1
|
Sangsuwan P, Tannukit S, Chotigeat W, Kedjarune-Leggat U. Biological Activities of Glass Ionomer Cement Supplemented with Fortilin on Human Dental Pulp Stem Cells. J Funct Biomater 2022; 13:jfb13030132. [PMID: 36135566 PMCID: PMC9504290 DOI: 10.3390/jfb13030132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for their proliferative and cytoprotective effects on hDPSCs by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Human DPSCs were cultured with GIC supplemented with fortilin, tricalcium phosphate, or a combination of tricalcium phosphate and fortilin, designated as GIC + FL, GIC + TCP, and GIC + TCP + FL, respectively (n = 4 for each group). At given time points, hDPSCs were harvested and analyzed by MTT, quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity, and Alizarin Red assays. The full-length fortilin promoted cell proliferation and significantly increased cell survival. This protein was subsequently added into the GIC along with tricalcium phosphate to investigate the biological activities. All experimental groups showed reduced cell viability after treatment with modified GICs on days 1 and 3. The GIC + TCP + FL group significantly promoted odontoblastic differentiation at particular time points. In addition, alkaline phosphatase activity and calcium phosphate deposit were markedly increased in the GIC + TCP + FL group. Among all experimental groups, the GIC incorporated with fortilin and tricalcium phosphate demonstrated the best results on odontogenic differentiation and mineral deposition in hDPSCs.
Collapse
Affiliation(s)
- Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Faculty of Science, Biological Science Division, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence:
| | - Wilaiwan Chotigeat
- Molecular Biology and Bioinformatics Program, Faculty of Science, Biological Science Division, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
2
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
3
|
Lu Y, Wu J, Wang R, Yan Y. Identification of stress defensive proteins in common wheat- Thinopyron intermedium translocation line YW642 developing grains via comparative proteome analysis. BREEDING SCIENCE 2020; 70:517-529. [PMID: 33603547 PMCID: PMC7878943 DOI: 10.1270/jsbbs.19133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/08/2020] [Indexed: 06/12/2023]
Abstract
Thinopyrum intermedium (2n = 6x = 42, E1E1E2E2XX) serves as an important gene source of desirable traits for genetic improvement of wheat cultivars resistant to stresses. This study used the comparative proteomic approach to identify stress defense related proteins in the developing grains of common wheat (Zhongmai 8601)-Thinopyron intermedium 7XL/7DS translocation line YW642 and to explore their potential values for improving wheat stress resistance. Two-dimensional electrophoresis identified 124 differentially accumulated protein spots representing 100 unique proteins, which mainly participated in stress defense, energy metabolism, protein metabolism and folding and storage protein synthesis. Among these, 16 were unique and 35 were upregulated in YW642. The upregulated DAPs were mainly involved in biotic and abiotic stress defense. Further cis-elements analysis of these stress-related DAP genes revealed that phytohormone responsive elements such as ABREs, G-box, CGTCA-motif and TGACG-motif, and environment responsive element As-1 were particularly abundant, which could play important roles in response to various stressors. Transcription expression analysis by RNA-seq and qRT-PCR demonstrated a large part of the stress-related DAP genes showed an upregulated expression in the early-to-middle stages of grain development. Our results proved that Thinopyron intermedium contains abundant stress responsive proteins that have potential values for the genetic improvement of wheat stress resistance.
Collapse
Affiliation(s)
- Yuxia Lu
- College of Life Science, Capital Normal University, Beijing, XisanhuanBeilu 105, 100048 Beijing, P.R. China
| | - Jisu Wu
- College of Life Science, Capital Normal University, Beijing, XisanhuanBeilu 105, 100048 Beijing, P.R. China
| | - Ruomei Wang
- College of Life Science, Capital Normal University, Beijing, XisanhuanBeilu 105, 100048 Beijing, P.R. China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, XisanhuanBeilu 105, 100048 Beijing, P.R. China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434023 Jingzhou, P.R. China
| |
Collapse
|
4
|
Kedjarune-Leggat U, Saetan U, Khongsaengkaeo A, Suwannarat S, Deachamag P, Wonglapsuwan M, Pornprasit R, Thongkamwitoon W, Phumklai P, Chaichanan J, Chotigeat W. Biological activities of a recombinant fortilin from Fenneropenaeus merguiensis. PLoS One 2020; 15:e0239672. [PMID: 33002062 PMCID: PMC7529305 DOI: 10.1371/journal.pone.0239672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Human Fortilin, an antiapoptotic protein, has also been implicated in several diseases; however, several potential uses of fortilin have also been proposed. Bearing the implications of fortilin in mind, fortilin analog, which has no complication with diseases, is required. Since a recombinant full-length fortilin from Fenneropenaeus merguiensis (rFm-Fortilin (FL)) reported only 44% (3e-27) homologous to human fortilin, therefore the biological activities of the Fm-Fortilin (FL) and its fragments (F2, F12, and F23) were investigated for potential use against HEMA toxicity from filling cement to pulp cell. The rFm-Fortilin FL, F2, 12, and F23 were expressed and assayed for proliferation activity. The rFm-Fortilin (FL) showed proliferation activity on human dental pulp cells (HDPCs) and protected the cells from 2-hydroxy-ethyl methacrylate (HEMA) at 1-20 ng/ml. In contrast, none of the rFm-Fortilin fragments promoted HDPC growth that may be due to a lack of three conserved amino acid residues together for binding with the surface of Rab GTPase for proliferative activity. In addition, rFm-Fortilin (FL) activated mineralization and trend to suppressed production of proinflammatory cytokines, including histamine (at 10 ng/ml) and TNF-α (at 100 ng/ml). Besides, the rFm-Fortilin (FL) did not mutate the Chinese hamster ovary (CHO) cell. Therefore, the rFm-Fortilin (FL) has the potential use as a supplementary medical material to promote cell proliferation in patients suffering severe tooth decay and other conditions.
Collapse
Affiliation(s)
- Ureporn Kedjarune-Leggat
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Uraipan Saetan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Anchana Khongsaengkaeo
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Sudarat Suwannarat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Panchalika Deachamag
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Monwadee Wonglapsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Rawiwan Pornprasit
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | | | - Parujee Phumklai
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- * E-mail:
| |
Collapse
|
5
|
Abstract
This chapter focuses on published studies specifically concerning TCTP and its involvement in degradation or stabilization of various proteins, and also in its own degradation in different ways. The first part relates to the inhibition of proteasomal degradation of proteins. This can be achieved by masking ubiquitination sites of specific partners, by favoring ubiquitin E3 ligase degradation, or by regulating proteasome activity. The second part addresses the ability of TCTP to favor degradation of specific proteins through proteasome or macroautophagic pathways. The third part discusses about the different ways by which TCTP has been shown to be degraded.
Collapse
|
6
|
Wang J, Song J, Li Y, Zhou X, Zhang X, Liu T, Liu B, Wang L, Li L, Li C. The distribution, expression of the Cu/Zn superoxide dismutase in Apostichopus japonicus and its function for sea cucumber immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 89:745-752. [PMID: 30978445 DOI: 10.1016/j.fsi.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Cu/Zn superoxide dismutases (SODs) are antioxidative metalloenzymes that exist ubiquitously in different species and are distributed widely in various tissues and cell types. In this study, the distribution and biological function of the Cu/Zn superoxide dismutase in Apostichopus japonicus (AjSOD1) is first characterized. The AjSOD1 cDNA is 1219 bp in length and contains an open reading frame (ORF) of 459 bp that encodes a protein of 152 amino acids with a deduced molecular weight of 15.47 kDa and a predicted isoelectric point of 5.65. The Cu2+/Zn2+ binding domain and conserved residues were found in the AjSOD1 amino acid sequence. A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the expression of AjSOD1 in different tissues. Spatial distribution analysis showed that AjSOD1 was constitutively expressed in all tested tissues, with strong expression in the intestine and weak expression in the respiratory tree. mRNA Expression of AjSOD1 was significantly upregulated when challenged with the pathogen Vibrio splendidus. Functional investigation revealed that recombinant AjSOD1 displayed good antioxidant activity. More importantly, the addition of AjSOD1 resulted in a significant decrease in coelomocyte apoptosis by LPS/H2O2 challenge in vitro. The results indicate that sea cucumber SOD1 may play critical roles not only in the defense against oxidative stress but also in the innate immune defense against bacterial infections.
Collapse
Affiliation(s)
- Jihui Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China; Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Jixue Song
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Yan Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Xue Zhou
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Xiaotian Zhang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Tingting Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Bingnan Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Liang Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China.
| |
Collapse
|
7
|
Verleih M, Borchel A, Rebl A, Brenmoehl J, Kühn C, Goldammer T. A molecular survey of programmed cell death in rainbow trout: Structural and functional specifications of apoptotic key molecules. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:57-69. [DOI: 10.1016/j.cbpb.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
|
8
|
Jojic B, Amodeo S, Ochsenreiter T. The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei. MICROBIAL CELL 2018; 5:460-468. [PMID: 30386790 PMCID: PMC6206406 DOI: 10.15698/mic2018.10.652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The translationally controlled tumor protein TCTP, is a universally conserved protein that seems to be of essential function in all systems tested so far. TCTP is involved in a multitude of cellular functions including cell cycle control, cell division, apoptosis and many more. The mechanism of how TCTP is involved in most of these functions remains elusive. Here we describe that TCTP is a cytoplasmic protein involved in cell cycle regulation and heat stress response in the bloodstream form of Trypanosoma brucei.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|
9
|
Jojic B, Amodeo S, Bregy I, Ochsenreiter T. Distinct 3' UTRs regulate the life-cycle-specific expression of two TCTP paralogs in Trypanosoma brucei. J Cell Sci 2018; 131:jcs.206417. [PMID: 29661850 PMCID: PMC5992589 DOI: 10.1242/jcs.206417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/28/2018] [Indexed: 12/02/2022] Open
Abstract
The translationally controlled tumor protein (TCTP; also known as TPT1 in mammals) is highly conserved and ubiquitously expressed in eukaryotes. It is involved in growth and development, cell cycle progression, protection against cellular stresses and apoptosis, indicating the multifunctional role of the protein. Here, for the first time, we characterize the expression and function of TCTP in the human and animal pathogen, Trypanosoma brucei. We identified two paralogs (TCTP1 and TCTP2) that are differentially expressed in the life cycle of the parasite. The genes have identical 5′ untranslated regions (UTRs) and almost identical open-reading frames. The 3′UTRs differ substantially in sequence and length, and are sufficient for the exclusive expression of TCTP1 in procyclic- and TCTP2 in bloodstream-form parasites. Furthermore, we characterize which parts of the 3′UTR are needed for TCTP2 mRNA stability. RNAi experiments demonstrate that TCTP1 and TCTP2 expression is essential for normal cell growth in procyclic- and bloodstream-form parasites, respectively. Depletion of TCTP1 in the procyclic form cells leads to aberrant cell and mitochondrial organelle morphology, as well as enlarged, and a reduced number of, acidocalcisomes. Summary:T. brucei has two TCTP genes that are differentially expressed during the parasite life cycle owing to their different 3′UTRs. TCTP also has a role in regulating cell growth and morphology.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | |
Collapse
|
10
|
Sun Y, Wang Y, Yang H, Xu Y, Yu H. miR-455-3p functions as a tumor suppressor in colorectal cancer and inhibits cell proliferation by targeting TPT1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2522-2529. [PMID: 31938365 PMCID: PMC6958251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 06/10/2023]
Abstract
Increasing studies have revealed the importance of microRNAs (miRNAs) in tumorigenesis and tumor progression. miR-455-3p is a newly identified tumor suppressive RNA in various human cancers. However, the expression pattern and clinical significance of miR-455-3p in colorectal cancer (CRC) remains unclear. We found that expression of miR-455-3p was significantly reduced in CRC tissues and cell lines. In addition, we show that low miR-455-3p expression is associated with larger tumor size, advanced tumor stage, and poorer overall survival of CRC patients. Furthermore, in vitro experiments revealed that overexpression of miR-455-3p represses cell proliferation. Importantly, we show that the tumor protein translationally controlled 1 (TPT1) is a direct target of miR-455-3p. Moreover, expression of TPT1 was inversely correlated with the expression of miR-455-3p. Loss-of-function of TPT1 had a similar effect on CRC cell proliferation in vitro as gain-of-function of miR-455-3p. Taken together, these data suggest that miR-455-3p functions as tumor suppressive RNA by targeting TPT1 in CRC, and it might be a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing Key Lab of Therapeutic Cancer VaccinesBeijing, P. R. China
| | - Yan Wang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy for TianjinTianjin, P. R. China
| | - Hainan Yang
- Department of Medical Oncology, The Ninth Teaching Hospital of Peking University Health Science Center, Beijing Shijitan Hospital, Beijing Key Lab of Therapeutic Cancer VaccinesBeijing, P. R. China
| | - Yan Xu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy for TianjinTianjin, P. R. China
| | - Haipeng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy for TianjinTianjin, P. R. China
| |
Collapse
|
11
|
Li Y, Sun H, Zhang C, Liu J, Zhang H, Fan F, Everley RA, Ning X, Sun Y, Hu J, Liu J, Zhang J, Ye W, Qiu X, Dai S, Liu B, Xu H, Fu S, Gygi SP, Zhou C. Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics. Oncogene 2017; 36:6839-6849. [PMID: 28846114 PMCID: PMC5735297 DOI: 10.1038/onc.2017.289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
Translationally controlled tumor protein(TCTP) has been implicated in the regulation of apoptosis, DNA repair and drug resistance. However, the underlying molecular mechanisms are poorly defined. To better understand the molecular mechanisms underlying TCTP involved in cellular processes, we performed an affinity purification-based proteomic profiling to identify proteins interacting with TCTP in human cervical cancer HeLa cells. We found that a group of proteins involved in DNA repair are enriched in the potential TCTP interactome. Silencing TCTP by short hairpin RNA in breast carcinoma MCF-7 cells leads to the declined repair efficiency for DNA double-strand breaks on the GFP-Pem1 reporter gene by homologous recombination, the persistent activation and the prolonged retention of γH2AX and Rad51 foci following ionizing radiation. Reciprocal immunoprecipitations indicated that TCTP forms complexes with Rad51 in vivo, and the stability maintenance of Rad51 requires TCTP in MCF-7 cells under normal cell culture conditions. Moreover, inactivation of TCTP by sertraline treatment enhances UVC irradiation-induced apoptosis in MCF-7 cells, and causes sensitization to DNA-damaging drug etoposide and DNA repair inhibitor olaparib. Thus, we have identified an important role of TCTP in promoting DNA double-stand break repair via facilitating DNA homologous recombination processes and highlighted the great potential of TCTP as a drug target to enhance conventional chemotherapy for cancer patients with high levels of TCTP expression.
Collapse
Affiliation(s)
- Y Li
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - H Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - C Zhang
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - J Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - H Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - F Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - R A Everley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - X Ning
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Y Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - J Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - J Liu
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - J Zhang
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - W Ye
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - X Qiu
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - S Dai
- The Tumor Hospital, Harbin Medical University, Harbin, China
| | - B Liu
- The Tumor Hospital, Harbin Medical University, Harbin, China
| | - H Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - S Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - S P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - C Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Kumar R, Maurya R, Saran S. Identification of novel inhibitors of the translationally controlled tumor protein (TCTP): insights from molecular dynamics. MOLECULAR BIOSYSTEMS 2017; 13:510-524. [PMID: 28128835 DOI: 10.1039/c6mb00850j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved multifunctional protein, preferentially expressed in mitotically active tissues and is a potential biomarker and a therapeutic target for lung cancers. An understanding of the biology of this molecule and model systems for the screening of drugs is still awaited. In the absence of complete crystal structure, NMR structures as templates were used for homology modeling and MD optimization of both Dictyostelium discoideum and human TCTPs, which was followed by pocket-site prediction, ligand screening and docking. Rescoring of TCTP-ligand complexes was done using MD and MM-PBSA approaches. D. discoideum TCTP was expressed under a constitutive promoter and the endogenous RNA in multicellular structures formed was localized by in situ hybridization. Based on the interactions and binding energy scores, two novel compounds were identified as the best potential inhibitors that could be further used for the development of drug candidates. Inhibition of cell proliferation was observed in the strain overexpressing Dictyostelium TCTP and in situ hybridization results show them to be localized in the prestalk (dying cell population) cells. D. discoideum and human TCTPs share similar dynamic behaviors; overexpression of Dictyostelium TCTP inhibits cell proliferation. D. discoideum could be used as a model system for understanding the biology of this molecule and also for drug screening.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ranjana Maurya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Jeon HJ, Cui XS, Guo J, Lee JM, Kim JS, Oh JS. TCTP regulates spindle assembly during postovulatory aging and prevents deterioration in mouse oocyte quality. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1328-1334. [PMID: 28476647 DOI: 10.1016/j.bbamcr.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
If no fertilization occurs for a prolonged time following ovulation, oocytes experience a time-dependent deterioration in quality both in vivo and in vitro due to processes called postovulatory aging. Because the postovulatory aging of oocytes has marked detrimental effects on embryo development and offspring, many efforts have been made to unveil the underlying mechanisms. Here we showed that translationally controlled tumor protein (TCTP) regulates spindle assembly during postovulatory aging and prevents deterioration in mouse oocyte quality. Spindle dynamics decreased with reduced TCTP level during aging of mouse oocytes. Knockdown of TCTP accelerated the reduction of spindle dynamics, accompanying with aging-related deterioration of oocyte quality. Conversely, overexpression of TCTP prevented aging-associated decline of spindle dynamics. Moreover, the aging-related abnormalities in oocytes were rescued after TCTP overexpression, thereby improving fertilization competency and subsequent embryo development. Therefore, our results demonstrate that TCTP-mediated spindle dynamics play a key role in maintaining oocyte quality during postovulatory aging and overexpression of TCTP is sufficient to prevent aging-associated abnormalities in mouse oocytes.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Discov 2017; 3:17016. [PMID: 28386457 PMCID: PMC5357670 DOI: 10.1038/cddiscovery.2017.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 01/25/2023] Open
Abstract
In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response.
Collapse
|
15
|
Bommer UA, Vine KL, Puri P, Engel M, Belfiore L, Fildes K, Batterham M, Lochhead A, Aghmesheh M. Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun Signal 2017; 15:9. [PMID: 28143584 PMCID: PMC5286767 DOI: 10.1186/s12964-017-0164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Translationally controlled tumour protein TCTP is an anti-apoptotic protein frequently overexpressed in cancers, where high levels are often associated with poor patient outcome. TCTP may be involved in protecting cancer cells against the cytotoxic action of anti-cancer drugs. Here we study the early increase of TCTP levels in human colorectal cancer (CRC) and the regulation of TCTP expression in HCT116 colon cancer cells, in response to treatment with the anti-cancer drugs 5-FU and oxaliplatin. Methods Using immunohistochemistry, we assessed TCTP levels in surgical samples from adenomas and adenocarcinomas of the colon, compared to normal colon tissue. We also studied the regulation of TCTP in HCT116 colon cancer cells in response to 5-FU and oxaliplatin by western blotting. TCTP mRNA levels were assessed by RT-qPCR. We used mTOR kinase inhibitors to demonstrate mTOR-dependent translational regulation of TCTP under these conditions. Employing the Real-Time Cell Analysis (RTCA) System and the MTS assay, we investigated the effect of TCTP-knockdown on the sensitivity of HCT116 cells to the anti-cancer drugs 5-FU and oxaliplatin. Results 1. TCTP levels are significantly increased in colon adenomas and adenocarcinomas, compared to normal colon tissue. 2. TCTP protein levels are about 4-fold upregulated in HCT116 colon cancer cells, in response to 5-FU and oxaliplatin treatment, whereas TCTP mRNA levels are down regulated. 3. mTOR kinase inhibitors prevented the up-regulation of TCTP protein, indicating that TCTP is translationally regulated through the mTOR complex 1 signalling pathway under these conditions. 4. Using two cellular assay systems, we demonstrated that TCTP-knockdown sensitises HCT116 cells to the cytotoxicity caused by 5-FU and oxaliplatin. Conclusions Our results demonstrate that TCTP levels increase significantly in the early stages of CRC development. In colon cancer cells, expression of this protein is largely upregulated during treatment with the DNA-damaging anti-cancer drugs 5-FU and oxaliplatin, as part of the cellular stress response. TCTP may thus contribute to the development of anti-cancer drug resistance. These findings indicate that TCTP might be suitable as a biomarker and that combinatorial treatment using 5-FU/oxaliplatin, together with mTOR kinase inhibitors, could be a route to preventing the development of resistance to these drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0164-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia. .,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Kara L Vine
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Prianka Puri
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Present address: Southeast Sydney Illawarra Area Health Services, Sydney, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Lisa Belfiore
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Karen Fildes
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Marijka Batterham
- School of Mathematics and Applied Statistics, Faculty of Engineering and Information Sciences University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Alistair Lochhead
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Southern IML Pathology Wollongong, 2500, Wollongong, NSW, Australia.,Present address: Syd-Path, St. Vincent's Hospital Darlinghurst, Sydney, 2010, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, The Wollongong Hospital, Wollongong, 2500, NSW, Australia
| |
Collapse
|
16
|
Zhang J, Shim G, de Toledo SM, Azzam EI. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl Cell Differ 2017; 64:227-253. [DOI: 10.1007/978-3-319-67591-6_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
17
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
18
|
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein that is regulated due to a high number of extracellular stimuli. TCTP has an important role for cell cycle and normal development. On the other side, tumor reversion and malignant transformation have been associated with TCTP. TCTP has been found among the 12 genes that are differentially expressed during mouse oocyte maturation, and an overexpression of this gene was reported in a wide variety of different cancer types. Its antiapoptotic effect is indicated by the interaction with several proapoptotic proteins of the Bcl-2 family and the p53 tumor suppressor protein. In this article, we draw attention to the role of TCTP in cancer, especially, focusing on cell differentiation and tumor reversion, a biological process by which highly tumorigenic cells lose their malignant phenotype. This protein has been shown to be the most strongly downregulated protein in revertant cells compared to the parental cancer cells. Decreased expression of TCTP results either in the reprogramming of cancer cells into reversion or apoptosis. As conventional chemotherapy is frequently associated with the development of drug resistance and high toxicity, the urge for the development of new or additional scientific approaches falls into place. Differentiation therapy aims at reinducing differentiation backward to the nonmalignant cellular state. Here, different approaches have been reported such as the induction of retinoid pathways and the use of histone deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D receptor have been reported as potential targets in differentiation therapy. As TCTP is known as the histamine-releasing factor, antihistaminic drugs have been shown to target this protein. Antihistaminic compounds, hydroxyzine and promethazine, inhibited cell growth of cancer cells and decreased TCTP expression of breast cancer and leukemia cells. Recently, we found that two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth by direct binding to TCTP and induction of cell differentiation. These data confirmed that TCTP is an exquisite target for anticancer differentiation therapy and antihistaminics have potential to be lead compounds for the direct interaction with TCTP as new inhibitors of human TCTP and tumor growth.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells. J Proteome Res 2016; 15:3741-3751. [PMID: 27607350 DOI: 10.1021/acs.jproteome.6b00556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmunoprecipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1-129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis.
Collapse
Affiliation(s)
- Siting Li
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | - Minghai Chen
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | | | |
Collapse
|
20
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016; 11:e0162851. [PMID: 27632285 PMCID: PMC5025167 DOI: 10.1371/journal.pone.0162851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
21
|
Lee JT, Lee SS, Mondal S, Tripathi BN, Kim S, Lee KW, Hong SH, Bai HW, Cho JY, Chung BY. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli. Mol Cells 2016; 39:594-602. [PMID: 27457208 PMCID: PMC4990751 DOI: 10.14348/molcells.2016.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/20/2016] [Accepted: 06/22/2016] [Indexed: 11/27/2022] Open
Abstract
Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser(78) to Cys(78) resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys(78) in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone.
Collapse
Affiliation(s)
- Jae Taek Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
- Fruit Vegetables Research Institute, Jellabuk-do Agricultural Research & Extension Services, Gunsan 54062,
Korea
| | - Seung Sik Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34113,
Korea
| | - Suvendu Mondal
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| | - Bhumi Nath Tripathi
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| | - Siu Kim
- Division of Applied Life Science (Brain Korea 21 Program), Gyeong-sang National University, Jinju 52828,
Korea
| | - Keun Woo Lee
- Division of Applied Life Science (Brain Korea 21 Program), Gyeong-sang National University, Jinju 52828,
Korea
| | - Sung Hyun Hong
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186,
Korea
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| | - Jae-Young Cho
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896,
Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| |
Collapse
|
22
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016. [PMID: 27632285 DOI: 10.1371/journal.pone.016285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
23
|
Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:730390. [PMID: 26425551 PMCID: PMC4573619 DOI: 10.1155/2015/730390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.
Collapse
|
24
|
Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B, Zhang WK, Chen SY, Zhang JS. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation. PLANT PHYSIOLOGY 2015; 169:96-114. [PMID: 25941315 PMCID: PMC4577386 DOI: 10.1104/pp.15.00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Rong Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Jirachotikoon C, Tannukit S, Kedjarune-Leggat U. Expression of translationally controlled tumor protein in heat-stressed human dental pulp cells. Arch Oral Biol 2015; 60:1474-81. [PMID: 26263535 DOI: 10.1016/j.archoralbio.2015.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/14/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of heat stress on cell viability, translationally controlled tumor protein (TCTP) expression, and the effects of recombinant TCTP on heat-stressed human dental pulp cells (HDPCs). METHODS HDPCs were isolated from human teeth and cultured at 37°C. For heat stress, HPDCs were incubated at 43°C for 45min. After heat stress, recombinant TCTP were added to HDPCs and cultured for various periods of time at 37°C. Heat-treated cells were then analyzed by DNA staining with Hoechst 33258, MTT, and caspase 3 activity assays. TCTP expression level was assessed by real-time PCR and western blot analysis. RESULTS Heat-treated cells displayed lower cell density and nuclear morphology resembling apoptotic body. Heat stress significantly decreased cell viability and induced activity of caspase 3. The effect of recombinant TCTP on pulp cell death from heat stress varied depending on each subject and TCTP concentration. Heat stress up-regulated TCTP mRNA expression level. In contrast, TCTP protein level remained unchanged. Recombinant TCTP did not affect TCTP mRNA expression but down-regulated TCTP protein in heat-treated cells. CONCLUSIONS Heat stress induces caspase 3 activation and up-regulates TCTP mRNA expression in HDPCs. TCTP did not play a key role on pulp cell recovery from heat stress.
Collapse
Affiliation(s)
- Canussanun Jirachotikoon
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand.
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
26
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
27
|
Taylor KJ, Van TTH, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM. Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 2015; 37:23-31. [PMID: 25376500 DOI: 10.1111/pim.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/31/2014] [Indexed: 12/19/2022]
Abstract
Translationally controlled tumour protein (TCTP) may play an important role in the establishment or maintenance of parasitemia in a malarial infection. In this study, the potential of TCTP as a malaria vaccine was investigated in two trials. In the initial vaccine trial, Plasmodium falciparum TCTP (PfTCTP) was expressed in Saccharomyces cerevisiae and used to immunize BALB/c mice. Following challenge with Plasmodium yoelii YM, parasitemia was significantly reduced during the early stages of infection. In the second vaccine trial, the TCTP from P. yoelii and P. berghei was expressed in Escherichia coli and used in several mouse malaria models. A significant reduction in parasitemia in the early stages of infection was observed in BALB/c mice challenged with P. yoelii YM. A significantly reduced parasitemia at each day leading up to a delayed and reduced peak parasitemia was also observed in BALB/c mice challenged with the nonlethal Plasmodium chabaudi (P.c.) chabaudi AS. These results suggest that TCTP has an important role for parasite establishment and may be important for pathogenesis.
Collapse
Affiliation(s)
- K J Taylor
- School of Applied Sciences, RMIT University, Bundoora, VIc., Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen C, Deng Y, Hua M, Xi Q, Liu R, Yang S, Liu J, Zhong J, Tang M, Lu S, Zhang Z, Min X, Tang C, Wang Y. Expression and clinical role of TCTP in epithelial ovarian cancer. J Mol Histol 2015; 46:145-56. [PMID: 25564355 DOI: 10.1007/s10735-014-9607-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study is to investigate the potential role and prognostic significance of translationally controlled tumor protein (TCTP) in human epithelial ovarian cancer (EOC). Western blot was used to evaluate the expression of TCTP in eight fresh EOC tissues. Immunohistochemistry was performed on formalin-fixed paraffin-embedded sections of 119 cases of ovarian cancers. Kaplan-Meier method indicated the relation between TCTP and EOC patients' overall survival rate. Starvation and re-feeding was used to assess cell cycle. Knocking down of TCTP and CCK8 assay showed the role of TCTP in HO8910 cell cycle. We found that TCTP was overexpressed in carcinoma tissues compared with normal tissues. Immunohistochemistry revealed that TCTP expression was significantly associated with clinicopathologic variables. Kaplan-Meier analysis revealed that high TCTP expression was significantly related to poor prognosis of the patients. Starvation and re-feeding suggested TCTP played a critical role in HO8910 cell proliferation. Interference of TCTP and CCK8 assay showed that the TCTP-siRNA treated HO8910 cells grew more slowly than the control group. CCK-8 assays and terminal-deoxynucleoitidyl transferase mediated nick end labeling assays were also performed to demonstrate the cisplatin could inhibit the survival of HO8910 cells and promote their apoptosis. All the experiments we have done showed that TCTP could promote the progression of EOC and reduce the sensitiveness of HO8910 cells to cisplatin.
Collapse
Affiliation(s)
- Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ren C, Chen T, Jiang X, Wang Y, Hu C. The first characterization of gene structure and biological function for echinoderm translationally controlled tumor protein (TCTP). FISH & SHELLFISH IMMUNOLOGY 2014; 41:137-146. [PMID: 25193395 DOI: 10.1016/j.fsi.2014.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional protein that existed ubiquitously in different eukaryote species and distributed widely in various tissues and cell types. In this study, the gene structure and biological function of TCTP were first characterized in echinoderm. An echinoderm TCTP named StmTCTP was identified from sea cucumber (Stichopus monotuberculatus) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The StmTCTP cDNA is 1219 bp in length, containing a 5'-untranslated region (UTR) of 77 bp, a 3'-UTR of 623 bp and an open reading frame (ORF) of 519 bp that encoding a protein of 172 amino acids with a deduced molecular weight of 19.80 kDa and a predicted isolectric point of 4.66. Two deduced signal signatures termed TCTP1 and TCTP2, a microtubule binding domain, a Ca(2+) binding domain and the conserved residues forming Rab GTPase binding surface were found in the StmTCTP amino acid sequence. For the gene structure, StmTCTP contains four exons separated by three introns. The anti-oxidation and heat shock protein activities of recombinant TCTP protein were also demonstrated in this study. In addition, the expression of StmTCTP was found to be significantly upregulated by polyriboinosinic polyribocytidylic acid [poly (I:C)], lipopolysaccharides (LPS) or inactivated bacteria challenge in in vitro primary culture experiments of coelomocytes, suggested that the sea cucumber TCTP might play critical roles not only in the defense against oxidative and thermal stresses, but also in the innate immune defense against bacterial and viral infections.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| |
Collapse
|
30
|
Cai H, Yuan X, Pan J, Li H, Wu Z, Wang Y. Biochemical and proteomic analysis of grape berries (Vitis labruscana) during cold storage upon postharvest salicylic acid treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10118-25. [PMID: 25242003 DOI: 10.1021/jf503495z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Salicylic acid (SA) treatment has been widely used to maintain fruit quality during postharvest storage. To elucidate the molecular mechanism related to this treatment, the effect of SA treatment on fruit quality as well as protein expression profiles of grape berries (Vitis labruscana cv. Kyoho) during the subsequent cold storage was evaluated. As expected, SA treatment inhibited postharvest loss and chilling damage by reducing fruit softening and membrane damage and slowing weight loss. A gel-based proteomic approach was designed to screen for differentially expressed proteins in SA-treated and control grape berries. A total of 69 differentially accumulated proteins were successfully identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, which can be functionally classified into eight categories. Among these proteins, antioxidant enzymes including ascorbate peroxidase, oxidoreductase, and glutathione S-transferase were induced, and the abundances of several defense-related proteins, such as heat shock protein (HSP) and temperature-induced lipocalin, were up-regulated by SA treatment. In addition, proteins involved in carbohydrate catabolism and energy production were also induced by SA treatment. Interpretation of the data for differential accumulation of proteins revealed that the effect of SA on reducing postharvest losses and chilling damage of grape berries during cold storage may be due to activated defense responses and carbohydrate metabolism and higher levels of energy status.
Collapse
Affiliation(s)
- Han Cai
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013, China
| | | | | | | | | | | |
Collapse
|
31
|
Zhu JY, Wu GX, Ze SZ, Stanley DW, Yang B. Parasitization by Scleroderma guani influences protein expression in Tenebrio molitor pupae. JOURNAL OF INSECT PHYSIOLOGY 2014; 66:37-44. [PMID: 24852673 DOI: 10.1016/j.jinsphys.2014.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Ectoparasitoid wasps deposit their eggs onto the surface and inject venom into their hosts. Venoms are chemically complex and they exert substantial impact on hosts, including permanent or temporary paralysis and developmental arrest. These visible venom effects are due to changes in expression of genes encoding physiologically relevant proteins. While the influence of parasitization on gene expression in several lepidopterans has been reported, the molecular details of parasitoid/beetle relationships remain mostly unknown. This shortcoming led us to pose the hypothesis that envenomation by the ectoparasitic ant-like bethylid wasp Scleroderma guani leads to changes in protein expression in the yellow mealworm beetle Tenebrio molitor. We tested our hypothesis by comparing the proteomes of non-parasitized and parasitized host pupae using iTRAQ-based proteomics. We identified 41 proteins that were differentially expressed (32↑- and 9↓-regulated) in parasitized pupae. We assigned these proteins to functional categories, including immunity, stress and detoxification, energy metabolism, development, cytoskeleton, signaling and others. We recorded parallel changes in mRNA levels and protein abundance in 14 selected proteins following parasitization. Our findings support our hypothesis by documenting changes in protein expression in parasitized hosts.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Guo-Xing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Sang-Zi Ze
- Yunnan Forestry Technological College, Kunming 650224, China
| | - David W Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
32
|
Phelps DS, Umstead TM, Floros J. Sex differences in the acute in vivo effects of different human SP-A variants on the mouse alveolar macrophage proteome. J Proteomics 2014; 108:427-44. [PMID: 24954098 DOI: 10.1016/j.jprot.2014.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Surfactant protein A (SP-A) is involved in lung innate immunity. Humans have two SP-A genes, SFTPA1 and SFTPA2, each with several variants. We examined the in vivo effects of treatment with specific SP-A variants on the alveolar macrophage (AM) proteome from SP-A knockout (KO) mice. KO mice received either SP-A1, SP-A2, or both. AM were collected and their proteomes examined with 2D-DIGE. We identified 90 proteins and categorized them as related to actin/cytoskeleton, oxidative stress, protease balance/chaperones, regulation of inflammation, and regulatory/developmental processes. SP-A1 and SP-A2 had different effects on the AM proteome and these effects differed between sexes. In males more changes occurred in the oxidative stress, protease/chaperones, and inflammation groups with SP-A2 treatment than with SP-A1. In females most SP-A1-induced changes were in the actin/cytoskeletal and oxidative stress groups. We conclude that after acute SP-A1 and SP-A2 treatment, sex-specific differences were observed in the AM proteomes from KO mice, and that these sex differences differ in response to SP-A1 and SP-A2. Females are more responsive to SP-A1, whereas the gene-specific differences in males were minimal. These observations not only demonstrate the therapeutic potential of exogenous SP-A, but also illustrate sex- and gene-specific differences in the response to it. BIOLOGICAL SIGNIFICANCE This study shows that changes occur in the alveolar macrophage proteome in response to a single in vivo treatment with exogenous SP-A1 and/or SP-A2. We demonstrate that SP-A1 and SP-A2 have different effects on the AM proteome and that sex differences exist in the response to each SP-A1 and SP-A2 gene product. This study illustrates the potential of exogenous SP-A1 and SP-A2 treatment for the manipulation of macrophage function and indicates that the specific SP-A variant used for treatment may vary with sex and with the cellular functions being modified. The observed changes may contribute to sex differences in the incidence of some lung diseases.
Collapse
Affiliation(s)
- David S Phelps
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Joanna Floros
- The Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
33
|
Chen Y, Chen X, Wang H, Bao Y, Zhang W. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 2014; 12:33. [PMID: 25028572 PMCID: PMC4099015 DOI: 10.1186/1477-5956-12-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. RESULTS Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. CONCLUSIONS Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy metabolism, with the noted photosynthetic decline also possibly attributed to ROS production. The observed PCD could be regulated by TCTP with a possible role for H2O2 in TCTP induction under flooding stress. Additionally, increased SAMS2 expression was closely associated with an increased polyamine synthesis during flooding treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yiqun Bao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| |
Collapse
|
34
|
Chen W, Wang H, Tao S, Zheng Y, Wu W, Lian F, Jaramillo M, Fang D, Zhang DD. Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 2014; 12:2321-8. [PMID: 24067374 DOI: 10.4161/cc.25404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor suppressor p53 maintains genome stability by differentially activating target genes that control diverse cellular responses, such as the antioxidant response, cell cycle arrest and apoptosis. Despite the fact that many p53 downstream genes have been well characterized, novel p53 target genes are continuously being identified. Here, we report that Tpt1 is a direct target gene of p53. We found that p53 upregulates the transcription of Tpt1 and identified a p53-responsive element in the promoter of the mouse Tpt1 gene. Furthermore, p53-dependent induction of Tpt1 was able to reduce oxidative stress, minimize apoptosis, and promote cell survival in response to H 2O2 challenge. In addition, a positive correlation between the expression of p53 and Tpt1 only existed in normal lung tissues, not in lung tumors. Such positive correlation was also found in lung cell lines that contain wild-type p53, but not mutated p53. Based on the important role of Tpt1 in cancer development, chemoresistance, and cancer reversion, identification of Tpt1 as a direct target gene of p53 not only adds to the complexity of the p53 network, but may also open up a new avenue for cancer prevention and intervention.
Collapse
Affiliation(s)
- Weimin Chen
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Acunzo J, Baylot V, So A, Rocchi P. TCTP as therapeutic target in cancers. Cancer Treat Rev 2014; 40:760-9. [PMID: 24650927 DOI: 10.1016/j.ctrv.2014.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein present in eukaryotic organisms. This protein, located both in the cytoplasmic and the nucleus, is expressed in various tissues and is regulated in response to a wide range of extracellular stimuli. TCTP interacts with itself and other protein including MCL1 and p53. TCTP has been shown to play an important role in physiological events, such as cell proliferation, cell death and immune responses but also in stress response and tumor reversion. Moreover, TCTP expression is associated with malignancy and chemoresistance. In this review, we will evaluate pathways regulated by TCTP and current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Julie Acunzo
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Virginie Baylot
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Alan So
- (e)University of British Columbia, The Vancouver Prostate Centre 2660- Oak St Vancouver, BC V6H3Z6, Canada
| | - Palma Rocchi
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France.
| |
Collapse
|
36
|
Santa Brígida AB, dos Reis SP, de Nazaré Monteiro Costa C, Cardoso CMY, Lima AM, de Souza CRB. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 2014; 41:1787-97. [DOI: 10.1007/s11033-014-3028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/03/2014] [Indexed: 12/28/2022]
|
37
|
Zhang ZX, Geng DY, Han Q, Liang SD, Guo HR. The C-terminal cysteine of turbot Scophthalmus maximus translationally controlled tumour protein plays a key role in antioxidation and growth-promoting functions. JOURNAL OF FISH BIOLOGY 2013; 83:1287-1301. [PMID: 24124757 DOI: 10.1111/jfb.12231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
The translationally controlled tumour protein (TCTP) of turbot Scophthalmus maximus (SmTCTP) contains only one cysteine (Cys¹⁷⁰) at the C-terminal end. The biological role of this C-terminal Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP was examined by site-directed mutation of C170A (Cys¹⁷⁰ →Ala¹⁷⁰). It was found that C170A mutation not only obviously decreased the antioxidation capacity of the mutant-smtctp-transformed bacteria exposed to 0·22 mM hydrogen peroxide, but also significantly interrupted the normal growth and survival of the mutant-smtctp-transformed bacteria and flounder Paralichthys olivaceus gill (FG) cells, indicating a key role played by Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP. This study also suggested that the self-dimerization or dimerization with other interacting proteins is critical to the growth-promoting function of SmTCTP.
Collapse
Affiliation(s)
- Z-X Zhang
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, P. R. China
| | | | | | | | | |
Collapse
|
38
|
Wu W, Wu B, Ye T, Huang H, Dai C, Yuan J, Wang W. TCTP is a critical factor in shrimp immune response to virus infection. PLoS One 2013; 8:e74460. [PMID: 24073212 PMCID: PMC3779204 DOI: 10.1371/journal.pone.0074460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022] Open
Abstract
The translationally controlled tumor protein (TCTP) is an abundant, ubiquitous, and conserved protein which plays important roles in a number of biological processes. In the present study, the TCTP in shrimp Litopenaeus vannamei was analyzed. The TCTP of L.vannamei, a 168-amino-acid polypeptide, shares a high degree of similarity with TCTPs from other species, having two TCTP protein signatures at the 45–55 aa and 123–145 aa motif. The mRNA and protein levels from different tissues were detected with the highest in muscle and the lowest in heart among all examined tissues. In addition, temporal TCTP expression was significantly up-regulated at 16 h and 48 h following infection with white spot syndrome virus (WSSV). Lastly, silencing of TCTP with dsRNA led to a significant increase of WSSV loads. These results provide new insights into the importance of TCTP as an evolutionarily conserved molecule for shrimp innate immunity against virus infection.
Collapse
Affiliation(s)
- Wenlin Wu
- Department of Biology, Quanzhou Normal University, Quanzhou, China
- * E-mail: (W. Wu); (W. Wang)
| | - Bingyan Wu
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huagen Huang
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Congjie Dai
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Jianjun Yuan
- Department of Biology, Quanzhou Normal University, Quanzhou, China
| | - Wei Wang
- The Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- * E-mail: (W. Wu); (W. Wang)
| |
Collapse
|
39
|
cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 2013; 529:150-8. [PMID: 23933269 DOI: 10.1016/j.gene.2013.07.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis.
Collapse
|
40
|
You L, Ning X, Liu F, Zhao J, Wang Q, Wu H. The response profiles of HSPA12A and TCTP from Mytilus galloprovincialis to pathogen and cadmium challenge. FISH & SHELLFISH IMMUNOLOGY 2013; 35:343-350. [PMID: 23643947 DOI: 10.1016/j.fsi.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Heat shock 70 kDa protein 12A (HSPA12A) is an atypical member of HSP70 family, and the translationally controlled tumor protein (TCTP) is a novel HSP with chaperone-like activity. They are both involved in protecting organisms against various stressors. In the present study, the cDNAs of HSPA12A and TCTP (called MgHSPA12A and MgTCTP) were identified from Mytilus galloprovincialis by RACE approaches. The full-length cDNA of MgHSPA12A and MgTCTP encoded a peptide of 491 and 171 amino acids, respectively. Real-time PCR was employed to analyze the tissue distribution and temporal expression of these two genes after bacterial challenge and cadmium (Cd) exposure. It was found that the transcripts of MgHSPA12A and MgTCTP were dominantly expressed in gonad and muscle, respectively. The expression level of MgTCTP at 48 h post Vibrio anguillarum challenge was detected to be significantly up-regulated in hepatopancreas (P < 0.05). As concerned to Cd exposure, 2.0-fold increase of MgHSPA12A expression compared to that of the control was observed at 48 h in 5 μg/L Cd(2+)-treated group, while the expression levels of MgTCTP were significantly decreased after exposed to both 5 and 50 μg/L Cd(2+) for 24 h and 96 h. These results suggested the potential involvement of MgHSPA12A and MgTCTP in the mediation of the immune responses and environmental stress in mussels.
Collapse
Affiliation(s)
- Liping You
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Tomar R, Garg DK, Mishra R, Thakur AK, Kundu B. N-terminal domain ofPyrococcus furiosusl-asparaginase functions as a non-specific, stable, molecular chaperone. FEBS J 2013; 280:2688-99. [DOI: 10.1111/febs.12271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Rachana Tomar
- Kusuma School of Biological Sciences; Indian Institute of Technology Delhi; New Delhi; India
| | - Dushyant K. Garg
- Kusuma School of Biological Sciences; Indian Institute of Technology Delhi; New Delhi; India
| | - Rahul Mishra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur; India
| | - Ashwani K. Thakur
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur; India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences; Indian Institute of Technology Delhi; New Delhi; India
| |
Collapse
|
42
|
Batisti C, Ambrosio MR, Rocca BJ, Tosi GM, Sanchez JC, Arcuri F, Cintorino M, Tripodi SA. Translationally controlled tumour protein (TCTP) is present in human cornea and increases in herpetic keratitis. Diagn Pathol 2012; 7:90. [PMID: 22853445 PMCID: PMC3487898 DOI: 10.1186/1746-1596-7-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Translationally controlled tumour protein is a multifunctional calcium binding protein which has an important role in apoptosis, calcium levels balance and immunological response. The aim of this study was to evaluated the presence and distribution of TCTP in healthy human corneas and to identify and characterize the presence and distribution of this protein in human normal cornea. Since recent studies suggest that apoptosis, calcium levels and immunological mechanisms play a role in the pathogenesis of herpetic stromal keratitis, we studied TCTP expression in this disease. METHODS We evaluated the expression of TCTP at both RNA messanger and protein level by using reverse transcriptase analysis, immunoblotting and immunohistochemistry in 10 healthy samples cornea: four obtained after penetrating keratoplasty and six from eyes enucleated for other pathologies. Finally, we analysed by immunohistochemistry ten paraffin-embedded samples of Herpes simplex virus keratitis collected at Siena Department of Human Pathology and Oncology: 5 had clinically quiescent disease and 5 had active corneal inflammation. RESULTS Reverse transcriptase and immunoblotting demonstrated TCTP expression in cornea as a 22,000 Da molecular weight band corresponding to the molecular weight of this protein. Immunohistochemically, all the layers of normal corneal epithelium showed TCTP cytoplasmic expression. TCTP was, also, observed in keratocytes and in the endothelium. In Herpes simplex virus keratitis samples, strong expression of TCTP was evident in stromal cells, in the inflammatory infiltrate and in neo-vessels. CONCLUSIONS In this preliminary study we demonstrated, for the first time, the presence of TCTP in human cornea, suggesting a potential role in the pathogenesis of herpes virus keratitis. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3306813447428149.
Collapse
Affiliation(s)
- Cinzia Batisti
- Department of Ophthalmology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim YM, Han YJ, Hwang OJ, Lee SS, Shin AY, Kim SY, Kim JII. Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 2012; 33:617-26. [PMID: 22610367 PMCID: PMC3887759 DOI: 10.1007/s10059-012-0080-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.
Collapse
Affiliation(s)
- Yong-Min Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Ok-Jin Hwang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Si-Seok Lee
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Ah-Young Shin
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Soo Young Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Jeong-II Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
44
|
Biological effects of Mammalian translationally controlled tumor protein (TCTP) on cell death, proliferation, and tumorigenesis. Biochem Res Int 2012; 2012:204960. [PMID: 22675633 PMCID: PMC3364544 DOI: 10.1155/2012/204960] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein found in eukaryotes, across animal and plant kingdoms and even in yeast. Mammalian TCTP is ubiquitously expressed in various tissues and cell types. TCTP is a multifunctional protein which plays important roles in a number of cell physiological events, such as immune responses, cell proliferation, tumorigenicity, and cell death, including apoptosis. Recent identification of TCTP as an antiapoptotic protein has attracted interest of many researchers in the field. The mechanism of antiapoptotic activity, however, has not been solved completely, and TCTP might inhibit other types of cell death. Cell death (including apoptosis) is closely linked to proliferation and tumorigenesis. In this context, we review recent findings regarding the role of TCTP in cell death, proliferation, and tumorigenesis and discuss the mechanisms.
Collapse
|
45
|
Role of translationally controlled tumor protein in cancer progression. Biochem Res Int 2012; 2012:369384. [PMID: 22570787 PMCID: PMC3337558 DOI: 10.1155/2012/369384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/17/2012] [Indexed: 12/14/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved and ubiquitously expressed protein in all eukaryotes-highlighting its important functions in the cell. Previous studies revealed that TCTP is implicated in many biological processes, including cell growth, tumor reversion, and induction of pluripotent stem cell. A recent study on the solution structure from fission yeast orthologue classifies TCTP under a family of small chaperone proteins. There is growing evidence in the literature that TCTP is a multifunctional protein and exerts its biological activity at the extracellular and intracellular levels. Although TCTP is not a tumor-specific protein, our research group, among several others, focused on the role(s) of TCTP in cancer progression. In this paper, we will summarize the current scientific knowledge of TCTP in different aspects, and the precise oncogenic mechanisms of TCTP will be discussed in detail.
Collapse
|
46
|
Abstract
Mss4 (mammalian suppressor of Sec4) is an evolutionarily highly conserved protein and shows high sequence and structural similarity to nucleotide exchange factors. Although Mss4 tightly binds a series of exocytic Rab GTPases, it exercises only a low catalytic activity. Therefore Mss4 was proposed to work rather as a chaperone, protecting nucleotide free Rabs from degradation than as a nucleotide exchange factor. Here we provide further evidence for chaperone-like properties of Mss4. We show that expression levels of cellular Mss4 mRNA and protein are rapidly changed in response to a broad range of extracellular stress stimuli. The alterations are regulated mostly via the (c-jun NH2-terminal kinase) JNK stress MAPK signaling pathway and the mode of regulation resembles that of heat shock proteins. Similar to heat shock proteins, upregulation of Mss4 after stress stimulation functions protectively against the programmed cell death. Molecular analysis of the Mss4-mediated inhibition of apoptosis showed that interaction of Mss4 with eIF3f (eukaryotic translation initiation factor 3 subunit f), a member of the translation initiation complex and a protein with distinct pro-apoptotic properties, is the critical event in the anti-apoptotic action of Mss4.
Collapse
|
47
|
Munirathinam G, Ramaswamy K. Sumoylation of human translationally controlled tumor protein is important for its nuclear transport. Biochem Res Int 2012; 2012:831940. [PMID: 22567286 PMCID: PMC3332165 DOI: 10.1155/2012/831940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/27/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO) motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.
Collapse
Affiliation(s)
- Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kalyanasundaram Ramaswamy
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
48
|
Dakshinamoorthy G, Samykutty AK, Munirathinam G, Shinde GB, Nutman T, Reddy MV, Kalyanasundaram R. Biochemical characterization and evaluation of a Brugia malayi small heat shock protein as a vaccine against lymphatic filariasis. PLoS One 2012; 7:e34077. [PMID: 22496777 PMCID: PMC3320633 DOI: 10.1371/journal.pone.0034077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/21/2012] [Indexed: 12/15/2022] Open
Abstract
Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Helminth/blood
- Antibodies, Helminth/immunology
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Helminth/immunology
- Brugia malayi/immunology
- Cell Proliferation
- Cytokines/metabolism
- Elephantiasis, Filarial/immunology
- Elephantiasis, Filarial/prevention & control
- Heat-Shock Proteins, Small/genetics
- Heat-Shock Proteins, Small/immunology
- Heat-Shock Proteins, Small/metabolism
- Humans
- Immunoglobulin G/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Male
- Mast Cells/cytology
- Mast Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/immunology
- Receptors, Interleukin-10/immunology
- Receptors, Interleukin-10/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Vaccination
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Gajalakshmi Dakshinamoorthy
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| | - Abhilash Kumble Samykutty
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| | - Gangadhar Bhaurao Shinde
- Department of Biochemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Thomas Nutman
- Helminth Immunology Section, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maryada Venkatarami Reddy
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| |
Collapse
|
49
|
Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci U S A 2012; 109:E926-33. [PMID: 22451927 DOI: 10.1073/pnas.1106300109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is essential for survival by mechanisms that as yet are incompletely defined. Here we describe an important role of TCTP in response to DNA damage. Upon exposure of normal human cells to low-dose γ rays, the TCTP protein level was greatly increased, with a significant enrichment in nuclei. TCTP up-regulation occurred in a manner dependent on ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase and was associated with protective effects against DNA damage. In chromatin of irradiated cells, coimmunoprecipitation experiments showed that TCTP forms a complex with ATM and γH2A.X, in agreement with its distinct localization with the foci of the DNA damage-marker proteins γH2A.X, 53BP1, and P-ATM. In cells lacking TCTP, repair of chromosomal damage induced by γ rays was compromised significantly. TCTP also was shown to interact with p53 and the DNA-binding subunits, Ku70 and Ku80, of DNA-dependent protein kinase. TCTP knockdown led to decreased levels of Ku70 and Ku80 in nuclei of irradiated cells and attenuated their DNA-binding activity. It also attenuated the radiation-induced G(1) delay but prolonged the G(2) delay. TCTP therefore may play a critical role in maintaining genomic integrity in response to DNA-damaging agents.
Collapse
|
50
|
Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics 2012; 75:1867-85. [PMID: 22245046 DOI: 10.1016/j.jprot.2011.12.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/29/2022]
Abstract
A comparative proteomic analysis was made of salt response in seedling roots of wheat cultivars Jing-411 (salt tolerant) and Chinese Spring (salt sensitive) subjected to a range of salt stress concentrations (0.5%, 1.5% and 2.5%) for 2 days. One hundred and ninety eight differentially expressed protein spots (DEPs) were located with at least two-fold differences in abundance on 2-DE maps, of which 144 were identified by MALDI-TOF-TOF MS. These proteins were involved primarily in carbon metabolism (31.9%), detoxification and defense (12.5%), chaperones (5.6%) and signal transduction (4.9%). Comparative analysis showed that 41 DEPs were salt responsive with significant expression changes in both varieties under salt stress, and 99 (52 in Jing-411 and 47 in Chinese Spring) were variety specific. Only 15 and 9 DEPs in Jing-411 and Chinese Spring, respectively, were up-regulated in abundance under all three salt concentrations. All dynamics of the DEPs were analyzed across all treatments. Some salt responsive DEPs, such as guanine nucleotide-binding protein subunit beta-like protein, RuBisCO large subunit-binding protein subunit alpha and pathogenesis related protein 10, were up-regulated significantly in Jing-411 under all salt concentrations, whereas they were down-regulated in salinity-stressed Chinese Spring.
Collapse
Affiliation(s)
- Guangfang Guo
- Key Laboratory of Genetics and Biotechnology, College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|