1
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Jafari S, Motedayyen H, Javadi P, Jamali K, Moradi Hasan-Abad A, Atapour A, Sarab GA. The roles of lncRNAs and miRNAs in pancreatic cancer: a focus on cancer development and progression and their roles as potential biomarkers. Front Oncol 2024; 14:1355064. [PMID: 38559560 PMCID: PMC10978783 DOI: 10.3389/fonc.2024.1355064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Jamali
- Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Chen H, Luo W, Lu X, Zhang T. Regulatory role of RNA modifications in the treatment of pancreatic ductal adenocarcinoma (PDAC). Heliyon 2023; 9:e20969. [PMID: 37928039 PMCID: PMC10623179 DOI: 10.1016/j.heliyon.2023.e20969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely life-threatening malignancy with a relatively unfavorable prognosis. The early occurrence of metastasis and local recurrence subsequent to surgery contribute to the poor survival rates of PDAC patients, thereby limiting the effectiveness of surgical intervention. Additionally, the desmoplastic and immune-suppressive tumor microenvironment of PDAC diminishes its responsiveness to conventional treatment modalities such as chemotherapy, radiotherapy, and immunotherapy. Therefore, it is imperative to identify novel therapeutic targets for PDAC treatment. Chemical modifications are prevalent in various types of RNA and exert significant influence on their structure and functions. RNA modifications, exemplified by m6A, m5C, m1A, and Ψ, have been identified as general regulators of cellular functions. The abundance of specific modifications, such as m6A, has been correlated with cell proliferation, invasion, migration, and patient prognosis in PDAC. Pre-clinical data has indicated that manipulating RNA modification regulators could enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. Therefore, targeting RNA modifications in conjunction with current adjuvant or neoadjuvant therapy holds promise. The objective of this review is to provide a comprehensive overview of RNA modifications in PDAC treatment, encompassing their behaviors, mechanisms, and potential treatment targets. Therefore, it aims to stimulate the development of novel therapeutic approaches and future clinical trials.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Lu
- Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Mandys V, Popov A, Gürlich R, Havránek J, Pfeiferová L, Kolář M, Vránová J, Smetana K, Lacina L, Szabo P. Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043617. [PMID: 36835029 PMCID: PMC9961675 DOI: 10.3390/ijms24043617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in controlling the biological properties of this type of tumor have been extensively studied. A better insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas, and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210 were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in our study were cultured under normoxic conditions. We also noted a relation to IL-6 production. In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210 expression similarly to the cancer tissue samples harvested from the patients.
Collapse
Affiliation(s)
- Václav Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Jan Havránek
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Lucie Pfeiferová
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jana Vránová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Lukáš Lacina
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Pavol Szabo
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 2022; 148:547-564. [PMID: 35083552 DOI: 10.1007/s00432-021-03892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| | - Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| |
Collapse
|
6
|
Hamada S, Matsumoto R, Masamune A. HIF-1 and NRF2; Key Molecules for Malignant Phenotypes of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14020411. [PMID: 35053572 PMCID: PMC8773475 DOI: 10.3390/cancers14020411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer progression involves interactions between cancer cells and stromal cells in harsh tumor microenvironments, which are characterized by hypoxia, few nutrients, and oxidative stress. Clinically, cancer cells overcome therapeutic interventions, such as chemotherapy and radiotherapy, to continue to survive. Activation of the adaptation mechanism is required for cancer cell survival under these conditions, and it also contributes to the acquisition of the malignant phenotype. Stromal cells, especially pancreatic stellate cells, play a critical role in the formation of a cancer-promoting microenvironment. We here review the roles of key molecules, hypoxia inducible factor-1 and KEAP1-NRF2, in stress response mechanisms for the adaptation to hypoxia and oxidative stress in pancreatic cancer cells and stellate cells. Various cancer-promoting properties associated with these molecules have been identified, and they might serve as novel therapeutic targets in the future. Abstract Pancreatic cancer is intractable due to early progression and resistance to conventional therapy. Dense fibrotic stroma, known as desmoplasia, is a characteristic feature of pancreatic cancer, and develops through the interactions between pancreatic cancer cells and stromal cells, including pancreatic stellate cells. Dense stroma forms harsh tumor microenvironments characterized by hypoxia, few nutrients, and oxidative stress. Pancreatic cancer cells as well as pancreatic stellate cells survive in the harsh microenvironments through the altered expression of signaling molecules, transporters, and metabolic enzymes governed by various stress response mechanisms. Hypoxia inducible factor-1 and KEAP1-NRF2, stress response mechanisms for hypoxia and oxidative stress, respectively, contribute to the aggressive behaviors of pancreatic cancer. These key molecules for stress response mechanisms are activated, both in pancreatic cancer cells and in pancreatic stellate cells. Both factors are involved in the mutual activation of cancer cells and stellate cells, by inducing cancer-promoting signals and their mediators. Therapeutic interventions targeting these pathways are promising approaches for novel therapies. In this review, we summarize the roles of stress response mechanisms, focusing on hypoxia inducible factor-1 and KEAP1-NRF2, in pancreatic cancer. In addition, we discuss the potential of targeting these molecules for the treatment of pancreatic cancer.
Collapse
|
7
|
Qiao J, Peng Q, Qian F, You Q, Feng L, Hu S, Liu W, Huang L, Shu X, Sun B. HIV-1 Vpr protein upregulates microRNA-210-5p expression to induce G2 arrest by targeting TGIF2. PLoS One 2021; 16:e0261971. [PMID: 34965271 PMCID: PMC8716043 DOI: 10.1371/journal.pone.0261971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important molecules that mediate virus-host interactions, mainly by regulating gene expression via gene silencing. Here, we demonstrated that HIV-1 infection upregulated miR-210-5p in HIV-1-inoculated cell lines and in the serum of HIV-1-infected individuals. Luciferase reporter assays and western blotting confirmed that a target protein of miR-210-5p, TGIF2, is regulated by HIV-1 infection. Furthermore, HIV-1 Vpr protein induced miR-210-5p expression. The use of a miR-210-5p inhibitor and TGIF2 overexpression showed that Vpr upregulated miR-210-5p and thereby downregulated TGIF2, which might be one of the mechanisms used by Vpr to induce G2 arrest. Moreover, we identified a transcription factor, NF-κB p50, which upregulated miR-210-5p in response to Vpr protein. In conclusion, we identified a mechanism whereby miR-210-5p, which is induced upon HIV-1 infection, targets TGIF2. This pathway was initiated by Vpr protein activating NF-κB p50, which promoted G2 arrest. These alterations orchestrated by miRNA provide new evidence on how HIV-1 interacts with its host during infection and increase our understanding of the mechanism by which Vpr regulates the cell cycle.
Collapse
Affiliation(s)
- Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Feng Qian
- Division of HIV/AIDS, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lingyan Feng
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| |
Collapse
|
8
|
Circulating MicroRNAs in Relation to Esophageal Adenocarcinoma Diagnosis and Survival. Dig Dis Sci 2021; 66:3831-3841. [PMID: 33403483 PMCID: PMC8257775 DOI: 10.1007/s10620-020-06740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Tissue miRNA can discriminate between esophageal adenocarcinoma (EA) and normal epithelium. However, no studies have examined a comprehensive panel of circulating miRNAs in relation to EA diagnosis and survival. METHODS We used all 62 EA cases from the US Multi-Center case-control study with available serum matched 1:1 to controls. Cases were followed for vital status. MiRNAs (n = 2064) were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay. Differential expression analysis of miRNAs in relation to case-control status was conducted. In cases, Cox regression models were fit to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause mortality. P values were adjusted using the Benjamini-Hochberg (BH) procedure for false discovery rate control. Predictive performance was assessed using cross-validation. RESULTS Sixty-eight distinct miRNAs were significantly upregulated between cases and controls (e.g., miR-1255b-2-3p fold change = 1.74, BH-adjusted P = 0.01). Assessing the predictive performance of these significantly upregulated miRNAs yielded 60% sensitivity, 65% specificity, and 0.62 AUC. miR-4253 and miR-1238-5p were associated with risk of mortality after EA diagnosis (HR = 4.85, 95% CI: 2.30-10.23, BH-adjusted P = 0.04 and HR = 3.81, 95% CI: 2.02-7.19, BH-adjusted P = 0.04, respectively). CONCLUSIONS While they require replication, these findings suggest that circulating miRNAs may be associated with EA diagnosis and survival.
Collapse
|
9
|
Tarasiuk A, Mackiewicz T, Małecka-Panas E, Fichna J. Biomarkers for early detection of pancreatic cancer - miRNAs as a potential diagnostic and therapeutic tool? Cancer Biol Ther 2021; 22:347-356. [PMID: 34224317 DOI: 10.1080/15384047.2021.1941584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies, with poor prognosis resulting mostly from late diagnosis. Surgery remains the most effective treatment and early detection significantly increases the overall survival. Biomarkers used for diagnosis and to monitor the response to treatment, such as carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA), are not adequate as early detection markers of PDAC, partly due to low sensitivity/specificity. Therefore, new biomarkers for PDAC are critically needed. This review aims at recent advancements in the identification and characterization of new biomarkers, microRNAs, which might prove useful in the early detection of PDAC.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Tomasz Mackiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Crosstalk between miRNAs and signaling pathways involved in pancreatic cancer and pancreatic ductal adenocarcinoma. Eur J Pharmacol 2021; 901:174006. [PMID: 33711308 DOI: 10.1016/j.ejphar.2021.174006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide with 5-year survival rates below 8%. Most patients with PC and pancreatic ductal adenocarcinoma (PDAC) die after relapse and cancer progression as well as resistance to treatment. Pancreatic tumors contain a high desmoplastic stroma that forms a rigid mass and has a potential role in tumor growth and metastasis. PC initiates from intraepithelial neoplasia lesions leading to invasive cancer through various pathways. These lesions harbor particular changes in signaling pathways involved in the tumorigenesis process. These events affect both the epithelial cells, including the tumor and the surrounding stroma, and eventually lead to the formation of complex signaling networks. Genetic studies of PC have revealed common molecular features such as the presence of mutations in KRAS gene in more than 90% of patients, as well as the inactivation or deletion mutations of some tumor suppressor genes including TP53, CDKN2A, and SMAD4. In recent years, studies have also identified different roles of microRNAs in PC pathogenesis as well as their importance in PC diagnosis and treatment, and their involvement in various signaling pathways. In this study, we discussed the most common pathways involved in PC and PDAC as well as their role in tumorigenesis and progression. Furthermore, the miRNAs participating in the regulation of these signaling pathways in PC progression are summarized in this study. Therefore, understanding more about pathways involved in PC can help with the development of new and effective therapies in the future.
Collapse
|
11
|
Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, Huang X, Xiang Y, Li B, Zhang X, Cui R. Glycometabolic rearrangements--aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:267. [PMID: 33256814 PMCID: PMC7708116 DOI: 10.1186/s13046-020-01765-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors worldwide, and pancreatic ductal adenocarcinoma is the most common type. In pancreatic cancer, glycolysis is the primary way energy is produced to maintain the proliferation, invasion, migration, and metastasis of cancer cells, even under normoxia. However, the potential molecular mechanism is still unknown. From this perspective, this review mainly aimed to summarize the current reasonable interpretation of aerobic glycolysis in pancreatic cancer and some of the newest methods for the detection and treatment of pancreatic cancer. More specifically, we reported some biochemical parameters, such as newly developed enzymes and transporters, and further explored their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiacheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xianzhi Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xu Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Bethune Hospital of Jilin University, Changchun, 130021, China
| | - Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China. .,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China.
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
12
|
Geismann C, Arlt A. Coming in the Air: Hypoxia Meets Epigenetics in Pancreatic Cancer. Cells 2020; 9:cells9112353. [PMID: 33113836 PMCID: PMC7694089 DOI: 10.3390/cells9112353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
With a five-year survival rate under 9%, pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest tumors. Although the treatment options are slightly improving, PDAC is the second leading cause of cancer related death in 2020 in the US. In addition to a pronounced desmoplastic stroma reaction, pancreatic cancer is characterized by one of the lowest levels of oxygen availability within the tumor mass and these hypoxic conditions are known to contribute to tumor development and progression. In this context, the major hypoxia associated transcription factor family, HIF, regulates hundreds of genes involved in angiogenesis, metabolism, migration, invasion, immune escape and therapy resistance. Current research implications show, that hypoxia also modulates diverse areas of epigenetic mechanisms like non-coding RNAs, histone modifications or DNA methylation, which cooperate with the hypoxia-induced transcription factors as well as directly regulate the hypoxic response pathways. In this review, we will focus on hypoxia-mediated epigenetic alterations and their impact on pancreatic cancer.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany;
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany;
- Department for Gastroenterology, European Medical School (EMS), Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
- Correspondence: ; Tel.: +49-441-403-2581
| |
Collapse
|
13
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis 2020; 11:93. [PMID: 32024814 PMCID: PMC7002725 DOI: 10.1038/s41419-020-2270-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a malignant bone tumor which occurs mainly in adolescents with frequent pulmonary metastasis and a high mortality rate. Accumulating evidence has indicated that microRNAs (miRNAs) play a vital role in various tumors by modulating target genes as well as signal pathways, and aberrant expression of miRNAs may contribute to OS progression. This study aimed to determine the association between miR-210-5p expression and OS progression and to investigate its potential underlying mechanism. Using reverse transcription-polymerase chain reaction (RT-PCR), miR-210-5p was found to be upregulated in clinical OS specimens and cell lines. Further functional analysis demonstrated that miR-210-5p promoted epithelial–mesenchymal transition (EMT) and induced oncogenic autophagy. Luciferase reporter assay, RNA-ChIP, and western blot analysis confirmed that PIK3R5, an essential regulator in the AKT/mTOR signaling pathway, is a target downstream gene of miR-210-5p. Overexpression or knockdown of PIK3R5 reversed the functional role of overexpression or knockdown of miR-210-5p, respectively. Silencing autophagy-related gene 5 (ATG5) abolished the functional effects of miR-210-5p upregulation or PIK3R5 knockdown in OS cells. In vivo, miR-210-5p overexpression promoted OS tumor growth and pulmonary metastasis. Taken together, our results demonstrated that miR-210-5p promoted EMT and oncogenic autophagy by suppressing the expression of PIK3R5 and regulating the AKT/mTOR signaling pathway. Therefore, inhibition of miR-210-5p may represent a promising treatment for OS.
Collapse
|
15
|
Ni J, Zhou S, Yuan W, Cen F, Yan Q. Mechanism of miR-210 involved in epithelial-mesenchymal transition of pancreatic cancer cells under hypoxia. J Recept Signal Transduct Res 2019; 39:399-406. [PMID: 31875764 DOI: 10.1080/10799893.2019.1683863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the possible mechanism of miR-210 involved in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells under hypoxia. Methods: In this study, we used the following approaches. Hypoxic microenvironment was stimulated in vitro, and the CCK-8 assay was used to analyze cell viability. The MiRNA expression level was measured by qRT-PCR. HOXA9, EMT-related proteins, and NF-κB activities were examined by immunoblotting assay. Dual luciferase reporter assay was used to assess whether HOXA9 was a target of miR-210.Results: Under hypoxia condition, miR-210, HIF-1α and NF-κB were increased, and the HOXA9 was reduced in PANC-1 cells. When miR-210 was overexpressed in normoxic PANC-1 cells, EMT epithelial markers of E-cadherin and β-catenin were down-regulated, and mesenchymal markers of vimentin and N-cadherin were up-regulated to promote cell migration/invasive ability, and the HOXA9 level was decreased. After HOXA9 level decreased, the sensitivity to chemotherapeutic drug of gemcitabine was reduced, NF-κB expression level and cell migration/invasive ability was enhanced. Whereas, miR-210 antagonist into hypoxic PANC-1 cells, which up-regulated E-cadherin, β-catenin level, and down-regulated vimentin and N-cadherin levels to decrease cell migration/invasive ability, and increase the HOXA9. Furthermore, increasing HOXA9 level decreased NF-κB expression level and cell migration/invasive ability, enhanced the sensitivity to gemcitabine. At last, miRDB and TargetScan predicted that HOXA9 was a target of miR-210, and dual luciferase reporter assay verified this hypothesis.Conclusion: MiR-210 inhibited the expression of HOXA9 to activate the NF-κB signaling pathway and mediated the occurrence of EMT of pancreatic cancer cells induced by HIF-1α under hypoxia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Hepatological Surgery, Fuyang hospital of traditional Chinese medicine, Hangzhou, China
| | - Shiyu Zhou
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wenbin Yuan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Feng Cen
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Qiang Yan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
16
|
Chhatriya B, Mukherjee M, Ray S, Sarkar P, Chatterjee S, Nath D, Das K, Goswami S. Comparison of tumour and serum specific microRNA changes dissecting their role in pancreatic ductal adenocarcinoma: a meta-analysis. BMC Cancer 2019; 19:1175. [PMID: 31795960 PMCID: PMC6891989 DOI: 10.1186/s12885-019-6380-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is considered as one of the most aggressive cancers lacking efficient early detection biomarkers. Circulating miRNAs are now being considered to have potency to be used as diagnostic and prognostic biomarkers in different diseases as well as cancers. In case of cancer, a fraction of the circulating miRNAs is actually derived from the tumour tissue. This fraction would function as stable biomarker for the disease and also would contribute to the understanding of the disease development. There are not many studies exploring this aspect in pancreatic cancer and even there is not much overlap of results between existing studies. Methods In order to address that gap, we performed a miRNA microarray analysis to identify differentially expressed circulating miRNAs between PDAC patients and normal healthy individuals and also found two more similar datasets to perform a meta-analysis using a total of 182 PDAC patients and 170 normal, identifying a set of miRNAs significantly altered in patient serum. Next, we found five datasets studying miRNA expression profile in tumour tissues of PDAC patients as compared to normal pancreas and performed a second meta-analysis using data from a total of 183 pancreatic tumour and 47 normal pancreas to detect significantly deregulated miRNAs in pancreatic carcinoma. Comparison of these two lists and subsequent search for their target genes which were also deregulated in PDAC in inverse direction to miRNAs was done followed by investigation of their role in disease development. Results We identified 21 miRNAs altered in both pancreatic tumour tissue and serum. While deciphering the functions of their target genes, we characterized key miR-Gene interactions perturbing the biological pathways. We identified important cancer related pathways, pancreas specific pathways, AGE-RAGE signaling, prolactin signaling and insulin resistance signaling pathways among the most affected ones. We also reported the possible involvement of crucial transcription factors in the process. Conclusions Our study identified a unique meta-signature of 21 miRNAs capable of explaining pancreatic carcinogenesis and possibly holding the potential to act as biomarker for the disease detection which could be explored further.
Collapse
Affiliation(s)
| | - Moumita Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sukanta Ray
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Piyali Sarkar
- Present Address: Tata Medical Centre, Kolkata, West Bengal, India
| | | | - Debashis Nath
- Indira Gandhi Memorial Hospital, Agartala, Tripura, India
| | - Kshaunish Das
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Srikanta Goswami
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India.
| |
Collapse
|
17
|
Tesfaye AA, Azmi AS, Philip PA. miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:58-70. [PMID: 30558723 DOI: 10.1016/j.ajpath.2018.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging disease that is mostly diagnosed late in the course of the illness. Unlike other cancers in which measurable successes have been achieved with traditional chemotherapy, targeted therapy, and, recently, immunotherapy, PDAC has proved to be poorly responsive to these treatments, with only marginal to modest incremental benefits using conventional cytotoxic therapy. There is, therefore, a great unmet need to develop better therapies based on improved understanding of biology and identification of predictive and prognostic biomarkers that would guide therapy. miRNAs are small noncoding RNAs that regulate the expression of some key genes by targeting their 3'-untranslated mRNA region. Aberrant expression of miRNAs has been linked to the development of various malignancies, including PDAC. A series of miRNAs have been identified as potential tools for early diagnosis, prediction of treatment response, and prognosis of patients with PDAC. In this review, we present a summary of the miRNAs that have been studied in PDAC in the context of disease biology.
Collapse
Affiliation(s)
- Anteneh A Tesfaye
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan.
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
18
|
Natale F, Vivo M, Falco G, Angrisano T. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clin Epigenetics 2019; 11:132. [PMID: 31492175 PMCID: PMC6729090 DOI: 10.1186/s13148-019-0728-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic pancreatitis presents a high risk of inflammation-related progression to pancreatic cancer. Pancreatic cancer is the fourth leading cause of cancer-related death worldwide. The high mortality rate is directly related to the difficulty in promptly diagnosing the disease, which often presents as overt and advanced. Hence, early diagnosis for pancreatic cancer becomes crucial, propelling research into the molecular and epigenetic landscape of the disease. MAIN BODY Recent studies have shown that cell-free DNA methylation profiles from inflammatory diseases or cancer can vary, thus opening a new venue for the development of biomarkers for early diagnosis. In particular, cell-free DNA methylation could be employed in the identification of pre-neoplastic signatures in individuals with suspected pancreatic conditions, representing a specific and non-invasive method of early diagnosis of pancreatic cancer. In this review, we describe the molecular determinants of pancreatic cancer and how these are related to chronic pancreatitis. We will then present an overview of differential methylated genes in the two conditions, highlighting their diagnostic or prognostic potential. CONCLUSION Exploiting the relation between abnormally methylated cell-free DNA and pre-neoplastic lesions or chronic pancreatitis may become a game-changing approach for the development of tools for the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Francesco Natale
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
19
|
Ren J, Li X, Dong H, Suo L, Zhang J, Zhang L, Zhang J. miR-210-3p regulates the proliferation and apoptosis of non-small cell lung cancer cells by targeting SIN3A. Exp Ther Med 2019; 18:2565-2573. [PMID: 31555365 PMCID: PMC6755421 DOI: 10.3892/etm.2019.7867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies have indicated that microRNA (miR)-210-3p is upregulated in NSCLC, however, the specific mechanism underlying the role of miR-210-3p in NSCLC pathogenesis requires further investigation. The aim of the present study was to explore the roles of miR-210-3p in NSCLC and the associated mechanisms. A total of 30 NSCLC tissues and paired adjacent normal tissues were collected for study. Reverse transcription-quantitative polymerase chain reaction was performed to compare the expression of miR-210-3p in the 30 paired cancerous and adjacent normal tissues. Additionally, the expression of miR-210-3p in different NSCLC lines and normal human lung epithelial cell line BEAS-2B were also compared. Furthermore, A549 and H1299 NSCLC cells were cultured and transfected with miR-210-3p inhibitors, and MTT and propidium iodide/annexin V assays were performed to investigate the effects of miR-210-3p inhibition on the proliferation and apoptosis of the cells. RT-qPCR and western blot analyses were also performed to determine the effects of miR-210-3p on the expression levels of SIN3A, B-cell lymphoma 2 (Bcl-2) and Caspase-3. Finally, a reverse experiment was conducted by transfecting A549 cells with miR-210-3p inhibitor and SIN3A small interfering (si)RNA, and a dual-luciferase reporter assay was performed to confirm that SIN3A is a direct target of miR-210-3p. It was observed that miR-210-3p was significantly upregulated in NSCLC tissues compared with the levels in the adjacent normal tissues, and that the expression of miR-210-3p in patients with NSCLC was negatively correlated with the expression of SIN3A in NSCLC tissue. miR-210-3p was also significantly upregulated in different NSCLC cell lines compared with the levels in BEAS-2B cells. The transient downregulation of miR-210-3p in A549 cells led to a significant suppression of cell proliferation and markedly increased cell apoptosis, as well as increased the expression of SIN3A and Caspase-3 and decreased the expression of Bcl-2. On the other hand, co-transfection of miR-210-3p inhibitor and SIN3A siRNA partially blocked miR-210-3p inhibitor-induced pro-apoptotic effects. The results of the dual-luciferase reporter assay demonstrated that SIN3A is a direct target of miR-210-3p. Collectively, these findings indicate that can regulate the proliferation and apoptosis of NSCLC cells by targeting SIN3A. These results suggest that miR-210-3p has the potential to become a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Clinical Surgery, Handan First Hospital, Handan, Hebei 056002, P.R. China
| | - Xiaodan Li
- Department of Clinical Surgery, Handan First Hospital, Handan, Hebei 056002, P.R. China
| | - Hao Dong
- Department of Orthopedic Trauma, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Longlong Suo
- Department of Clinical Surgery, Handan First Hospital, Handan, Hebei 056002, P.R. China
| | - Jun Zhang
- Department of Radiology, Leling People's Hospital, Leling, Shandong 253600, P.R. China
| | - Lina Zhang
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Jing Zhang
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
20
|
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, Yu X, Xu J. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics 2018; 8:5072-5087. [PMID: 30429887 PMCID: PMC6217060 DOI: 10.7150/thno.26546] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most challenging lethal tumors and has a very poor prognosis. In addition to cancer cells, the tumor microenvironment created by a repertoire of resident and recruited cells and the extracellular matrix also contribute to the acquisition of hallmarks of cancer. Among these factors, cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment. CAFs originate from the activation of resident fibroblasts and pancreatic stellate cells, the differentiation of bone marrow-derived mesenchymal stem cells and epithelial-to-mesenchymal transition. CAFs acquire an activated phenotype via various cytokines and promote tumor proliferation and growth, accelerate invasion and metastasis, induce angiogenesis, promote inflammation and immune destruction, regulate tumor metabolism, and induce chemoresistance; these factors contribute to the acquisition of major hallmarks of PDAC. Therefore, an improved understanding of the impact of CAFs on the major hallmarks of PDAC will highlight the diagnostic and therapeutic values of these targeted cells.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| |
Collapse
|
21
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
22
|
Placental hypoxia-regulating network in relation to birth weight and ponderal index: the ENVIRONAGE Birth Cohort Study. J Transl Med 2018; 16:2. [PMID: 29316938 PMCID: PMC5761191 DOI: 10.1186/s12967-017-1375-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/28/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND HIF1α, miR-210 and its downstream targets ISCU, COX-10, RAD52 and PTEN are all part of the placental hypoxia-responsive network. Tight regulation of this network is required to prevent development of maternal-fetal complications such as fetal growth restriction. HIF1α expression is increased in preeclamptic placentae, but little is known about its association with birth weight in normal pregnancies. METHODS We measured placental levels of HIF1α, miR-20a, miR-210, ISCU, COX-10, RAD52 and PTEN in 206 mother-newborn pairs of the ENVIRONAGE birth cohort. RESULTS Placental HIF1α gene expression was inversely associated with the ponderal index (PI): for a doubling in placental HIF1α expression, PI decreased by 6.7% (95% confidence interval [CI] 1.3 to 12.0%, p = 0.01). Placental RAD52 expression also displayed an inverse association with PI, a doubling in gene expression was associated with a 6.2% (CI 0.2 to 12.1% p = 0.04) decrease in PI. As for birth weight, we observed a significant association with placental miR-20a expression only in boys, where a doubling in miR-20a expression is associated with a 54.2 g (CI 0.6 to 108 g, p = 0.05) increase in birth weight. CONCLUSIONS The decrease in fetal growth associated with expression of hypoxia-network members HIF1a, RAD52 and miR-20a indicates that this network is important in potential intrauterine insults.
Collapse
|
23
|
Hong X, Zhang J, Wu Q, Wang W, Ye AY, Song W, Dai H, Wang X, Wu F, You L, Wu W, Zhao Y. Challenges in detecting pre-malignant pancreatic lesions during acute pancreatitis using a serum microRNA assay: a study based on KrasG12D transgenic mice. Oncotarget 2017; 7:22700-10. [PMID: 27009811 PMCID: PMC5008393 DOI: 10.18632/oncotarget.8148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Caerulein-induced acute pancreatitis accelerates the progression of pancreatic intraepithelial neoplasia (PanIN) lesions in a pancreas-specific KrasG12D mouse model. The purpose of this study was to explore whether serum microRNAs (miRNAs) can serve as sensitive biomarkers to detect occult PanIN in the setting of acute pancreatitis. Serum miRNA profiles were quantified by an array-based method and normalized by both Variance Stabilization Normalization (VSN) and invariant methods. Individual miRNAs were validated by TaqMan real-time PCR with synthetic spike-in C. elegans miRNAs as external controls. Serum miRNA profiles distinguished KrasG12D mice with pancreatitis from wild-type mice without pancreatitis, but failed to differentiate KrasG12D mice with pancreatitis from wild-type mice with pancreatitis. Most individual miRNAs that increased in KrasG12D mice with pancreatitis were not significantly different between KrasG12D mice without pancreatitis and wild-type mice without pancreatitis. Mechanistically, Gene Set Enrichment Analysis (GSEA) of the mRNA array data and immunohistochemical assays showed that caerulein-induced acute pancreatitis involved acinar cell loss and immune cell infiltration, which might contribute to serum miRNA profile changes. This study highlighted the challenges in using sensitive serum miRNA biomarker screening for the early detection of pancreatic malignancies during acute pancreatitis.
Collapse
Affiliation(s)
- Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Zhang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Adam Yongxin Ye
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Hongmei Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fan Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
25
|
Masamune A, Yoshida N, Hamada S, Takikawa T, Nabeshima T, Shimosegawa T. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells. Biochem Biophys Res Commun 2017; 495:71-77. [PMID: 29111329 DOI: 10.1016/j.bbrc.2017.10.141] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuhide Nabeshima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
Miyashita T, Miki K, Kamigaki T, Makino I, Tajima H, Nakanuma S, Hayashi H, Takamura H, Fushida S, Ahmed AK, Harmon JW, Ohta T. Low-dose valproic acid with low-dose gemcitabine augments MHC class I-related chain A/B expression without inducing the release of soluble MHC class I-related chain A/B. Oncol Lett 2017; 14:5918-5926. [PMID: 29113227 PMCID: PMC5661604 DOI: 10.3892/ol.2017.6943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/02/2017] [Indexed: 12/27/2022] Open
Abstract
To improve natural killer group 2 member D (NKG2D)-dependent cytotoxicity, the inhibition of cleavage and release of major histocompatibility complex class 1-related chain (MIC) molecules from the tumor surface are required. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is able to induce cell-surface MICA/B on tumor cells. In the present study, the ability of VPA and gemcitabine (GEM) to upregulate MICA/B in pancreatic cancer cells was investigated, resulting in the inhibition of cleavage and release of MIC molecules from the tumor surface. Flow cytometry was used to quantify MICA/B expression in six human pancreatic cancer lines. Functional cytotoxic activity of γδT cells against pancreatic cancer cells treated with VPA and GEM was determined using cytotoxicity assays. At low doses of VPA (0.7 mM) and GEM (0.001 µM), which did not induce tumor growth alterations, the agents individually increased cell-surface MICA/B expression in MICA/B-positive cell lines, but not in the MICA/B-negative cell line. Furthermore, the combination of VPA and GEM synergistically induced cell-surface MICA/B expression. In MICA/B-positive cell lines, the increase in MICA/B expression was dependent on VPA concentration. The combination of low-dose VPA and GEM enhanced the susceptibility of the PANC-1 cell line to γδT cell-mediated tumor cell lysis. It was observed that soluble MIC was released from PANC-1 in the culture supernatant following treatment with GEM. However, the combination of low-dose VPA with low-dose GEM increased MICA/B expression without inducing soluble MIC, resulting in enhanced tumor cell lysis. The results of the present study suggest that the combined administration of low-dose VPA with low-dose GEM has the potential to enhance the therapeutic effects of immunotherapy in pancreatic cancer. Furthermore, it is proposed that the combination acts, in part, by upregulating MICA/B and prevents soluble MIC from being released.
Collapse
Affiliation(s)
- Tomoharu Miyashita
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Kenji Miki
- Medinet Medical Institute, MEDINET Co., Ltd., Tokyo 158-0096, Japan
| | - Takashi Kamigaki
- Medinet Medical Institute, MEDINET Co., Ltd., Tokyo 158-0096, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Ali K Ahmed
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - John W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
27
|
Karamitopoulou E, Haemmig S, Baumgartner U, Schlup C, Wartenberg M, Vassella E. MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer. Mod Pathol 2017; 30:1116-1125. [PMID: 28548126 DOI: 10.1038/modpathol.2017.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Cellular interactions in the tumor microenvironment influence neoplastic progression in pancreatic ductal adenocarcinoma. One underlying mechanism is the induction of the prognostically unfavorable epithelial-mesenchymal-transition-like tumor budding. Our aim is to explore the expression of microRNAs implicated in the regulation of tumor budding focusing on the microenvironment of the invasive front. To this end, RNA from laser-capture-microdissected material of the main tumor, tumor buds, juxta-tumoral stroma, tumor-remote stroma, and non-neoplastic pancreatic parenchyma from pancreatic cancer cases with (n=7) and without (n=6) tumor budding was analyzed by qRT-PCR for the expression of a panel of miRNAs that are known to be implicated in the regulation of epithelial-mesenchymal transition, including miR-21, miR-183, miR-200b, miR-200c, miR-203, miR-205, miR-210, and miR-217. Here we show that at the invasive front of pancreatic ductal adenocarcinoma, specific microRNAs, are differentially expressed between tumor buds and main tumor cells and between cases with and without tumor budding, indicating their involvement in the regulation of the budding phenotype. Notably, miR-200b and miR-200c were significantly downregulated in the tumor buds. Consistent with this finding, they negatively correlated with the expression of epithelial-mesenchymal-transition-associated E-cadherin repressors ZEB1 and ZEB2 in the budding cells (P<0.001). Interestingly, many microRNAs were also dysregulated in juxta-tumoral compared to tumor-remote stroma suggesting that juxta-tumoral stroma contributes to microRNA dysregulation. Notably, miR-200b and miR-200c were strongly downregulated while miR-210 and miR-21 were upregulated in the juxta-tumoral vs tumor-remote stroma in carcinomas with tumor budding. In conclusion, microRNA targeting in both tumor and stromal cells could represent a treatment option for aggressive pancreatic cancer.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Stefan Haemmig
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ulrich Baumgartner
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cornelia Schlup
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Martin Wartenberg
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Erik Vassella
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Ansari D, Carvajo M, Bauden M, Andersson R. Pancreatic cancer stroma: controversies and current insights. Scand J Gastroenterol 2017; 52:641-646. [PMID: 28276831 DOI: 10.1080/00365521.2017.1293726] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer is characterized by a dense stromal response. The stroma includes a heterogeneous mass of cells, including pancreatic stellate cells, fibroblasts, immune cells and nerve cells, as well as extracellular matrix proteins, cytokines and growth factors, which interact with the tumor cells. Previous research has indicated that stromal elements contribute to tumor growth and aggressiveness. However, recent studies suggest that some elements of the stroma may actually restrain the tumor. This review focuses on the complex interactions between the stromal microenvironment and tumor cells, discussing molecular mechanisms and potential future diagnostic and therapeutic approaches by targeting the stroma.
Collapse
Affiliation(s)
- Daniel Ansari
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Maria Carvajo
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Monika Bauden
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Roland Andersson
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| |
Collapse
|
29
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Fan D, Hong L. Biological implications and clinical value of mir-210 in gastrointestinal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:539-548. [PMID: 28317401 DOI: 10.1080/17474124.2017.1309281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, a common feature of tumor microenvironment, is known to accelerate tumor development and growth by promoting the formation of a neoplastic environment. Recent studies have provided a wealth of evidence that miRNAs are significant members of the adaptive response to low oxygen in tumors. miR-210 is one of the hypoxia-induced miRNAs, which has been reported extensively in cancer researches. However, there is no systematic discussion about the role of miR-210 in gastrointestinal cancer. We conducted a literature research in database including PubMed, Elsevier Science Direct and Medline before 16 September 2016, in order to collect articles of miR-210 in gastrointestinal cancer. Areas covered: In the present review, we mainly discuss the following aspects: hypoxia-induced dysregulation of miR-210, the expression of miR-210 and tumorigenesis, the resultant changes of miR-210 targets and its roles in different types of gastrointestinal cancer progression, the diagnostic, therapeutic and prognostic value of miR-210 in gastrointestinal cancer. Expert commentary: Numerous researches have demonstrated the values of miR-210 in cancer diagnosis, prognosis and targeted therapies, especially in gastrointestinal cancers. However, there are also some existing problems and challenges in translating the new research findings into clinical utility. Further investigations and studies are still urgently required.
Collapse
Affiliation(s)
- Wanli Yang
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
30
|
Schoepp M, Ströse AJ, Haier J. Dysregulation of miRNA Expression in Cancer Associated Fibroblasts (CAFs) and Its Consequences on the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9060054. [PMID: 28538690 PMCID: PMC5483873 DOI: 10.3390/cancers9060054] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment, including cancer-associated fibroblasts (CAF), has developed as an important target for understanding tumor progression, clinical prognosis and treatment responses of cancer. Cancer cells appear to transform normal fibroblasts (NF) into CAFs involving direct cell-cell communication and epigenetic regulations. This review summarizes the current understanding on miR involvement in cancer cell—tumor environment/stroma communication, transformation of NFs into CAFs, their involved targets and signaling pathways in these interactions; and clinical relevance of CAF-related miR expression profiles. There is evidence that miRs have very similar roles in activating hepatic (HSC) and pancreatic stellate cells (PSC) as part of precancerous fibrotic diseases. In summary, deregulated miRs affect various intracellular functional complexes, such as transcriptional factors, extracellular matrix, cytoskeleton, EMT/MET regulation, soluble factors, tyrosine kinase and G-protein signaling, apoptosis and cell cycle & differentiation, but also formation and composition of the extracellular microenvironment. These processes result in the clinical appearance of desmoplasia involving CAFs and fibrosis characterized by deregulated stellate cells. In addition, modulated release of soluble factors can act as (auto)activating feedback loop for transition of NFs into their pathological counterparts. Furthermore, epigenetic communication between CAFs and cancer cells may confer to cancer specific functional readouts and transition of NF. MiR related epigenetic regulation with many similarities should be considered as key factor in development of cancer and fibrosis specific environment.
Collapse
Affiliation(s)
- Maren Schoepp
- Comprehensive Cancer Center Münster (CCCM), University Hospital Münster, 48149 Münster, Germany.
| | - Anda Jana Ströse
- Nordakademie University of Applied Sciences, Köllner Chaussee 11, 25337 Elmshorn, Germany.
| | - Jörg Haier
- Nordakademie University of Applied Sciences, Köllner Chaussee 11, 25337 Elmshorn, Germany.
| |
Collapse
|
31
|
Ke HL, Li WM, Lin HH, Hsu WC, Hsu YL, Chang LL, Huang CN, Li CC, Chang HP, Yeh HC, Li CF, Wu WJ. Hypoxia-regulated MicroRNA-210 Overexpression is Associated with Tumor Development and Progression in Upper Tract Urothelial Carcinoma. Int J Med Sci 2017; 14:578-584. [PMID: 28638274 PMCID: PMC5479127 DOI: 10.7150/ijms.15699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxia has been shown to facilitate tumor progression. Hypoxia-regulated microRNA-210 (miR-210) may play an important role in carcinogenesis and tumor progression. In this study, we evaluated the clinical significance of miR-210 expression in upper tract urothelial carcinoma (UTUC). METHODS Eighty-three UTUC patients participated in this study. All of them provided cancer tissue samples and 50 of them provided non-cancerous urothelium samples. Clinicopathologic data were collected by reviewing medical records. The expression of miR-210 and hypoxia-inducible factor-1α (HIF-1α) was determined by quantitative real-time polymerase chain reaction. The relationship between clinicopathologic variables and the expression of miR-210 and HIF-1α was analyzed statistically. RESULTS MiR-210 is overexpressed in UTUC compared to non-cancerous urothelium (p < 0.001); it is also upregulated in high-stage and high-grade tumors (p = 0.020 and 0.049, respectively). HIF-1α is overexpressed in UTUC and correlates positively with miR-210 expression (r = 0.442, p = 0.001). CONCLUSION Both miR-210 and HIF-1α are involved in promoting UTUC carcinogenesis. MiR-210 is also correlated with tumor progression. Further studies are needed to clarify the underlying mechanism.
Collapse
Affiliation(s)
- Hung-Lung Ke
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Nung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Ping Chang
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
33
|
Yoshida N, Masamune A, Hamada S, Kikuta K, Takikawa T, Motoi F, Unno M, Shimosegawa T. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer. Cancer Lett 2017; 390:103-114. [PMID: 28093281 DOI: 10.1016/j.canlet.2017.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with pancreatic ductal adenocarcinoma (PDAC). Kindlin-2 is a focal adhesion protein that regulates the activation of integrins. This study aimed to clarify the role of kindlin-2 in PSCs in pancreatic cancer. Kindlin-2 expression in 79 resected pancreatic cancer tissues was examined by immunohistochemical staining. Kindlin-2-knockdown immortalized human PSCs were established using small interfering RNA. Pancreatic cancer cells were treated with conditioned media of PSCs, and the cell proliferation and migration were examined. SUIT-2 pancreatic cancer cells were subcutaneously injected into nude mice alone or with PSCs and the size of the tumors was monitored. Kindlin-2 expression was observed in PDAC and the peritumoral stroma. Stromal kindlin-2 expression was associated with shorter recurrence-free survival time after R0 resection. Knockdown of kindlin-2 resulted in decreased proliferation, migration, and cytokine expression in PSCs. The PSC-induced proliferation and migration of pancreatic cancer cells were suppressed by kindlin-2 knockdown in PSCs. In vivo, co-injection of PSCs increased the size of the tumors, but this effect was abolished by kindlin-2 knockdown in PSCs. In conclusion, kindlin-2 in PSCs promoted the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
34
|
Evaluation of Plasma MicroRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Adenocarcinoma: miR-196a and miR-210 Could Be Negative and Positive Prognostic Markers, Respectively. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6495867. [PMID: 28466015 PMCID: PMC5390608 DOI: 10.1155/2017/6495867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Background. Identifying diagnostic and prognostic biomarkers that could be targeted in the therapy of pancreatic cancer is essential. Objective. Investigations were conducted with respect to plasma miRNA (miR-21, miR-210, miR-155, miR-196a, miR-20a, and miR-25) expression and clinicopathologic factors to evaluate the prognostic value of miRNAs in pancreatic ductal adenocarcinoma (PDAC). Methods. Plasma miRNAs were detected by real-time quantitative PCR, and the association with clinicopathologic factors was subsequently performed by univariate and multivariate analyses. Results. Six miRNAs expressed significantly higher in PDAC patients than in normal individuals were identified. Receiver operating characteristic (ROC) curves were constructed. It was evident that miRNA expression associated with PDAC, lymph node metastasis, serosal infiltration, and comprehensive therapy reached significance for overall survival. High miR-196a expression was associated with poor survival (P = 0.001), whereas high miR-210 expression was significantly associated with improved survival (P = 0.003). Multivariate survival analysis indicated that the miR-210 and miR-196a expression signature, lymph node metastasis, and comprehensive therapy were independent factors affecting overall survival. Conclusions. MiRNA expression profile is distinctive in PDAC. Aberrant expression of certain miRNAs was remarkably involved in shaping the overall survival time, which include miR-196a overexpression and decreased miR-210 expression.
Collapse
|
35
|
Weisbeck A, Jansen RJ. Nutrients and the Pancreas: An Epigenetic Perspective. Nutrients 2017; 9:nu9030283. [PMID: 28294968 PMCID: PMC5372946 DOI: 10.3390/nu9030283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related deaths with a dismal average five-year survival rate of six percent. Substitutional progress has been made in understanding how pancreatic cancer develops and progresses. Evidence is mounting which demonstrates that diet and nutrition are key factors in carcinogenesis. In particular, diets low in folate and high in fruits, vegetables, red/processed meat, and saturated fat have been identified as pancreatic cancer risk factors with a proposed mechanism involving epigenetic modifications or gene regulation. We review the current literature assessing the correlation between diet, epigenetics, and pancreatic cancer.
Collapse
Affiliation(s)
- Andee Weisbeck
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA.
| | - Rick J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
36
|
The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Lett 2017; 397:94-102. [PMID: 28254409 DOI: 10.1016/j.canlet.2017.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer, which is often asymptomatic, is currently one of the most common causes of cancer-related death. This phenomenon is most likely due to a lack of early diagnosis, a high metastasis rate and a disappointing chemotherapy outcome. Thus, improving treatment outcomes by overcoming chemotherapy resistance may be a useful strategy in pancreatic cancer. Various underlying mechanisms involved in the chemoresistance of pancreatic cancer have been investigated. Notably, non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a pivotal role in regulating sensitivity to chemotherapy in pancreatic cancer. In this review, we highlight recent evidence regarding the role of miRNAs and lncRNAs in the chemoresistance of pancreatic cancer, including their expression levels, targets, biological functions and the regulation of chemoresistance, and discuss the potential clinical application of miRNAs and lncRNAs in the treatment of pancreatic cancer.
Collapse
|
37
|
Calatayud D, Dehlendorff C, Boisen MK, Hasselby JP, Schultz NA, Werner J, Immervoll H, Molven A, Hansen CP, Johansen JS. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark Res 2017; 5:8. [PMID: 28239461 PMCID: PMC5320745 DOI: 10.1186/s40364-017-0087-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to validate previously described diagnostic and prognostic microRNA expression profiles in tissue samples from patients with pancreatic cancer and other periampullary cancers. Methods Expression of 46 selected microRNAs was studied in formalin-fixed paraffin-embedded tissue from patients with resected pancreatic ductal adenocarcinoma (n = 165), ampullary cancer (n=59), duodenal cancer (n = 6), distal common bile duct cancer (n = 21), and gastric cancer (n = 20); chronic pancreatitis (n = 39); and normal pancreas (n = 35). The microRNAs were analyzed by PCR using the Fluidigm platform. Results Twenty-two microRNAs were significantly differently expressed in patients with pancreatic cancer when compared to healthy controls and chronic pancreatitis patients; 17 miRNAs were upregulated (miR-21-5p, −23a-3p, −31-5p, −34c-5p, −93-3p, −135b-3p, −155-5p, −186-5p, −196b-5p, −203, −205-5p, −210, −222-3p, −451, −492, −614, and miR-622) and 5 were downregulated (miR-122-5p, −130b-3p, −216b, −217, and miR-375). MicroRNAs were grouped into diagnostic indices of varying complexity. Ten microRNAs associated with prognosis were identified (let-7 g, miR-29a-5p, −34a-5p, −125a-3p, −146a-5p, −187, −205-5p, −212-3p, −222-5p, and miR-450b-5p). Prognostic indices based on differences in expression of 2 different microRNAs were constructed for pancreatic and ampullary cancer combined and separately (30, 5, and 21 indices). Conclusion The study confirms that pancreatic cancer tissue has a microRNA expression profile that is different from that of other periampullary cancers, chronic pancreatitis, and normal pancreas. We identified prognostic microRNAs and microRNA indices that were associated with shorter overall survival in patients with radically resected pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s40364-017-0087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Calatayud
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, LMU, University of Munich, Munich, Germany
| | - Heike Immervoll
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Ålesund Hospital, Ålesund, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Carsten Palnæs Hansen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol 2017; 23:382-405. [PMID: 28210075 PMCID: PMC5291844 DOI: 10.3748/wjg.v23.i3.382] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Collapse
|
39
|
Kota J, Hancock J, Kwon J, Korc M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett 2017; 391:38-49. [PMID: 28093284 DOI: 10.1016/j.canlet.2016.12.035] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies with a 5-year survival rate of 8%. Dense, fibrotic stroma associated with pancreatic tumors is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Targeting stroma is considered as a potential therapeutic strategy to improve anti-cancer drug efficacy and patient survival. Although numerous stromal depletion therapies have reached the clinic, they add little to overall survival and are often associated with toxicity. Furthermore, increasing evidence suggests the anti-tumor properties of stroma. Its complete ablation enhanced tumor progression and reduced survival. Consequently, efforts are now focused on developing stromal-targeted therapies that normalize the reactive stroma and avoid the extremes: stromal abundance vs. complete depletion. In this review, we summarized the state of current and emerging anti-stromal targeted therapies, with major emphasis on the role of miRNAs in PDAC stroma and their potential use as novel therapeutic agents to modulate PDAC tumor-stromal interactions.
Collapse
Affiliation(s)
- Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA; The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA.
| | - Julie Hancock
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Jason Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA; Department of Medicine, IUSM, Indianapolis, IN, USA
| |
Collapse
|
40
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Interleukin-27 inhibits malignant behaviors of pancreatic cancer cells by targeting M2 polarized tumor associated macrophages. Cytokine 2017; 89:194-200. [DOI: 10.1016/j.cyto.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/20/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022]
|
42
|
Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, Zhao J, Zhang HT. miR-1238 inhibits cell proliferation by targeting LHX2 in non-small cell lung cancer. Oncotarget 2016; 6:19043-54. [PMID: 26189214 PMCID: PMC4662474 DOI: 10.18632/oncotarget.4232] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
Abstract
In human cancers, dysregulated expression of LIM-homeobox gene 2 (LHX2) and downregulation of miR-1238 has been reported separately. However, the relationship between them remains unclear. We investigated the functional contribution of miR-1238 to the regulation of LHX2 in non-small cell lung cancer (NSCLC). Here, computational algorithms predicted that the 3′-untranslated region (3′-UTR) of LHX2 is a target of miR-1238. Luciferase assays validated that miR-1238 directly bound to 3′-UTR of LHX2. qRT-PCR and western blot analyses further confirmed that overexpression of miR-1238 mimic in NSCLC A549 and LTEP-α-2 cells inhibited endogenous expression of LHX2 mRNA and protein. Moreover, ectopic expression of miR-1238 in NSCLC A549 and LTEP-α-2 cells suppressed cellular viability and proliferation. siRNA-induced knockdown of LHX2 copied the phenotype of miR-1238 overexpression in NSCLC A549 and LTEP-α-2 cells and LHX2 knockdown inhibited cell cycle. In addition, miR-1238 expression was frequently decreased in human NSCLC tissues and reversely correlated with LHX2 expression, which was increased in NSCLC tissues. Collectively, our findings demonstrate that miR-1238 inhibit the proliferation of NSCLC cells at least partly via repression of LHX2, shedding light on the mechanistic interaction of miR-1238 and LHX2 in NSCLC carcinogenesis. Furthermore, our data suggest that expression of miR-1238 could be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiangguang Shi
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Lei Zhan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Can Xiao
- The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Haiping Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Jun Zhao
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China.,The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| |
Collapse
|
43
|
Zhao L, Cai B, Lu Z, Tian L, Guo S, Wu P, Qian D, Xu Q, Jiang K, Miao Y. Modified methods for isolation of pancreatic stellate cells from human and rodent pancreas. J Biomed Res 2016; 30:510-516. [PMID: 27924070 PMCID: PMC5138584 DOI: 10.7555/jbr.30.20160033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/10/2023] Open
Abstract
Primary cultures of pancreatic stellate cells (PSCs) remain an important basis for in vitro study. However, effective methods for isolating abundant PSCs are currently lacking. We report on a novel approach to isolating PSCs from normal rat pancreases and human pancreatic ductal adenocarcinoma (PDAC) tissue. After anaesthesia and laparotomy of the rat, a blunt cannula was inserted into the pancreatic duct through the anti-mesentery side of the duodenum, and the pancreas was slowly infused with an enzyme solution until all lobules were fully dispersed. The pancreas was then pre-incubated, finely minced and incubated to procure a cell suspension. PSCs were obtained after the cell suspension was filtered, washed and subject to gradient centrifugation with Nycodenz solution. Fresh human PDAC tissue was finely minced into 1×1×1 mm3 cubes with sharp blades. Tissue blocks were placed at the bottom of a culture plate with fresh plasma (EDTA-anti-coagulated plasma from the same patient, mixed with CaCl2) sprinkled around the sample. After culture for 5–10 days under appropriate conditions, activated PSCs were harvested. An intraductal perfusion of an enzyme solution simplified the procedure of isolation of rat PSCs, as compared with the multiple injections technique, and a modified outgrowth method significantly shortened the outgrowth time of the activated cells. Our modification in PSC isolation methods significantly increased the isolation efficiency and shortened the culture period, thus facilitating future PSC-related research.
Collapse
Affiliation(s)
- Liangtao Zhao
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Baobao Cai
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zipeng Lu
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Tian
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Song Guo
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pengfei Wu
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dong Qian
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qingcheng Xu
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kuirong Jiang
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Miao
- Pancreas Institute of Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Pancreas Center.,Lab for Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China;
| |
Collapse
|
44
|
Hamada S, Masamune A, Yoshida N, Takikawa T, Shimosegawa T. IL-6/STAT3 Plays a Regulatory Role in the Interaction Between Pancreatic Stellate Cells and Cancer Cells. Dig Dis Sci 2016; 61:1561-71. [PMID: 26738736 DOI: 10.1007/s10620-015-4001-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis, a characteristic feature of pancreatic cancer. Although it is still controversial, previous studies have suggested that PSCs promote the progression of pancreatic cancer by regulating the cell functions of cancer cells. PSCs produce large amounts of IL-6, which promotes the accumulation of myeloid-derived suppressor cells via a signal transducers and activator of transcription 3 (STAT3)-dependent mechanism. But the role of IL-6/STAT3 pathway in the interaction between PSCs and pancreatic cancer cells remains largely unknown. AIMS To clarify the role of IL-6/STAT3 in the interaction between PSCs and cancer cells. METHODS Human pancreatic cancer cells (Panc-1 and SUIT-2 cells) were treated with conditioned medium of immortalized human PSCs (PSC-CM). The effects of PSC-CM and IL-6 neutralization on the mRNA expression profiles were examined using Agilent's microarray. Activation of STAT3 was assessed by Western blotting using an anti-phospho-specific antibody. Cellular migration was examined by a two-chamber assay. The expression of markers related to epithelial-mesenchymal transition (EMT) was assessed by real-time reverse transcription PCR. RESULTS PSC-CM induced the activation of STAT3 in pancreatic cancer cells. Neutralization of IL-6 suppressed the PSC-CM-induced upregulation of genes including complement factor B, lipocalin, and chemokine (C-C motif) ligand 20. Inhibition of IL-6/STAT3 pathway by anti-IL-6 antibody or a STAT3 inhibitor (NSC74859) inhibited the PSC-CM-induced migration and the expression of EMT-related markers (Snail and cadherin-2) in pancreatic cancer cells. CONCLUSION IL-6/STAT3 pathway regulates the PSC-induced EMT and alterations in gene expression in pancreatic cancer cells.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
45
|
Razzak R, Bédard ELR, Kim JO, Gazala S, Guo L, Ghosh S, Joy A, Nijjar T, Wong E, Roa WH. MicroRNA expression profiling of sputum for the detection of early and locally advanced non-small-cell lung cancer: a prospective case-control study. ACTA ACUST UNITED AC 2016; 23:e86-94. [PMID: 27122989 DOI: 10.3747/co.23.2830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (nsclc) is associated with very poor overall survival because 70% of patients present with locally advanced or metastatic disease at the time of diagnosis. Micrornas (mirnas) are a class of short, noncoding rna molecules whose presence in samples of biologic fluids such as sputum has demonstrated promise as a potential means of detecting nsclc. We investigated the stage-specific nsclc detection potential of an efficient panel of 3 mirnas (mir-21, mir-210, mir-372) using a single sputum sample. METHODS A single spontaneously expectorated sputum sample was prospectively collected from 21 early nsclc (≤stage ii) patients, 22 advanced nsclc (≥stage iii) patients, and 10 control subjects. Mirna expression profiles were determined by quantitative real-time polymerase chain reaction and were analyzed by unsupervised hierarchical cluster analysis. RESULTS Mean tumour size (±95% confidence interval) in the early and advanced nsclc patients was 3.3 cm ± 0.9 cm and 4.8 cm ± 0.7 cm respectively. Adenocarcinoma constituted 61.9% of the early and 45.5% of the advanced nsclc cases respectively. In comparing the early nsclc group with the control group, the mirna panel yielded a diagnostic sensitivity of 67% and a specificity of 90.0%. For the advanced nsclc group, the mirna panel detected nsclc with a sensitivity and specificity of 64% and 100% respectively. CONCLUSIONS A sputum mir-21, mir-210, and mir-372 expression profile might provide a sensitive and highly specific means for detecting nsclc. Sputum mirna analysis demonstrates promise as a potential complementary screening tool.
Collapse
Affiliation(s)
- R Razzak
- Division of Thoracic Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| | - E L R Bédard
- Division of Thoracic Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| | - J O Kim
- Department of Radiation Oncology, CancerCare Manitoba, and University of Manitoba, Winnipeg, MB
| | - S Gazala
- Division of Thoracic Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| | - L Guo
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB
| | - S Ghosh
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB
| | - A Joy
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB
| | - T Nijjar
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB
| | - E Wong
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB
| | - W H Roa
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Alberta Hospital and University of Alberta, Edmonton, AB
| |
Collapse
|
46
|
Hamada S, Masamune A, Kanno A, Shimosegawa T. Comprehensive Analysis of Serum microRNAs in Autoimmune Pancreatitis. Digestion 2016; 91:263-71. [PMID: 25871699 DOI: 10.1159/000381283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/27/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Autoimmune pancreatitis (AIP) is a rare disease that has recently emerged as a unique type of pancreatitis with a presumed autoimmune etiology. MicroRNA (miRNA) is a small non-coding RNA that targets multiple mRNAs. miRNAs might exist in serum in a stabilized form, suggesting its potential application as a biomarker. We here examined the miRNA expression profile in the serum of patients with AIP. METHODS miRNAs were prepared from serum samples of patients with various pancreatic diseases (AIP (n = 3, each before and after the steroid therapy), chronic pancreatitis (n = 5), pancreatic cancer (n = 5)) or healthy controls (n = 5). A human miRNA Oligo chip containing approximately 2,000 miRNAs was used to identify differentially expressed miRNAs. Ingenuity Pathway Analysis (IPA) was used for the integrated analysis of altered miRNAs. RESULTS Microarray analysis identified miRNAs highly expressed in the serum of patients with AIP: 13 miRNAs vs. CP, 204 miRNAs vs. pancreatic cancer, and 19 miRNAs vs. healthy controls. miR-150-5p was commonly upregulated in AIP compared to the other samples. IPA revealed the most biological processes affected by the steroid therapy including cellular development, cellular growth, and cell movement. CONCLUSION Our results identified that miRNAs were differentially expressed in the serum of AIP patients.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
47
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Molecular mechanisms of microRNAs in regulating epithelial-mesenchymal transitions in human cancers. Cancer Lett 2015; 371:301-13. [PMID: 26683775 DOI: 10.1016/j.canlet.2015.11.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) provides a strong driving force in the progression of various human cancers and the development of chemoresistance. Recently, numbers of studies have demonstrated that microRNAs (miRNAs), by post-transcriptionally silencing EMT-related molecules, can promote or inhibit the EMT process and play pivotal roles in effectively manipulating the occurrence, development, invasion, and metastasis of cancers. MiRNAs can also control the EMT or be controlled by genetic modification and mutual regulation, especially negative feedback. Therefore, miRNAs can be viewed as either oncogenes or tumor suppressor genes to facilitate or retard the EMT, resulting in far-reaching impact on tumor metastasis and effective diagnosis, treatment, and prognosis.
Collapse
|
49
|
Masamune A, Shimosegawa T. Pancreatic stellate cells: A dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S98-103. [PMID: 26189983 DOI: 10.1016/j.clinre.2015.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 02/04/2023]
Abstract
There is accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis within the pancreatic cancer tissue. Not only do they produce extracellular matrix components, PSCs dynamically interact with other cell types to constitute the cancer-conditioned microenvironment. There exist bidirectional interactions between PSCs and pancreatic cancer cells. Pancreatic cancer cells promote the proliferation, migration, extracellular matrix production and degradation, and angiogenetic responses in PSCs. In turn, PSCs promote the proliferation and migration, and inhibit the apoptosis of pancreatic cancer cells. PSCs also induce epithelial-mesenchymal transition and stem cell like phenotypes in pancreatic cancer cells, resulting in resistance to conventional therapies, distant metastasis, and recurrence. PSCs interact with endothelial cells, neural cells and β-cells, leading to angiogenesis, neurogenesis and β-cell dysfunction and apoptosis. PSCs cause impaired immune responses and help pancreatic cancer cells escape from host immune-surveillance. PSCs induce the differentiation of myeloid-derived suppressor cells, induce the apoptosis of T cells, inhibit the infiltration of T cells, and induce the activation of mast cells. Overall, these interactions appear to promote the progression of pancreatic cancer, and anti-stroma therapies targeting PSCs are under intense investigation. Further elucidation of these interactions could lead to the identification of novel therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
50
|
Garajová I, Giovannetti E, Caponi S, van Zweeden A, Peters GJ. MiRNAs and Their Interference with the Main Molecular Mechanisms Responsible for Drug Resistance in Pancreatic Cancer. CURRENT PHARMACOLOGY REPORTS 2015; 1:223-233. [DOI: 10.1007/s40495-014-0008-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|