for potential confounders. RESULTS Among 1,418 participants (mean age 76 ± 5 years, 41% male, 21% Black race, 59% with normal cognition), the mean olfaction score was 9 ± 2.3. Relevant to olfaction, higher MD in the medial temporal lobe (MTL) regions, namely the hippocampus (β -0.79 [95% CI -0.94 to -0.65] units lower olfaction score per 1 SD higher MD), amygdala, entorhinal area, and some white matter (WM) tracts connecting to these regions, was associated with olfaction. We also observed associations with MD and WM FA in multiple atlas regions that were not previously implicated in olfaction. The associations between MD and olfaction were particularly stronger in the MTL regions among individuals with mild cognitive impairment (MCI) compared with those with normal cognition (e.g., βhippocampus -0.75 [95% CI -1.02 to -0.49] and -0.44 [95% CI -0.63 to -0.26] for MCI and normal cognition, respectively, p interaction = 0.004). DISCUSSION Neuronal microstructural integrity in multiple brain regions, particularly the MTL (the regions known to be affected in early Alzheimer disease), is associated with odor identification ability. Differential associations in the MTL regions among cognitively normal individuals compared with those with MCI may reflect the earlier vs later effects of the dementia pathogenesis. It is likely that some of the associated regions may not have any functional relevance to olfaction.
Collapse
Affiliation(s)
- Srishti Shrestha
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing.
| | - Xiaoqian Zhu
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Kevin J Sullivan
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Chad Blackshear
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Jennifer A Deal
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - A Richey Sharrett
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Vidyulata Kamath
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Andrea L C Schneider
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Clifford R Jack
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Juebin Huang
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Priya Palta
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Robert I Reid
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - David S Knopman
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Rebecca F Gottesman
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Honglei Chen
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - B Gwen Windham
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Michael E Griswold
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Thomas H Mosley
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| |
Collapse
|
17
|
Woo CC, Miranda B, Sathishkumar M, Dehkordi-Vakil F, Yassa MA, Leon M. Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults. Front Neurosci 2023; 17:1200448. [PMID: 37554295 PMCID: PMC10405466 DOI: 10.3389/fnins.2023.1200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Cognitive loss in older adults is a growing issue in our society, and there is a need to develop inexpensive, simple, effective in-home treatments. This study was conducted to explore the use of olfactory enrichment at night to improve cognitive ability in healthy older adults. METHODS Male and female older adults (N = 43), age 60-85, were enrolled in the study and randomly assigned to an Olfactory Enriched or Control group. Individuals in the enriched group were exposed to 7 different odorants a week, one per night, for 2 h, using an odorant diffuser. Individuals in the control group had the same experience with de minimis amounts of odorant. Neuropsychological assessments and fMRI scans were administered at the beginning of the study and after 6 months. RESULTS A statistically significant 226% improvement was observed in the enriched group compared to the control group on the Rey Auditory Verbal Learning Test and improved functioning was observed in the left uncinate fasciculus, as assessed by mean diffusivity. CONCLUSION Minimal olfactory enrichment administered at night produces improvements in both cognitive and neural functioning. Thus, olfactory enrichment may provide an effective and low-effort pathway to improved brain health.
Collapse
Affiliation(s)
- Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Blake Miranda
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Mithra Sathishkumar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | | | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
18
|
Tai APL, Leung MK, Lau BWM, Ngai SPC, Lau WKW. Olfactory dysfunction: A plausible source of COVID-19-induced neuropsychiatric symptoms. Front Neurosci 2023; 17:1156914. [PMID: 37021130 PMCID: PMC10067586 DOI: 10.3389/fnins.2023.1156914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Olfactory dysfunction and neuropsychiatric symptoms are commonly reported by patients of coronavirus disease 2019 (COVID-19), a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence from recent research suggests linkages between altered or loss of smell and neuropsychiatric symptoms after infection with the coronavirus. Systemic inflammation and ischemic injury are believed to be the major cause of COVID-19-related CNS manifestation. Yet, some evidence suggest a neurotropic property of SARS-CoV-2. This mini-review article summarizes the neural correlates of olfaction and discusses the potential of trans-neuronal transmission of SARS-CoV-2 or its particles within the olfactory connections in the brain. The impact of the dysfunction in the olfactory network on the neuropsychiatric symptoms associated with COVID-19 will also be discussed.
Collapse
Affiliation(s)
- Alan Pui-Lun Tai
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mei-Kei Leung
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, Hong Kong SAR, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Zhu H, Zhu H, Liu X, Wei F, Li H, Guo Z. The Characteristics of Entorhinal Cortex Functional Connectivity in Alzheimer's Disease Patients with Depression. Curr Alzheimer Res 2023; 19:CAR-EPUB-129980. [PMID: 36872356 DOI: 10.2174/1567205020666230303093112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric symptoms of Alzheimer's disease (AD) which decreases the life quality of both patients and caregivers. There are currently no effective drugs. It is therefore important to explore the pathogenesis of depression in AD patients. OBJECTIVE The present study aimed to investigate the characteristics of the entorhinal cortex (EC) functional connectivity (FC) in the whole brain neural network of AD patients with depression (D-AD). METHODS Twenty-four D-AD patients, 14 AD patients without depression (nD-AD), and 20 healthy controls underwent resting-state functional magnetic resonance imaging. We set the EC as the seed and used FC analysis. One-way analysis of variance was used to examine FC differences among the three groups. RESULTS Using the left EC as the seed point, there were FC differences among the three groups in the left EC-inferior occipital gyrus. Using the right EC as the seed point, there were FC differences among the three groups in the right EC-middle frontal gyrus, -superior parietal gyrus, -superior medial frontal gyrus, and -precentral gyrus. Compared with the nD-AD group, the D-AD group had increased FC between the right EC and right postcentral gyrus. CONCLUSION Asymmetry of FC in the EC and increased FC between the EC and right postcentral gyrus may be important in the pathogenesis of depression in AD.
Collapse
Affiliation(s)
- Haokai Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang 310000, China
| | - Hong Zhu
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital, China-USA Neuroimaging Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Huichao Li
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Zhongwei Guo
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
20
|
Tian Q, An Y, Kitner-Triolo MH, Davatzikos C, Studenski SA, Ferrucci L, Resnick SM. Associations of Olfaction With Longitudinal Trajectories of Brain Volumes and Neuropsychological Function in Older Adults. Neurology 2023; 100:e964-e974. [PMID: 36460474 PMCID: PMC9990434 DOI: 10.1212/wnl.0000000000201646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Olfactory function declines with aging, and olfactory deficits are one of the earliest features of neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. Previous studies have shown that olfaction is associated with brain volumes and cognitive function, but data are exclusively cross-sectional. We aimed to examine longitudinal associations of olfaction with changes in brain volumes and neuropsychological function. METHODS In the Baltimore Longitudinal Study of Aging, we chose the first assessment of olfaction to examine the associations with retrospective and prospective changes in neuropsychological performance and brain volumes in participants aged 50 years or older using linear mixed-effects models, adjusted for demographic variables and cardiovascular disease. Olfaction was measured as odor identification scores through the 16-item Sniffin' Sticks. RESULTS We analyzed data from 567 (58% women, 42% men, 27% Black, 66% White, and 7% others) participants who had data on odor identification scores and brain volumetric MRI (n = 420 with retrospective repeats over a mean of 3.7 years, n = 280 with prospective repeats over a mean of 1.2 years). We also analyzed data from 754 participants (56% women, 44% men, 29% Black, 65% White, and 6% others) with neuropsychological assessments (n = 630 with retrospective repeats over a mean of 6.6 years, n = 280 with prospective repeats over a mean of 1.5 years). After adjustment, higher odor identification scores were associated with prior and subsequent slower brain atrophy in the entorhinal cortex (β ± SE = 0.0093 ± 0.0031, p = 0.0028 and β ± SE = 0.0176 ± 0.0073, p = 0.0169, respectively), hippocampus (β ± SE = 0.0070 ± 0.0030, p = 0.0192 and β ± SE = 0.0173 ± 0.0066, p = 0.0089, respectively), and additional frontal and temporal areas (all p < 0.05). Higher odor identification scores were also associated with prior slower decline in memory, attention, processing speed, and manual dexterity and subsequent slower decline in attention (all p < 0.05). Some associations were attenuated after exclusion of data points at and after symptom onset of cognitive impairment or dementia. DISCUSSION In older adults, olfaction is related to brain atrophy of specific brain regions and neuropsychological changes in specific domains over time. The observed associations are driven, in part, by those who developed cognitive impairment or dementia. Future longitudinal studies with longer follow-ups are needed to understand whether olfactory decline precedes cognitive decline and whether it is mediated through regionally specific brain atrophy.
Collapse
Affiliation(s)
- Qu Tian
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia.
| | - Yang An
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia.
| | - Melissa H Kitner-Triolo
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Christos Davatzikos
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Stephanie A Studenski
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Luigi Ferrucci
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Susan M Resnick
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
21
|
Dong Y, Li Y, Liu K, Han X, Liu R, Ren Y, Cong L, Zhang Q, Hou T, Song L, Tang S, Shi L, Luo Y, Kalpouzos G, Laukka EJ, Winblad B, Wang Y, Du Y, Qiu C. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults. Alzheimers Dement 2023; 19:589-601. [PMID: 36341691 DOI: 10.1002/alz.12777] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
Olfactory impairment is a potential marker for prodromal dementia, but the underlying mechanisms are poorly understood. This population-based study included 4214 dementia-free participants (age ≥65 years). Olfaction was assessed using the 16-item Sniffin' Sticks identification test. In the subsamples, we measured plasma amyloid beta (Aβ)40, Aβ42, total tau, and neurofilament light chain (NfL; n = 1054); and quantified hippocampal, entorhinal cortex, and white matter hyperintensity (WMH) volumes, and Alzheimer's disease (AD)-signature cortical thickness (n = 917). Data were analyzed with logistic and linear regression models. In the total sample, mild cognitive impairment (MCI) was diagnosed in 1102 persons (26.2%; amnestic MCI, n = 931; non-amnestic MCI, n = 171). Olfactory impairment was significantly associated with increased likelihoods of MCI, amnestic MCI, and non-amnestic MCI. In the subsamples, anosmia was significantly associated with higher plasma total tau and NfL concentrations, smaller hippocampal and entorhinal cortex volumes, and greater WMH volume, and marginally with lower AD-signature cortical thickness. These results suggest that cerebral neurodegenerative and microvascular lesions are common neuropathologies linking anosmia with MCI in older adults.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Grégoria Kalpouzos
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Bengt Winblad
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Chee J, Chern B, Loh WS, Mullol J, Wang DY. Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact. Curr Allergy Asthma Rep 2023; 23:121-131. [PMID: 36598732 PMCID: PMC9811886 DOI: 10.1007/s11882-022-01059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW While the predominant cause for morbidity and mortality with SARS-CoV-2 infection is the lower respiratory tract manifestations of the disease, the effects of SARS-CoV-2 infection on the sinonasal tract have also come to the forefront especially with the increased recognition of olfactory symptom. This review presents a comprehensive summary of the mechanisms of action of the SARS-CoV-2 virus, sinonasal pathophysiology of COVID-19, and the correlation with the clinical and epidemiological impact on olfactory dysfunction. RECENT FINDINGS ACE2 and TMPRSS2 receptors are key players in the mechanism of infection of SARS-CoV-2. They are present within both the nasal respiratory as well as olfactory epithelia. There are however differences in susceptibility between different groups of individuals, as well as between the different SARS-CoV-2 variants. The sinonasal cavity is an important route for SARS-CoV-2 infection. While the mechanism of infection of SARS-CoV-2 in nasal respiratory and olfactory epithelia is similar, there exist small but significant differences in the susceptibility of these epithelia and consequently clinical manifestations of the disease. Understanding the differences and nuances in sinonasal pathophysiology in COVID-19 would allow the clinician to predict and counsel patients suffering from COVID-19. Future research into molecular pathways and cytokine responses at different stages of infection and different variants of SARS-CoV-2 would evaluate the individual clinical phenotype, prognosis, and possibly response to vaccines and therapeutics.
Collapse
Affiliation(s)
- Jeremy Chee
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Beverlyn Chern
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Woei Shyang Loh
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore ,grid.4280.e0000 0001 2180 6431Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joaquim Mullol
- grid.10403.360000000091771775Rhinology Unit & Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Catalonia Spain
| | - De Yun Wang
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Leon M, Woo CC. Olfactory loss is a predisposing factor for depression, while olfactory enrichment is an effective treatment for depression. Front Neurosci 2022; 16:1013363. [PMID: 36248633 PMCID: PMC9558899 DOI: 10.3389/fnins.2022.1013363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of olfactory stimulation correlates well with at least 68 widely differing neurological disorders, including depression, and we raise the possibility that this relationship may be causal. That is, it seems possible that olfactory loss makes the brain vulnerable to expressing the symptoms of these neurological disorders, while daily olfactory enrichment may decrease the risk of expressing these symptoms. This situation resembles the cognitive reserve that is thought to protect people with Alzheimer’s neuropathology from expressing the functional deficit in memory through the cumulative effect of intellectual stimulation. These relationships also resemble the functional response of animal models of human neurological disorders to environmental enrichment, wherein the animals continue to have the induced neuropathology, but do not express the symptoms as they do in a standard environment with restricted sensorimotor stimulation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Michael Leon,
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Pacyna RR, Han SD, Wroblewski KE, McClintock MK, Pinto JM. Rapid olfactory decline during aging predicts dementia and GMV loss in AD brain regions. Alzheimers Dement 2022; 19:1479-1490. [PMID: 35899859 DOI: 10.1002/alz.12717] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/23/2022] [Accepted: 05/18/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Longitudinal multivariable analyses are needed to determine if the rate of olfactory decline during normal cognition predicts subsequent Alzheimer's disease (AD) diagnoses and brain dysmorphology. METHODS Older adults (n = 515) were assessed annually for odor identification, cognitive function and dementia clinical diagnosis (max follow-up 18 years). Regional gray matter volumes (GMV) were quantified (3T MRI) in a cross-sectional subsample (n = 121). Regression models were adjusted for APOE-ε4 genotype, dementia risk factors and demographics. RESULTS Faster olfactory decline during periods of normal cognition predicted higher incidence of subsequent MCI or dementia (OR 1.89, 95% CI: 1.26, 2.90, p < 0.01; comparable to carrying an APOE-ε4 allele) and smaller GMV in AD and olfactory regions (β = -0.11, 95% CI -0.21, -0.00). DISCUSSION Rapid olfactory decline during normal cognition, using repeated olfactory measurement, predicted subsequent cognitive impairment, dementia, and smaller GMVs, highlighting its potential as a simple biomarker for early AD detection. HIGHLIGHTS Rate of olfactory decline was calculated from olfactory testing over ≥3 time points. Rapid olfactory decline predicted impaired cognition and higher risk of dementia. Neurodegeneration on 3T magnetic resonance imaging was identical in those with olfactory decline and Alzheimer's disease.
Collapse
Affiliation(s)
- Rachel R Pacyna
- Pritzker, School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - S Duke Han
- Departments of Family Medicine, Neurology, Psychology, and Gerontology, University of Southern California, Alhambra, California, USA
| | - Kristen E Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | | | - Jayant M Pinto
- Department of Surgery, and Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Luo W, Wang J, Chen M, Zhou S, Deng D, Liu F, Yu Y. Alterations of Cerebral Blood Flow and Its Connectivity in Olfactory-Related Brain Regions of Type 2 Diabetes Mellitus Patients. Front Neurosci 2022; 16:904468. [PMID: 35898415 PMCID: PMC9309479 DOI: 10.3389/fnins.2022.904468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the alteration of cerebral blood flow (CBF) and its connectivity patterns in olfactory-related regions of type 2 diabetes mellitus (T2DM) patients using arterial spin labeling (ASL). Sixty-nine patients with T2DM and 63 healthy controls (HCs) underwent ASL scanning using 3.0T magnetic resonance imaging. We compared the CBF values of the olfactory-related brain regions between the two groups and analyzed the correlation between their changes and clinical variables. We also used these regions as seeds to explore the differences in CBF connectivity patterns in olfactory-related brain regions between the T2DM patients and HCs. Compared with the HC group, the CBF of the right orbital part of the inferior frontal gyrus (OIFG), right insula, and bilateral olfactory cortex was decreased in the T2DM patients. Moreover, the duration of the patients was negatively correlated with the CBF changes in the right OIFG, right insula, and right olfactory cortex. The CBF changes in the right OIFG were positively correlated with the Self-Rating Depression Scale scores, those in the right insula were negatively correlated with the max blood glucose of continuous glucose, and those in the right olfactory cortex were negatively correlated with the mean blood glucose of continuous glucose. In addition, the T2DM patients also showed decreased CBF connectivity between the right OIFG and the left temporal pole of the middle temporal gyrus and increased CBF connectivity between the right medial orbital part of the superior frontal gyrus and the right orbital part of the superior frontal gyrus and between the right olfactory cortex and the bilateral caudate and the left putamen. Patients with T2DM have decreased CBF and altered CBF connectivity in multiple olfactory-related brain regions. These changes may help explain why olfactory dysfunction occurs in patients with T2DM, thus providing insights into the neuropathological mechanism of olfactory dysfunction and cognitive decline in T2DM patients.
Collapse
Affiliation(s)
- Wei Luo
- Department of Imaging, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Mimi Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Imaging, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- *Correspondence: Yongqiang Yu,
| |
Collapse
|
26
|
Awwad AA, Abd Elhay OMM, Rabie MM, Awad EA, Kotb FM, Maghraby HM, Eldamarawy RH, Dawood YMA, Balat MIEI, Hasan AIM, Elsheshiny AH, El Sayed SSMM, Fouda AAB, Alkot AMF. Impact of Systemic Diseases on Olfactory Function in COVID-19 Infected Patients. Int J Gen Med 2022; 15:5681-5691. [PMID: 35747780 PMCID: PMC9212789 DOI: 10.2147/ijgm.s355974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background COVID-19 (SARS-CoV-2/2019-nCoV) is now a major public health threat to the world. Olfactory dysfunctions (ODs) are considered potential indicating symptoms and early case identification triaging for coronavirus disease 2019 (COVID-19). The most common reported comorbidities are diabetes mellitus, chronic lung disease, and cardiovascular disease. The objective of this study was to evaluate prevalence of different types of smell disorders in patients with laboratory-confirmed COVID-19 infection and impact of involved systemic diseases. Methodology A cross-sectional retrospective study has been done for patients with laboratory-confirmed COVID-19 infection (mild-to-moderate). The data collected from patient's files and developed online electronic questionnaire (WhatsApp) based on the patients most common and recurrent reported data including: a) symptoms of olfactory dysfunction and associated covid19 symptoms fever and headache, cough, sore throat, pneumonia, nausea, vomiting and diarrhea, arthralgia and myalgia and taste dysfunction. b) Associated systemic diseases including: diabetes, hypertension, asthma, chronic renal disease, chorionic liver disease and hypothyroidism. Results Of 308 patients confirmed with Covid-19 infection, (72.4%) developed OD distributed as follows; complete anosmia (57.8%), troposmia (8.4%), hyposmia (2.9%), partial anosmia (2.6%) and euosmia (0.6%). Significantly increased prevalence of diabetes, hypertension asthma in the group with olfactory dysfunction (p < 0.001), chronic liver disease (p = 0.005), and hypothyroidism (p = 0.03). Conclusion The development of ODs after Covid-19 infection was associated with mild disease form and lower hospitalization. In addition, it showed significant relationship with preexisting systemic diseases. Anosmia is the common modality of ODs.
Collapse
Affiliation(s)
- Ayat A Awwad
- Otorhinolaryngology department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Osama M M Abd Elhay
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Moustafa M Rabie
- Public Health and Community Medicine Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Eman A Awad
- Internal medicine department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fatma M Kotb
- Internal medicine department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hend M Maghraby
- Internal medicine department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Rmadan H Eldamarawy
- Internal medicine department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Yahia M A Dawood
- Otorhinolaryngology department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mostafa I E I Balat
- Otorhinolaryngology department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed I M Hasan
- Pediatric Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed H Elsheshiny
- Neurology department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Said S M M El Sayed
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Albayoumi A B Fouda
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmad M F Alkot
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
27
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
28
|
Lee S, Kim J, Kim BJ, Kim RY, Ha E, Kim S, Hong SN, Lyoo IK, Kim DW. Gray matter volume reduction in the emotional brain networks in adults with anosmia. J Neurosci Res 2022; 100:1321-1330. [PMID: 35240720 DOI: 10.1002/jnr.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/10/2022]
Abstract
Loss of olfaction, or anosmia, frequently accompanies emotional dysfunctions, partly due to the overlapping brain regions between the olfactory and emotional processing centers. Here, we investigated whether anosmia was associated with gray matter volume alterations at a network level, and whether these alterations were related to the olfactory-specific quality of life (QOL) and depressive symptoms. Structural brain magnetic resonance imaging was acquired in 22 individuals with postinfectious or idiopathic anosmia (the anosmia group) and 30 age- and sex-matched controls (the control group). Using independent component analysis on the gray matter volumes, we identified 10 morphometric networks. The gray matter volumes of these networks were compared between the two groups. Olfactory-specific QOL and depressive symptoms were assessed by self-report questionnaires and clinician-administered interviews, respectively. The anosmia group showed lower gray matter volumes in the hippocampus-amygdala and the precuneus networks, relative to the control group. Lower gray matter volumes in the hippocampus-amygdala network were also linearly associated with lower olfactory-specific QOL and higher depressive symptom scores. These findings suggest a close relationship between anosmia and gray matter volume alterations in the emotional brain networks, albeit without determined causal relations.
Collapse
Affiliation(s)
- Suji Lee
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Bong Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea.,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Goodwin GR, Bestwick JP, Noyce AJ. The potential utility of smell testing to screen for neurodegenerative disorders. Expert Rev Mol Diagn 2022; 22:139-148. [PMID: 35129037 DOI: 10.1080/14737159.2022.2037424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Loss of smell is a common early feature of neurodegenerative diseases including Alzheimer's and Parkinson's disease. Identifying these conditions in their early stages is important to understand more about early pathophysiological events and the development of disease modifying therapies. Smell testing may be an effective future tool for screening large populations for early neurodegeneration. AREAS COVERED : In this review, we appraise the evidence for, and discuss the likelihood of, the use of smell testing in large screening programs to detect early neurodegeneration. We evaluate the predictive power of smell tests for neurodegenerative disease, compare performance to other established screening programs, and discuss ethical and practical considerations and limitations. EXPERT OPINION : Even if disease modifying therapies were available for neurodegenerative disease, smell tests alone are unlikely to have high enough predictive power to be used in a future screening program. However, we believe they could be a valuable component of a short battery of tests or part of a stepwise process that together could more accurately identify early neurodegeneration in large populations.
Collapse
Affiliation(s)
- Gregory R Goodwin
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
| | - Jonathan P Bestwick
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
30
|
Kamath V, Senjem ML, Spychalla AJ, Chen H, Palta P, Mosley TH, Windham BG, Griswold M, Knopman DS, Gottesman RF, Jack CR, Sharrett AR, Schneider AL. The Neuroanatomic Correlates of Olfactory Identification Impairment in Healthy Older Adults and in Persons with Mild Cognitive Impairment. J Alzheimers Dis 2022; 89:233-245. [PMID: 35871337 PMCID: PMC10134400 DOI: 10.3233/jad-220228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Olfactory identification (OI) impairment appears early in the course of Alzheimer's disease dementia (AD), prior to detectable cognitive impairment. However, the neuroanatomical correlates of impaired OI in cognitively normal older adults (CN) and persons with mild cognitive impairment (MCI) are not fully understood. OBJECTIVE We examined the neuroanatomic correlates of OI impairment in older adults from the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). METHODS Our sample included 1,600 older adults without dementia who completed clinical assessment and structural brain imaging from 2011 to 2013. We characterized OI impairment using the 12-item Sniffin' Sticks odor identification test (score ≤6). We used voxel-based morphometry (VBM) and region of interest (ROI) analyses to examine the neuroanatomic correlates of impaired OI in CN and MCI, after adjusting for potential confounders. Analyses were also separately stratified by race and sex. RESULTS In CN, OI impairment was associated with smaller amygdala gray matter (GM) volume (p < 0.05). In MCI, OI impairment was associated with smaller GM volumes of the olfactory cortex, amygdala, entorhinal cortex, hippocampus, and insula (ps < 0.05). Differential associations were observed by sex in MCI; OI impairment was associated with lower insular GM volumes among men but not among women (p-interaction = 0.04). There were no meaningful interactions by race. CONCLUSION The brain regions associated with OI impairment in individuals without dementia are specifically those regions known to be the primary targets of AD pathogenic processes. These findings highlight the potential utility of olfactory assessment in the identification and stratification of older adults at risk for AD.
Collapse
Affiliation(s)
- Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN
- Department of Information Technology, Mayo Clinic, Rochester, MN
| | | | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Thomas H. Mosley
- The MIND Center, Department of Medicine, The University of Mississippi School of Medicine, Jackson, MI
| | - B. Gwen Windham
- The MIND Center, Department of Medicine, The University of Mississippi School of Medicine, Jackson, MI
| | - Michael Griswold
- The MIND Center, Department of Medicine, The University of Mississippi School of Medicine, Jackson, MI
| | | | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD
| | - Andrea L.C. Schneider
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
31
|
Felix C, Chahine LM, Hengenius J, Chen H, Rosso AL, Zhu X, Cao Z, Rosano C. Diffusion Tensor Imaging of the Olfactory System in Older Adults With and Without Hyposmia. Front Aging Neurosci 2021; 13:648598. [PMID: 34744681 PMCID: PMC8569942 DOI: 10.3389/fnagi.2021.648598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives: To compare gray matter microstructural characteristics of higher-order olfactory regions among older adults with and without hyposmia. Methods: Data from the Brief Smell Identification Test (BSIT) were obtained in 1998–99 for 265 dementia-free adults from the Health, Aging, and Body Composition study (age at BSIT: 74.9 ± 2.7; 62% White; 43% male) who received 3T diffusion tensor imaging in 2006–08 [Interval of time: mean (SD): 8.01 years (0.50)], Apolipoprotein (ApoEε4) genotypes, and repeated 3MS assessments until 2011–12. Cognitive status (mild cognitive impairment, dementia, normal cognition) was adjudicated in 2011–12. Hyposmia was defined as BSIT ≤ 8. Microstructural integrity was quantified by mean diffusivity (MD) in regions of the primary olfactory cortex amygdala, orbitofrontal cortex (including olfactory cortex, gyrus rectus, the orbital parts of the superior, middle, and inferior frontal gyri, medial orbital part of the superior frontal gyrus), and hippocampus. Multivariable regression models were adjusted for total brain atrophy, demographics, cognitive status, and ApoEε4 genotype. Results: Hyposmia in 1998–99 (n = 57, 21.59%) was significantly associated with greater MD in 2006–08, specifically in the orbital part of the middle frontal gyrus, and amygdala, on the right [adjusted beta (p value): 0.414 (0.01); 0.527 (0.01); respectively]. Conclusion: Older adults with higher mean diffusivity in regions important for olfaction are more likely to have hyposmia up to ten years prior. Future studies should address whether hyposmia can serve as an early biomarker of brain microstructural abnormalities for older adults with a range of cognitive functions, including those with normal cognition.
Collapse
Affiliation(s)
- Cynthia Felix
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Hengenius
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaonan Zhu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Dan X, Wechter N, Gray S, Mohanty JG, Croteau DL, Bohr VA. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 2021; 70:101416. [PMID: 34325072 PMCID: PMC8373788 DOI: 10.1016/j.arr.2021.101416] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Alterations in olfactory functions are proposed to be early biomarkers for neurodegeneration. Many neurodegenerative diseases are age-related, including two of the most common, Parkinson's disease (PD) and Alzheimer's disease (AD). The establishment of biomarkers that promote early risk identification is critical for the implementation of early treatment to postpone or avert pathological development. Olfactory dysfunction (OD) is seen in 90% of early-stage PD patients and 85% of patients with early-stage AD, which makes it an attractive biomarker for early diagnosis of these diseases. Here, we systematically review widely applied smelling tests available for humans as well as olfaction assessments performed in some animal models and the relationships between OD and normal aging, PD, AD, and other conditions. The utility of OD as a biomarker for neurodegenerative disease diagnosis and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiuli Dan
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noah Wechter
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Gray
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joy G Mohanty
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
33
|
Yuan Y, Li C, Luo Z, Simonsick EM, Shiroma EJ, Chen H. Olfaction and Physical Functioning in Older Adults: A Longitudinal Study. J Gerontol A Biol Sci Med Sci 2021; 77:1612-1619. [PMID: 34379770 DOI: 10.1093/gerona/glab233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Poor olfaction is associated with worse functional performance in older adults, but longitudinal evidence is lacking. We investigated poor olfaction in relation to longitudinal changes in physical functioning among community-dwelling older adults. METHODS The analysis included 2,319 participants from the Health, Aging and Body Composition Study (aged 71-82 years, 47·9% men, and 37·3% blacks) who completed the Brief Smell Identification Test in 1999-2000. Olfaction was defined as good (test score 11-12), moderate (9-10), or poor (0-8). Physical functioning was assessed up to four times over 8 years, using the Short Physical Performance Battery (SPPB) and the Health ABC Physical Performance Battery (HABCPPB). We conducted joint model analyses and reported the differences in annual declines across olfaction groups. RESULTS During the follow-up, compared to those with good olfaction, older adults with poor olfaction had greater annual declines in both the SPPB score (-0.137, 95%CI: -0.186, -0.088) and all its subscales: standing balance (-0.068, 95%CI:-0.091, -0.044), chair stand (-0.046, 95%CI: -0.070, -0.022), and gait speed (-0.022, 95%CI: -0.042, -0.001). A similar observation was made for the HABCPPB score (difference in annual decline: -0.032, 95%CI:-0.042, -0.021). These findings are robust and cannot be explained by measured confounding from demographics, lifestyle factors, chronic diseases, nor by potential biases due to death and loss of follow-up. Similar associations were observed across subgroups of sex, race, and self-reported general health status. CONCLUSION This study provides the first epidemiological evidence that poor olfaction predicts a faster decline in physical functioning. Future studies should investigate potential mechanisms.
Collapse
Affiliation(s)
- Yaqun Yuan
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Eleanor M Simonsick
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, MD, United States
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, MD, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
34
|
The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136976. [PMID: 34209997 PMCID: PMC8297221 DOI: 10.3390/ijerph18136976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
Collapse
|
35
|
Rezaeyan A, Asadi S, Kamrava SK, Khoei S, Zare-Sadeghi A. Reorganizing brain structure through olfactory training in post-traumatic smell impairment: An MRI study. J Neuroradiol 2021; 49:333-342. [PMID: 33957160 DOI: 10.1016/j.neurad.2021.04.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE AND BACKGROUND Post-traumatic olfactory dysfunction (PTOD), mostly caused by head injury, is thought to be associated with changes in the structure and function of the brain olfactory processing areas. Training and repeated exposure to odorants lead to enhanced olfactory capability. This study investigated the effects of a 16-weeks olfactory training (OT) on olfactory function and brain structure. METHODS Twenty-five patients with PTOD were randomly divided in three groups: (1) 9 control patients who did not receive any training, (2) 9 patients underwent classical OT by 4 fixed odors, and (3) 7 patients underwent modified OT coming across 4 sets of 4 different odors sequentially. Before and after the training period, all patients performed olfactory function tests and structural magnetic resonance imaging (MRI). Sniffin' Sticks test was used to assess olfactory function. MRI data were analyzed using voxel-based morphometry and surface-based morphometry. RESULTS Both trained groups showed a considerable recovery of olfactory function, especially in odor identification. MRI data analysis revealed that the classical OT leads to increases in cortical thickness/density of several brain regions, including the right superior and middle frontal gyrus, and bilateral cerebellums. In addition, the modified OT yielded a lower extent of cortical measures in the right orbital frontal cortex and right insular. Following modified OT, a positive correlation was observed between the odor identification and the right orbital frontal cortex. CONCLUSION Both olfactory training methods can improve olfactory function and that the improvement is associated with changes in the structure of olfactory processing areas of the brain.
Collapse
Affiliation(s)
- Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Somayeh Asadi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - S Kamran Kamrava
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arash Zare-Sadeghi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
36
|
Desiato VM, Levy DA, Byun YJ, Nguyen SA, Soler ZM, Schlosser RJ. The Prevalence of Olfactory Dysfunction in the General Population: A Systematic Review and Meta-analysis. Am J Rhinol Allergy 2020; 35:195-205. [PMID: 32746612 DOI: 10.1177/1945892420946254] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Olfactory dysfunction (OD) is common and has been reported as an early indicator of COVID-19. However, the reported prevalence of OD in the general population varies widely depending upon the metric used to assess olfaction.Methodology/Principal: To perform a systematic review and meta-analysis of the prevalence of OD in the healthy general population, review the various assessment metrics used, and compare pooled OD prevalence rates. RESULTS A total of 175,073 subjects were identified (mean age 63.5 years, range 18 to 101) with an overall OD prevalence of 22.2% (95% CI 14.8-30.6). OD prevalence was significantly greater using objective olfactory assessments, compared to subjective measures (28.8%, CI 20.3-38.2 versus 9.5%, CI 6.1-13.5, p < 0.001). The prevalence of OD was greater using expanded identification tests (>8 items) compared to brief test with ≤8 items (30.3%, CI 16.2-46.5 versus 21.2%, CI 12.3-31.8). Prevalence was higher in studies with a mean age greater than 55 years compared to those with a mean age of 55 years or less (34.5%, CI 23.4-46.5 versus 7.5%, CI 2.6-14.5, p < 0.001). CONCLUSIONS The reported prevalence of OD in the general population depends on the testing method and population age. OD prevalence was greater in studies using objective tests, expanded identification tests, and in those with older subjects.
Collapse
Affiliation(s)
- Vincent M Desiato
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Dylan A Levy
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Young Jae Byun
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary M Soler
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina.,Department of Surgery, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
37
|
Chen B, Akshita J, Han P, Thaploo D, Kitzler HH, Hummel T. Aberrancies of Brain Network Structures in Patients with Anosmia. Brain Topogr 2020; 33:403-411. [DOI: 10.1007/s10548-020-00769-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/07/2020] [Indexed: 02/04/2023]
|
38
|
Dahmani L, Courcot B, Near J, Patel R, Amaral RSC, Chakravarty MM, Bohbot VD. Fimbria-Fornix Volume Is Associated With Spatial Memory and Olfactory Identification in Humans. Front Syst Neurosci 2020; 13:87. [PMID: 32009912 PMCID: PMC6971190 DOI: 10.3389/fnsys.2019.00087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
White matter pathways that surround the hippocampus comprise its afferent and efferent connections, and are therefore crucial in mediating the function of the hippocampus. We recently demonstrated a role for the hippocampus in both spatial memory and olfactory identification in humans. In the current study, we focused our attention on the fimbria-fornix white matter bundle and investigated its relationship with spatial memory and olfactory identification. We administered a virtual navigation task and an olfactory identification task to 55 young healthy adults and measured the volume of the fimbria-fornix. We found that the volume of the right fimbria-fornix and its subdivisions is correlated with both navigational learning and olfactory identification in those who use hippocampus-based spatial memory strategies, and not in those who use caudate nucleus-based navigation strategies. These results are consistent with our recent finding that spatial memory and olfaction rely on similar neural networks and structures.
Collapse
Affiliation(s)
- Louisa Dahmani
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Blandine Courcot
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jamie Near
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Raihaan Patel
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Robert S C Amaral
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Véronique D Bohbot
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Han P, Zang Y, Akshita J, Hummel T. Magnetic Resonance Imaging of Human Olfactory Dysfunction. Brain Topogr 2019; 32:987-997. [PMID: 31529172 DOI: 10.1007/s10548-019-00729-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
Olfactory dysfunctions affect a larger portion of population (up to 15% with partial olfactory loss, and 5% with complete olfactory loss) as compared to other sensory dysfunctions (e.g. auditory or visual) and have a negative impact on the life quality. The impairment of olfactory functions may happen at each stage of the olfactory system, from epithelium to cortex. Non-invasive neuroimaging techniques such as the magnetic resonance imaging (MRI) have advanced the understanding of the advent and progress of olfactory dysfunctions in humans. The current review summarizes recent MRI studies on human olfactory dysfunction to present an updated and comprehensive picture of the structural and functional alterations in the central olfactory system as a consequence of olfactory loss and regain. Furthermore, the review also highlights recent progress on optimizing the olfactory functional MRI as well as new approaches for data processing that are promising for future clinical practice.
Collapse
Affiliation(s)
- Pengfei Han
- Faculty of Psychology, Southwest University, Chongqing, China. .,Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China. .,Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany.
| | - Yunpeng Zang
- Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany
| | - Joshi Akshita
- Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany
| |
Collapse
|
40
|
Dintica CS, Marseglia A, Rizzuto D, Wang R, Seubert J, Arfanakis K, Bennett DA, Xu W. Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain. Neurology 2019; 92:e700-e709. [PMID: 30651382 PMCID: PMC6382360 DOI: 10.1212/wnl.0000000000006919] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022] Open
Abstract
Objective We aimed to examine whether impaired olfaction is associated with cognitive decline and indicators of neurodegeneration in the brain of dementia-free older adults. Methods Within the Rush Memory and Aging Project, 380 dementia-free participants (mean age = 78 years) were followed for up to 15 years, and underwent MRI scans. Olfactory function was assessed using the Brief Smell Identification Test (B-SIT) at baseline, and categorized as anosmia (B-SIT <6), hyposmia (B-SIT 6–10 in men and 6–10.25 in women), and normal (B-SIT 10.25–12 in men and 10.5–12 in women). Cognitive function was annually assessed with a battery of 21 tests, from which composite scores were derived. Structural total and regional brain volumes were estimated. Data were analyzed using linear regression and mixed-effects models. Results At study entry, 138 (36.3%) had normal olfactory function, 213 (56.1%) had hyposmia, and 29 (7.6%) had anosmia. In multiadjusted mixed-effects models, hyposmia (β = −0.03, 95% confidence interval [CI] −0.05 to −0.02) and anosmia (β = −0.13, 95% CI −0.16 to −0.09) were associated with faster rate of cognitive decline compared to normal olfaction. On MRI, impaired olfaction (hyposmia or anosmia) was related to smaller volumes of the hippocampus (β = −0.19, 95% CI −0.33 to −0.05), and in the entorhinal (β = −0.16, 95% CI −0.24 to −0.08), fusiform (β = −0.45, 95% CI −0.78 to −0.14), and middle temporal (β = −0.38, 95% CI −0.72 to −0.01) cortices. Conclusion Impaired olfaction predicts faster cognitive decline and might indicate neurodegeneration in the brain among dementia-free older adults.
Collapse
Affiliation(s)
- Christina S Dintica
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China.
| | - Anna Marseglia
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China
| | - Debora Rizzuto
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China
| | - Rui Wang
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China
| | - Janina Seubert
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China
| | - Konstantinos Arfanakis
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China
| | - David A Bennett
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China
| | - Weili Xu
- From the Aging Research Center (C.S.D., A.M., D.R., R.W., J.S., W.X.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; Department of Clinical Neuroscience (J.S.), Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago; Rush Alzheimer's Disease Center (K.A., D.A.B.), and Department of Neurological Sciences (D.A.B.), Rush University Medical Center, Chicago, IL; and Department of Epidemiology and Biostatistics (W.X.), School of Public Health, Tianjin Medical University, China.
| |
Collapse
|
41
|
Al Aïn S, Poupon D, Hétu S, Mercier N, Steffener J, Frasnelli J. Smell training improves olfactory function and alters brain structure. Neuroimage 2019; 189:45-54. [PMID: 30630079 DOI: 10.1016/j.neuroimage.2019.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
Training and repeated exposure to odorants leads to enhanced olfactory sensitivity. So far, the efficacy of intensive olfactory training on olfactory function in a healthy population and its underlying neurobiological basis remain poorly known. This study investigated the effects of a 6-week intensive and well-controlled olfactory training on olfactory function and brain structure/neuroplasticity. Thirty-six healthy young individuals were recruited and randomly distributed in three groups: (1) 12 participants underwent daily intensive olfactory training of at least 20 min that included an (a) odor intensity classification task, an (b) odor quality classification task and an (c) target odor detection task, (2) 12 participants underwent an equivalent visual control training, and (3) 12 control individuals did not participate in any training. Before and after the training period, all participants performed a series of olfactory tests and those from groups 1 and 2 underwent structural magnetic resonance (MR) imaging, from which we obtained measures such as cortical thickness and tissue density. Participants improved in the respectively trained tasks throughout the 6-weeks training period. Those who underwent olfactory training improved general olfactory function compared to control participants, especially in odor identification, thus showing intramodal transfer. Further, MR imaging analysis revealed that olfactory training led to increased cortical thickness in the right inferior frontal gyrus, the bilateral fusiform gyrus and the right entorhinal cortex. This research shows that intensive olfactory training can generally improve olfactory function and that this improvement is associated with changes in the structure of olfactory processing areas of the brain.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | - Daphnée Poupon
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Noémie Mercier
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Johannes Frasnelli
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada; Research Center, Sacré-Cœur Hospital, Montréal, QC, Canada.
| |
Collapse
|
42
|
Heightened olfactory dysfunction and oral irritation among chronic smokers and heightened propylthiouracil (PROP) bitterness among menthol smokers. Physiol Behav 2018; 201:111-122. [PMID: 30557565 DOI: 10.1016/j.physbeh.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022]
Abstract
Chronic cigarette smoking may influence chemosensory function, which in turn, may affect cigarette usage. Because menthol in cigarettes can attenuate nicotine bitterness, choice of menthol/nonmenthol cigarettes may be influenced by ability to perceive bitterness. We examined chemosensory function of chronic smokers, hypothesizing they would show altered function in comparison to non-smokers and by menthol cigarette preference. In laboratory-based measures, chronic smokers (N = 135; 84 menthol smokers) self-reported their chemosensory function and participated in smell (identification task with perceived intensity) and taste (quinine and NaCl intensity on tongue-tip and whole mouth) testing. A taste genetics probe (propylthiouracil (PROP) bitterness) also was assessed. Self-reported and measured chemosensory function were compared with nationally-representative 2013-2014 National Health and Nutrition Examination Survey (NHANES) data generated with similar measures. The taste measures also were compared between smokers and age- and sex-matched non-smokers from a laboratory database. Frequencies of self-reported smell and taste alterations among smokers exceeded NHANES prevalence estimates for non-smokers. The rate of measured smell dysfunction also exceeded NHANES prevalence for hyposmia. Compared to non-smokers, smokers reported elevated tongue-tip and whole mouth intensities from 1 M NaCl, with no significant differences in whole mouth quinine or 0.32 M NaCl. Inconsistent with previous hypotheses, smokers were not more likely to report depressed PROP bitterness than non-smokers. However, as expected, menthol smokers reported greater PROP bitterness than non-menthol smokers. In conclusion, chemosensory alterations were more frequent among chronic smokers, including hyposmia and heightened intensity from NaCl at an oral-irritant concentration. PROP supertasters were most likely to prefer mentholated cigarettes.
Collapse
|
43
|
Han P, Winkler N, Hummel C, Hähner A, Gerber J, Hummel T. Alterations of Brain Gray Matter Density and Olfactory Bulb Volume in Patients with Olfactory Loss after Traumatic Brain Injury. J Neurotrauma 2018; 35:2632-2640. [DOI: 10.1089/neu.2017.5393] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pengfei Han
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Nicole Winkler
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Cornelia Hummel
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Antje Hähner
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Thomas Hummel
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
44
|
An intrinsic association between olfactory identification and spatial memory in humans. Nat Commun 2018; 9:4162. [PMID: 30327469 PMCID: PMC6191417 DOI: 10.1038/s41467-018-06569-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/13/2018] [Indexed: 12/01/2022] Open
Abstract
It was recently proposed that olfaction evolved to aid navigation. Consistent with this hypothesis, olfactory identification and spatial memory are linked to overlapping brain areas which include the orbitofrontal cortex and hippocampus. However, the relationship between these two processes has never been specifically investigated. Here, we show that olfactory identification covaries with spatial memory in humans. We also found that the cortical thickness of the left medial orbitofrontal cortex, and the volume of the right hippocampus, predict both olfactory identification and spatial memory. Finally, we demonstrate deficits in both olfactory identification and spatial memory in patients with lesions of the medial orbitofrontal cortex. Our findings reveal an intrinsic relationship between olfaction and spatial memory that is supported by a shared reliance on the hippocampus and medial orbitofrontal cortex. This relationship may find its roots in the parallel evolution of the olfactory and hippocampal systems. Olfaction, the sense of smell, may have originally evolved to aid navigation in space, but there is no direct evidence of a link between olfaction and navigation in humans. Here the authors show that olfaction and spatial memory abilities are correlated and rely on similar brain regions in humans.
Collapse
|
45
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Kulesza RJ, Mukherjee PS, Torres-Jardón R, Rönkkö T, Doty RL. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. ENVIRONMENTAL RESEARCH 2018; 166:348-362. [PMID: 29935448 DOI: 10.1016/j.envres.2018.06.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 05/28/2023]
Abstract
There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover, results strongly support early neuroprotective interventions in fine particulate matter (PM2.5) and CDNP's exposed individuals ≤ 20 years of age, and the critical need for air pollution control.
Collapse
Affiliation(s)
| | | | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04310, Mexico
| | - Topi Rönkkö
- Aerosol Physics, Faculty of Natural Sciences, Tampere University of Technology, FI-33101 Tampere, Finland
| | - Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 19104, USA
| |
Collapse
|
46
|
Leon M, Woo C. Environmental Enrichment and Successful Aging. Front Behav Neurosci 2018; 12:155. [PMID: 30083097 PMCID: PMC6065351 DOI: 10.3389/fnbeh.2018.00155] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
The human brain sustains a slow but progressive decline in function as it ages and these changes are particularly profound in cognitive processing. A potential contributor to this deterioration is the gradual decline in the functioning of multiple sensory systems and the effects they have on areas of the brain that mediate cognitive function. In older adults, diminished capacity is typically observed in the visual, auditory, masticatory, olfactory, and motor systems, and these age-related declines are associated with both a decline in cognitive proficiency, and a loss of neurons in regions of the brain. We will review how the loss of hearing, vision, mastication skills, olfactory impairment, and motoric decline accompany cognitive loss, and how improved functioning of these systems may aid in the restoration of the cognitive abilities in older adults. The human brain appears to require a great deal of stimulation to maintain its cognitive efficacy as people age and environmental enrichment may aid in its maintenance and recovery.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Cynthia Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The sense of smell is today one of the focuses of interest in aging and neurodegenerative disease research. In several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, the olfactory dysfunction is one of the initial symptoms appearing years before motor symptoms and cognitive decline, being considered a clinical marker of these diseases' early stages and a marker of disease progression and cognitive decline. Overall and under the umbrella of precision medicine, attention to olfactory function may help to improve chances of success for neuroprotective and disease-modifying therapeutic strategies. RECENT FINDINGS The use of olfaction, as clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and potentially prediction of treatment success. Understanding the mechanisms underlying olfactory dysfunction is central to determine its association with neurodegenerative disorders. Several anatomical systems and environmental factors may underlie or contribute to olfactory loss associated with neurological diseases, although the direct biological link to each disorder remains unclear and, thus, requires further investigation. In this review, we describe the neurobiology of olfaction, and the most common olfactory function measurements in neurodegenerative diseases. We also highlight the evidence for the presence of olfactory dysfunction in several neurodegenerative diseases, its value as a clinical marker for early stages of the diseases when combined with other clinical, biological, and neuroimage markers, and its role as a useful symptom for the differential diagnosis and follow-up of disease. The neuropathological correlations and the changes in neurotransmitter systems related with olfactory dysfunction in the neurodegenerative diseases are also described.
Collapse
|
48
|
Heldmann M, Heeren J, Klein C, Rauch L, Hagenah J, Münte TF, Kasten M, Brüggemann N. Neuroimaging abnormalities in individuals exhibiting Parkinson's disease risk markers. Mov Disord 2018; 33:1412-1422. [PMID: 29756356 DOI: 10.1002/mds.27313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The concept of prodromal Parkinson's disease (PD) involves variable combinations of nonmotor features and subtle motor abnormalities as a result of ongoing neurodegeneration in the brain stem including substantia nigra (SN) and abnormal findings upon transcranial sonography and nuclear imaging. Except for nuclear imaging, the predictive value of risk markers for the conversion to overt PD is low. OBJECTIVE The objective of this study was to determine whether PD risk markers are associated with changes in brain structure and to what extent cognitive changes are risk markers for PD. METHODS Diffusion-weighted imaging, voxel-based morphometry, and cortical thickness analysis was performed in 29 individuals with hyposmia and/or an increased SN hyperechogenicity (SN+) upon transcranial sonography and 28 controls without these 2 risk markers. Classical parkinsonian signs were an exclusion criterion. All of the participants underwent a neuropsychological test battery addressing executive functions, learning ability, and verbal fluency. RESULTS In the PD risk group, diffusion-weighted imaging mean diffusivity was increased in 4 left hemisphere clusters (posterior thalamus, inferior longitudinal fasciculus, fornix, corticospinal tract). A negative relationship of mean diffusivity and smell function was present for the posterior thalamus and the corticospinal tract. There was a significant correlation of mean diffusivity values and SN+ in all clusters. Neither voxel-based morphometry nor cortical thickness analysis revealed any group differences. No relevant group differences were observed for cognitive tests included. CONCLUSION PD-free individuals with PD risk markers show microstructural changes of the white matter, including areas relevant for motor and limbic processes. In addition, our study provides for the first time a neuroanatomical correlate for SN hyperechogenicity. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Janna Heeren
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Linus Rauch
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Johann Hagenah
- Department of Neurology, Westküstenklinikum Heide, Heide, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
49
|
Goette WF, Werry AE, Schmitt AL. The relationship between smell identification and neuropsychological domains: Results from a sample of community-dwelling adults suspected of dementia. J Clin Exp Neuropsychol 2017; 40:595-605. [PMID: 29202669 DOI: 10.1080/13803395.2017.1399985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study aimed to test the theoretical relationships between smell identification and cognitive tasks based on existing neuroimaging and anatomical findings. METHOD Utilizing data collected from a memory assessment clinic, theory-derived mediation and moderation models were tested. The sample used in this study consisted of 103 (39 male, 64 female) individuals referred for memory assessments. The sample's mean education was 12.4 years (SD = 3.2), and the mean age of the sample was 77.2 years (SD = 6.3). RESULTS The University of Pennsylvania Smell Identification Test (UPSIT) was a significant, partial mediator of the relationship between the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) Immediate and Delayed Memory indexes. Olfactory identification did not mediate list learning and retrieval; however, olfactory identification was a significant partial mediator of the relationship between story encoding and later memory retrieval of the story. Olfactory identification also fully mediated the relationship between a visuospatial construction task and its reconstruction from memory after a short delay. The relationship between processing speed and the olfactory identification was significantly mediated by semantic memory. Finally, the UPSIT moderated the relationship between a measure of premorbid ability, the Wechsler Test of Adult Reading, and current global cognitive functioning. CONCLUSIONS Our results support theoretical relationships between olfaction and neuropsychological domains. Additionally, our results suggest that the UPSIT may serve as a proxy for cerebral integrity and is likely related to the duration of neurodegeneration.
Collapse
Affiliation(s)
- William F Goette
- a University of Texas at Tyler , Department of Psychology and Counseling , Tyler , TX , USA
| | - Amy E Werry
- b School of Graduate Psychology , Pacific University , Hillsboro , OR , USA
| | - Andrew L Schmitt
- a University of Texas at Tyler , Department of Psychology and Counseling , Tyler , TX , USA
| |
Collapse
|
50
|
Goette W, Schmitt A, Clark A. Relationship between smell identification testing and the neuropsychological assessment of dementia in community-dwelling adults. APPLIED NEUROPSYCHOLOGY-ADULT 2017; 26:201-214. [PMID: 29182360 DOI: 10.1080/23279095.2017.1392303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this research was to investigate the relationship of the University of Pennsylvania Smell Identification Test (UPSIT) with neuropsychological tests and identify the utility of the UPSIT in detecting cognitive impairment. This research was an archival study of neuropsychological test results obtained from 70 clients (30 male/40 female) of a community-based memory clinic. The sample had an average age of 69.7 (SD = 9.7) and education of 14.6 (SD = 2.8) years. Hypotheses were tested using correlations, receiver operating characteristic (ROC) curves, and logistic regression. The UPSIT showed significant, weak to moderate correlations with neuropsychological tests. The UPSIT raw score correlated significantly with all but one cognitive ability domain. The UPSIT T-score was significantly correlated with all cognitive domains. Obtained areas under the ROC curve (AUC) for the UPSIT ranged from .60 to .87. The AUCs of the UPSIT did not differ significantly from verbal semantic fluency tests, but the Repeatable Battery for the Assessment of Neuropsychological Status Total Scale and Delayed Memory index tended to produce larger AUCs than the UPSIT. Results from step-wise logistic regressions suggest that the UPSIT raw score provides unique information beyond its relationship to age. Olfaction relates broadly to cognitive ability and may be sensitive to early symptoms of cognitive decline. Further research is needed to explore the relationships between smell identification tests and neuropsychological assessment.
Collapse
Affiliation(s)
- William Goette
- a Department of Psychology and Counseling , University of Texas at Tyler , Tyler , Texas , USA
| | - Andrew Schmitt
- a Department of Psychology and Counseling , University of Texas at Tyler , Tyler , Texas , USA
| | - Avery Clark
- a Department of Psychology and Counseling , University of Texas at Tyler , Tyler , Texas , USA
| |
Collapse
|