1
|
Chen J, Fan J, Malaviarachchi PA, Post SR, Lin Z, Zhang X, Qin Z. Alterations in Cellular Gene Expression Due to Co-Infection With Kaposi's Sarcoma-Associated Herpesvirus and SARS-CoV-2: Implications for Disease Severity. J Med Virol 2025; 97:e70149. [PMID: 39740042 DOI: 10.1002/jmv.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 pandemic, has resulted in over 7 million confirmed deaths. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal outcomes. Therefore, it is essential to investigate the impact of COVID-19 on pre-existing conditions in patients, such as cancer and other infectious diseases. Recent clinical studies have reported the reactivation of human herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), in severe COVID-19 patients or vaccinated individuals. To support these clinical observations, we established a KSHV/SARS-CoV-2 co-infection system in A549-hACE2 cells. Our findings indicate that co-infection with live SARS-CoV-2 sharply induces KSHV lytic reactivation. Transcriptomic analysis revealed significant changes in global cellular gene expression in KSHV-infected A549-hACE2 cells, both with and without SARS-CoV-2 co-infection. These data provide a molecular basis for understanding whether patients with pre-existing oncogenic herpesvirus infections are at increased risk for more severe COVID-19 or for developing virus-associated cancers even after full recovery from COVID-19.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiaojiao Fan
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Priyangi A Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Steven R Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
3
|
Li W, Wang Y, Peng Q, Shi Y, Wan P, Yao Y, Bai T, Ma Y, Shu X, Liu Y, Sun B. SARS-CoV-2 NSP14 induces AP-1 transcriptional activity via its interaction with MEK. Mol Immunol 2024; 175:1-9. [PMID: 39265360 DOI: 10.1016/j.molimm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
The NSP14 protein of SARS-CoV-2 not only facilitates viral replication but also plays a pivotal role in activating the host immune system by enhancing cytokine production. In this study, we found that NSP14 markedly activated the activator protein 1 (AP-1) pathway by increasing the phosphorylation of ERK (p-ERK), which enters the nucleus and promotes AP-1 transcription. The screening of the main proteins of the ERK pathway revealed that NSP14 could interact with MEK, a kinase of ERK, and increase the level of phosphorylated MEK. The addition of the MEK inhibitor U0126 suppressed the level of p-ERK induced by NSP14 and partly blocked cytokine production, suggesting that NSP14 activates MEK to enhance AP-1 signaling. Further investigation demonstrated that the ExoN domain of NSP14 might be crucial for the interaction and activation of MEK. These results suggest a novel mechanism by which NSP14 of SARS-CoV-2 induces a proinflammatory response in the host.
Collapse
Affiliation(s)
- Weiling Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yuansong Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yingying Shi
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Pin Wan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yulin Yao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Ma
- Division of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yuchen Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Department of Immunology, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
4
|
Sun M, Sun Y, Zhang L, Gao Y, Wang Z, Wang X, Jiang P, Bai J. Identification and characterization of new B cell epitopes on the nucleocapsid protein of porcine epidemic diarrhea virus using monoclonal antibodies. Vet Microbiol 2024; 298:110200. [PMID: 39173399 DOI: 10.1016/j.vetmic.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the pathogen of Porcine epidemic diarrhea (PED) and can mainly cause acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved structural protein. In this study, 6-8-week-old BALB/c mice were immunized with purified PEDV, and three monoclonal antibodies (mAbs) against the PEDV N protein were generated, named 3C6,4F8,4C9. Among them, three new B cell epitopes, 235IGENPDKL242, 12KRVPLSLY19, 372DAFKTGNA380 were firstly identified in the viral N-protein. Among them, 4F8 and 4C9 had IgG1 isotype with Kappa light chain, while 3C6 had IgG2a isotype with Kappa light chain. Three monoclonal antibodies (mAbs) demonstrated specific reactivity with PEDV as evidenced by Western blot and indirect immunofluorescence assay. By studying the interaction between the mAbs and the N protein, we can gain insights into the protein's conformation and functional regions. This information will help develop fast and accurate PEDV diagnostic methods.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhunxuan Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Jaiswal A, Shrivastav S, Kushwaha HR, Chaturvedi R, Singh RP. Oncogenic potential of SARS-CoV-2-targeting hallmarks of cancer pathways. Cell Commun Signal 2024; 22:447. [PMID: 39327555 PMCID: PMC11426004 DOI: 10.1186/s12964-024-01818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death. Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis. Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, potentially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activating host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and pathways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular components involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infection and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer consequences.
Collapse
Affiliation(s)
- Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanah Shrivastav
- SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Dudek I, Czerkies M, Kwiatek A. Differential expression of cytokines and elevated levels of MALAT1 - Long non-coding RNA in response to non-structural proteins of human respiratory syncytial virus. Virology 2024; 597:110127. [PMID: 38850893 DOI: 10.1016/j.virol.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Human Respiratory Syncytial Virus (hRSV), a prevalent respiratory pathogen affecting various age groups, can trigger prolonged and intense inflammation in humans. The severity and outcome of hRSV infection correlate with elevated levels of pro-inflammatory agents, yet the underlying reasons for this immune system overstimulation remain elusive. We focused on the impact of hRSV non-structural proteins, NS1 and NS2, on immune response within epithelial cells. Available data indicates that these proteins impair the interferon pathway. We reinforce that NS1 and NS2 induce heightened secretion of the pro-inflammatory cytokines IL-6 and CXCL8. We also indicate that hRSV non-structural proteins provoke differential gene expression of human host FosB and long non-coding RNAs (MALAT1, RP11-510N19.5). It suggests an impact of NS molecules beyond IFN pathways. Thus, new light is shed on the interplay between hRSV and host cells, uncovering unexplored avenues of viral interference, especially the NS2 role in cytokine expression and immune modulation.
Collapse
Affiliation(s)
- Inga Dudek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Popotas A, Casimir GJ, Corazza F, Lefèvre N. Sex-related immunity: could Toll-like receptors be the answer in acute inflammatory response? Front Immunol 2024; 15:1379754. [PMID: 38835761 PMCID: PMC11148260 DOI: 10.3389/fimmu.2024.1379754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Alexandros Popotas
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Jacques Casimir
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Immunology, Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Lefèvre
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
8
|
Sarlo Davila KM, Nelli RK, Phadke KS, Ruden RM, Sang Y, Bellaire BH, Gimenez-Lirola LG, Miller LC. How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain? Microbiol Spectr 2024; 12:e0252423. [PMID: 38189329 PMCID: PMC10846091 DOI: 10.1128/spectrum.02524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.
Collapse
Affiliation(s)
- Kaitlyn M. Sarlo Davila
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Disease Research Unit, National Animal Disease Center , Ames, Iowa, USA
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kruttika S. Phadke
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel M. Ruden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tennessee, USA
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Laura C. Miller
- United States Department of Agriculture, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, Iowa, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
9
|
Li Y, Han L, Li P, Ge J, Xue Y, Chen L. Potential network markers and signaling pathways for B cells of COVID-19 based on single-cell condition-specific networks. BMC Genomics 2023; 24:619. [PMID: 37853311 PMCID: PMC10583333 DOI: 10.1186/s12864-023-09719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
To explore the potential network markers and related signaling pathways of human B cells infected by COVID-19, we performed standardized integration and analysis of single-cell sequencing data to construct conditional cell-specific networks (CCSN) for each cell. Then the peripheral blood cells were clustered and annotated based on the conditional network degree matrix (CNDM) and gene expression matrix (GEM), respectively, and B cells were selected for further analysis. Besides, based on the CNDM of B cells, the hub genes and 'dark' genes (a gene has a significant difference between case and control samples not in a gene expression level but in a conditional network degree level) closely related to COVID-19 were revealed. Interestingly, some of the 'dark' genes and differential degree genes (DDGs) encoded key proteins in the JAK-STAT pathway, which had antiviral effects. The protein p21 encoded by the 'dark' gene CDKN1A was a key regulator for the COVID-19 infection-related signaling pathway. Elevated levels of proteins encoded by some DDGs were directly related to disease severity of patients with COVID-19. In short, the proteins encoded by 'dark' genes complement some missing links in COVID-19 and these signaling pathways played an important role in the growth and activation of B cells.
Collapse
Affiliation(s)
- Ying Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Liqin Han
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China.
- Longmen Laboratory, Luoyang, 471003, Henan, China.
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 201100, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201100, China.
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Pagis A, Alfi O, Kinreich S, Yilmaz A, Hamdan M, Gadban A, Panet A, Wolf DG, Benvenisty N. Genome-wide loss-of-function screen using human pluripotent stem cells to study virus-host interactions for SARS-CoV-2. Stem Cell Reports 2023; 18:1766-1774. [PMID: 37703821 PMCID: PMC10545482 DOI: 10.1016/j.stemcr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, has become a global health concern. Therefore, there is an immense need to understand the network of virus-host interactions by using human disease-relevant cells. We have thus conducted a loss-of-function genome-wide screen using haploid human embryonic stem cells (hESCs) to identify genes involved in SARS-CoV-2 infection. Although the undifferentiated hESCs are resistant to SARS-CoV-2, their differentiated definitive endoderm (DE) progenies, which express high levels of ACE2, are highly sensitive to the virus. Our genetic screening was able to identify the well-established entry receptor ACE2 as a host factor, along with additional potential novel modulators of SARS-CoV-2. Two such novel screen hits, the transcription factor MAFG and the transmembrane protein TMEM86A, were further validated as conferring resistance against SARS-CoV-2 by using CRISPR-mediated mutagenesis in hESCs, followed by differentiation of mutant lines into DE cells and infection by SARS-CoV-2. Our genome-wide genetic screening investigated SARS-CoV-2 host factors in non-cancerous human cells with endogenous ACE2 expression, providing a unique platform to identify novel modulators of SARS-CoV-2 cytopathology in human cells.
Collapse
Affiliation(s)
- Ariel Pagis
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Or Alfi
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Lautenberg Center for General and Tumor Immunology, The Hebrew University, Jerusalem 91121, Israel
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Leuven Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Marah Hamdan
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Aseel Gadban
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amos Panet
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem 91121, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Lautenberg Center for General and Tumor Immunology, The Hebrew University, Jerusalem 91121, Israel.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Sameni M, Mirmotalebisohi SA, Dehghan Z, Abooshahab R, Khazaei-Poul Y, Mozafar M, Zali H. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech 2023; 13:117. [PMID: 37070032 PMCID: PMC10090260 DOI: 10.1007/s13205-023-03518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/28/2023] Open
Abstract
The world has recently been plagued by a new coronavirus infection called SARS-CoV-2. This virus may lead to severe acute respiratory syndrome followed by multiple organ failure. SARS-CoV-2 has approximately 80-90% genetic similarity to SARS-CoV. Given the limited omics data available for host response to the viruses (more limited data for SARS-CoV-2), we attempted to unveil the crucial molecular mechanisms underlying the SARS-CoV-2 pathogenesis by comparing its regulatory network motifs with SARS-CoV. We also attempted to identify the non-shared crucial molecules and their functions to predict the specific mechanisms for each infection and the processes responsible for their different manifestations. Deciphering the crucial shared and non-shared mechanisms at the molecular level and signaling pathways underlying both diseases may help shed light on their pathogenesis and pave the way for other new drug repurposing against COVID-19. We constructed the GRNs for host response to SARS-CoV and SARS-CoV-2 pathogens (in vitro) and identified the significant 3-node regulatory motifs by analyzing them topologically and functionally. We attempted to identify the shared and non-shared regulatory elements and signaling pathways between their host responses. Interestingly, our findings indicated that NFKB1, JUN, STAT1, FOS, KLF4, and EGR1 were the critical shared TFs between motif-related subnetworks in both SARS and COVID-1, which are considered genes with specific functions in the immune response. Enrichment analysis revealed that the NOD-like receptor signaling, TNF signaling, and influenza A pathway were among the first significant pathways shared between SARS and COVID-19 up-regulated DEGs networks, and the term "metabolic pathways" (hsa01100) among the down-regulated DEGs networks. WEE1, PMAIP1, and TSC22D2 were identified as the top three hubs specific to SARS. However, MYPN, SPRY4, and APOL6 were the tops specific to COVID-19 in vitro. The term "Complement and coagulation cascades" pathway was identified as the first top non-shared pathway for COVID-19 and the MAPK signaling pathway for SARS. We used the identified crucial DEGs to construct a drug-gene interaction network to propose some drug candidates. Zinc chloride, Fostamatinib, Copper, Tirofiban, Tretinoin, and Levocarnitine were the six drugs with higher scores in our drug-gene network analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03518-x.
Collapse
Affiliation(s)
- Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yalda Khazaei-Poul
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cassiano LMG, Cavalcante-Silva V, Oliveira MS, Prado BVO, Cardoso CG, Salim ACM, Franco GR, D’Almeida V, Francisco SC, Coimbra RS. Vitamin B12 attenuates leukocyte inflammatory signature in COVID-19 via methyl-dependent changes in epigenetic markings. Front Immunol 2023; 14:1048790. [PMID: 36993968 PMCID: PMC10040807 DOI: 10.3389/fimmu.2023.1048790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
COVID-19 induces chromatin remodeling in host immune cells, and it had previously been shown that vitamin B12 downregulates some inflammatory genes via methyl-dependent epigenetic mechanisms. In this work, whole blood cultures from moderate or severe COVID-19 patients were used to assess the potential of B12 as adjuvant drug. The vitamin normalized the expression of a panel of inflammatory genes still dysregulated in the leukocytes despite glucocorticoid therapy during hospitalization. B12 also increased the flux of the sulfur amino acid pathway, that regulates the bioavailability of methyl. Accordingly, B12-induced downregulation of CCL3 strongly and negatively correlated with the hypermethylation of CpGs in its regulatory regions. Transcriptome analysis revealed that B12 attenuates the effects of COVID-19 on most inflammation-related pathways affected by the disease. As far as we are aware, this is the first study to demonstrate that pharmacological modulation of epigenetic markings in leukocytes favorably regulates central components of COVID-19 physiopathology.
Collapse
Affiliation(s)
- Larissa M. G. Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Cavalcante-Silva
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina S. Oliveira
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| | | | | | - Anna C. M. Salim
- Plataforma de Sequenciamento NGS (Next Generation Sequencing), Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Gloria R. Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vânia D’Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Roney S. Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Vadivalagan C, Shitut A, Kamalakannan S, Chen RM, Serrano-Aroca Á, Mishra V, Aljabali AAA, Singh SK, Chellappan DK, Gupta G, Dua K, El-Tanani M, Tambuwala MM, Krishnan A. Exosomal mediated signal transduction through artificial microRNA (amiRNA): A potential target for inhibition of SARS-CoV-2. Cell Signal 2022; 95:110334. [PMID: 35461900 PMCID: PMC9022400 DOI: 10.1016/j.cellsig.2022.110334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Exosome trans-membrane signals provide cellular communication between the cells through transport and/or receiving the signal by molecule, change the functional metabolism, and stimulate and/or inhibit receptor signal complexes. COVID19 genetic transformations are varied in different geographic positions, and single nucleotide polymorphic lineages were reported in the second waves due to the fast mutational rate and adaptation. Several vaccines were developed and in treatment practice, but effective control has yet to reach in cent presence. It was initially a narrow immune-modulating protein target. Controlling these diverse viral strains may inhibit their transuding mechanisms primarily to target RNA genes responsible for COVID19 transcription. Exosomal miRNAs are the main sources of transmembrane signals, and trans-located miRNAs can directly target COVID19 mRNA transcription. This review discussed targeted viral transcription by delivering the artificial miRNA (amiRNA) mediated exosomes in the infected cells and significant resources of exosome and their efficacy.
Collapse
Affiliation(s)
- Chithravel Vadivalagan
- Graduate Institute of Medical Sciences, College of medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Biochemistry, AKFA Medical School, AKFA University, Tashkent, Uzbekistan.
| | - Anushka Shitut
- Department of Life Sciences, Christ University, Bhavani, Nagar, Bangalor, Karnataka 560029, India.
| | - Siva Kamalakannan
- National Center for Disease Control, Ministry of Health and Family Welfare, Government of India, New Delhi 110054, India
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 21163, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, United Kingdom.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; Department of Chemical Pathology, School of Pathology, National Health Laboratory Services, Bloemfontein, South Africa.
| |
Collapse
|
15
|
Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Viruses 2022; 14:v14040837. [PMID: 35458567 PMCID: PMC9026071 DOI: 10.3390/v14040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that caused the coronavirus disease 2019 (COVID-19) pandemic. Though previous studies have suggested that SARS-CoV-2 cellular tropism depends on the host-cell-expressed proteins, whether transcriptional regulation controls SARS-CoV-2 tropism factors in human lung cells remains unclear. In this study, we used computational approaches to identify transcription factors (TFs) regulating SARS-CoV-2 tropism for different types of lung cells. We constructed transcriptional regulatory networks (TRNs) controlling SARS-CoV-2 tropism factors for healthy donors and COVID-19 patients using lung single-cell RNA-sequencing (scRNA-seq) data. Through differential network analysis, we found that the altered regulatory role of TFs in the same cell types of healthy and SARS-CoV-2-infected networks may be partially responsible for differential tropism factor expression. In addition, we identified the TFs with high centralities from each cell type and proposed currently available drugs that target these TFs as potential candidates for the treatment of SARS-CoV-2 infection. Altogether, our work provides valuable cell-type-specific TRN models for understanding the transcriptional regulation and gene expression of SARS-CoV-2 tropism factors.
Collapse
|
16
|
Figueiredo DLA, Ximenez JPB, Seiva FRF, Panis C, Bezerra RDS, Ferrasa A, Cecchini AL, de Medeiros AI, Almeida AMF, Ramão A, Boldt ABW, Moya CF, Chin CM, de Paula D, Rech D, Gradia DF, Malheiros D, Venturini D, Tavares ER, Carraro E, Ribeiro EMDSF, Pereira EM, Tuon FF, Follador FAC, Fernandes GSA, Volpato H, Cólus IMDS, de Oliveira JC, Rodrigues JHDS, dos Santos JL, Visentainer JEL, Brandi JC, Serpeloni JM, Bonini JS, de Oliveira KB, Fiorentin K, Lucio LC, Faccin-Galhardi LC, Ferreto LED, Lioni LMY, Consolaro MEL, Vicari MR, Arbex MA, Pileggi M, Watanabe MAE, Costa MAR, Giannini MJSM, Amarante MK, Khalil NM, de Lima QA, Herai RH, Guembarovski RL, Shinsato RN, Mainardes RM, Giuliatti S, Yamada-Ogatta SF, Gerber VKDQ, Pavanelli WR, da Silva WC, Petzl-Erler ML, Valente V, Soares CP, Cavalli LR, Silva WA. COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genet Mol Biol 2022; 44:e20200452. [PMID: 35421211 PMCID: PMC9075701 DOI: 10.1590/1678-4685-gmb-2020-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.
Collapse
Affiliation(s)
- David Livingstone Alves Figueiredo
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina, Guarapuava, PR, Brazil
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - João Paulo Bianchi Ximenez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicologia e Ciência de Alimentos, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rafael dos Santos Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Adriano Ferrasa
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Programa de Pós Graduação em Computação Aplicada, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Universidade Estadual de Londrina, Departamento de Patologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alexandra Ivo de Medeiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Anelisa Ramão
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Ciências Biológicas, Guarapuava, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carla Fredrichsen Moya
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina Veterinária, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Chung Man Chin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- União das Faculdades dos Grandes Lagos (UNILAGO), Centro de Pesquisa Avançada em Medicina, São José do Rio Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel de Paula
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel Rech
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Hospital do Câncer Francisco Beltrão, Laboratório de Biologia de Tumores, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Malheiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de patologia, clínica e toxicologia, Laboratório de bioquímica clínica, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Eliandro Reis Tavares
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Emerson Carraro
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Virologia Clínica, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Evani Marques Pereira
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Felipe Francisco Tuon
- Universidade Católica do Paraná, Laboratório de Doenças Infecciosas Emergentes, Pontifícia Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Franciele Aní Caovilla Follador
- Universidade Estadual do Oeste do Paraná, Departamento de Ciências da Vida, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Hélito Volpato
- Universidade Estadual do Paraná (UNESPAR), Faculdade de Ciências Biológicas, Centro de Ciências Humanas e Educação, Paranavaí, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ilce Mara de Syllos Cólus
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Henrique da Silva Rodrigues
- Universidade do Estado de São Paulo (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Leandro dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Cristina Brandi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Mara Serpeloni
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Sartori Bonini
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karen Brajão de Oliveira
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Genética Molecular e Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karine Fiorentin
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Léia Carolina Lucio
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lirane Elize Defante Ferreto
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lucy Megumi Yamauchi Lioni
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Abdo Arbex
- Universidade de Araraquara, Faculdade de Medicina, Área temática de Pneumologia, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Antônia Ramos Costa
- Universidade do Estado do Paraná, Colegiada de Enfermagem, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria José S. Mendes Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marla Karine Amarante
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Quirino Alves de Lima
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberto H. Herai
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberta Losi Guembarovski
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rogério N. Shinsato
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rubiana Mara Mainardes
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Silvana Giuliatti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Viviane Knuppel de Quadros Gerber
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, Laboratório de Imunoparasitologia de Doenças Negligenciadas e Câncer, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Weber Claudio da Silva
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Luiza Petzl-Erler
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wilson Araujo Silva
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCT/CNPq), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| |
Collapse
|
17
|
Parthasarathi KTS, Munjal NS, Dey G, Kumar A, Pandey A, Balakrishnan L, Sharma J. A pathway map of signaling events triggered upon SARS-CoV infection. J Cell Commun Signal 2021; 15:595-600. [PMID: 34487344 PMCID: PMC8419830 DOI: 10.1007/s12079-021-00642-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronaviruses (SARS-CoVs) caused worldwide epidemics over the past few decades. Extensive studies on various strains of coronaviruses provided a basic understanding of the pathogenesis of the disease. Presently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading a global pandemic with unprecedented challenges. This is the third coronavirus outbreak of this century. A signaling pathway map of signaling events induced by SARS-CoV infection is not yet available. In this study, we present a literature-annotated signaling pathway map of reactions induced by SARS-CoV infected cells. Multiple signaling modules were found to be orchestrated including PI3K-AKT, Ras-MAPK, JAK-STAT, Type 1 IFN and NFκB. The signaling pathway map of SARS-CoV consists of 110 molecules and 101 reactions mediated by SARS-CoV proteins. The pathway reaction data are available in various community standard data exchange formats including Systems Biology Graphical Notation (SBGN). The pathway map is publicly available through the GitHub repository and data in various formats can be freely downloadable.
Collapse
Affiliation(s)
| | - Nupur S Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lavanya Balakrishnan
- Mazumdar Shaw Center for Translational Research, Narayana Hrudayalaya Health City, Bangalore, India.
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
18
|
Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis. Infect Dis Rep 2021; 13:902-909. [PMID: 34698182 PMCID: PMC8544489 DOI: 10.3390/idr13040081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropilin-1 (NRP1) is a recently identified glycoprotein that is an important host factor for SARS-CoV-2 infection. On the other hand, angiotensin-converting enzyme-2 (ACE2) acts as a receptor for SARS-CoV-2. Additionally, both NRP1 and ACE2 express in the kidney and are associated with various renal diseases, including renal carcinoma. Therefore, the expression profiles of NRP1 and ACE2 in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) patients from the various cancer databases were investigated along with their impact on patients’ survivability. In addition, coexpression analysis of genes involved in COVID-19, KIRC, and KIRP concerning NRP1 and ACE2 was performed. The results demonstrated that both t NRP1 and ACE2 expressions are upregulated in KIRC and KIRP compared to healthy conditions and are significantly correlated with the survivability rate of KIRC patients. A total of 128 COVID-19-associated genes are coexpressed, which are positively associated with NRP1 and ACE2 both in KIRC and KIRP. Therefore, it might be suggested that, along with the ACE2, high expression of the newly identified host factor NRP1 in renal carcinomas may play a vital role in the increased risk of SARS-CoV-2 infection and survivability of COVID-19 patients suffering from kidney cancers. The findings of this investigation will be helpful for further molecular studies and prevention and/or treatment strategies for COVID-19 patients associated with renal carcinomas.
Collapse
|
19
|
Mousavizadeh L, Soltani R, Abedini K, Ghasemi S. The Relation of the Viral Structure of SARS-CoV2, High-Risk Condition, and Plasma Levels of IL-4, IL-10, and IL-15 in COVID-19 Patients compared to SARS and MERS Infections. Curr Mol Med 2021; 22:584-593. [PMID: 34607539 DOI: 10.2174/1566524021666211004110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has high mortality due to the widespread infection and the strong immune system reaction. Interleukins (ILs) are among the main immune factors contributing to the deterioration of the immune response and the formation of cytokine storms in coronavirus disease 2019 (COVID-19) infections. INTRODUCTION This review article investigated the relationship between virus structure, risk factors, and patient plasma interleukin levels in infections caused by the coronavirus family. METHOD The keywords "interleukin," "coronavirus structure," "plasma," and "risk factors" were the main words searched to find a relationship among different interleukins, coronavirus structures, and risk factors in ISI, PUBMED, SCOPUS, and Google Scholar databases. RESULT Patients with high-risk conditions with independent panels of immune system markers are more susceptible to death caused by SARS-CoV2. IL-4, IL-10, and IL-15 are probably secreted at different levels in patients with coronavirus infections despite the similarity of inflammatory markers during coronavirus infections. SARS-CoV2 and SARS-CoV increase the secretion of IL-4 in the Middle East respiratory syndrome coronavirus (MERS-CoV) infection, while it remains unchanged in MERS-CoV infection. MERS-CoV infection demonstrates increased IL-10 levels. However, IL-10 levels increase during SARS-CoV infection, and different levels are recorded in SARS-CoV2. MERS-CoV increases IL-15 secretion while its levels remain unchanged in SARS-CoV2. CONCLUSION In conclusion, the different structures of SARS-CoV2, such as length of spike or nonstructural proteins (NSPs), and susceptibility of patients based on their risk factors may lead to differences in immune marker secretion and pathogenicity. Therefore, identifying and controlling interleukin levels can play a significant role in controlling the symptoms and the development of individual-specific treatments.
Collapse
Affiliation(s)
- Leila Mousavizadeh
- Department of Virus-Host Interaction, Heinrich-Pette-Institut (HPI), Martinistrasse 52, 20251 Hamburg. Germany
| | - Ramin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Kosar Abedini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
20
|
Tarczewska A, Kolonko-Adamska M, Zarębski M, Dobrucki J, Ożyhar A, Greb-Markiewicz B. The method utilized to purify the SARS-CoV-2 N protein can affect its molecular properties. Int J Biol Macromol 2021; 188:391-403. [PMID: 34371045 PMCID: PMC8343380 DOI: 10.1016/j.ijbiomac.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marta Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
21
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Key Considerations for the Development of Safe and Effective SARS-CoV-2 Subunit Vaccine: A Peptide-Based Vaccine Alternative. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100985. [PMID: 34176237 PMCID: PMC8373118 DOI: 10.1002/advs.202100985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Indexed: 05/14/2023]
Abstract
COVID-19 is disastrous to global health and the economy. SARS-CoV-2 infection exhibits similar clinical symptoms and immunopathological sequelae to SARS-CoV infection. Therefore, much of the developmental progress on SARS-CoV vaccines can be utilized for the development of SARS-CoV-2 vaccines. Careful antigen selection during development is always of utmost importance for the production of effective vaccines that do not compromise recipient safety. This holds especially true for SARS-CoV vaccines, as several immunopathological disorders are associated with the activity of structural and nonstructural proteins encoded in the virus's genetic material. Whole viral protein and RNA-encoding full-length proteins contain both protective and "dangerous" sequences, unless pathological fragments are deleted. In light of recent advances, peptide vaccines may present a very safe and effective alternative. Peptide vaccines can avoid immunopathological pro-inflammatory sequences, focus immune responses on neutralizing immunogenic epitopes, avoid off-target antigen loss, combine antigens with different protective roles or mechanisms, even from different viral proteins, and avoid mutant escape by employing highly conserved cryptic epitopes. In this review, an attempt is made to exploit the similarities between SARS-CoV and SARS-CoV-2 in vaccine antigen screening, with particular attention to the pathological and immunogenic properties of SARS proteins.
Collapse
Affiliation(s)
- Ahmed O. Shalash
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Istvan Toth
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
- School of PharmacyThe University of QueenslandWoolloongabbaQLD4102Australia
| |
Collapse
|
22
|
Zhu QC, Li S, Yuan LX, Chen RA, Liu DX, Fung TS. Induction of the Proinflammatory Chemokine Interleukin-8 Is Regulated by Integrated Stress Response and AP-1 Family Proteins Activated during Coronavirus Infection. Int J Mol Sci 2021; 22:ijms22115646. [PMID: 34073283 PMCID: PMC8198748 DOI: 10.3390/ijms22115646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.
Collapse
Affiliation(s)
- Qing Chun Zhu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Shumin Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Li Xia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Zhaoqing Branch, Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
- Zhaoqing Branch, Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- Correspondence: or (D.X.L.); (T.S.F.)
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
- Correspondence: or (D.X.L.); (T.S.F.)
| |
Collapse
|
23
|
Zhang Y, Gargan S, Lu Y, Stevenson NJ. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses 2021; 13:560. [PMID: 33810391 PMCID: PMC8066579 DOI: 10.3390/v13040560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a large family of zoonotic RNA viruses, whose infection can lead to mild or lethal respiratory tract disease. Severe Acute Respiratory Syndrome-Coronavirus-1 (SARS-CoV-1) first emerged in Guangdong, China in 2002 and spread to 29 countries, infecting 8089 individuals and causing 774 deaths. In 2012, Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) emerged in Saudi Arabia and has spread to 27 countries, with a mortality rate of ~34%. In 2019, SARS-CoV-2 emerged and has spread to 220 countries, infecting over 100,000,000 people and causing more than 2,000,000 deaths to date. These three human coronaviruses cause diseases of varying severity. Most people develop mild, common cold-like symptoms, while some develop acute respiratory distress syndrome (ARDS). The success of all viruses, including coronaviruses, relies on their evolved abilities to evade and modulate the host anti-viral and pro-inflammatory immune responses. However, we still do not fully understand the transmission, phylogeny, epidemiology, and pathogenesis of MERS-CoV and SARS-CoV-1 and -2. Despite the rapid application of a range of therapies for SARS-CoV-2, such as convalescent plasma, remdesivir, hydroxychloroquine and type I interferon, no fully effective treatment has been determined. Remarkably, COVID-19 vaccine research and development have produced several offerings that are now been administered worldwide. Here, we summarise an up-to-date understanding of epidemiology, immunomodulation and ongoing anti-viral and immunosuppressive treatment strategies. Indeed, understanding the interplay between coronaviruses and the anti-viral immune response is crucial to identifying novel targets for therapeutic intervention, which may even prove invaluable for the control of future emerging coronavirus.
Collapse
Affiliation(s)
- Yamei Zhang
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
- Viral Immunology Group, Royal College of Surgeons in Ireland—Medical University of Bahrain, Adliya 15503, Bahrain
| |
Collapse
|
24
|
Zhu H, Chen CZ, Sakamuru S, Zhao J, Ngan DK, Simeonov A, Hall MD, Xia M, Zheng W, Huang R. Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics. Sci Rep 2021; 11:6725. [PMID: 33762619 PMCID: PMC7990955 DOI: 10.1038/s41598-021-86110-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.
Collapse
Affiliation(s)
- Hu Zhu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Catherine Z Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jinghua Zhao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Deborah K Ngan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Mathew D Hall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), DPI/NCATS, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
25
|
Kryvenko V, Vadász I. Molecular mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial barrier failure in severe COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1186-L1193. [PMID: 33689516 PMCID: PMC8238442 DOI: 10.1152/ajplung.00056.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A significant number of patients with coronavirus disease 2019 (COVID-19) develop acute respiratory distress syndrome (ARDS) that is associated with a poor outcome. The molecular mechanisms driving failure of the alveolar barrier upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain incompletely understood. The Na,K-ATPase is an adhesion molecule and a plasma membrane transporter that is critically required for proper alveolar epithelial function by both promoting barrier integrity and resolution of excess alveolar fluid, thus enabling appropriate gas exchange. However, numerous SARS-CoV-2-mediated and COVID-19-related signals directly or indirectly impair the function of the Na,K-ATPase, thereby potentially contributing to disease progression. In this Perspective, we highlight some of the putative mechanisms of SARS-CoV-2-driven dysfunction of the Na,K-ATPase, focusing on expression, maturation, and trafficking of the transporter. A therapeutic mean to selectively inhibit the maladaptive signals that impair the Na,K-ATPase upon SARS-CoV-2 infection might be effective in reestablishing the alveolar epithelial barrier and promoting alveolar fluid clearance and thus advantageous in patients with COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
26
|
Gammacoronavirus Avian Infectious Bronchitis Virus and Alphacoronavirus Porcine Epidemic Diarrhea Virus Exploit a Cell-Survival Strategy via Upregulation of cFOS to Promote Viral Replication. J Virol 2021; 95:JVI.02107-20. [PMID: 33239458 PMCID: PMC7851560 DOI: 10.1128/jvi.02107-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coronaviruses have evolved a variety of strategies to optimize cellular microenvironment for efficient replication. In this study, we report the induction of AP-1 transcription factors by coronavirus infection based on genome-wide analyses of differentially expressed genes in cells infected with avian coronavirus infectious bronchitis virus (IBV). Most members of the AP-1 transcription factors were subsequently found to be upregulated during the course of IBV and porcine epidemic diarrhea virus (PEDV) infection of cultured cells as well as in IBV-infected chicken embryos. Further characterization of the induction kinetics and functional roles of cFOS in IBV replication demonstrated that upregulation of cFOS at early to intermediate phases of IBV replication cycles suppresses IBV-induced apoptosis and promotes viral replication. Blockage of nuclear translocation of cFOS by peptide inhibitor NLSP suppressed IBV replication and apoptosis, ruling out the involvement of the cytoplasmic functions of cFOS in the replication of IBV. Furthermore, knockdown of ERK1/2 and inhibition of JNK and p38 kinase activities reduced cFOS upregulation and IBV replication. This study reveals an important function of cFOS in the regulation of coronavirus-induced apoptosis, facilitating viral replication.IMPORTANCE The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by a newly emerged zoonotic coronavirus (SARS-CoV-2), highlights the importance of coronaviruses as human and animal pathogens and our knowledge gaps in understanding the cellular mechanisms, especially mechanisms shared among human and animal coronaviruses, exploited by coronaviruses for optimal replication and enhanced pathogenicity. This study reveals that upregulation of cFOS, along with other AP-1 transcription factors, as a cell-survival strategy is such a mechanism utilized by coronaviruses during their replication cycles. Through induction and regulation of apoptosis of the infected cells at early to intermediate phases of the replication cycles, subtle but appreciable differences in coronavirus replication efficiency were observed when the expression levels of cFOS were manipulated in the infected cells. As the AP-1 transcription factors are multi-functional, further studies of their regulatory roles in proinflammatory responses may provide new insights into the pathogenesis and virus-host interactions during coronavirus infection.
Collapse
|
27
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021; 11:1690-1702. [PMID: 33408775 PMCID: PMC7778607 DOI: 10.7150/thno.53691] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
The global outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a requirement for two pronged clinical interventions such as development of effective vaccines and acute therapeutic options for medium-to-severe stages of "coronavirus disease 2019" (COVID-19). Effective vaccines, if successfully developed, have been emphasized to become the most effective strategy in the global fight against the COVID-19 pandemic. Basic research advances in biotechnology and genetic engineering have already provided excellent progress and groundbreaking new discoveries in the field of the coronavirus biology and its epidemiology. In particular, for the vaccine development the advances in characterization of a capsid structure and identification of its antigens that can become targets for new vaccines. The development of the experimental vaccines requires a plethora of molecular techniques as well as strict compliance with safety procedures. The research and clinical data integrity, cross-validation of the results, and appropriated studies from the perspective of efficacy and potently side effects have recently become a hotly discussed topic. In this review, we present an update on latest advances and progress in an ongoing race to develop 52 different vaccines against SARS-CoV-2. Our analysis is focused on registered clinical trials (current as of November 04, 2020) that fulfill the international safety and efficacy criteria in the vaccine development. The requirements as well as benefits and risks of diverse types of SARS-CoV-2 vaccines are discussed including those containing whole-virus and live-attenuated vaccines, subunit vaccines, mRNA vaccines, DNA vaccines, live vector vaccines, and also plant-based vaccine formulation containing coronavirus-like particle (VLP). The challenges associated with the vaccine development as well as its distribution, safety and long-term effectiveness have also been highlighted and discussed.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Poznań, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women's Disease, Poznań University of Medical Sciences, Poznań, Poland
- Laboratory of Molecular Biology in Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Poznań, Poland
| | - Hubert Wolski
- Division of Perinatology and Women's Disease, Poznań University of Medical Sciences, Poznań, Poland
- Division of Obstetrics and Gynecology, Tytus Chałubiński's Hospital, Zakopane, Poland
| | | |
Collapse
|
29
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
30
|
Masood N, Malik SS, Raja MN, Mubarik S, Yu C. Unraveling the Epidemiology, Geographical Distribution, and Genomic Evolution of Potentially Lethal Coronaviruses (SARS, MERS, and SARS CoV-2). Front Cell Infect Microbiol 2020; 10:499. [PMID: 32974224 PMCID: PMC7481402 DOI: 10.3389/fcimb.2020.00499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
SARS CoV appeared in 2003 in China, transmitted from bats to humans via eating infected animals. It affected 8,096 humans with a death rate of 11% affecting 21 countries. The receptor binding domain (RBD) in S protein of this virus gets attached with the ACE2 receptors present on human cells. MERS CoV was first reported in 2012 in Middle East, originated from bat and transmitted to humans through camels. MERS CoV has a fatality rate of 35% and last case reported was in 2017 making a total of 1,879 cases worldwide. DPP4 expressed on human cells is the main attaching site for RBD in S protein of MERS CoV. Folding of RBD plays a crucial role in its pathogenesis. Virus causing COVID-19 was named as SARS CoV-2 due its homology with SARS CoV that emerged in 2003. It has become a pandemic affecting nearly 200 countries in just 3 months' time with a death rate of 2-3% currently. The new virus is fast spreading, but it utilizes the same RBD and ACE2 receptors along with furin present in human cells. The lessons learned from the SARS and MERS epidemics are the best social weapons to face and fight against this novel global threat.
Collapse
Affiliation(s)
- Nosheen Masood
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | | | | | - Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53:25-32. [PMID: 32446778 PMCID: PMC7211650 DOI: 10.1016/j.cytogfr.2020.05.003] [Citation(s) in RCA: 934] [Impact Index Per Article: 186.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
In 2019-2020 a new coronavirus named SARS-CoV-2 was identified as the causative agent of a several acute respiratory infection named COVID-19, which is causing a worldwide pandemic. There are still many unresolved questions regarding the pathogenesis of this disease and especially the reasons underlying the extremely different clinical course, ranging from asymptomatic forms to severe manifestations, including the Acute Respiratory Distress Syndrome (ARDS). SARS-CoV-2 showed phylogenetic similarities to both SARS-CoV and MERS-CoV viruses, and some of the clinical features are shared between COVID-19 and previously identified beta-coronavirus infections. Available evidence indicate that the so called "cytokine storm" an uncontrolled over-production of soluble markers of inflammation which, in turn, sustain an aberrant systemic inflammatory response, is a major responsible for the occurrence of ARDS. Chemokines are low molecular weight proteins with powerful chemoattractant activity which play a role in the immune cell recruitment during inflammation. This review will be aimed at providing an overview of the current knowledge on the involvement of the chemokine/chemokine-receptor system in the cytokine storm related to SARS-CoV-2 infection. Basic and clinical evidences obtained from previous SARS and MERS epidemics and available data from COVID-19 will be taken into account.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy.
| |
Collapse
|
32
|
Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases 2016; 4:E26. [PMID: 28933406 PMCID: PMC5456285 DOI: 10.3390/diseases4030026] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses (HCoVs) are known respiratory pathogens associated with a range of respiratory outcomes. In the past 14 years, the onset of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have thrust HCoVs into spotlight of the research community due to their high pathogenicity in humans. The study of HCoV-host interactions has contributed extensively to our understanding of HCoV pathogenesis. In this review, we discuss some of the recent findings of host cell factors that might be exploited by HCoVs to facilitate their own replication cycle. We also discuss various cellular processes, such as apoptosis, innate immunity, ER stress response, mitogen-activated protein kinase (MAPK) pathway and nuclear factor kappa B (NF-κB) pathway that may be modulated by HCoVs.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Ling Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
33
|
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 2014; 194:124-37. [PMID: 25093995 PMCID: PMC4261026 DOI: 10.1016/j.virusres.2014.07.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Fernando Usera
- Department of Biosafety, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
34
|
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6:2991-3018. [PMID: 25105276 PMCID: PMC4147684 DOI: 10.3390/v6082991] [Citation(s) in RCA: 669] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein.
Collapse
Affiliation(s)
- Ruth McBride
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Marjorie van Zyl
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| |
Collapse
|
35
|
EF1A interacting with nucleocapsid protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Vet Microbiol 2014; 172:443-8. [PMID: 24974120 PMCID: PMC7117464 DOI: 10.1016/j.vetmic.2014.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022]
Abstract
Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs, which is correlated with high morbidity and mortality in suckling piglets. Using the method of GST pull-down with the nucleocapsid (N), N protein was found to interact with swine testes (ST) cells elongation factor 1-alpha (EF1A), an essential component of the translational machinery with an important role in cells. In vitro and in virus-infected cells interaction was then confirmed by co-precipitation. Knockdown of EF1A impairs N protein proliferation and TGEV replication in host cell. It was demonstrated that EF1A plays a role in TGEV replication. The present study thus provides a protein-related information that should be useful for underlying mechanism of coronavirus replication.
Collapse
|
36
|
Shi D, Lv M, Chen J, Shi H, Zhang S, Zhang X, Feng L. Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus. Viruses 2014; 6:1253-73. [PMID: 24632575 PMCID: PMC3970149 DOI: 10.3390/v6031253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022] Open
Abstract
The nucleolus is a dynamic subnuclear structure, which is crucial to the normal operation of the eukaryotic cell. The porcine epidemic diarrhea virus (PEDV), coronavirus nucleocapsid (N) protein, plays important roles in the process of virus replication and cellular infection. Virus infection and transfection showed that N protein was predominately localized in the cytoplasm, but also found in the nucleolus in Vero E6 cells. Furthermore, by utilizing fusion proteins with green fluorescent protein (GFP), deletion mutations or site-directed mutagenesis of PEDV N protein, coupled with live cell imaging and confocal microscopy, it was revealed that, a region spanning amino acids (aa), 71–90 in region 1 of the N protein was sufficient for nucleolar localization and R87 and R89 were critical for its function. We also identified two nuclear export signals (NES, aa221–236, and 325–364), however, only the nuclear export signal (aa325–364) was found to be functional in the context of the full-length N protein. Finally, the activity of this nuclear export signal (NES) was inhibited by the antibiotic Lepomycin B, suggesting that N is exported by a chromosome region maintenance 1-related export pathway.
Collapse
Affiliation(s)
- Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Maojie Lv
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Sha Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
37
|
The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology. J Virol 2013; 87:9486-500. [PMID: 23637410 DOI: 10.1128/jvi.00321-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein plays a multifunctional role in the virus life cycle, from regulation of replication and transcription and genome packaging to modulation of host cell processes. These functions are likely to be facilitated by interactions with host cell proteins. The potential interactome of the infectious bronchitis virus (IBV) N protein was mapped using stable isotope labeling with amino acids in cell culture (SILAC) coupled to a green fluorescent protein-nanotrap pulldown methodology and liquid chromatography-tandem mass spectrometry. The addition of the SILAC label allowed discrimination of proteins that were likely to specifically bind to the N protein over background binding. Overall, 142 cellular proteins were selected as potentially binding to the N protein, many as part of larger possible complexes. These included ribosomal proteins, nucleolar proteins, translation initiation factors, helicases, and hnRNPs. The association of selected cellular proteins with IBV N protein was confirmed by immunoblotting, cosedimentation, and confocal microscopy. Further, the localization of selected proteins in IBV-infected cells as well as their activity during virus infection was assessed by small interfering RNA-mediated depletion, demonstrating the functional importance of cellular proteins in the biology of IBV. This interactome not only confirms previous observations made with other coronavirus and IBV N proteins with both overexpressed proteins and infectious virus but also provides novel data that can be exploited to understand the interaction between the virus and the host cell.
Collapse
|
38
|
SARS-CoV nucleocapsid protein interacts with cellular pyruvate kinase protein and inhibits its activity. Arch Virol 2012; 157:635-45. [PMID: 22222284 PMCID: PMC7087308 DOI: 10.1007/s00705-011-1221-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 12/02/2011] [Indexed: 02/06/2023]
Abstract
The pathogenesis of SARS-CoV remains largely unknown. To study the function of the SARS-CoV nucleocapsid protein, we have conducted a yeast two-hybrid screening experiment to identify cellular proteins that may interact with the SARS-CoV nucleocapsid protein. Pyruvate kinase (liver) was found to interact with SARS-CoV nucleocapsid protein in this experiment. The binding domains of these two proteins were also determined using the yeast two-hybrid system. The physical interaction between the SARS-CoV nucleocapsid and cellular pyruvate kinase (liver) proteins was further confirmed by GST pull-down assay, co-immunoprecipitation assay and confocal microscopy. Cellular pyruvate kinase activity in hepatoma cells was repressed by SARS-CoV nucleocapsid protein in either transiently transfected or stably transfected cells. PK deficiency in red blood cells is known to result in human hereditary non-spherocytic hemolytic anemia. It is reasonable to assume that an inhibition of PKL activity due to interaction with SARS-CoV N protein is likely to cause the death of the hepatocytes, which results in the elevation of serum alanine aminotransferase and liver dysfunction noted in most SARS patients. Thus, our results suggest that SARS-CoV could reduce pyruvate kinase activity via its nucleocapsid protein, and this may in turn cause disease.
Collapse
|
39
|
Varshney B, Lal SK. SARS-CoV accessory protein 3b induces AP-1 transcriptional activity through activation of JNK and ERK pathways. Biochemistry 2011; 50:5419-25. [PMID: 21561061 DOI: 10.1021/bi200303r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The outbreak of severe acute respiratory syndrome (SARS) in 2003 in China, characterized by atypical pneumonia, was associated with the emergence of a novel coronavirus named severe acute respiratory syndrome coronavirus (SARS-CoV). Eight accessory proteins of SARS coronavirus were the suspected players in the pathogenesis of the virus. Among them, protein 3b localizes to the nucleus and behaves as an interferon antagonist by inhibiting IRF3 activation. However, the effect of 3b on the activity of other common host transcription factors remains unexplored. In this work, we studied the effect of 3b on the transcriptional activity of AP-1. Our findings elucidate augmentation of AP-1-dependent gene expression in 3b-transfected Huh7 cells. Reporter gene and mobility shift assays depict an increase in the AP-1 transcriptional and DNA binding activity in the presence of 3b. This increase in activity correlates with the activation of ERK and JNK pathways. Furthermore, 3b expression potentiates AP-1-driven promoter activity of proinflammatory cytokine MCP-1, suggesting a plausible role for 3b as a virulence factor that might function by upregulating AP-1-dependent cytokine levels in SARS-CoV infection.
Collapse
Affiliation(s)
- Bhavna Varshney
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110018, India
| | | |
Collapse
|
40
|
SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2010; 42:37-45. [PMID: 20976535 PMCID: PMC7088804 DOI: 10.1007/s11262-010-0544-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein which can inhibit the synthesis of type I interferon (IFN), but the molecular mechanism of this antagonism remains to be identified. In this study, we demonstrated that the N protein of SARS-CoV could inhibit IFN-beta (IFN-β) induced by poly(I:C) or Sendai virus. However, we found that N protein could not inhibit IFN-β production induced by overexpression of downstream signaling molecules of two important IFN-β induction pathways, toll-like receptor 3 (TLR3)- and RIG-I-like receptors (RLR)-dependent pathways. These results indicate that SARS-CoV N protein targets the initial step, probably the cellular PRRs (pattern recognition receptors)-RNAs-recognition step in the innate immune pathways, to suppress IFN expression responses. In addition, co-immunoprecipitation assays revealed that N protein did not interact with RIG-I or MDA5. Further, an assay using truncated mutants revealed that the C-terminal domain of N protein was critical for its antagonism of IFN induction, and the N deletion mutant impaired for RNA-binding almost completely lost the IFN-β antagonist activity. These results contribute to our further understanding of the pathogenesis of SARS-CoV.
Collapse
|
41
|
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S. Viral fusion peptides induce several signal transduction pathway activations that are essential for interleukin-10 and beta-interferon production. Intervirology 2010; 53:381-9. [PMID: 20606459 PMCID: PMC7179556 DOI: 10.1159/000317287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 12/22/2009] [Indexed: 01/22/2023] Open
Abstract
Objectives The deciphering of intracellular signaling pathways that are activated by the interaction between viral fusion peptides and cellular membranes are important for the understanding of both viral replication strategies and host defense mechanisms. Methods Fusion peptides of several enveloped viruses belonging to different virus families were prepared by standard 9-fluorenylmethoxycarbonyl polyamine solid-phase synthesis and used to stimulate U937 cells in vitro to analyze the phosphorylation patterns of the signaling pathways (PKC, Src, Akt, and MAPK pathways). Immunoprecipitation and Western blotting were carried out by using phosphospecific antibodies. All samples were also assayed for the presence of IL-10 and IFN-β by ELISA and activation of nuclear factors (AP-1 and NF-κB). Results We have demonstrated that hydrophobic domains of fusion proteins are able to induce several transduction pathways that lead to cytokine (IFN-β and IL-10) production, an event that appears to be dependent on early activation of AP-1 and NF-κB. Conclusions The results obtained on the signaling activity of fusion peptides from different viruses enabled us to shed some light on the complex mechanism of viral entry and more precisely we focused on the exact signaling event induced by hydrophobic domains characteristic of fusion peptides interacting with the cell membrane.
Collapse
Affiliation(s)
- Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol 2010; 84:7703-12. [PMID: 20484496 DOI: 10.1128/jvi.02560-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) was identified to be the causative agent of SARS with atypical pneumonia. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV. It is not clear whether ACE2 conveys signals from the cell surface to the nucleus and regulates expression of cellular genes upon SARS-CoV infection. To understand the pathogenesis of SARS-CoV, human type II pneumocyte (A549) cells were incubated with the viral spike protein or with SARS-CoV virus-like particles containing the viral spike protein to examine cytokine modulation in lung cells. Results from oligonucleotide-based microarray, real-time PCR, and enzyme-linked immunosorbent assays indicated an upregulation of the fibrosis-associated chemokine (C-C motif) ligand 2 (CCL2) by the viral spike protein and the virus-like particles. The upregulation of CCL2 by SARS-CoV spike protein was mainly mediated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and AP-1 but not the IkappaBalpha-NF-kappaB signaling pathway. In addition, Ras and Raf upstream of the ERK1/2 signaling pathway were involved in the upregulation of CCL2. Furthermore, ACE2 receptor was activated by casein kinase II-mediated phosphorylation in cells pretreated with the virus-like particles containing spike protein. These results indicate that SARS-CoV spike protein triggers ACE2 signaling and activates fibrosis-associated CCL2 expression through the Ras-ERK-AP-1 pathway.
Collapse
|
43
|
Emmott E, Rodgers MA, Macdonald A, McCrory S, Ajuh P, Hiscox JA. Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 2010; 9:1920-36. [PMID: 20467043 DOI: 10.1074/mcp.m900345-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Virus-host interactions involve complex interplay between viral and host factors, rendering them an ideal target for proteomic analysis. Here we detail a high throughput quantitative proteomics analysis of Vero cells infected with the coronavirus infectious bronchitis virus (IBV), a positive strand RNA virus that replicates in the cytoplasm. Stable isotope labeling with amino acids in cell culture (SILAC) was used in conjunction with LC-MS/MS to identify and quantify 1830 cellular and two viral proteins from IBV-infected cells. Fractionation of cells into cytoplasmic, nuclear, and nucleolar extracts was used to reduce sample complexity and provide information on the trafficking of proteins between the different compartments. Each fraction showed a proportion of proteins exhibiting >or=2-fold changes in abundance. Ingenuity Pathway Analysis revealed that proteins that changed in response to infection could be grouped into different functional categories. These included proteins regulated by NF-kappaB- and AP-1-dependent pathways and proteins involved in the cytoskeleton and molecular motors. A luciferase-based reporter gene assay was used to validate the up-regulation of AP-1- and NF-kappaB-dependent transcription in IBV-infected cells and confirmed using immunofluorescence. Immunofluorescence was used to validate changes in the subcellular localization of vimentin and myosin VI in IBV-infected cells. The proteomics analysis also confirmed the presence of the viral nucleocapsid protein as localizing in the cytoplasm, nucleus, and nucleolus and the viral membrane protein in the cytoplasmic fraction. This research is the first application of SILAC to study total host cell proteome changes in response to positive sense RNA virus infection and illustrates the versatility of this technique as applied to infectious disease research.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
The Nucleocapsid Protein of the SARS Coronavirus: Structure, Function and Therapeutic Potential. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2009. [PMCID: PMC7176212 DOI: 10.1007/978-3-642-03683-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As in other coronaviruses, the nucleocapsid protein is one of the core components of the SARS coronavirus (CoV). It oligomerizes to form a closed capsule, inside which the genomic RNA is securely stored thus providing the SARS-CoV genome with its first line of defense from the harsh conditions of the host environment and aiding in replication and propagation of the virus. In addition to this function, several reports have suggested that the SARS-CoV nucleocapsid protein modulates various host cellular processes, so as to make the internal milieu of the host more conducive for survival of the virus. This article will analyze and discuss the available literature regarding these different properties of the nucleocapsid protein. Towards the end of the article, we will also discuss some recent reports regarding the possible clinically relevant use of the nucleocapsid protein, as a candidate diagnostic tool and vaccine against SARS-CoV infection.
Collapse
|
45
|
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory illness with variable symptoms that was recognized as the first near-pandemic infectious disease of the twenty-first century. A novel human coronavirus, named SARS coronavirus (SARS-CoV), derived from SARS patients was reported as the etiologic agent of SARS. Studying the signaling pathways of SARS-infected cells is key to understanding the molecular mechanism of SARS viral infection. Cell death is observed in cultured Vero E6 cells after SARS-CoV infection. From SARS-CoV infection to cell death, p38 mitogen-activated protein kinase (MAPK) is a key participant in the determination of cell death and survival. Two signaling pathways comprising signal transducer and activator of transcription 3 (STAT3) and p90 ribosomal S6 kinase (p90RSK) are downstream of p38 MAPK. AKT and JNK (Jun NH2-terminal kinase) signaling pathways are important to establish persistent infection of SARS-CoV in Vero E6 cells. Expression studies of SARS-CoV proteins indicate that the viral proteins are able to activate signaling pathways of host cells. The study of signaling pathways in SARS-CoV patients is difficult to perform compared with in vitro studies due to the effects of the human immune system. This review highlights recent progress in characterizing signal transduction pathways in SARS-CoV-infected cells in vitro and in vivo.
Collapse
|
46
|
Tylor S, Andonov A, Cutts T, Cao J, Grudesky E, Van Domselaar G, Li X, He R. The SR-rich motif in SARS-CoV nucleocapsid protein is important for virus replication. Can J Microbiol 2009; 55:254-60. [PMID: 19370068 DOI: 10.1139/w08-139] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The multimerization/self-interaction of viral proteins is an important step in the process of viral assembly and maturation. Our previous study indicated that the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid protein forms self-multimers through a serine-arginine (SR)-rich motif (SSRSSSRSRGNSR) by using a mammalian two-hybrid system. To determine the biological relevance of this motif, we constructed a SARS-CoV reverse genetic construct by using a bacterial artificial chromosome (BAC)-based vector controlled by a T7 promoter; and subsequently deleted the SR-rich motif from the N gene. The mutated infectious clone showed reduced level of genome transcription and significantly reduced levels of the infectious virions. These results strongly suggest that the SR-rich motif is critical for effective virus replication.
Collapse
Affiliation(s)
- Shaun Tylor
- National Microbiology Laboratory, Health Canada, 1015 Arlington St, Winnipeg, MB R3E3R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang L, Wei L, Jiang D, Wang J, Cong X, Fei R. SARS-CoV Nucleocapsid Protein Induced Apoptosis of COS-1 Mediated by the Mitochondrial Pathway. ACTA ACUST UNITED AC 2009; 35:237-53. [PMID: 17453707 DOI: 10.1080/10731190601188422] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the apoptosis effect of SARS coronavirus nucleocapsid protein on cultured cell lines and to explore the possible pathway of apoptosis. pCDNA3.1(-)/his-myc vector containing the SARS coronavirus nucleocapsid gene (N), matric gene (M), spike gene (S) were transfected into COS-1, Huh-7 and HepG2 cells. Apoptosis induced by SARS coronavirus N protein under starvation of serum of COS-1 cells was monitored by Annexin V and electron microscopy assays. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (DeltaPsim) were determined by flow cytometric assay. Cytochrome C, cleaved caspase (cysteine aspartic acid protease)-3, 9, and poly (ADP-ribose) polymerase (PARP) were detected by Western blot. After removal of serum in COS-1 cells, we observed the loss of DeltaPsim, the increase of ROS and cytochrome C release into cytosol and subsequent activation of caspase-3 and PARP cleavage. The pan-caspase inhibitor z-VAD-fmk can block the activation of caspase 3, 9 and PARP cleavage. In conclusion, SARS coronavirus N protein can induce apoptosis of COS-1 cells by activating mitochondrial pathway. SARS coronavirus M, S protein can not induce apoptosis in COS-1, HepG2 and Huh-7 and SARS coronavirus N protein can not induce apoptosis in HepG2 and Huh-7 by methods used in this study.
Collapse
Affiliation(s)
- Lu Zhang
- Hepatology Institute, Peking University, People's Hospital, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Coronaviruses are positive strand RNA viruses that cause disease in humans, and domestic and companion animals. They are most notorious for causing severe acute respiratory syndrome (SARS) outbreaks in 2002–2003. All coronaviruses follow the same basic strategy of replication. All coronaviruses encode 15 or 16 replicase related proteins, 4 or 5 structural proteins and 1–8 group-specific or accessory proteins. Many of the replicase proteins are assembled into replication machinery in double-membrane vesicles (DMVs) and on a reticular network of membranes that are derived from the endoplasmic reticulum. Coronaviruses are readily transmitted across species. This phenomenon was illustrated when the SARS-coronavirus crossed species from bats to intermediate hosts, such as palm civets, and then to humans. It also explains the large number of species, including humans, that are infected with viruses closely related to bovine coronavirus. In many coronavirus infections, disease severity increases during virus clearance, suggesting that the host immune response is both protective and pathogenic. Furthermore, inhibition of specific aspects of the immune response results in less severe disease and less tissue destruction, without diminishing the kinetics of virus clearance. Like all successful viruses, coronaviruses have evolved both passive and active mechanisms to evade the interferon response. Replication in DMVs may contribute to passive evasion of the innate immune response by making double-stranded RNA inaccessible to cellular sensors.
Coronaviruses gained prominence during the SARS outbreaks of 2002–2003, but there are many different coronaviruses that infect humans and animals. Perlman and Netland describe the biology of the coronaviruses, including their replication, host immune response and interspecies transmission. Although coronaviruses were first identified nearly 60 years ago, they only received notoriety in 2003 when one of their members was identified as the aetiological agent of severe acute respiratory syndrome. Previously these viruses were known to be important agents of respiratory and enteric infections of domestic and companion animals and to cause approximately 15% of all cases of the common cold. This Review focuses on recent advances in our understanding of the mechanisms of coronavirus replication, interactions with the host immune response and disease pathogenesis. It also highlights the recent identification of numerous novel coronaviruses and the propensity of this virus family to cross species barriers.
Collapse
Affiliation(s)
- Stanley Perlman
- Department of Microbiology and Interdisciplinary Program in Immunology, University of Iowa, Iowa City, 52242, USA.
| | | |
Collapse
|
49
|
Wang H, Han M, Yao H, Wang Z, Xi D, Yan W, Hou J, Luo X, Ning Q. Construction of plasmids expressing Sars-CoV encoding proteins and their effects on transcription of hfgl2 prothrombinase. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:318-323. [PMID: 19513614 PMCID: PMC7089052 DOI: 10.1007/s11596-009-0311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Indexed: 11/13/2022]
Abstract
SARS coronavirus (SARS-CoV) is the etiologic agent of severe acute respiratory syndrome. The aim of this study was to construct Sars-CoV membrane (M), nucleocapsid (N) and spike 2 (S2) gene eukaryotic expression plasmids, and identify their expression in vitro. Gene fragments encoding N protein, M protein and S2 protein of SARS-CoV were amplified by PCR using cDNA obtained from lung samples of SARS patients as template, and subcloned into pcDNA3.1 vector to form eukaryotic expression plasmids. SARS-CoV protein eukaryotic expression plasmids were transfected respectively into CHO cells. Immunohistochemistry was employed to detect the expression of the structural proteins of SARS-CoV in transfected cells. SARS-CoV protein eukaryotic expression plasmids were successfully constructed by identification with digestion of restriction enzymes and sequencing. M, N and S2 proteins of SARS-CoV were detected in the cytoplasm of transfected CHO cells. It was concluded that these recombinant eukaryotic expression plasmids were constructed successfully, and SARS-CoV encoding proteins could activate transcription and expression of hfgl2 gene.
Collapse
Affiliation(s)
- Hongwu Wang
- Department of Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Siu KL, Chan CP, Chan C, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene. J Gen Virol 2009. [PMID: 19423547 DOI: v10.1099/vir.0.009209-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | | | | | | | | |
Collapse
|