1
|
Topalović D, Živković L, Borozan S, Santibanez JF, Spremo-Potparević B. An in vitro evaluation of the cytotoxic potential of medicinal mushrooms against human breast cancer cell lines. Arh Hig Rada Toksikol 2024; 75:297-302. [PMID: 39718091 PMCID: PMC11667711 DOI: 10.2478/aiht-2024-75-3915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Medicinal mushroom extracts, i.e. their dried biomass, have long been known as sources of bioactive compounds with positive effects on the human health. The antioxidant, antigenotoxic, antiviral, and immunomodulatory properties of the commercially available extracts Agaricus blazei auct. non Murrill (AB), Cordyceps sinensis (Berk.) Sacc. (CS), and Immune Assist (IA) have already been documented. This study, studied the influence of these three mushrooms on the viability of cell lines MCF-7, MDA-MB-231, and HS-5. The cytotoxicity of AB, CS, and IA at different concentrations (25, 50, 100, 200, 400 and 800 μg/mL) was evaluated using the MTT assay. The results showed that AB was the most effective and induced cytotoxicity in both cancer cell lines, with IC50 values of 96.7 μg/mL for MCF-7 and 368.4 μg/mL for MDA-MB-231. After treatment with CS and IA, the half-maximal inhibitory concentration was reached only in MDA- MB-231 cells (IC50=613 μg/mL for CS and 343.3 μg/mL for IA). We have shown here that AB, CS and IA can suppress the growth of MCF-7 and MDA-MB-231 cell lines, while affecting the survival of healthy HS-5 cells to a much lesser extent. Our in vitro results suggested that AB, CS and IA are promising natural sources with potential anticancer activity.
Collapse
Affiliation(s)
- Dijana Topalović
- University of Belgrade Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia
| | - Lada Živković
- University of Belgrade Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia
| | - Sunčica Borozan
- University of Belgrade Faculty of Veterinary Medicine, Department of Chemistry, Belgrade, Serbia
| | - Juan F. Santibanez
- University of Belgrade Institute for Medical Research National Institute of the Republic of Serbia, Department of Molecular Oncology, Belgrade, Serbia
- Bernardo O’Higgins University, Integrative Center for Biology and Applied Chemistry (CIBQA), Santiago, Chile
| | | |
Collapse
|
2
|
Park CH, Oh YL, Shin JH, Park YJ. The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells. Molecules 2024; 29:3976. [PMID: 39203053 PMCID: PMC11357533 DOI: 10.3390/molecules29163976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Ganoderma lucidum, a member of the Basidiomycetes family, is attracting attention for its medicinal potential due to its biological activity and the presence of numerous bioactive compounds. Although it is known that extracts of this mushroom inhibit melanin production, there are few reports on a single substance associated with this effect. In this study, we identified ganodermanontriol (GT), a novel compound from G. lucidum, that effectively inhibited melanin biosynthesis in B16F10 cells. GT inhibits melanin production by suppressing the expression of cellular tyrosinase proteins and microphthalmia-related transcription factor (MITF). Furthermore, GT affects the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling molecules, which are involved in melanogenesis in B16F10 cells. Finally, the biosynthesis of GT and other substances by G. lucidum was evaluated using HPLC analysis. Thus, this study revealed the mechanism by which GT in G. lucidum inhibits melanin production in B16F10 cells, and these findings will contribute to promoting the potential use of this mushroom in the future.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Youn-Lee Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709, Republic of Korea
| | - Ju-Hyeon Shin
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| |
Collapse
|
3
|
Messeha SS, Zarmouh NO, Maku H, Gendy S, Yedjou CG, Elhag R, Latinwo L, Odewumi C, Soliman KFA. Prognostic and Therapeutic Implications of Cell Division Cycle 20 Homolog in Breast Cancer. Cancers (Basel) 2024; 16:2546. [PMID: 39061186 PMCID: PMC11274456 DOI: 10.3390/cancers16142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Cell division cycle 20 homolog (CDC20) is a well-known regulator of cell cycle progression. Abnormal expression of CDC20 leads to mitotic defects, which play a significant role in cancer development. In breast cancer (BC), CDC20 has been identified as a biomarker that has been linked to poor patient outcomes. In this study, we investigated the association of CDC20 with BC prognosis and immune cell infiltration by using multiple online databases, including UALCAN, KM plotter, TIMER2.0, HPA, TNM-plot, bc-GenExMiner, LinkedOmics, STRING, and GEPIA. The results demonstrate that BC patients have an elevated CDC20 expression in tumor tissues compared with the adjacent normal tissue. In addition, BC patients with overexpressed CDC20 had a median survival of 63.6 months compared to 169.2 months in patients with low CDC20 expression. Prognostic analysis of the examined data indicated that elevated expression of CDC20 was associated with poor prognosis and a reduction of overall survival in BC patients. These findings were even more prevalent in chemoresistance triple-negative breast cancer (TNBC) patients. Furthermore, the Gene Set Enrichment Analysis tool indicated that CDC20 regulates BC cells' cell cycle and apoptosis. CDC20 also significantly correlates with increased infiltrating B cells, CD4+ T cells, neutrophils, and dendritic cells in BC. In conclusion, the findings of this study suggest that CDC20 may be involved in immunomodulating the tumor microenvironment and provide evidence that CDC20 inhibition may serve as a potential therapeutic approach for the treatment of BC patients. In addition, the data indicates that CDC20 can be a reliable prognostic biomarker for BC.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Henrietta Maku
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Clement G. Yedjou
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Rashid Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Lekan Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Caroline Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Karam F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Lubachowski M, VanGenderen C, Valentine S, Belak Z, Davies GF, Arnason TG, Harkness TAA. Activation of the Anaphase Promoting Complex Restores Impaired Mitotic Progression and Chemosensitivity in Multiple Drug-Resistant Human Breast Cancer. Cancers (Basel) 2024; 16:1755. [PMID: 38730707 PMCID: PMC11083742 DOI: 10.3390/cancers16091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.
Collapse
Affiliation(s)
- Mathew Lubachowski
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Sarah Valentine
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Zach Belak
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Gerald Floyd Davies
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Terra Gayle Arnason
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
- Division of Endocrinology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- 320 Heritage Medical Research Centre, University of Alberta, 11207-87 Ave NW, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
5
|
Xie Q, Cao Z, You W, Cai X, Shen M, Yin Z, Jiang Y, Wang X, Ye S. Ganodermanontriol Suppresses the Progression of Lung Adenocarcinoma by Activating CES2 to Enhance the Metabolism of Mycophenolate Mofetil. J Microbiol Biotechnol 2024; 34:249-261. [PMID: 38419324 PMCID: PMC10940751 DOI: 10.4014/jmb.2306.06020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 03/02/2024]
Abstract
New anti-lung cancer therapies are urgently required to improve clinical outcomes. Since ganodermanontriol (GDNT) has been identified as a potential antineoplastic agent, its role in lung adenocarcinoma (LUAD) is investigated in this study. Concretely, lung cancer cells were treated with GDNT and/or mycophenolate mofetil (MMF), after which MTT assay, flow cytometry and Western blot were conducted. Following bioinformatics analysis, carboxylesterase 2 (CES2) was knocked down and rescue assays were carried out in vitro. Xenograft experiment was performed on mice, followed by drug administration, measurement of tumor growth and determination of CES2, IMPDH1 and IMPDH2 expressions. As a result, the viability of lung cancer cells was reduced by GDNT or MMF. GDNT enhanced the effects of MMF on suppressing viability, promoting apoptosis and inducing cell cycle arrest in lung cancer cells. GDNT up-regulated CES2 level, and strengthened the effects of MMF on down-regulating IMPDH1 and IMPDH2 levels in the cells. IMPDH1 and IMPDH2 were highly expressed in LUAD samples. CES2 was a potential target for GDNT. CES2 knockdown reversed the synergistic effect of GDNT and MMF against lung cancer in vitro. GDNT potentiated the role of MMF in inhibiting tumor growth and expressions of CES2 and IMPDH1/2 in lung cancer in vivo. Collectively, GDNT suppresses the progression of LUAD by activating CES2 to enhance the metabolism of MMF.
Collapse
Affiliation(s)
- Qingfeng Xie
- Respiratory Department, Longquan People’s Hospital, No. 699, Dongcha Road, Longquan City, Zhejiang Province, 323000, P.R. China
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Weiling You
- Respiratory Department, Longquan People’s Hospital, No. 699, Dongcha Road, Longquan City, Zhejiang Province, 323000, P.R. China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Mei Shen
- Longquan People’s Hospital, No. 699, Dongcha Road, Longquan City, Zhejiang Province, 323000, P.R. China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Yiwei Jiang
- Wenzhou Medical University, Wenzhou Chashan Higher Education Park, Wenzhou, Zhejiang Province, 325006, P.R. China
| | - Xin Wang
- Wenzhou Medical University, Wenzhou Chashan Higher Education Park, Wenzhou, Zhejiang Province, 325006, P.R. China
| | - Siyu Ye
- School of Public Administration, Wenzhou Medical University, Wenzhou Chashan Higher Education Park, Wenzhou, Zhejiang Province, 325006, P.R. China
| |
Collapse
|
6
|
Kim Y, Kim H, Ha Thi HT, Kim J, Lee YJ, Kim S, Hong S. Pellino 3 promotes the colitis-associated colorectal cancer through suppression of IRF4-mediated negative regulation of TLR4 signalling. Mol Oncol 2023; 17:2380-2395. [PMID: 37341064 PMCID: PMC10620127 DOI: 10.1002/1878-0261.13475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
The incidence of colitis-associated colorectal cancer (CAC) has increased due to a high-nutrient diet, increased environmental stimuli and inherited gene mutations. To adequately treat CAC, drugs should be developed by identifying novel therapeutic targets. E3 ubiquitin-protein ligase pellino homolog 3 (pellino 3; Peli3) is a RING-type E3 ubiquitin ligase involved in inflammatory signalling; however, its role in the development and progression of CAC has not been elucidated. In this study, we studied Peli3-deficient mice in an azoxymethane/dextran sulphate sodium-induced CAC model. We observed that Peli3 promotes colorectal carcinogenesis with increased tumour burden and oncogenic signalling pathways. Ablation of Peli3 reduced inflammatory signalling activation at the early stage of carcinogenesis. Mechanistic studies indicate that Peli3 enhances toll-like receptor 4 (TLR4)-mediated inflammation through ubiquitination-dependent degradation of interferon regulatory factor 4, a negative regulator of TLR4 in macrophages. Our study suggests an important molecular link between Peli3 and colonic inflammation-mediated carcinogenesis. Furthermore, Peli3 can be a therapeutic target in the prevention and treatment of CAC.
Collapse
Affiliation(s)
- Young‐Mi Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Hye‐Youn Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Huyen Trang Ha Thi
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Jooyoung Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Seong‐Jin Kim
- GILO InstituteGILO FoundationSeoulKorea
- Medpacto Inc.SeoulKorea
| | - Suntaek Hong
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| |
Collapse
|
7
|
Hatwik J, Patil HN, Limaye AM. Proliferative response of ERα-positive breast cancer cells to 10 μM enterolactone, and the associated alteration in the transcriptomic landscape. Gene 2023:147640. [PMID: 37453722 DOI: 10.1016/j.gene.2023.147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Enterolactone (EL) is a product of gut-microbial metabolism of dietary plant lignans. Studies linking EL with breast cancer risk have bolstered investigations into its effects on the mammary epithelial cells, and the mechanisms thereof. While it binds to the estrogen receptor α; ERα, its effect on the proliferation of mammary tumor cell lines is reportedly ambivalent; depending on its concentration. The genomic correlates of EL actions also remain unexplored. Here we have elaborately studied the effect of EL on proliferation of ERα-positive, and ERα-negative cell lines. 10 µM EL significantly enhanced the growth of the ERα-positive MCF-7 or T47D breast cancer cells, but not the ERα-negative MDA-MB-231 or MDA-MB-453 cells. In MCF-7 cells, it significantly increased the expression of TFF1 mRNA, an estrogen-induced transcript. The binding of ERα to the estrogen response element within the TFF1 locus further demonstrated the pro-estrogenic effect of 10 µM EL. We further explored the genome-wide transcriptomic effect of 10 µM EL using the next generation sequencing technology (RNA-seq). Analysis of RNA-seq data obtained from vehicle (0.1% DMSO)- or 10 µM EL treated- MCF-7 cells revealed modulation of expression of diverse sets of functionally related genes, which reflected cell cycle progression. The manner in which 10 µM EL regulated the hallmark G2/M checkpoint, and estrogen-response-late genes correlated with proliferation inducing, and estrogen-like effects of EL on MCF-7 cells.
Collapse
Affiliation(s)
- Juana Hatwik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Health Sciences, Al-Baath University, Homs, Syria
| | - Hrishikesh Nitin Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Yurttas AG, Okat Z, Elgun T, Cifci KU, Sevim AM, Gul A. Genetic deviation associated with photodynamic therapy in HeLa cell. Photodiagnosis Photodyn Ther 2023; 42:103346. [PMID: 36809810 DOI: 10.1016/j.pdpdt.2023.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Photodynamic therapy (PDT) is a method that is used in cancer treatment. The main therapeutic effect is the production of singlet oxygen (1O2). Phthalocyanines for PDT produce high singlet oxygen with absorbers of about 600-700 nm. AIM It is aimed to analyze cancer cell pathways by flow cytometry analysis and cancer-related genes with q-PCR device by applying phthalocyanine L1ZnPC, which we use as photosensitizer in photodynamic therapy, in HELA cell line. In this study, we investigate the molecular basis of L1ZnPC's anti-cancer activity. MATERIAL METHOD The cytotoxic effects of L1ZnPC, a phthalocyanine obtained from our previous study, in HELA cells were evaluated and it was determined that it led to a high rate of death as a result. The result of photodynamic therapy was analyzed using q-PCR. From the data received at the conclusion of this investigation, gene expression values were calculated, and expression levels were assessed using the 2-∆∆Ct method to examine the relative changes in these values. Cell death pathways were interpreted with the FLOW cytometer device. One-Way Analysis of Variance (ANOVA) and the Tukey-Kramer Multiple Comparison Test with Post-hoc Test were used for the statistical analysis. CONCLUSION In our study, it was observed that HELA cancer cells underwent apoptosis at a rate of 80% with drug application plus photodynamic therapy by flow cytometry method. According to q-PCR results, CT values of eight out of eighty-four genes were found to be significant and their association with cancer was evaluated. L1ZnPC is a new phthalocyanine used in this study and our findings should be supported by further studies. For this reason, different analyses are needed to be performed with this drug in different cancer cell lines. In conclusion, according to our results, this drug looks promising but still needs to be analyzed through new studies. It is necessary to examine in detail which signaling pathways they use and their mechanism of action. For this, additional experiments are required.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Tugba Elgun
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey
| | - Kezban Ucar Cifci
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey; Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Turkey
| | - Altug Mert Sevim
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Blundell R, Camilleri E, Baral B, Karpiński TM, Neza E, Atrooz OM. The Phytochemistry of Ganoderma Species and their Medicinal Potentials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:859-882. [PMID: 36999543 DOI: 10.1142/s0192415x23500404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Ganoderma genus is known for its diverse use as a functional food and therapeutic agent. This fungus has over 428 species, with Ganoderma lucidum being the most studied. The Ganoderma species produce several secondary metabolites and bioactive compounds like polysaccharides, phenols, and triterpenes, which are largely responsible for their therapeutic properties. Throughout this review, several extracts obtained from Ganoderma species have been studied to delve into their therapeutic characteristics and mechanisms. Such properties like immunomodulation, antiaging, antimicrobial, and anticancer activities have been demonstrated by several Ganoderma species and are supported by a large body of evidence. Although its phytochemicals play a vital role in its therapeutic properties, identifying the therapeutic potentials of fungal-secreted metabolites for human health-promoting benefits is a challenging task. Identification of novel compounds with distinct chemical scaffolds and their mechanism of action could help suppress the spread of rising pathogens. Thus, this review provides an updated and comprehensive overview of the bioactive components in different Ganoderma species and the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Imsida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Imsida, Malta
| | - Bikash Baral
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Edlira Neza
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, P. O. Box (7), Mutah, Jordan
| |
Collapse
|
11
|
Ni K, Hong L. Current Progress and Perspectives of CDC20 in Female Reproductive Cancers. Curr Mol Med 2023; 23:193-199. [PMID: 35319365 DOI: 10.2174/1573405618666220321130102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
12
|
Functional Validation of the Putative Oncogenic Activity of PLAU. Biomedicines 2022; 11:biomedicines11010102. [PMID: 36672610 PMCID: PMC9856075 DOI: 10.3390/biomedicines11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Plasminogen activator, urokinase (PLAU) is involved in cell migration, proliferation and tissue remodeling. PLAU upregulation is associated with an increase in aggressiveness, metastasis, and invasion of several cancer types, including breast cancer. In patients, this translates into decreased sensitivity to hormonal treatment, and poor prognosis. These clinical findings have led to the examination of PLAU as a biomarker for predicting breast cancer prognosis and therapy responses. In this study, we investigated the functional ability of PLAU to act as an oncogene in breast cancers by modulating its expression using CRISPR-deactivated Cas9 (CRISPR-dCas9) tools. Different effector domains (e.g., transcription modulators (VP64, KRAB)) alone or in combination with epigenetic writers (DNMT3A/3L, MSssI) were fused to dCas9 and targeted to the PLAU promoter. In MDA-MB-231 cells characterized by high PLAU expression downregulation of PLAU expression by CRISPR-dCas9-DNMT3A/3L-KRAB, resulted in decreased cell proliferation. Conversely, CRISPR-dCas9-VP64 induced PLAU upregulation in low PLAU expressing MCF-7 cells and significantly increased aggressiveness and invasion. In conclusion, modulation of PLAU expression affected metastatic related properties of breast cancer cells, thus further validating its oncogenic activity in breast cancer cells.
Collapse
|
13
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
14
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
15
|
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW. Targeting Cdc20 for cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188824. [DOI: 10.1016/j.bbcan.2022.188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
16
|
Peng Q, Huang H, Zhu C, Hou Q, Wei S, Xiao Y, Zhang Z, Sun X. CDC20 May Serve as a Potential Biomarker-Based Risk Score System in Predicting the Prognosis of Patients with Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8421813. [PMID: 36193067 PMCID: PMC9526619 DOI: 10.1155/2022/8421813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Background The specificity and sensitivity of hepatocellular carcinoma (HCC) diagnostic markers are limited, hindering the early diagnosis and treatment of HCC patients. Therefore, improving prognostic biomarkers for patients with HCC is urgently needed. Methods HCC-related datasets were downloaded from the public databases. Differentially expressed genes (DEGs) between HCC and adjacent nontumor liver tissues were then identified. Moreover, the intersection of DEGs in four datasets (GSE138178, GSE77509, GSE84006, and TCGA) was used in the functional enrichment, and module genes were obtained by a coexpression network. Cox and Kaplan-Meier analyses were used to identify overall survival- (OS-) related genes from module genes. Area under the curve (AUC) > 0.9 of OS-related genes was then carried out in order to perform the protein-protein interaction network. The feature genes were identified by least absolute shrinkage and selection operator (LASSO). Furthermore, the hub gene was identified through the univariate Cox model, after which the correlation analysis between the hub gene and pathways was explored. Finally, infiltration in immune cell types in HCC was analyzed. Results A total of 2,227 upregulated genes and 1,501 downregulated DEGs were obtained in all four datasets, which were mainly found to be involved in the cell cycle and retinol metabolism. Accordingly, 998 OS-related genes were screened to construct the LASSO model. Finally, 8 feature genes (BUB1, CCNB1, CCNB2, CCNA2, AURKB, CDC20, OIP5, and TTK) were obtained. CDC20 was shown to serve as a poor prognostic gene in HCC and was mainly involved in the cell cycle. Moreover, a positive correlation was noted between the high degree of infiltration with Th2 and CDC20. Conclusion High expression of CDC20 predicted poor survival, as potential target in the treatment for HCC.
Collapse
Affiliation(s)
- Qiliu Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, Guangxi International Zhuang Medicine Hospital, Nanning, 530201 Guangxi, China
| | - Hai Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Wuming Hospital, Nanning 530199, China
| | - Chunling Zhu
- Department of Clinical Laboratory, Guangxi International Zhuang Medicine Hospital, Nanning, 530201 Guangxi, China
| | - Qingqing Hou
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shangmou Wei
- Department of Clinical Laboratory, Guangxi International Zhuang Medicine Hospital, Nanning, 530201 Guangxi, China
| | - Yi Xiao
- Departments of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi Zhang
- Departments of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Sun
- Departments of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Ahmad MF, Wahab S, Ahmad FA, Ashraf SA, Abullais SS, Saad HH. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. FUNGAL BIOL REV 2022; 39:100-125. [DOI: 10.1016/j.fbr.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm Sin B 2022; 12:890-906. [PMID: 35256953 PMCID: PMC8897033 DOI: 10.1016/j.apsb.2021.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antrodia cinnamomea is extensively used as a traditional medicine to prevention and treatment of liver cancer. However, its comprehensive chemical fingerprint is uncertain, and the mechanisms, especially the potential therapeutic target for anti-hepatocellular carcinoma (HCC) are still unclear. Using UPLC‒Q-TOF/MS, 139 chemical components were identified in A. cinnamomea dropping pills (ACDPs). Based on these chemical components, network pharmacology demonstrated that the targets of active components were significantly enriched in the pathways in cancer, which were closely related with cell proliferation regulation. Next, HCC data was downloaded from Gene Expression Omnibus database (GEO). The Cancer Genome Atlas (TCGA) and DisGeNET were analyzed by bioinformatics, and 79 biomarkers were obtained. Furtherly, nine targets of ACDP active components were revealed, and they were significantly enriched in PI3K/AKT and cell cycle signaling pathways. The affinity between these targets and their corresponding active ingredients was predicted by molecular docking. Finally, in vivo and in vitro experiments showed that ACDPs could reduce the activity of PI3K/AKT signaling pathway and downregulate the expression of cell cycle-related proteins, contributing to the decreased growth of liver cancer. Altogether, PI3K/AKT-cell cycle appears as the significant central node in anti-liver cancer of A. Cinnamomea.
Collapse
|
19
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
20
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
21
|
Wu F, Sun Y, Chen J, Li H, Yao K, Liu Y, Liu Q, Lu J. The Oncogenic Role of APC/C Activator Protein Cdc20 by an Integrated Pan-Cancer Analysis in Human Tumors. Front Oncol 2021; 11:721797. [PMID: 34527589 PMCID: PMC8435897 DOI: 10.3389/fonc.2021.721797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
The landscape of CDC20 gene expression and its biological impacts across different types of cancers remains largely unknown. Here, a pan-cancer analysis was performed to analyze the role of Cdc20 in various human cancers. Our results indicated that the expression levels of the CDC20 gene were significantly elevated in bladder cancer, breast cancer, colon cancer, rectum cancer, stomach cancer, esophageal cancer, head and neck cancer, kidney cancer, liver cancer, lung cancer, prostate cancer, pancreatic cancer, and uterine cancer. In addition, the expression of CDC20 was significantly and positively correlated with the increase of clinical stages in multiple cancer types, including breast cancer, kidney cancer, and lung cancer, et al. Among 33 cancer subtypes in the TCGA dataset, the high expression of CDC20 was correlated with poor prognosis in 10 cancer types. Furthermore, the abundance of phosphorylated Cdc20 in the primary tumor was elevated and correlated with increased tumor grade. Next, we sought to elucidate the oncogenic role by analyzing its association with immune infiltration. For most cancer types, the CDC20 expression was positively correlated with the infiltration of cancer-associated fibroblasts and myeloid-derived suppressor cells. To further understand its functional activity, we explored the classic Cdc20 downstream substrates, which were found to be mutually exclusive with the expression of Cdc20. Moreover, the pan-cancer analysis of the molecular function of Cdc20 indicated that BUB1, CCNA2, CCNB1, CDK1, MAD2L1, and PLK1 might play a critical role in interaction with Cdc20. The abundance of Cdc20 was further validated at transcriptional and translational levels with a publicly available dataset and clinical tumor tissues. The knockdown of Cdc20 dramatically inhibited tumor growth both in vivo and in vitro. Therefore, our studies delineated the oncogenic role of CDC20 and its prognostic significance at the pan-cancer level and proved its functional activity in Cdc20 high expression cancer types. Our studies will merits further molecular assays to understand the potential role of Cdc20 in tumorigenesis and provide the rationale for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Fei Wu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yang Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Chen
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongyun Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Kang Yao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yongjun Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qingyong Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Kim S, Kim K, Choe J, Lee I, Kang J. Improved survival analysis by learning shared genomic information from pan-cancer data. Bioinformatics 2021; 36:i389-i398. [PMID: 32657401 PMCID: PMC7355236 DOI: 10.1093/bioinformatics/btaa462] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Motivation Recent advances in deep learning have offered solutions to many biomedical tasks. However, there remains a challenge in applying deep learning to survival analysis using human cancer transcriptome data. As the number of genes, the input variables of survival model, is larger than the amount of available cancer patient samples, deep-learning models are prone to overfitting. To address the issue, we introduce a new deep-learning architecture called VAECox. VAECox uses transfer learning and fine tuning. Results We pre-trained a variational autoencoder on all RNA-seq data in 20 TCGA datasets and transferred the trained weights to our survival prediction model. Then we fine-tuned the transferred weights during training the survival model on each dataset. Results show that our model outperformed other previous models such as Cox Proportional Hazard with LASSO and ridge penalty and Cox-nnet on the 7 of 10 TCGA datasets in terms of C-index. The results signify that the transferred information obtained from entire cancer transcriptome data helped our survival prediction model reduce overfitting and show robust performance in unseen cancer patient samples. Availability and implementation Our implementation of VAECox is available at https://github.com/dmis-lab/VAECox. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sunkyu Kim
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Keonwoo Kim
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Junseok Choe
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Inggeol Lee
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea.,Interdisciplinary Graduate Program in Bioinformatics, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
23
|
Lin TC, Germagian A, Liu Z. The NF-
κ
B Signaling and Wnt/
β
-catenin Signaling in MCF-7 Breast Cancer Cells in Response to Bioactive Components from Mushroom Antrodia Camphorata. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:199-215. [PMID: 33371814 DOI: 10.1142/s0192415x21500117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cancer, accounting for approximately 15% cancer deaths in women worldwide. This study investigated the anti-inflammation and anticancer properties of two bioactive components from Antrodia camphorata(AC), a rare medicinal mushroom natively grown in Taiwan and commonly used in Chinese traditional medicine. The anti-inflammatory and antitumorigenic functions of Antroquinonol (AQ) and 4-Acetylantroquinonol B (4-AAQB) from AC were examined on breast cancer cell line MCF-7 with/without TNF-α stimulation. Among nine inflammatory mediators (IL6, IL10, IL1β , IFNγ , PTGS2, TGFβ 1, TNF-α , CCL2 andCSF1) examined, AQ inhibited two of them (IL-10 and PTGS2), while 4-AAQB inhibited three of them (IL-10, PTGS2 and TNF-α ) (p ¡ 0.05). TNF-α stimulated expressions of five mediators (IL6, IL10, IFNγ , PTGS2, and CCL2), and AQ and 4-AAQB inhibited IL6 elevation (p ¡ 0.05). Both components inhibited aromatase expression with/without TNF-α stimulation, with 4-AAQB to be more effective (p ¡ 0.05). For immune checkpoint CD47, both components inhibited CD47 expression (p ¡ 0.05), but it did not respond to TNF-α stimulation. For Wnt/β - catenin signaling downstream genes (CCND1, C-MYC and AXIN2), both components have significant or marginal inhibitory effect on C-MYC in the condition with/without TNF-α stimulation. The luciferase assay demonstrated that both components exhibited inhibitory effect on NF-κ B signaling and Wnt/β -catenin signaling in the condition without TNF-α stimulation. In conclusion, our results displayed an overall pattern that AQ and 4-AAQB possess potential anti-inflammatory and antitumorigenic functions in MCF-7 breast cancer cells and warranted further in vivo pre-clinical and clinical studies to explore their anticancer properties.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alison Germagian
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
24
|
Liu S, Liu X, Wu J, Zhou W, Ni M, Meng Z, Jia S, Zhang J, Guo S, Lu S, Li Y. Identification of candidate biomarkers correlated with the pathogenesis and prognosis of breast cancer via integrated bioinformatics analysis. Medicine (Baltimore) 2020; 99:e23153. [PMID: 33285689 PMCID: PMC7717725 DOI: 10.1097/md.0000000000023153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND This study was carried out to identify potential key genes associated with the pathogenesis and prognosis of breast cancer (BC). METHODS Seven GEO datasets (GSE24124, GSE32641, GSE36295, GSE42568, GSE53752, GSE70947, GSE109169) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between BC and normal breast tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Hub genes related to the pathogenesis and prognosis of BC were verified by employing protein-protein interaction (PPI) network. RESULTS Ten hub genes with high degree were identified, including CDK1, CDC20, CCNA2, CCNB1, CCNB2, BUB1, BUB1B, CDCA8, KIF11, and TOP2A. Lastly, the Kaplan-Meier plotter (KM plotter) online database demonstrated that higher expression levels of these genes were related to lower overall survival. Experimental validation showed that all 10 hub genes had the same expression trend as predicted. CONCLUSION The findings of this research would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of BC, which could be used as a new biomarker for diagnosis and to guide the combination medicine of BC.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District
| | - Yingfei Li
- Center for Drug Metabolism and Pharmacokinetics Research Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen, Dongcheng District, Beijing, China
| |
Collapse
|
25
|
Ahmad MF. Ganoderma lucidum: A rational pharmacological approach to surmount cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113047. [PMID: 32504783 DOI: 10.1016/j.jep.2020.113047] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) has been broadly used for health endorsement as well as longevity for over 2000 years in Asian countries. It is an example of an ancient remedy and known as immortality mushroom. It has been employed as a health promoting agent owing to its broad pharmacological and therapeutical approaches. It has been confirmed that G. lucidum exhibits significant potency to prevent and treat different types of cancers such as breast, prostate, colon, lung and cervical. AIM OF THE STUDY To explore anticancer effects of various pharmacologically active compounds obtained from G. lucidum and their possible mechanism of action. MATERIALS AND METHODS A literature search was conducted using PubMed, Goggle Scholar, Saudi Digital Library and Cochrane Library until October 11, 2019. Search was made by using keywords such as anticancer evidence, mechanism of action, pharmacology, antioxidant, toxicity, chemotherapy, triterpenoids and polysaccharides of G. lucidum. RESULTS Various chemical compounds from G. lucidum exhibit anticancer properties mainly through diverse mechanism such as cytotoxic properties, host immunomodulators, metabolizing enzymes induction, prohibit the expression of urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) in cancer cells. Among the various compounds of G. lucidum triterpenoids and polysaccharides are under the major consideration of studies due to their several evidence of preclinical and clinical studies against cancer. CONCLUSION Natural alternatives associated with mild side effects are the basic human need of present therapy to eradicate the new emerging disorders. This review is an attempt to compile pharmacologically active compounds of G. lucidum those exhibit anti cancer effects either alone or along with chemotherapy and anticancer mechanisms against various cancer cells, clinical trials, chemotherapy induced toxicity challenges with limitations. It acts as a possible substitute to combat cancer growth with advance and conventional combination therapies as natural alternatives.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
26
|
Naorem LD, Pathak E, Muthaiyan M, Venkatesan A. Network-based meta-analysis for the identification of potential target for human anaplastic thyroid carcinoma. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Huang P, Le X, Huang F, Yang J, Yang H, Ma J, Hu G, Li Q, Chen Z. Discovery of a Dual Tubulin Polymerization and Cell Division Cycle 20 Homologue Inhibitor via Structural Modification on Apcin. J Med Chem 2020; 63:4685-4700. [PMID: 32290657 DOI: 10.1021/acs.jmedchem.9b02097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apcin is one of the few compounds that have been previously reported as a Cdc20 specific inhibitor, although Cdc20 is a very promising drug target. We reported here the design, synthesis, and biological evaluations of 2,2,2-trichloro-1-aryl carbamate derivatives as Cdc20 inhibitors. Among these derivatives, compound 9f was much more efficient than the positive compound apcin in inhibiting cancer cell growth, but it had approximately the same binding affinity with apcin in SPR assays. It is possible that another mechanism of action might exist. Further evidence demonstrated that compound 9f also inhibited tubulin polymerization, disorganized the microtubule network, and blocked the cell cycle at the M phase with changes in the expression of cyclins. Thus, it induced apoptosis through the activation of caspase-3 and PARP. In addition, compound 9f inhibited cell migration and invasion in a concentration-dependent manner. These results provide guidance for developing the current series as potential new anticancer therapeutics.
Collapse
Affiliation(s)
- Pan Huang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Pharmacy, Yiyang Central Hospital, Yiyang 413000, Hunan, China
| | - Fei Huang
- Center for Medical Experiments, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Haofeng Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Junlong Ma
- Department of Good Clinical Practice, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
28
|
Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol 2020; 104:4675-4703. [PMID: 32274562 DOI: 10.1007/s00253-020-10476-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.
Collapse
|
29
|
Marashiyan M, Kalhor H, Ganji M, Rahimi H. Effects of tosyl-l-arginine methyl ester (TAME) on the APC/c subunits: An in silico investigation for inhibiting cell cycle. J Mol Graph Model 2020; 97:107563. [PMID: 32066079 DOI: 10.1016/j.jmgm.2020.107563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/11/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/c) is requisite for controlling mitosis, which is activated by Cdh1 and Cdc20 activators. Dysregulation of APC/c is observed in many cancers and is known as a targeted drug particularly in cancer drug resistance. It was shown that tosyl-l-arginine methyl ester (TAME), via mimicking isoleucine-arginine (IR) tail of co-activators, inhibits APC/c functions. However, structure details and interaction of TAME with APC/c are poorly defined. In the current study, a well-established set of computational methods was used to identify the best binding pocket in order to inhibit APC activity. Therefore, the interaction of IR tail and Cbox of co-activators, as well as TAME as an inhibitor, as an inhibitor, with APC3 and APC8 subunits of APC/c were analyzed, regarding structure, molecular docking, molecular dynamics, and free binding energy. The results indicated that TAME bound to APC3 with a higher binding affinity (∼-7.3 kcal/mol) than APC8 (∼-5.7 kcal/mol). Also, the binding free energy value obtained for the APC3-TAME was -22.25 ± 1.12 kcal/mol. According to binding free energies, van der Waals energy was the major favorable contributor to the ligand binding. These results offer that TAME had more affinity to interact with the APC3 subunit, at the IR binding pocket than the APC8 subunit at the Cbox binding pocket. In conclusion, IR binding pocket can serve as an appropriate potential target for TAME as an inhibitor of APC/c.
Collapse
Affiliation(s)
- Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Cellular and Molecular Research Center,Qom University of Medical Sciences, Qom, Iran
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
30
|
Wang L, Li S, Wang Y, Tang Z, Liu C, Jiao W, Liu J. Identification of differentially expressed protein-coding genes in lung adenocarcinomas. Exp Ther Med 2020; 19:1103-1111. [PMID: 32010276 DOI: 10.3892/etm.2019.8300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma accounts for a high proportion of lung cancers. Though efforts have been made to develop new and effective treatments for this disease, the mortality rate remains high. Gene expression microarrays facilitate the study of lung cancer at the molecular level. The present study aimed to detect differentially expressed protein-coding genes to identify novel biomarkers and therapeutic targets for lung adenocarcinoma. Aberrations in gene expression in lung adenocarcinoma were determined by analysis of mRNA microarray datasets from the Gene Expression Omnibus database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) networks and statistical analysis were used to identify the biological functions of the differentially expressed genes (DEGs). The results of the bioinformatics analysis were subsequently validated using reverse transcription-quantitative PCR. A total of 303 DEGs were identified in lung adenocarcinomas, and they were enriched in a number of cancer-associated GO terms and KEGG pathways. DNA topoisomerase 2α (TOP2A), cell division cycle protein homolog 20 (CDC20), mitotic checkpoint serine/threonine protein kinase BUB1 (BUB1) and mitotic spindle assembly checkpoint protein MAD2A (MAD2L1) exhibited the highest degree of interaction in the PPI network. Survival analysis performed using Kaplan-Meier curves and Cox regression indicated that these four genes were all significantly associated with the survival of patients with lung adenocarcinomas. In conclusion, TOP2A, CDC20, BUB1 and MAD2L1 may be key protein-coding genes that may serve as biomarkers and therapeutic targets in lung adenocarcinomas.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shicheng Li
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenxue Tang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Chaolong Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
31
|
Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403065. [DOI: 10.1016/j.mrgentox.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022]
|
32
|
Cheng S, Castillo V, Sliva D. CDC20 associated with cancer metastasis and novel mushroom‑derived CDC20 inhibitors with antimetastatic activity. Int J Oncol 2019; 54:2250-2256. [PMID: 31081056 DOI: 10.3892/ijo.2019.4791] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of cell division cycle 20 (CDC20) is associated with malignant progression and poor prognosis in various types of cancer. The development of specific CDC20 inhibitors may be a novel strategy for the treatment of cancer with elevated expression of CDC20. The aim of the current study was to elucidate the role of CDC20 in cancer cell invasiveness and to identify novel natural inhibitors of CDC20. The authors found that CDC20 knockdown inhibited the migration of chemoresistant PANC‑1 pancreatic cancer cells and the metastatic MDA‑MB‑231 breast cancer cell line. By contrast, the overexpression of CDC20 by plasmid transfection promoted the metastasizing capacities of the PANC‑1 cells and MCF‑7 breast cancer cells. It was also identified that a triterpene mixture extracted from the mushroom Poria cocos (PTE), purified triterpenes dehydropachymic acid, and polyporenic acid C (PPAC) downregulated the expression of CDC20 in PANC‑1 cells dose‑dependently. Migration was also suppressed by PTE and PPAC in a dose‑dependent manner, which was consistent with expectations. Taken together, the present study is the first, to the best of our knowledge, to demonstrate that CDC20 serves an important role in cancer metastasis and that triterpenes from P. cocos inhibit the migration of pancreatic cancer cells associated with CDC20. Further investigations are in progress to investigate the specific mechanism associated with CDC20 and these triterpenes, which may have future potential use as natural agents in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Shujie Cheng
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Victor Castillo
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| | - Daniel Sliva
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Doan P, Musa A, Candeias NR, Emmert-Streib F, Yli-Harja O, Kandhavelu M. Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway. Front Pharmacol 2019; 10:330. [PMID: 31001122 PMCID: PMC6454069 DOI: 10.3389/fphar.2019.00330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. We show here that small molecule 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), a potential anticancer agent, increases the human glioblastoma cell death. Its mechanism of action and the interaction of selective signaling pathways remain elusive. Three structurally related phenolic compounds were tested in multiple glioma cell lines in which the potential activity of the compound, THTMP, was further validated and characterized. Upon prolonged exposer to THTMP, all glioma cell lines undergo p53 and cyclin-dependent kinase mediated cell death with the IC50 concentration of 26.5 and 75.4 μM in LN229 and Snb19, respectively. We found that THTMP strongly inhibited cell growth in a dose and in time dependent manner. THTMP treatment led to G1/S cell cycle arrest and apoptosis induction of glioma cell lines. Furthermore, we identified 3,714 genes with significant changes at the transcriptional level in response to THTMP. Further, a transcriptional analysis (RNA-seq) revealed that THTMP targeted the p53 signaling pathway specific genes causing DNA damage and cell cycle arrest at G1/S phase explained by the decrease of cyclin-dependent kinase 1, cyclin A2, cyclin E1 and E2 in glioma cells. Consistently, THTMP induced the apoptosis by regulating the expression of Bcl-2 family genes and reactive oxygen species while it also changed the expression of several anti-apoptotic genes. These observations suggest that THTMP exerts proliferation activity inhibition and pro-apoptosis effects in glioma through affecting cell cycle arrest and intrinsic apoptosis signaling. Importantly, THTMP has more potential at inhibiting GBM cell proliferation compared to TMZ, the current chemotherapy treatment administered to GBM patients; thus, we propose that THTMP may be an alternative therapeutic option for glioblastoma.
Collapse
Affiliation(s)
- Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Aliyu Musa
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Frank Emmert-Streib
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland
| | - Olli Yli-Harja
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, United States
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| |
Collapse
|
34
|
Long C, Chen J, Zhou H, Jiang T, Fang X, Hou D, Liu P, Duan H. Diosgenin exerts its tumor suppressive function via inhibition of Cdc20 in osteosarcoma cells. Cell Cycle 2019; 18:346-358. [PMID: 30640578 DOI: 10.1080/15384101.2019.1568748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the aggressive malignancies for young adults. Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in OS, suggesting that inhibition of Cdc20 could be a novel strategy for the treatment of OS. Since Cdc20 inhibitors have side effects, it is important to discover the new CDC20 inhibitors with non-toxic nature. In the present study, we determine whether natural agent diosgenin is an inhibitor of Cdc20 in OS cells. We performed MTT, FACS, Wound healing assay, Transwell, Western blotting, transfection assays in our study. We found diosgenin inhibited cell growth and induced apoptosis. Moreover, diosgenin exposure led to inhibition of cell migration and invasion. Notably, diosgenin inhibited the expression of Cdc20 in OS cells. Overexpression of Cdc20 abrogated the inhibition of cell growth and invasion induced by diosgenin. Our data reveal that inhibition of Cdc20 by diosgenin could be helpful for the treatment of patients with OS.
Collapse
Affiliation(s)
- Cheng Long
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Juan Chen
- b Department of Ultrasound, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Hua Zhou
- c Department of Orthopedics, Peking University Third Hospital , Beijing , China
| | - Tao Jiang
- d Department of Orthopedics, Sichuan Modern Hospital , Chengdu, Sichuan Province , China
| | - Xiang Fang
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Dong Hou
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Ping Liu
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Hong Duan
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| |
Collapse
|
35
|
Hotfilder M, Mallela N, Seggewiß J, Dirksen U, Korsching E. Defining a Characteristic Gene Expression Set Responsible for Cancer Stem Cell-Like Features in a Sub-Population of Ewing Sarcoma Cells CADO-ES1. Int J Mol Sci 2018; 19:ijms19123908. [PMID: 30563222 PMCID: PMC6321634 DOI: 10.3390/ijms19123908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
One of the still open questions in Ewing sarcoma, a rare bone tumor with weak therapeutic options, is to identify the tumor-driving cell (sub) population and to understand the specifics in the biological network of these cells. This basic scientific insight might foster the development of more specific therapeutic target patterns. The experimental approach is based on a side population (SP) of Ewing cells, based on the model cell line CADO-ES1. The SP is established by flow cytometry and defined by the idea that tumor stem-like cells can be identified by the time-course in clearing a given artificial dye. The SP was characterized by a higher colony forming activity, by a higher differentiation potential, by higher resistance to cytotoxic drugs, and by morphology. Several SP and non-SP cell fractions and bone marrow-derived mesenchymal stem cell reference were analyzed by short read sequencing of the full transcriptome. The double-differential analysis leads to an altered expression structure of SP cells centered around the AP-1 and APC/c complex. The SP cells share only a limited proportion of the full mesenchymal stem cell stemness set of genes. This is in line with the expectation that tumor stem-like cells share only a limited subset of stemness features which are relevant for tumor survival.
Collapse
Affiliation(s)
- Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, 48149 Münster, Germany.
| | - Nikhil Mallela
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149 Münster, Germany.
| | - Jochen Seggewiß
- Institute of Human Genetics, Faculty of Medicine, University of Münster, 48149 Münster, Germany.
| | - Uta Dirksen
- University Hospital Essen, Pediatrics III, Hematology and Oncology, West German Cancer Centre, 45147 Essen, Germany.
| | - Eberhard Korsching
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
36
|
Hussain S, Saxena S, Shrivastava S, Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar N, Sharma AK, Tiwari AK, Singh RK. Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis. PLoS One 2018; 13:e0208656. [PMID: 30517191 PMCID: PMC6281268 DOI: 10.1371/journal.pone.0208656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P ≤ 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis (2DE) and MALDI-TOF PMF studies which were in concordance with microarray data. Thus, the study has uncovered ample number of candidate genes associated with CMTs which need to be further validated as therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Rajkumar James Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Abhinav Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | | | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Miyapur, Hyderabad, Telangana, India
| | - Naveen Kumar
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Anil Kumar Sharma
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Ashok Kumar Tiwari
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| |
Collapse
|
37
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
38
|
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018. [PMID: 29534044 PMCID: PMC6017764 DOI: 10.3390/molecules23030649] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.
Collapse
|
39
|
Wang L, Hou Y, Yin X, Su J, Zhao Z, Ye X, Zhou X, Zhou L, Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells. Oncotarget 2018; 7:69770-69782. [PMID: 27626499 PMCID: PMC5342514 DOI: 10.18632/oncotarget.11974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yingying Hou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhe Zhao
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiantao Ye
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Li Zhou
- Department of Gynecologic Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
40
|
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 2017; 17:43-52. [PMID: 28980876 DOI: 10.1080/15384101.2017.1387700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.
Collapse
Affiliation(s)
- Guanning Shang
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Xu Ma
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Gang Lv
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| |
Collapse
|
41
|
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Bourdakou MM, Spyrou GM. Informed walks: whispering hints to gene hunters inside networks' jungle. BMC SYSTEMS BIOLOGY 2017; 11:97. [PMID: 29020948 PMCID: PMC5637247 DOI: 10.1186/s12918-017-0473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Background Systemic approaches offer a different point of view on the analysis of several types of molecular associations as well as on the identification of specific gene communities in several cancer types. However, due to lack of sufficient data needed to construct networks based on experimental evidence, statistical gene co-expression networks are widely used instead. Many efforts have been made to exploit the information hidden in these networks. However, these approaches still need to capitalize comprehensively the prior knowledge encrypted into molecular pathway associations and improve their efficiency regarding the discovery of both exclusive subnetworks as candidate biomarkers and conserved subnetworks that may uncover common origins of several cancer types. Methods In this study we present the development of the Informed Walks model based on random walks that incorporate information from molecular pathways to mine candidate genes and gene-gene links. The proposed model has been applied to TCGA (The Cancer Genome Atlas) datasets from seven different cancer types, exploring the reconstructed co-expression networks of the whole set of genes and driving to highlighted sub-networks for each cancer type. In the sequel, we elucidated the impact of each subnetwork on the indication of underlying exclusive and common molecular mechanisms as well as on the short-listing of drugs that have the potential to suppress the corresponding cancer type through a drug-repurposing pipeline. Conclusions We have developed a method of gene subnetwork highlighting based on prior knowledge, capable to give fruitful insights regarding the underlying molecular mechanisms and valuable input to drug-repurposing pipelines for a variety of cancer types. Electronic supplementary material The online version of this article (10.1186/s12918-017-0473-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, 2370, Nicosia, Cyprus.,Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, 115 27, Athens, Greece
| | - George M Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, 2370, Nicosia, Cyprus.
| |
Collapse
|
43
|
Liu W, Zhang J, Han W, Liu Y, Feng J, Tang C, Feng N, Tang Q. One single standard substance for the simultaneous determination of 17 triterpenes in Ganoderma lingzhi and its related species using high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:49-55. [PMID: 29028618 DOI: 10.1016/j.jchromb.2017.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Due to the difficulty and high cost for the preparation of triterpenes, one single standard for the simultaneous determination of multi-components (SSDMC) with high performance liquid chromatography (HPLC) is an advanced solution for multi-component analysis. Experiments were carried out to investigate the feasibility of SSDMC for the analysis of Ganoderma triterpenes, with external standard method (ESM) compared, and the samples of Ganoderma were classified by the content of Ganoderma triterpenes. The analysis was performed by using a Fortis Speed Core-C18 column (150mm×4.6mm I.D., 2.6μm) at gradient elution of 0.01% glacial acetic acid-water (V/V) and acetonitrile with diode array detection (252nm), at a flow rate of 1mL/min. The results showed that all calibration curves had good linearity (r2>0.9999) within test ranges. The LOD and LOQ were lower than 2.52ng and 6.43ng, respectively. The RSD for intra-day and inter-day of the seventeen analytes were less than 3.12% at three levels, and the recoveries were 91.4-103.0%. The contents of other 16 triterpenes were determined with ganoderic acid A by SSDMC, which showed that there were few differences compared with the results obtained by ESM. Moreover, the classification of 25 different species and strains of Ganoderma by using the content of triterpenes intuitively reflected the distinction among Ganoderma. In summary, the developed method could be readily utilized as a method of quality evaluation for Ganoderma triterpenes.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China; College of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China
| | - Wei Han
- College of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China
| | - Na Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China.
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, PR China, National Engineering Research Center of Edible Fungi, Shanghai 201403, PR China.
| |
Collapse
|
44
|
Abstract
For the past several decades, cancer patients in the U.S. have chosen the use of natural products as an alternative or complimentary medicine approach to treat or improve their quality of life via reduction or prevention of the side effects during or after cancer treatment. The genus Ganoderma includes about 80 species of mushrooms, of which several have been used for centuries in traditional Asian medicine for their medicinal properties, including anticancer and immunoregulatory effects. Numerous bioactive compounds seem to be responsible for their healing effects. Among the approximately 400 compounds produced by Ganoderma spp., triterpenes, peptidoglycans and polysaccharides are the major physiologically-active constituents. Ganoderma anticancer effects are attributed to its efficacy in reducing cancer cell survival and growth, as well as by its chemosensitizing role. In vitro and in vivo studies have been conducted in various cancer cells and animal models; however, in this review, we focus on Ganoderma’s efficacy on breast cancers. Evidence shows that some species of Ganoderma have great potential as a natural therapeutic for breast cancer. Nevertheless, further studies are needed to investigate their potential in the clinical setting and to translate our basic scientific findings into therapeutic interventions for cancer patients.
Collapse
|
45
|
Cdc20: At the Crossroads between Chromosome Segregation and Mitotic Exit. Trends Biochem Sci 2017; 42:193-205. [PMID: 28202332 DOI: 10.1016/j.tibs.2016.12.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/13/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022]
Abstract
Cell-division cycle protein 20 homologue (Cdc20) has important functions in chromosome segregation and mitotic exit. Cdc20 is the target of the spindle assembly checkpoint (SAC) and a key cofactor of the anaphase-promoting complex or cyclosome (APC/C) E3 ubiquitin ligase, thus regulating APC/C ubiquitin activity on specific substrates for their subsequent degradation by the proteasome. Here we discuss the roles of Cdc20 in SAC signalling and mitotic exit, describe how the integration of traditional approaches with emerging technologies has revealed new details of Cdc20 functions, comment about the potential of Cdc20 as a therapeutic target for the treatment of human malignancies, and discuss recent advances and controversies in the mechanistic understanding of the control of chromosome segregation during cell division.
Collapse
|
46
|
Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells. Nutrients 2017; 9:nu9020109. [PMID: 28165402 PMCID: PMC5331540 DOI: 10.3390/nu9020109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.
Collapse
|
47
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Wu F, Dai X, Gan W, Wan L, Li M, Mitsiades N, Wei W, Ding Q, Zhang J. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Lett 2016; 385:207-214. [PMID: 27780719 DOI: 10.1016/j.canlet.2016.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
Abstract
Recent studies revealed that mutations in SPOP (Speckle-type POZ protein) occur in up to 15% of patients with prostate cancer. However, the physiological role of SPOP in regulating prostate tumorigenesis remains elusive. Here, we identified the Cdc20 oncoprotein as a novel ubiquitin substrate of SPOP. As such, pharmacological inhibition of Cullin-based E3 ligases by MLN4924 could stabilize endogenous Cdc20 in cells. Furthermore, we found that Cullin 3, and, to a less extent, Cullin 1, specifically interacted with Cdc20. Depletion of Cullin 3, but not Cullin 1, could upregulate the abudance of Cdc20 largely via prolonging Cdc20 half-life. Moreover, SPOP, the adaptor protein of Cullin 3 family E3 ligase, specifically interacted with Cdc20, and promoted the poly-ubiquitination and subsequent degradation of Cdc20 in a degron-dependent manner. Importantly, prostate cancer-derived SPOP mutants failed to interact with Cdc20 to promote its degradation. As a result, SPOP-deficient prostate cancer cells with elevated Cdc20 expression became resistant to a pharmacological Cdc20 inhibitor. Therefore, our results revealed a novel role of SPOP in tumorigenesis in part by promoting the degradation of the Cdc20 oncoprotein.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Min Li
- Departments of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas Mitsiades
- Departments of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
49
|
Li K, Mao Y, Lu L, Hu C, Wang D, Si-Tu J, Lu M, Peng S, Qiu J, Gao X. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel. Int J Oncol 2016; 49:1679-85. [DOI: 10.3892/ijo.2016.3671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/26/2016] [Indexed: 11/06/2022] Open
|
50
|
CHEN CHENGYONG, SUN CHONG, TANG DONG, YANG GUANGCHENG, ZHOU XUANJUN, WANG DONGHAI. Identification of key genes in glioblastoma-associated stromal cells using bioinformatics analysis. Oncol Lett 2016; 11:3999-4007. [PMID: 27313730 PMCID: PMC4888085 DOI: 10.3892/ol.2016.4526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to identify key genes and pathways in glioblastoma-associated stromal cells (GASCs) using bioinformatics. The expression profile of microarray GSE24100 was obtained from the Gene Expression Omnibus database, which included the expression profile of 4 GASC samples and 3 control stromal cell samples. Differentially expressed genes (DEGs) were identified using limma software in R language, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery software. In addition, a protein-protein interaction (PPI) network was constructed. Subsequently, a sub-network was constructed to obtain additional information on genes identified in the PPI network using CFinder software. In total, 502 DEGs were identified in GASCs, including 331 upregulated genes and 171 downregulated genes. Cyclin-dependent kinase 1 (CDK1), cyclin A2, mitotic checkpoint serine/threonine kinase (BUB1), cell division cycle 20 (CDC20), polo-like kinase 1 (PLK1), and transcription factor breast cancer 1, early onset (BRCA1) were identified from the PPI network, and sub-networks revealed these genes as hub genes that were involved in significant pathways, including mitotic, cell cycle and p53 signaling pathways. In conclusion, CDK1, BUB1, CDC20, PLK1 and BRCA1 may be key genes that are involved in significant pathways associated with glioblastoma. This information may lead to the identification of the mechanism of glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- CHENGYONG CHEN
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - CHONG SUN
- Department of Neurosurgery, People's Hospital of Huantai, Zibo, Shandong 256400, P.R. China
| | - DONG TANG
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - GUANGCHENG YANG
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - XUANJUN ZHOU
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - DONGHAI WANG
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|