1
|
Sefik E, Xiao T, Chiorazzi M, Odell I, Zhang F, Agrawal K, Micevic G, Flavell RA. Engineering Mice to Study Human Immunity. Annu Rev Immunol 2025; 43:451-487. [PMID: 40020225 DOI: 10.1146/annurev-immunol-082523-124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Humanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
| | - Tianli Xiao
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Chiorazzi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ian Odell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fengrui Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kriti Agrawal
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Goran Micevic
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
de Jong YP. Mice Engrafted with Human Liver Cells. Semin Liver Dis 2024; 44:405-415. [PMID: 39265638 PMCID: PMC11620938 DOI: 10.1055/s-0044-1790601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Rodents are commonly employed to model human liver conditions, although species differences can restrict their translational relevance. To overcome some of these limitations, researchers have long pursued human hepatocyte transplantation into rodents. More than 20 years ago, the first primary human hepatocyte transplantations into immunodeficient mice with liver injury were able to support hepatitis B and C virus infections, as these viruses cannot replicate in murine hepatocytes. Since then, hepatocyte chimeric mouse models have transitioned into mainstream preclinical research and are now employed in a diverse array of liver conditions beyond viral hepatitis, including malaria, drug metabolism, liver-targeting gene therapy, metabolic dysfunction-associated steatotic liver disease, lipoprotein and bile acid biology, and others. Concurrently, endeavors to cotransplant other cell types and humanize immune and other nonparenchymal compartments have seen growing success. Looking ahead, several challenges remain. These include enhancing immune functionality in mice doubly humanized with hepatocytes and immune systems, efficiently creating mice with genetically altered grafts and reliably humanizing chimeric mice with renewable cell sources such as patient-specific induced pluripotent stem cells. In conclusion, hepatocyte chimeric mice have evolved into vital preclinical models that address many limitations of traditional rodent models. Continued improvements may further expand their applications.
Collapse
Affiliation(s)
- Ype P de Jong
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| |
Collapse
|
3
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy in mice. Nat Commun 2024; 15:5010. [PMID: 38866762 PMCID: PMC11169405 DOI: 10.1038/s41467-024-49332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Fatima Rizvi
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Elissa Everton
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Anisah Adeagbo
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Susan Wu
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
4
|
Barzi M, Chen T, Gonzalez TJ, Pankowicz FP, Oh SH, Streff HL, Rosales A, Ma Y, Collias S, Woodfield SE, Diehl AM, Vasudevan SA, Galvan TN, Goss J, Gersbach CA, Bissig-Choisat B, Asokan A, Bissig KD. A humanized mouse model for adeno-associated viral gene therapy. Nat Commun 2024; 15:1955. [PMID: 38438373 PMCID: PMC10912671 DOI: 10.1038/s41467-024-46017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Clinical translation of AAV-mediated gene therapy requires preclinical development across different experimental models, often confounded by variable transduction efficiency. Here, we describe a human liver chimeric transgene-free Il2rg-/-/Rag2-/-/Fah-/-/Aavr-/- (TIRFA) mouse model overcoming this translational roadblock, by combining liver humanization with AAV receptor (AAVR) ablation, rendering murine cells impermissive to AAV transduction. Using human liver chimeric TIRFA mice, we demonstrate increased transduction of clinically used AAV serotypes in primary human hepatocytes compared to humanized mice with wild-type AAVR. Further, we demonstrate AAV transduction in human teratoma-derived primary cells and liver cancer tissue, displaying the versatility of the humanized TIRFA mouse. From a mechanistic perspective, our results support the notion that AAVR functions as both an entry receptor and an intracellular receptor essential for transduction. The TIRFA mouse should allow prediction of AAV gene transfer efficiency and the study of AAV vector biology in a preclinical human setting.
Collapse
Affiliation(s)
- Mercedes Barzi
- Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Tong Chen
- Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Francis P Pankowicz
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seh Hoon Oh
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Helen L Streff
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Yunhan Ma
- Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sabrina Collias
- Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sarah E Woodfield
- Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Surgery, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sanjeev A Vasudevan
- Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Surgery, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Thao N Galvan
- Department of Surgery, Texas Children's Hospital, Houston, TX, 77030, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation and Division of Hepatobiliary Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John Goss
- Department of Surgery, Texas Children's Hospital, Houston, TX, 77030, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation and Division of Hepatobiliary Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Duke University, Durham, NC, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, School of Medicine, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Beatrice Bissig-Choisat
- Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, School of Medicine, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Karl-Dimiter Bissig
- Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Duke University, Durham, NC, USA.
- Duke Cancer Center, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Regeneration Center, School of Medicine, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy to treat murine liver diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575286. [PMID: 38260488 PMCID: PMC10802626 DOI: 10.1101/2024.01.11.575286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This novel strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
|
6
|
Guo J, Wang S, Gao Q. Can next-generation humanized mice that reconstituted with both functional human immune system and hepatocytes model the progression of viral hepatitis to hepatocarcinogenesis? Front Med (Lausanne) 2022; 9:1002260. [PMID: 36213658 PMCID: PMC9537463 DOI: 10.3389/fmed.2022.1002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) chronic infections cause liver immunopathological diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinomas, which are difficult to treat and continue to be major health problems globally. Due to the species-specific hepato-tropism of HBV and HCV, conventional rodent models are limited in their utility for studying the infection and associated liver immunopathogenesis. Humanized mice reconstituted with both functional human immune system and hepatocytes (HIS-HuHEP mice) have been extremely instrumental for in vivo studies of HBV or HCV infection and human-specific aspects of the progression of liver immunopathogenesis. However, none of the current HIS-HuHEP mice can model the progression of viral hepatitis to hepatocarcinogenesis which may be a notorious result of HBV or HCV chronic infection in patients, suggesting that they were functionally compromised and that there is still significant space to improve and establish next-generation of HIS-HuHEP mice with more sophisticated functions. In this review, we first summarize the principal requirements to establish HIS-HuHEP mice. We then discuss the respective protocols for current HIS-HuHEP mice and their applications, as well as their advantages and disadvantages. We also raise perspectives for further improving and establishing next-generation HIS-HuHEP mice.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Pannexin1 channel-dependent secretome from apoptotic tumor cells shapes immune-escape microenvironment. Biochem Biophys Res Commun 2022; 628:116-122. [DOI: 10.1016/j.bbrc.2022.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
|
8
|
Zerdoug A, Le Vée M, Uehara S, Lopez B, Chesné C, Suemizu H, Fardel O. Contribution of Humanized Liver Chimeric Mice to the Study of Human Hepatic Drug Transporters: State of the Art and Perspectives. Eur J Drug Metab Pharmacokinet 2022; 47:621-637. [DOI: 10.1007/s13318-022-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
9
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
10
|
Fukutomi K, Hikita H, Murai K, Nakabori T, Shimoda A, Fukuoka M, Yamai T, Higuchi Y, Miyakawa K, Suemizu H, Ryo A, Yamada R, Kodama T, Sakamori R, Tatsumi T, Takehara T. Capsid Allosteric Modulators Enhance the Innate Immune Response in Hepatitis B Virus-Infected Hepatocytes During Interferon Administration. Hepatol Commun 2022; 6:281-296. [PMID: 34558845 PMCID: PMC8793994 DOI: 10.1002/hep4.1804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
Capsid allosteric modulators (CAMs) inhibit the encapsidation of hepatitis B virus (HBV) pregenomic RNA (pgRNA), which contains a pathogen-associated molecular pattern motif. However, the effect of CAMs on the innate immune response of HBV-infected hepatocytes remains unclear, and we examined this effect in this study. Administration of a CAM compound, BAY41-4109 (BAY41), to HBV-infected primary human hepatocytes (PHHs) did not change the total cytoplasmic pgRNA levels but significantly reduced intracapsid pgRNA levels, suggesting that BAY41 increased extracapsid pgRNA levels in the cytoplasm. BAY41 alone did not change the intracellular interferon (IFN)-stimulated gene (ISG) expression levels. However, BAY41 enhanced antiviral ISG induction by IFN-α in HBV-infected PHHs but did not change ISG induction by IFN-α in uninfected PHHs. Compared with BAY41 or IFN-α alone, coadministration of BAY41 and IFN-α significantly suppressed extracellular HBV-DNA levels. HBV-infected human liver-chimeric mice were treated with vehicle, BAY41, pegylated IFN-α (pegIFN-α), or BAY41 and pegIFN-α together. Compared with the vehicle control, pegIFN-α highly up-regulated intrahepatic ISG expression levels, but BAY41 alone did not change these levels. The combination of BAY41 and pegIFN-α further enhanced intrahepatic antiviral ISG expression, which was up-regulated by pegIFNα. The serum HBV-DNA levels in mice treated with the combination of BAY41 and pegIFN-α were the lowest observed in all the groups. Conclusion: CAMs enhance the host IFN response when combined with exogenous IFN-α, likely due to increased cytoplasmic extracapsid pgRNA.
Collapse
Affiliation(s)
- Keisuke Fukutomi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhiro Murai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tasuku Nakabori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Akiyoshi Shimoda
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Makoto Fukuoka
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takuo Yamai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Higuchi
- Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
| | - Kei Miyakawa
- Department of MicrobiologyYokohama City University School of MedicineYokohamaJapan
| | - Hiroshi Suemizu
- Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University School of MedicineYokohamaJapan
| | - Ryoko Yamada
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Ryotaro Sakamori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
11
|
Luo Y, Lu H, Peng D, Ruan X, Chen YE, Guo Y. Liver-humanized mice: A translational strategy to study metabolic disorders. J Cell Physiol 2022; 237:489-506. [PMID: 34661916 PMCID: PMC9126562 DOI: 10.1002/jcp.30610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/03/2023]
Abstract
The liver is the metabolic core of the whole body. Tools commonly used to study the human liver metabolism include hepatocyte cell lines, primary human hepatocytes, and pluripotent stem cells-derived hepatocytes in vitro, and liver genetically humanized mouse model in vivo. However, none of these systems can mimic the human liver in physiological and pathological states satisfactorily. Liver-humanized mice, which are established by reconstituting mouse liver with human hepatocytes, have emerged as an attractive animal model to study drug metabolism and evaluate the therapeutic effect in "human liver" in vivo because the humanized livers greatly replicate enzymatic features of human hepatocytes. The application of liver-humanized mice in studying metabolic disorders is relatively less common due to the largely uncertain replication of metabolic profiles compared to humans. Here, we summarize the metabolic characteristics and current application of liver-humanized mouse models in metabolic disorders that have been reported in the literature, trying to evaluate the pros and cons of using liver-humanized mice as novel mouse models to study metabolic disorders.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Sari G, Mulders CE, Zhu J, van Oord GW, Feng Z, Kreeft‐Voermans JJ, Boonstra A, Vanwolleghem T. Treatment induced clearance of hepatitis E viruses by interferon-lambda in liver-humanized mice. Liver Int 2021; 41:2866-2873. [PMID: 34392598 PMCID: PMC9291846 DOI: 10.1111/liv.15033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hepatitis E viruses (HEV) are an underestimated global cause of enterically transmitted viral hepatitis, which may persist in immunocompromised hosts, posing a risk for progressive liver fibrosis with limited treatment options. We previously established liver-humanized mice as a model for chronic HEV infections, which can be cleared by a 2-week pegylated (peg)-Interferon(IFN)α treatment course. However, severe side effects may hamper the use of IFNα in immunocompromised transplant recipient patients. IFNλ may be a valuable alternative, as its receptor is less ubiquitously expressed. AIMS In this study, we assess the in vitro and in vivo potency of pegIFNλ to induce innate immune signalling in liver cells and to clear a persistent HEV infection in liver-humanized mice. METHODS & RESULTS We found that human liver cells expressed the IFNλ receptor (IFNLR1) and are responsive to pegIFNλ. Treatment with pegIFNλ of liver-humanized mice persistently infected with HEV genotype 3 showed that pegIFNλ was well tolerated. Dose escalation studies showed that although HEV was not cleared at pegIFNλ doses up to 0.12 mg/kg for a maximum of 8 weeks, a dose of 0.3 mg/kg pegIFNλ treatment resulted in complete clearance of HEV antigen and HEV RNA from the liver in 8 out of 9 liver-humanized mice. CONCLUSIONS PegIFNλ is well tolerated in mice and leads to clearance of a persistent HEV infection in liver-humanized mice.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Claudia E. Mulders
- Department of ViroscienceErasmus University Medical CenterRotterdamThe Netherlands
| | - Jingting Zhu
- Center for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Gertine W. van Oord
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Zongdi Feng
- Center for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOhioUSA,Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Andre Boonstra
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands,Laboratory of Experimental Medicine and PediatricsFaculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium,Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium
| |
Collapse
|
13
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
14
|
The Viral ORF3 Protein Is Required for Hepatitis E Virus Apical Release and Efficient Growth in Polarized Hepatocytes and Humanized Mice. J Virol 2021; 95:e0058521. [PMID: 34523963 DOI: 10.1128/jvi.00585-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV), an enterically transmitted RNA virus, is a major cause of acute hepatitis worldwide. Additionally, HEV genotype 3 (gt3) can frequently persist in immunocompromised individuals with an increased risk for developing severe liver disease. Currently, no HEV-specific treatment is available. The viral open reading frame 3 (ORF3) protein facilitates HEV egress in vitro and is essential for establishing productive infection in macaques. Thus, ORF3, which is unique to HEV, has the potential to be explored as a target for antiviral therapy. However, significant gaps exist in our understanding of the critical functions of ORF3 in HEV infection in vivo. Here, we utilized a polarized hepatocyte culture model and a human liver chimeric mouse model to dissect the roles of ORF3 in gt3 HEV release and persistent infection. We show that ORF3's absence substantially decreased HEV replication and virion release from the apical surface but not the basolateral surface of polarized hepatocytes. While wild-type HEV established a persistent infection in humanized mice, mutant HEV lacking ORF3 (ORF3null) failed to sustain the infection despite transient replication in the liver and was ultimately cleared. Strikingly, mice inoculated with the ORF3null virus displayed no fecal shedding throughout the 6-week experiment. Overall, our results demonstrate that ORF3 is required for HEV fecal shedding and persistent infection, providing a rationale for targeting ORF3 as a treatment strategy for HEV infection. IMPORTANCE HEV infections are associated with significant morbidity and mortality. HEV gt3 additionally can cause persistent infection, which can rapidly progress to liver cirrhosis. Currently, no HEV-specific treatments are available. The poorly understood HEV life cycle hampers the development of antivirals for HEV. Here, we investigated the role of the viral ORF3 protein in HEV infection in polarized hepatocyte cultures and human liver chimeric mice. We found that two major aspects of the HEV life cycle require ORF3: fecal virus shedding and persistent infection. These results provide a rationale for targeting ORF3 to treat HEV infection.
Collapse
|
15
|
Kakizaki M, Yamamoto Y, Nakayama S, Kameda K, Nagashima E, Ito M, Suyama T, Matsuzaki Y, Chiba T, Sumiyoshi H, Inagaki Y, Kotani A. Human hepatocyte-derived extracellular vesicles attenuate the carbon tetrachloride-induced acute liver injury in mice. Cell Death Dis 2021; 12:1010. [PMID: 34707093 PMCID: PMC8551237 DOI: 10.1038/s41419-021-04204-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
Acute liver injury (ALI) induced by chemicals or viruses can progress rapidly to acute liver failure (ALF), often resulting in death of patients without liver transplantation. Since liver transplantation is limited due to a paucity of donors, expensive surgical costs, and severe immune rejection, novel therapies are required to treat liver injury. Extracellular vesicles (EVs) are used for cellular communication, carrying RNAs, proteins, and lipids and delivering them intercellularly after being endocytosed by target cells. Recently, it was reported that EVs secreted from human hepatocytes have an ability to modulate the immune responses; however, these roles of EVs secreted from human hepatocytes were studied only with in vitro experiments. In the present study, we evidenced that EVs secreted from human hepatocytes attenuated the CCL4-induced ALI by inhibiting the recruitment of monocytes through downregulation of chemokine receptor in the bone marrow and recruitment of neutrophils through the reduction of C-X-C motif chemokine ligand 1 (CXCL1) and CXCL2 expression levels in the liver.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| | - Yuichiro Yamamoto
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| | - Shunya Nakayama
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| | - Kazuaki Kameda
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan ,grid.415020.20000 0004 0467 0255Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, 330-8503 Japan
| | - Etsuko Nagashima
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| | - Masatoshi Ito
- grid.265061.60000 0001 1516 6626Support Center for Medical Research and Education, Tokai University School of Medicine, Kanagawa, 259-1193 Japan
| | - Takashi Suyama
- grid.411621.10000 0000 8661 1590Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane Japan
| | - Yumi Matsuzaki
- grid.411621.10000 0000 8661 1590Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane Japan
| | - Tetsuhiro Chiba
- grid.136304.30000 0004 0370 1101Department of Gastroenterology, Chiba University, Graduate School of Medicine, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Hideaki Sumiyoshi
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,grid.265061.60000 0001 1516 6626Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, 259-1193 Japan ,Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| | - Yutaka Inagaki
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,grid.265061.60000 0001 1516 6626Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, 259-1193 Japan ,Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| | - Ai Kotani
- grid.265061.60000 0001 1516 6626Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, 259-1193 Japan ,Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193 Japan
| |
Collapse
|
16
|
Lu H, Zhang J, Chen YE, Garcia-Barrio MT. Integration of Transformative Platforms for the Discovery of Causative Genes in Cardiovascular Diseases. Cardiovasc Drugs Ther 2021; 35:637-654. [PMID: 33856594 PMCID: PMC8216854 DOI: 10.1007/s10557-021-07175-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Genome-wide association studies (GWAS) are powerful epidemiological tools to find genes and variants associated with cardiovascular diseases while follow-up biological studies allow to better understand the etiology and mechanisms of disease and assign causality. Improved methodologies and reduced costs have allowed wider use of bulk and single-cell RNA sequencing, human-induced pluripotent stem cells, organoids, metabolomics, epigenomics, and novel animal models in conjunction with GWAS. In this review, we feature recent advancements relevant to cardiovascular diseases arising from the integration of genetic findings with multiple enabling technologies within multidisciplinary teams to highlight the solidifying transformative potential of this approach. Well-designed workflows integrating different platforms are greatly improving and accelerating the unraveling and understanding of complex disease processes while promoting an effective way to find better drug targets, improve drug design and repurposing, and provide insight towards a more personalized clinical practice.
Collapse
Affiliation(s)
- Haocheng Lu
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.
| |
Collapse
|
17
|
Sari G, van Oord GW, van de Garde MDB, Voermans JJC, Boonstra A, Vanwolleghem T. Sexual Dimorphism in Hepatocyte Xenograft Models. Cell Transplant 2021; 30:9636897211006132. [PMID: 33938243 PMCID: PMC8114754 DOI: 10.1177/09636897211006132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Humanized liver mouse models are crucial tools in liver research, specifically in the fields of liver cell biology, viral hepatitis and drug metabolism. The livers of these humanized mouse models are repopulated by 3-dimensional islands of fully functional primary human hepatocytes (PHH), which are notoriously difficult to maintain in vitro. As low efficiency and high cost hamper widespread use, optimization is of great importance. In the present study, we analyzed experimental factors associated with Hepatitis E virus (HEV) infection and PHH engraftment in 2 xenograft systems on a Nod-SCID-IL2Ry-/- background: the alb-urokinase plasminogen activator mouse model (uPA-NOG, n=399); and the alb-HSV thymidine kinase model (TK-NOG, n = 198). In a first analysis, HEV fecal shedding in liver humanized uPA-NOG and TK-NOG mice with comparable human albumin levels was found to be similar irrespective of the mouse genetic background. In a second analysis, sex, mouse age at transplantation and hepatocyte donor were the most determinant factors for xenograft success in both models. The sexual imbalance for xenograft success was related to higher baseline ALT levels and lower thresholds for ganciclovir induced liver morbidity and mortality in males. These data call for sexual standardization of human hepatocyte xenograft models, but also provide a platform for further studies on mechanisms behind sexual dimorphism in liver diseases.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gertine W van Oord
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn D B van de Garde
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolanda J C Voermans
- Department of Viroscience, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Netherlands.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium, Netherlands
| |
Collapse
|
18
|
Bak I, Kim DJ, Kim HC, Shin HJ, Yu E, Yoo KW, Yu DY. Two base pair deletion in IL2 receptor γ gene in NOD/SCID mice induces a highly severe immunodeficiency. Lab Anim Res 2020; 36:27. [PMID: 32817844 PMCID: PMC7427935 DOI: 10.1186/s42826-020-00048-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Genome editing has recently emerged as a powerful tool for generating mutant mice. Small deletions of nucleotides in the target genes are frequently found in CRISPR/Cas9 mediated mutant mice. However, there are very few reports analyzing the phenotypes in small deleted mutant mice generated by CRISPR/Cas9. In this study, we generated a mutant by microinjecting sgRNAs targeting the IL2 receptor γ gene and Cas9 protein, into the cytoplasm of IVF-derived NOD.CB17/Prkdcscid/JKrb (NOD/SCID) mice embryos, and further investigated whether a 2 bp deletion of the IL2 receptor γ gene affects severe deficiency of immune cells as seen in NOD/LtSz-scid IL2 receptor γ−/− (NSG) mice. Our results show that the thymus weight of mutant mice is significantly less than that of NOD/SCID mice, whereas the spleen weight was marginally less. T and B cells in the mutant mice were severely deficient, and NK cells were almost absent. In addition, tumor growth was exceedingly increased in the mutant mice transplanted with HepG2, Raji and A549 cells, but not in nude and NOD/SCID mice. These results suggest that the NOD/SCID mice with deletion of 2 bp in the IL2 receptor γ gene shows same phenotype as NSG mice. Taken together, our data indicates that small deletions by genome editing is sufficient to generate null mutant mice.
Collapse
Affiliation(s)
- Inseon Bak
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Korea.,Genome engineering laboratory, GHBIO Inc., C406, 17 Techno4-ro Yuseong-gu, Daejeon, 34013 Korea
| | - Doo-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Korea
| | - Hyoung-Chin Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungcheongbukdo 28116 Korea
| | - Hye-Jun Shin
- Genome engineering laboratory, GHBIO Inc., C406, 17 Techno4-ro Yuseong-gu, Daejeon, 34013 Korea
| | - Eunhye Yu
- Genome engineering laboratory, GHBIO Inc., C406, 17 Techno4-ro Yuseong-gu, Daejeon, 34013 Korea
| | - Kyeong-Won Yoo
- Genome engineering laboratory, GHBIO Inc., C406, 17 Techno4-ro Yuseong-gu, Daejeon, 34013 Korea
| | - Dae-Yeul Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Korea
| |
Collapse
|
19
|
Sari G, Meester EJ, van der Zee LC, Wouters K, van Lennep JR, Peppelenbosch M, Boonstra A, Van der Heiden K, Mulder MMT, Vanwolleghem T. A mouse model of humanized liver shows a human-like lipid profile, but does not form atherosclerotic plaque after western type diet. Biochem Biophys Res Commun 2020; 524:510-515. [PMID: 32014257 DOI: 10.1016/j.bbrc.2020.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/11/2020] [Indexed: 01/12/2023]
Abstract
Mouse models are a crucial and often used tool to provide insight into the underlying mechanisms of human atherosclerosis. However, mice profoundly differ from humans in lipoprotein synthesis and metabolism, key factors in atherosclerotic plaque formation. Mouse models often require genetic and dietary modifications to mimic human pathophysiology, shifting from a high-density lipoprotein to an low-density lipoprotein dominant lipoprotein profile. We examined the suitability of mice with a humanized liver as a model for lipoprotein studies and studies on plaque formation, given the central role of hepatocytes in lipoprotein synthesis and metabolism. Our results show a progressive humanization of the mouse liver and a humanized lipoprotein profile. However, no atherosclerotic plaque formation was observed in the studied time frame, despite presence of functional macrophages and application of a high cholesterol western-type diet. The humanized-liver mouse model therefore might require further modifications to induce atherosclerosis, yet seems a valuable model for in vivo studies on lipoprotein metabolism.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Eric J Meester
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonie C van der Zee
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, the Netherlands
| | - Jeanine R van Lennep
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique M T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
20
|
Sayed IM, Meuleman P. Updates in Hepatitis E virus (HEV) field; lessons learned from human liver chimeric mice. Rev Med Virol 2019; 30:e2086. [PMID: 31835277 DOI: 10.1002/rmv.2086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of viral hepatitis globally, and it is an emerging pathogen in developed countries. In vivo studies of HEV have long been hindered due to the lack of an efficient small animal model. Recently, human liver chimeric mice were described as an elegant model to study chronic HEV infection. HEV infection was established in mice with humanized liver that were challenged with stool preparations containing HEV genotype (gt)1 and/or gt3. An increase in viral load and the level of HEV Ag in mouse samples were markers of active infection. Plasma-derived HEV preparations were less infectious. The kinetics of HEV ORF2 Ag during HEV infection and its impact on HEV diagnosis were described in this model. In addition, the nature of HEV particles and HEV ORF2 Ag were characterized. Moreover, humanized mice were used to study the impact of HEV infection on the hepatic innate transcriptome and evaluation of anti-HEV therapies. This review highlights recent advances in the HEV field gathered from well-established experimental mouse models, with an emphasis on this model as a tool for elucidating the course of HEV infection, the study of the HEV life cycle, the interaction of the virus with the host, and the evaluation of new anti-HEV therapies.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, San Diego, California, USA.,Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Humanized Mouse Models for the Study of Hepatitis C and Host Interactions. Cells 2019; 8:cells8060604. [PMID: 31213010 PMCID: PMC6627916 DOI: 10.3390/cells8060604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is commonly attributed as a major cause of chronic hepatotropic diseases, such as, steatosis, cirrhosis and hepatocellular carcinoma. As HCV infects only humans and primates, its narrow host tropism hampers in vivo studies of HCV-mammalian host interactions and the development of effective therapeutics and vaccines. In this context, we will focus our discussion on humanized mice in HCV research. Here, these humanized mice are defined as animal models that encompass either only human hepatocytes or both human liver and immune cells. Aspects related to immunopathogenesis, anti-viral interventions, drug testing and perspectives of these models for future HCV research will be discussed.
Collapse
|
22
|
|
23
|
Abstract
The complete life cycle of the hepatitis C virus (HCV) can be recapitulated in vivo using immunodeficient mice that have had their livers extensively repopulated with human hepatocytes. These human liver chimeric mouse models have enabled the study of many aspects of the HCV life cycle, including antiviral interventions that have helped to shape the curative landscape that is available today. The first human liver chimeric mouse model capable of supporting the HCV life cycle was generated in SCID-uPA mice. Although other human liver chimeric mouse models have since been developed, the SCID-uPA mouse model remains one of the most robust in vivo systems available for HCV studies. This chapter reviews development, validation and application of the SCID-uPA mouse model, and discusses their potential application for studying other liver-centric diseases and pathogens and for the design and testing of vaccine candidates for the eradication of HCV.
Collapse
Affiliation(s)
- Donna N Douglas
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Norman M Kneteman
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
24
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 PMCID: PMC6199624 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
25
|
Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2018; 7:rsob.170108. [PMID: 29237808 PMCID: PMC5746544 DOI: 10.1098/rsob.170108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
During prenatal development the liver is composed of multiple cell types with unique properties compared to their adult counterparts. We aimed to establish multilineage cultures of human fetal liver cells that could maintain stem cell and progenitor populations found in the developing liver. An aim of this study was to test if maturation of fetal hepatocytes in short-term cultures supported by epidermal growth factor and oncostatin M can improve their ability to engraft immunodeficient mice. Fetal liver cultures supported a mixture of albumin+ cytokertin-19+ hepatoblasts, hepatocytes, cholangiocytes, CD14++CD32+ liver sinusoidal endothelial cells (LSECs) and CD34+CD133+ haematopoietic stem cells. Transplantation of cultured cells into uPA-NOG or TK-NOG mice yielded long-term engraftment of hepatocytes, abundant LSEC engraftment and multilineage haematopoiesis. Haematopoietic engraftment included reconstitution of B-, T- and NK-lymphocytes. Colonies of polarized human hepatocytes were observed surrounded by human LSECs in contact with human CD45+ blood cells in the liver sinusoids. Thus, fetal liver cultures support multiple cell lineages including LSECs and haematopoietic stem cells while also promoting the ability of fetal hepatocytes to engraft adult mouse livers. Fetal liver cultures and liver-humanized mice created from these cultures can provide useful model systems to study liver development, function and disease.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA .,Liver Center and Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
|
27
|
Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018; 9:1032. [PMID: 29867998 PMCID: PMC5960670 DOI: 10.3389/fimmu.2018.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus–host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Laura Collignon
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium.,Therapeutic Chemistry Department, National Research Centre (NRC), Cairo, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
28
|
Zhang RR, Zheng YW, Li B, Nie YZ, Ueno Y, Tsuchida T, Taniguchi H. Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Res Ther 2018; 9:29. [PMID: 29402311 PMCID: PMC5800061 DOI: 10.1186/s13287-017-0747-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown. METHOD In this study, human HpSCs were isolated from human primary fetal liver cells (FLCs) by flow cytometry using CDCP1, CD90, and CD66 antibodies. The isolated CDCP1+CD90+CD66- HpSCs were cultured on dishes coated with type IV collagen in DMEM nutrient mixture F-12 Ham supplemented with FBS, human γ-insulin, nicotinamide, dexamethasone, and L-glutamine for at least 2 weeks, and were characterized by transcriptomic profiling, quantitative real-time PCR, immunocytochemistry, and in-vivo transplantation. RESULTS The purified CDCP1+CD90+CD66- subpopulation exhibited clonal expansion and self-renewal capability, and bipotential capacity was further identified in single cell-derived colonies containing distinct hepatocytes and cholangiocytes. Moreover, in-vivo liver repopulation assays demonstrated that human CDCP1+CD90+CD66- HpSCs repopulated over 90% of the mouse liver and differentiated into functional hepatocytes with drug metabolism activity. CONCLUSIONS We identified a human hepatic stem/progenitor population in the CDCP1+CD90+CD66- subpopulation in human FLCs, indicating CDCP1 marker could potentially be utilized to identify and isolate HpSCs for further cytotherapy of liver disease.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Department of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575 Japan
- Research Center of Stem Cells and Regenerative Medicine, Jiangsu University Hospital, Zhenjiang, Jiangsu 212001 China
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239 USA
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
29
|
Dusséaux M, Masse-Ranson G, Darche S, Ahodantin J, Li Y, Fiquet O, Beaumont E, Moreau P, Rivière L, Neuveut C, Soussan P, Roingeard P, Kremsdorf D, Di Santo JP, Strick-Marchand H. Viral Load Affects the Immune Response to HBV in Mice With Humanized Immune System and Liver. Gastroenterology 2017; 153:1647-1661.e9. [PMID: 28851562 PMCID: PMC5733397 DOI: 10.1053/j.gastro.2017.08.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infects hepatocytes, but the mechanisms of the immune response against the virus and how it affects disease progression are unclear. METHODS We performed studies with BALB/c Rag2-/-Il2rg-/-SirpaNODAlb-uPAtg/tg mice, stably engrafted with human hepatocytes (HUHEP) with or without a human immune system (HIS). HUHEP and HIS-HUHEP mice were given an intraperitoneal injection of HBV. Mononuclear cells were isolated from spleen and liver for analysis by flow cytometry. Liver was analyzed by immunohistochemistry and mRNA levels were measured by quantitative reverse transcription polymerase chain reaction (PCR). Plasma levels of HBV DNA were quantified by PCR reaction, and antigen-specific antibodies were detected by immunocytochemistry of HBV-transfected BHK-21 cells. RESULTS Following HBV infection, a complete viral life cycle, with production of HBV DNA, hepatitis B e (HBe), core (HBc) and surface (HBs) antigens, and covalently closed circular DNA, was observed in HUHEP and HIS-HUHEP mice. HBV replicated unrestricted in HUHEP mice resulting in high viral titers without pathologic effects. In contrast, HBV-infected HIS-HUHEP mice developed chronic hepatitis with 10-fold lower titers and antigen-specific IgGs, (anti-HBs, anti-HBc), consistent with partial immune control. HBV-infected HIS-HUHEP livers contained infiltrating Kupffer cells, mature activated natural killer cells (CD69+), and PD-1+ effector memory T cells (CD45RO+). Reducing the viral inoculum resulted in more efficient immune control. Plasma from HBV-infected HIS-HUHEP mice had increased levels of inflammatory and immune-suppressive cytokines (C-X-C motif chemokine ligand 10 and interleukin 10), which correlated with populations of intrahepatic CD4+ T cells (CD45RO+PD-1+). Mice with high levels of viremia had HBV-infected liver progenitor cells. Giving the mice the nucleoside analogue entecavir reduced viral loads and decreased liver inflammation. CONCLUSION In HIS-HUHEP mice, HBV infection completes a full life cycle and recapitulates some of the immunopathology observed in patients with chronic infection. Inoculation with different viral loads led to different immune responses and levels of virus control. We found HBV to infect liver progenitor cells, which could be involved in hepatocellular carcinogenesis. This is an important new system to study anti-HBV immune responses and screen for combination therapies against hepatotropic viruses.
Collapse
Affiliation(s)
- Mathilde Dusséaux
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France,INSERM U1223, Paris, France
| | | | - Sylvie Darche
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France,INSERM U1223, Paris, France
| | - James Ahodantin
- INSERM U1135, Faculté de Médecine, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Yan Li
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France,INSERM U1223, Paris, France
| | - Oriane Fiquet
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France,INSERM U1223, Paris, France
| | - Elodie Beaumont
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Pierrick Moreau
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, 75724 Paris, France
| | - Lise Rivière
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, 75724 Paris, France
| | - Christine Neuveut
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, 75724 Paris, France
| | - Patrick Soussan
- INSERM U1135, Faculté de Médecine, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Dina Kremsdorf
- INSERM U1135, Faculté de Médecine, Université Pierre et Marie Curie Paris 6, Paris, France
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France,INSERM U1223, Paris, France
| | - Helene Strick-Marchand
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, Paris, France.
| |
Collapse
|
30
|
Interferon-alpha treatment rapidly clears Hepatitis E virus infection in humanized mice. Sci Rep 2017; 7:8267. [PMID: 28811492 PMCID: PMC5557905 DOI: 10.1038/s41598-017-07434-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Antiviral treatment options for chronic Hepatitis E Virus (HEV) infections are limited and immunological determinants of viral persistence remain largely unexplored. We studied the antiviral potency of pegylated interferon-α (pegIFNα) against HEV infections in humanized mice and modelled intrahepatic interferon stimulated gene (ISG) responses. Human gene expression levels in humanized mouse livers were analyzed by qPCR and Nanostring. Human CXCL10 was measured in mouse serum. HEV genotype 3 (gt3) infections were cleared from liver and feces within 8 pegIFNα doses in all mice and relapsed after a single pegIFNα injection in only half of treated animals. Rapid viral clearance by pegIFNα was confirmed in HEV gt1, but not in Hepatitis B Virus infected animals. No ISG induction was observed in untreated HEV gt3 and gt1 infected humanized livers compared to control chimeric mice, irrespective of the human hepatocyte donor, viral isolate or HEV infection duration. Human specific ISG transcript levels in mouse liver increased significantly after pegIFNα treatment and induced high circulating human CXCL10 in mouse serum. In conclusion, HEV gt1 and gt3 infections do not elicit innate intrahepatic immune responses and remain highly sensitive to pegIFNα in immunocompromised humanized mice.
Collapse
|
31
|
A novel humanized mouse lacking murine P450 oxidoreductase for studying human drug metabolism. Nat Commun 2017; 8:39. [PMID: 28659616 PMCID: PMC5489481 DOI: 10.1038/s41467-017-00049-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Only one out of 10 drugs in development passes clinical trials. Many fail because experimental animal models poorly predict human xenobiotic metabolism. Human liver chimeric mice are a step forward in this regard, as the human hepatocytes in chimeric livers generate human metabolites, but the remaining murine hepatocytes contain an expanded set of P450 cytochromes that form the major class of drug-metabolizing enzymes. We therefore generated a conditional knock-out of the NADPH-P450 oxidoreductase (Por) gene combined with Il2rg− /−/Rag2− /−/Fah− /− (PIRF) mice. Here we show that homozygous PIRF mouse livers are readily repopulated with human hepatocytes, and when the murine Por gene is deleted (<5%), they predominantly use human cytochrome metabolism. When given the anticancer drug gefitinib or the retroviral drug atazanavir, the Por-deleted humanized PIRF mice develop higher levels of the major human metabolites than current models. Humanized, murine Por-deficient PIRF mice can thus predict human drug metabolism and should be useful for preclinical drug development. Human liver chimeric mice are increasingly used for drug testing in preclinical development, but express residual murine p450 cytochromes. Here the authors generate mice lacking the Por gene in the liver, and show that human cytochrome metabolism is used following repopulation with human hepatocytes.
Collapse
|
32
|
Yamazaki-Nishioka M, Shimizu M, Suemizu H, Nishiwaki M, Mitsui M, Yamazaki H. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice. Xenobiotica 2017; 48:117-123. [DOI: 10.1080/00498254.2017.1288280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Miho Yamazaki-Nishioka
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Japan, and
| | - Megumi Nishiwaki
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Japan, and
- Technical Service Department, CLEA Japan, Inc, Fujinomiya, Japan
| | - Marina Mitsui
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| |
Collapse
|
33
|
Fomin ME, Beyer AI, Publicover J, Lu K, Bakkour S, Simmons G, Muench MO. Higher Serum Alanine Transaminase Levels in Male Urokinase-Type Plasminogen Activator-Transgenic Mice Are Associated With Improved Engraftment of Hepatocytes but not Liver Sinusoidal Endothelial Cells. CELL MEDICINE 2016; 9:117-125. [PMID: 28713641 DOI: 10.3727/215517916x693375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of sex on the degree of liver damage and human cell engraftment were investigated in immunodeficient urokinase-type plasminogen activator-transgenic (uPA-NOG) mice. Liver damage, measured by serum alanine transaminase (ALT) levels, was compared in male and female uPA-NOG mice of different ages. Male mice had significantly higher ALT levels than females with a median of 334 versus 158 U/L in transgenic homozygous mice, respectively. Mice were transplanted with human adult hepatocytes or fetal liver cells and analyzed for any correlation of engraftment of hepatocytes, liver sinusoidal endothelial cells (LSECs), and hematopoietic cells with the degree of liver damage. Hepatocyte engraftment was measured by human albumin levels in the mouse serum. Higher ALT levels correlated with higher hepatocyte engraftment, resulting in albumin levels in male mice that were 9.6 times higher than in females. LSEC and hematopoietic cell engraftment were measured by flow cytometric analysis of the mouse liver and bone marrow. LSEC and hematopoietic engraftment did not differ between male and female transplant recipients. Thus, the sex of uPA-NOG mice affects the degree of liver damage, which is reflected in the levels of human hepatocyte engraftment. However, the high levels of LSEC engraftment observed in uPA-NOG mice are not further improved among male mice, suggesting that a lower threshold of liver damage is sufficient to enhance endothelial cell engraftment. Previously described sex differences in human hematopoietic stem cell engraftment in immunodeficient mice were not observed in this model.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Jean Publicover
- †Department of Medicine, University of California, San Francisco, CA, USA
| | - Kai Lu
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Sonia Bakkour
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Graham Simmons
- Blood Systems Research Institute, San Francisco, CA, USA.,‡Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA.,‡Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Higuchi Y, Kawai K, Kanaki T, Yamazaki H, Chesné C, Guguen-Guillouzo C, Suemizu H. Functional polymer-dependent 3D culture accelerates the differentiation of HepaRG cells into mature hepatocytes. Hepatol Res 2016; 46:1045-57. [PMID: 26724677 DOI: 10.1111/hepr.12644] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022]
Abstract
AIM The hepatoma-derived cell line HepaRG is regarded as an in vitro model of drug metabolism because fully differentiated HepaRG cells demonstrate functional metabolic responses comparable to those of primary human hepatocytes. Recently, it was demonstrated that the 3D culture of HepaRG cells enhanced their metabolic functions and toxicological responses. We approached the mechanisms underlying these enhancement effects. METHODS We compared 2D-cultured HepaRG cells with 3D-cultured HepaRG spheroids in the gene expression patterns and the metabolic functions. In the present study, we performed 3D culture of HepaRG cells using functional polymers (FP). To reveal the in vivo differentiation ability, we transplanted the 3D-cultured HepaRG spheroids into TK-NOG mice. RESULTS A comparison between 2D and 3D cultures revealed that 3D-cultured HepaRG spheroids demonstrated reductions in bile duct marker expression, accelerated expression of cytochrome P450 3A4, and increases in the ratio of albumin-expressing hepatocytes. Furthermore, catalytic activities of cytochrome P450 3A4 were modified by omeprazole and rifampicin in the 3D-cultured HepaRG spheroids. Transplantation analysis revealed that 3D-cultured HepaRG spheroids formed hepatocyte-like colonies rather than cholangiocytes in vivo. CONCLUSION Our results indicated that the enhancement of hepatic functions in 3D-cultured HepaRG cells was induced by selective hepatocyte differentiation and accelerated hepatocyte maturation. HepaRG spheroids reproduced the metabolic responses of human hepatocytes. Therefore, FP-dependent 3D-cultured HepaRG cells may serve as an excellent in vitro model for evaluating the hepatic metabolism and toxicity.
Collapse
Affiliation(s)
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Zhang RR, Zheng YW, Taniguchi H. Generation of a Humanized Mouse Liver Using Human Hepatic Stem Cells. J Vis Exp 2016:54167. [PMID: 27684205 PMCID: PMC5091961 DOI: 10.3791/54167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel animal model involving chimeric mice with humanized livers established via human hepatocyte transplantation has been developed. These mice, in which the liver has been repopulated with functional human hepatocytes, could serve as a useful tool for investigating human hepatic cell biology, drug metabolism, and other preclinical applications. One of the key factors required for successful transplantation of human hepatocytes into mice is the elimination of the endogenous hepatocytes to prevent competition with the human cells and provide a suitable space and microenvironment for promoting human donor cell expansion and differentiation. To date, two major liver injury mouse models utilizing fumarylacetoacetate hydrolase (Fah) and uroplasminogen activator (uPA) mice have been established. However, Fah mice are used mainly with mature hepatocytes and the application of the uPA model is limited by decreased breeding. To overcome these limitations, Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice were used for in vivo differentiation of immature human hepatocytes and humanized liver generation. Human hepatic stem cells (HpSCs) successfully repopulated the livers of Alb-TRECK/SCID mice that had developed lethal fulminant hepatic failure following diphtheria toxin (DT) treatment. This model of a humanized liver in Alb-TRECK/SCID mice will have functional applications in studies involving drug metabolism and drug-drug interactions and will promote other in vivo and in vitro studies.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University; Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba; Regenerative Medicine Research Center, Jiangsu University Hospital;
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University
| |
Collapse
|
36
|
Yamazaki H, Suemizu H, Mitsui M, Shimizu M, Guengerich FP. Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology. Chem Res Toxicol 2016; 29:1903-1911. [PMID: 27337115 DOI: 10.1021/acs.chemrestox.6b00136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activated 14C-drug candidate and hepatotoxic medicines in humanized liver mice can be analyzed by accelerator mass spectrometry and are useful for predictions in humans.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Showa Pharmaceutical University , Machida, Tokyo 194-8543, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals , Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Marina Mitsui
- Showa Pharmaceutical University , Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University , Machida, Tokyo 194-8543, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
37
|
Rezvani M, Grimm A, Willenbring H. Assessing the therapeutic potential of lab-made hepatocytes. Hepatology 2016; 64:287-94. [PMID: 27014802 PMCID: PMC5316561 DOI: 10.1002/hep.28569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/21/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Hepatocyte transplantation has potential as a bridge or even alternative to whole-organ liver transplantation. Because donor livers are scarce, realizing this potential requires the development of alternative cell sources. To be therapeutically effective, surrogate hepatocytes must replicate the complex function and ability to proliferate of primary human hepatocytes. Ideally, they are also autologous to eliminate the need for immune suppression, which can have severe side effects and may not be sufficient to prevent rejection long term. In the past decade, several methods have been developed to generate hepatocytes from other readily and safely accessible somatic cells. These lab-made hepatocytes show promise in animal models of liver diseases, supporting the feasibility of autologous liver cell therapies. Here, we review recent preclinical studies exemplifying different types of lab-made hepatocytes that can potentially be used in autologous liver cell therapies. To define the therapeutic efficacy of current lab-made hepatocytes, we compare them to primary human hepatocytes, focusing on engraftment efficiency and posttransplant proliferation and function. In addition to summarizing published results, we discuss animal models and assays effective in assessing therapeutic efficacy. This analysis underscores the therapeutic potential of current lab-made hepatocytes, but also highlights deficiencies and uncertainties that need to be addressed in future studies aimed at developing liver cell therapies with lab-made hepatocytes. (Hepatology 2016;64:287-294).
Collapse
Affiliation(s)
- Milad Rezvani
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Andrew Grimm
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Francisco, 550 16th Street, San Francisco, CA 94158, USA
| | - Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA,Department of Surgery, Division of Transplantation, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA,Liver Center, University of California San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA
| |
Collapse
|
38
|
Hepatitis E Virus (HEV) Genotype 3 Infection of Human Liver Chimeric Mice as a Model for Chronic HEV Infection. J Virol 2016; 90:4394-401. [PMID: 26889028 DOI: 10.1128/jvi.00114-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Genotype 3 (gt3) hepatitis E virus (HEV) infections are emerging in Western countries. Immunosuppressed patients are at risk of chronic HEV infection and progressive liver damage, but no adequate model system currently mimics this disease course. Here we explore the possibilities of in vivo HEV studies in a human liver chimeric mouse model (uPA(+/+)Nod-SCID-IL2Rγ(-/-)) next to the A549 cell culture system, using HEV RNA-positive EDTA-plasma, feces, or liver biopsy specimens from 8 immunocompromised patients with chronic gt3 HEV. HEV from feces- or liver-derived inocula showed clear virus propagation within 2 weeks after inoculation onto A549 cells, compared to slow or no HEV propagation of HEV RNA-positive, EDTA-plasma samples. These in vitro HEV infectivity differences were mirrored in human-liver chimeric mice after intravenous (i.v.) inoculation of selected samples. HEV RNA levels of up to 8 log IU HEV RNA/gram were consistently present in 100% of chimeric mouse livers from week 2 to week 14 after inoculation with human feces- or liver-derived HEV. Feces and bile of infected mice contained moderate to large amounts of HEV RNA, while HEV viremia was low and inconsistently detected. Mouse-passaged HEV could subsequently be propagated for up to 100 days in vitro In contrast, cell culture-derived or seronegative EDTA-plasma-derived HEV was not infectious in inoculated animals. In conclusion, the infectivity of feces-derived human HEV is higher than that of EDTA-plasma-derived HEV both in vitro and in vivo Persistent HEV gt3 infections in chimeric mice show preferential viral shedding toward mouse bile and feces, paralleling the course of infection in humans. IMPORTANCE Hepatitis E virus (HEV) genotype 3 infections are emerging in Western countries and are of great concern for immunosuppressed patients at risk for developing chronic HEV infection. Lack of adequate model systems for chronic HEV infection hampers studies on HEV infectivity and transmission and antiviral drugs. We compared the in vivo infectivity of clinical samples from chronic HEV patients in human liver chimeric mice to an in vitro virus culture system. Efficient in vivo HEV infection is observed after inoculation with feces- and liver-derived HEV but not with HEV RNA-containing plasma or cell culture supernatant. HEV in chimeric mice is preferentially shed toward bile and feces, mimicking the HEV infection course in humans. The observed in vivo infectivity differences may be relevant for the epidemiology of HEV in humans. This novel small-animal model therefore offers new avenues to unravel HEV's pathobiology.
Collapse
|
39
|
von Schaewen M, Hrebikova G, Ploss A. Generation of Human Liver Chimeric Mice for the Study of Human Hepatotropic Pathogens. Methods Mol Biol 2016; 1438:79-101. [PMID: 27150085 DOI: 10.1007/978-1-4939-3661-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human liver chimeric mice have become valuable tools for the study of human hepatotropic pathogens and for the investigation of metabolism and pharmacokinetics of novel drugs. The evolution of the underlying mouse models has been rapid in the past years. The diverse fields of applications of those model systems and their technical challenges will be discussed in this chapter.
Collapse
Affiliation(s)
- Markus von Schaewen
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
40
|
Tateno C, Kawase Y, Tobita Y, Hamamura S, Ohshita H, Yokomichi H, Sanada H, Kakuni M, Shiota A, Kojima Y, Ishida Y, Shitara H, Wada NA, Tateishi H, Sudoh M, Nagatsuka SI, Jishage KI, Kohara M. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice. PLoS One 2015; 10:e0142145. [PMID: 26536627 PMCID: PMC4633119 DOI: 10.1371/journal.pone.0142145] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/19/2015] [Indexed: 11/18/2022] Open
Abstract
We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression—not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for producing chimeric mice for use in future long-term studies, including hepatitis virus infection analysis or drug toxicity studies.
Collapse
Affiliation(s)
- Chise Tateno
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- * E-mail: (CT); (M. Kohara)
| | - Yosuke Kawase
- Chugai Research Institute for Medical Science, Inc., Gotemba, Shizuoka, Japan
| | - Yoshimi Tobita
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Hiroki Ohshita
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima, Japan
| | | | - Harumi Sanada
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima, Japan
| | | | - Akira Shiota
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima, Japan
| | - Yuha Kojima
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima, Japan
| | - Yuji Ishida
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Shitara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoko A. Wada
- Chugai Research Institute for Medical Science, Inc., Gotemba, Shizuoka, Japan
| | - Hiromi Tateishi
- Chugai Research Institute for Medical Science, Inc., Gotemba, Shizuoka, Japan
| | - Masayuki Sudoh
- Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | | | - Michinori Kohara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail: (CT); (M. Kohara)
| |
Collapse
|
41
|
Kamimura H, Ito S. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica 2015; 46:557-69. [DOI: 10.3109/00498254.2015.1091113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Mahajan MM, Cheng B, Beyer AI, Mulvaney US, Wilkinson MB, Fomin ME, Muench MO. A quantitative assessment of the content of hematopoietic stem cells in mouse and human endosteal-bone marrow: a simple and rapid method for the isolation of mouse central bone marrow. BMC HEMATOLOGY 2015; 15:9. [PMID: 26161262 PMCID: PMC4496931 DOI: 10.1186/s12878-015-0031-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Isolation of bone marrow cells, including hematopoietic stem cells, is a commonly used technique in both the research and clinical settings. A quantitative and qualitative assessment of cell populations isolated from mouse and human bone marrow was undertaken with a focus on the distribution of hematopoietic cells between the central bone marrow (cBM) and endosteal bone marrow (eBM). METHODS Two approaches to cBM isolation from the hind legs were compared using the C57BL/6J and BALB/cJ strains of laboratory mice. The content of hematopoietic stem cells in eBM was compared to cBM from mice and human fetal bone marrow using flow cytometry. Enzymatic digestion was used to isolate eBM and its effects on antigen expression was evaluated using flow cytometry. Humanized immunodeficient mice were used to evaluate the engraftment of human precursors in the cBM and eBM and the effects of in vivo maturation on the fetal stem cell phenotype were determined. RESULTS The two methods of mouse cBM isolation yielded similar numbers of cells from the femur, but the faster single-cut method recovered more cells from the tibia. Isolation of eBM increased the yield of mouse and human stem cells. Enzymatic digestion used to isolate eBM did, however, have a detrimental effect on detecting the expression of the human HSC-antigens CD4, CD90 and CD93, whereas CD34, CD38, CD133 and HLA-DR were unaffected. Human fetal HSCs were capable of engrafting the eBM of immunodeficient mice and their pattern of CD13, CD33 and HLA-DR expression partially changed to an adult pattern of expression about 1 year after transplantation. CONCLUSIONS A simple, rapid and efficient method for the isolation of cBM from the femora and tibiae of mice is detailed. Harvest of tibial cBM yielded about half as many cells as from the femora, representing 6.4 % and 13 %, respectively, of the total cBM of a mouse based on our analysis and a review of the literature. HSC populations were enriched within the eBM and the yield of HSCs from the mouse and human long bones was increased notably by harvest of eBM.
Collapse
Affiliation(s)
- Maya M Mahajan
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Betty Cheng
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Usha S Mulvaney
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Matt B Wilkinson
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA.,Department of Laboratory Medicine, University of California, San Francisco, CA USA
| |
Collapse
|
43
|
Zhang RR, Zheng YW, Li B, Tsuchida T, Ueno Y, Nie YZ, Taniguchi H. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res Ther 2015; 6:49. [PMID: 25889844 PMCID: PMC4414454 DOI: 10.1186/s13287-015-0038-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 10/27/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Chimeric mice with humanized livers were recently established by transplanting human hepatocytes. This mouse model that is repopulated with functional human hepatocytes could be a useful tool for investigating human hepatic cell biology and drug metabolism and for other preclinical applications. Successfully transplanting human hepatocytes into mice requires that recipient mice with liver failure do not reject these human cells and provide a suitable microenvironment (supportive niche) to promote human donor cell expansion and differentiation. To overcome the limitations of current mouse models, we used Alb-TRECK/SCID mice for in vivo human immature hepatocyte differentiation and humanized liver generation. METHODS 1.5 μg/kg diphtheria toxin was administrated into 8-week-old Alb-TRECK/SCID mice, and the degree of liver damage was assessed by serum aspartate aminotransferase activity levels. Forty-eight hours later, mice livers were sampled for histological analyses, and the human donor cells were then transplanted into mice livers on the same day. Chimeric rate and survival rate after cell transplantation was evaluated. Expressions of human hepatic-related genes were detected. A human albumin enzyme-linked immunosorbent assay was performed after 50 days of transplantation. On day 60 after transplantation, drug metabolism was examined in mice. RESULTS Both human primary fetal liver cells and hepatic stem cells were successfully repopulated in the livers of Alb-TRECK/SCID mice that developed lethal fulminant hepatic failure after administering diphtheria toxin; the repopulation rate in some mice was nearly 100%. Compared with human primary fetal liver cells, human hepatic stem cell transplantation rescued Alb-TRECK/SCID mice with lethal fulminant hepatic failure, and human hepatic stem cell-derived humanized livers secreted more human albumin into mouse sera and also functioned as a "human liver" that could metabolize the drugs ketoprofen and debrisoquine. CONCLUSION Our model of a humanized liver in Alb-TRECK/SCID mice may provide for functional applications such as drug metabolism, drug to drug interactions, and promote other in vivo and in vitro studies.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Advanced Medical Research Center, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
44
|
Douglas DN, Kneteman NM. Generation of improved mouse models for the study of hepatitis C virus. Eur J Pharmacol 2015; 759:313-25. [PMID: 25814250 DOI: 10.1016/j.ejphar.2015.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
Abstract
Approximately 3% of the world׳s population suffers from chronic infections with hepatitis C virus (HCV). Although current treatment regimes are capable of effectively eradicating HCV infection from these patients, the cost of these combinations of direct-acting antivirals are prohibitive. Approximately 80% of untreated chronic HCV carriers will be at high risk for developing severe liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma. A vaccine is urgently needed to lessen this global burden. Besides humans, HCV infection can be experimentally transmitted to chimpanzees, and this is the best model for studies of HCV infection and related innate and adaptive immune responses. Although the chimpanzee model yielded valuable insight, limited availability, high cost and ethical considerations limit their utility. The only small animal models of robust HCV infection are highly immunodeficient mice with human chimeric livers. However, these mice cannot be used to study adaptive immune responses and therefore a more relevant animal model is needed to assist in vaccine development. Novel strains of immunodeficient mice have been developed that allow for the engraftment of human hepatopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in otherwise immunodeficient mice. These humanized mice are rapidly emerging as pre-clinical bridges for numerous pathogens that, like HCV, only cause infectious disease in humans. This review highlights the potential these new models have for changing the current landscape for HCV research and vaccine development.
Collapse
Affiliation(s)
- Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2E1; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2E1; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1; KMT Hepatech Inc., Edmonton, Alberta, Canada T6G 2M9
| |
Collapse
|
45
|
Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One 2014; 9:e113833. [PMID: 25437445 PMCID: PMC4249935 DOI: 10.1371/journal.pone.0113833] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 12/23/2022] Open
Abstract
Although severe combined immune deficiency (SCID) is a very important research model for mice and SCID mice are widely used, there are only few reports describing the SCID pig models. Therefore, additional research in this area is needed. In this study, we describe the generation of Recombination activating gene-1 (Rag-1)-deficient neonatal piglets in Duroc breed using somatic cell nuclear transfer (SCNT) with gene targeting and analysis using fluorescence-activated cell sorting (FACS) and histology. We constructed porcine Rag-1 gene targeting vectors for the Exon 2 region and obtained heterozygous/homozygous Rag-1 knockout cell colonies using SCNT. We generated two Rag-1-deficient neonatal piglets and compared them with wild-type neonatal piglets. FACS analysis showed that Rag-1 disruption causes a lack of Immunoglobulin M-positive B cells and CD3-positive T cells in peripheral blood mononuclear cells. Consistent with FACS analysis, histological analysis revealed structural defects and an absence of mature lymphocytes in the spleen, mesenteric lymph node (MLNs), and thymus in Rag-1-deficient piglets. These results confirm that Rag-1 is necessary for the generation of lymphocytes in pigs, and Rag-1-deficient piglets exhibit a T and B cell deficient SCID (T-B-SCID) phenotype similar to that of rodents and humans. The T-B-SCID pigs with Rag-1 deficiency generated in this study could be a suitably versatile model for laboratory, translational, and biomedical research, including the development of a humanized model and assessment of pluripotent stem cells.
Collapse
|
46
|
Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 2014; 12:1954-65. [PMID: 25297648 PMCID: PMC4388483 DOI: 10.1111/jth.12750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/11/2022]
Abstract
Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review, we discuss the possibilities, progress, and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific induced pluripotent stem cells.
Collapse
Affiliation(s)
- Marina E. Fomin
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Padma Priya Togarrati
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Marcus O. Muench
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Liver Center, University of California, San Francisco, CA
| |
Collapse
|
47
|
Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on "humanized" animal models. Drug Metab Rev 2014; 46:475-93. [PMID: 25270219 DOI: 10.3109/03602532.2014.967866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Poly-therapy is common due to co-occurrence of several ailments in patients, leading to the elevated possibility of drug-drug interactions (DDI). Pharmacokinetic DDI often accounts for severe adverse drug reactions in patients resulting in withdrawal of drug from the market. Hence, the prediction of DDI is necessary at pre-clinical stage of drug development. Several human tissue and cell line-based in vitro systems are routinely used for screening metabolic and transporter pathways of investigational drugs and for predicting their clinical DDI potentials. However, ample constraints are associated with the in vitro systems and sometimes in vitro-in vivo extrapolation (IVIVE) fail to assess the risk of DDI in clinic. In vitro-in vivo correlation model in animals combined with human in vitro studies may be helpful in better prediction of clinical outcome. Native animal models vary remarkably from humans in drug metabolizing enzymes and transporters, hence, the interpretation of results from animal DDI studies is difficult. With the advent of modern molecular biology and engineering tools, novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/mouse with humanized liver are developed. These models nearly simulate human-like drug metabolism and help to validate the in vivo relevance of the in vitro human DDI data. This review briefly discusses the application of such novel pre-clinical models for screening various type of DDI along with their advantages and limitations.
Collapse
Affiliation(s)
- Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute , Lucknow , India
| | | | | | | | | | | |
Collapse
|
48
|
Suemizu H, Nakamura K, Kawai K, Higuchi Y, Kasahara M, Fujimoto J, Tanoue A, Nakamura M. Hepatocytes buried in the cirrhotic livers of patients with biliary atresia proliferate and function in the livers of urokinase-type plasminogen activator-NOG mice. Liver Transpl 2014; 20:1127-37. [PMID: 24838399 PMCID: PMC4314701 DOI: 10.1002/lt.23916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/10/2014] [Indexed: 01/12/2023]
Abstract
The pathogenesis of biliary atresia (BA), which leads to end-stage cirrhosis in most patients, has been thought to inflame and obstruct the intrahepatic and extrahepatic bile ducts. BA is not believed to be caused by abnormalities in parenchymal hepatocytes. However, there has been no report of a detailed analysis of hepatocytes buried in the cirrhotic livers of patients with BA. Therefore, we evaluated the proliferative potential of these hepatocytes in immunodeficient, liver-injured mice [the urokinase-type plasminogen activator (uPA) transgenic NOD/Shi-scid IL2rγnull (NOG); uPA-NOG strain]. We succeeded in isolating viable hepatocytes from the livers of patients with BA who had various degrees of fibrosis. The isolated hepatocytes were intrasplenically transplanted into the livers of uPA-NOG mice. The hepatocytes of only 3 of the 9 BA patients secreted detectable amounts of human albumin in sera when they were transplanted into mice. However, human leukocyte antigen-positive hepatocyte colonies were detected in 7 of the 9 mice with hepatocyte transplants from patients with BA. We demonstrated that hepatocytes buried in the cirrhotic livers of patients with BA retained their proliferative potential. A liver that was reconstituted with hepatocytes from patients with BA was shown to be a functioning human liver with a drug-metabolizing enzyme gene expression pattern that was representative of mature human liver and biliary function, as ascertained by fluorescent dye excretion into the bile canaliculi. These results imply that removing the primary etiology via an earlier portoenterostomy may increase the quantity of functionally intact hepatocytes remaining in a cirrhotic liver and may contribute to improved outcomes.
Collapse
Affiliation(s)
- Hiroshi Suemizu
- Biomedical Research Department, Central Institute for Experimental AnimalsKanagawa, Japan,Address reprint requests to Hiroshi Suemizu, Ph.D., Biomedical Research Department, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa 210-0821, Japan. Telephone: +81-44-201-8530; FAX: +81-44-201-8541 or +81-44-201-8511; E-mail: or
| | - Kazuaki Nakamura
- Department of Pharmacology, National Center for Child Health and DevelopmentTokyo, Japan
| | - Kenji Kawai
- Pathology Research Department, Central Institute for Experimental AnimalsKanagawa, Japan
| | - Yuichiro Higuchi
- Biomedical Research Department, Central Institute for Experimental AnimalsKanagawa, Japan
| | - Mureo Kasahara
- Department of Transplant Surgery, National Center for Child Health and DevelopmentTokyo, Japan
| | - Junichiro Fujimoto
- Clinical Research Center, National Center for Child Health and DevelopmentTokyo, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Center for Child Health and DevelopmentTokyo, Japan
| | - Masato Nakamura
- Department of Pathology and Regenerative Medicine, Tokai University School of MedicineKanagawa, Japan
| |
Collapse
|
49
|
Osna NA, Kharbanda KK, Sun Y, Simpson RL, Poluektova LE, Ganesan M, Wisecarver JL, Mercer DF. Ethanol affects hepatitis C pathogenesis: humanized SCID Alb-uPA mouse model. Biochem Biophys Res Commun 2014; 450:773-776. [PMID: 24953695 DOI: 10.1016/j.bbrc.2014.06.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/11/2014] [Indexed: 02/08/2023]
Abstract
Alcohol consumption exacerbates the course of hepatitis C viral (HCV) infection, worsens outcomes and contributes to the development of chronic infection that exhibits low anti-viral treatment efficiency. The lack of suitable in vivo models makes HCV-ethanol studies very difficult. Here, we examine whether chimeric SCID Alb-uPA mice transplanted with human hepatocytes and infected with HCV develop worsening pathology when fed ethanol. After 5 weeks of feeding, such mice fed chow+water (control) or chow+20% ethanol in water (EtOH) diets mice developed oxidative stress, decreased proteasome activity and increased steatosis. Importantly, HCV(+) mice in the control group cleared HCV RNA after 5 weeks, while the infection persisted in EtOH-fed mice at the same or even higher levels compared with pre-feeding HCV RNA. We conclude that in chimeric SCID Alb-uPA mice, EtOH exposure causes the complex biochemical and histological changes typical for alcoholic liver injury. In addition, ethanol feeding delays the clearance of HCV RNA thereby generating persistent infection and promoting liver injury. Overall, this model is appropriate for conducting HCV-ethanol studies.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Yimin Sun
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ronda L Simpson
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa E Poluektova
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - James L Wisecarver
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - David F Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
50
|
Bateman TJ, Reddy VGB, Kakuni M, Morikawa Y, Kumar S. Application of chimeric mice with humanized liver for study of human-specific drug metabolism. Drug Metab Dispos 2014; 42:1055-65. [PMID: 24700822 DOI: 10.1124/dmd.114.056978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey (T.J.B, V.G.B.R., S.K.); and PhoenixBio Corporation Limited, Higashi-Hiroshima, Japan (M.K., Y.M.)
| | | | | | | | | |
Collapse
|