1
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Qian C, Zhang X, Tian YS, Yuan L, Wei Q, Yang Y, Xu M, Wang X, Sun M. Coptisine inhibits esophageal carcinoma growth by modulating pyroptosis via inhibition of HGF/c-Met signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03765-6. [PMID: 39792166 DOI: 10.1007/s00210-024-03765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays. Natural drugs that bind to c-Met were identified by screening and molecular docking. The effect of coptisine on the proliferation of ESCC cells was detected by CCK-8 and colony formation assays. Cell cycle progression and cell apoptosis were detected by flow cytometry. The levels of mRNAs related to pyroptosis and miR-21 after coptisine treatment were assessed via real-time quantitative PCR. The effect of pyroptosis was evaluated by reactive oxygen species level detection and transmission electron microscopy (TEM) analysis. The expression of proteins related to pyroptosis and the HGF/c-Met pathway was detected by western blotting. A xenograft tumor model was established, and the inhibitory effect of coptisine was evaluated by observing tumor growth. The results showed that the highly expressed protein c-Met in esophageal cancer could bind with coptisine. Coptisine inhibited c-Met phosphorylation and proliferation in ESCC cells. Furthermore, coptisine inhibited the expression of downstream proteins of the HGF/c-Met signaling pathway and induced ROS generation. Tumor xenograft experiments demonstrated that coptisine effectively inhibited tumor growth by reducing the levels of pyroptosis-associated proteins. In conclusion, these findings indicate that inhibition of the HGF/c-Met signaling pathway suppresses pyroptosis to enhance the antitumor effect of coptisine in ESCC and support the potential use of coptisine for EC treatment.
Collapse
Affiliation(s)
- Chunmei Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Lin Yuan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiao Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Kumari L, Yadav R, Kumar Y, Bhatia A. Role of tight junction proteins in shaping the immune milieu of malignancies. Expert Rev Clin Immunol 2024; 20:1305-1321. [PMID: 39126381 DOI: 10.1080/1744666x.2024.2391915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Tight junctions (TJs) and their constituent proteins play pivotal roles in cellular physiology and anatomy by establishing functional boundaries within and between neighboring cells. While the involvement of TJ proteins, such as claudins, in cancer is extensively studied, studies highlighting their interaction with immune system are still meager. Studies indicate that alterations in cytokines and immune cell populations can affect TJ proteins, compromising TJ barrier function and exacerbating pro-inflammatory conditions, potentially leading to epithelial cell malignancy. Disrupted TJs in established tumors may foster a pro-tumor immune microenvironment, facilitating tumor progression, invasion, epithelial-to-mesenchymal transition and metastasis. Although previous literature contains many studies describing the involvement of TJs in pathogenesis of malignancies their role in modulating the immune microenvironment of tumors is just beginning to be unleashed. AREAS COVERED This article for the first time attempts to discern the importance of interaction between TJs and immune microenvironment in malignancies. To achieve the above aim a thorough search of databases like PubMed and Google Scholar was conducted to identify the recent and relevant articles on the topic. EXPERT OPINION Breaking the vicious cycle of dysbiosis/infections/chemical/carcinogen-induced inflammation-TJ remodeling-malignancy-TJ dysregulation-more inflammation can be used as a strategy to complement the effect of immunotherapies in various malignancies.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
4
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Nair PR, Danilova L, Gómez-de-Mariscal E, Kim D, Fan R, Muñoz-Barrutia A, Fertig EJ, Wirtz D. MLL1 regulates cytokine-driven cell migration and metastasis. SCIENCE ADVANCES 2024; 10:eadk0785. [PMID: 38478601 PMCID: PMC10936879 DOI: 10.1126/sciadv.adk0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-β1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-β1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.
Collapse
Affiliation(s)
- Praful R. Nair
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ludmila Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Optical Cell Biology Group, Instituto Gulbenkian de Ciência, R. Q.ta Grande 6 2780, 2780-156 Oeiras, Portugal
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Elana J. Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
7
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
8
|
Elgohary S, El Tayebi HM. Inflammasomes in breast cancer: the ignition spark of progression and resistance? Expert Rev Mol Med 2023; 25:e22. [PMID: 37337426 DOI: 10.1017/erm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Inflammation and immune evasion are major key players in breast cancer (BC) progression. Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the paradigm shift in BC treatments, patients still suffer from resistance, recurrence and serious immune-related adverse events. These obstacles require unravelling of the hidden molecular contributors for such therapy failure hence yielding therapeutics that are at least as efficient yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses danger signals (danger-associated molecular patterns) from damagedRdying cells or pathogen-associated molecular patterns found in microbes, leading to secretion of the active pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been shown throughout numerous studies that inflammasome pathway enhanced invasion, metastasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregulated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour volume and lessened angiogenesis in BC. This review sheds the light on the molecular pathways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights novel strategies in treatment and prevention of BC.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
9
|
Fujiwara-Tani R, Mori S, Ogata R, Sasaki R, Ikemoto A, Kishi S, Kondoh M, Kuniyasu H. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int J Mol Sci 2023; 24:5494. [PMID: 36982569 PMCID: PMC10051602 DOI: 10.3390/ijms24065494] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Claudin-4 (CLDN4) is a key component of tight junctions (TJs) in epithelial cells. CLDN4 is overexpressed in many epithelial malignancies and correlates with cancer progression. Changes in CLDN4 expression have been associated with epigenetic factors (such as hypomethylation of promoter DNA), inflammation associated with infection and cytokines, and growth factor signaling. CLDN4 helps to maintain the tumor microenvironment by forming TJs and acts as a barrier to the entry of anticancer drugs into tumors. Decreased expression of CLDN4 is a potential marker of epithelial-mesenchymal transition (EMT), and decreased epithelial differentiation due to reduced CLDN4 activity is involved in EMT induction. Non-TJ CLDN4 also activates integrin beta 1 and YAP to promote proliferation, EMT, and stemness. These roles in cancer have led to investigations of molecular therapies targeting CLDN4 using anti-CLDN4 extracellular domain antibodies, gene knockdown, clostridium perfringens enterotoxin (CPE), and C-terminus domain of CPE (C-CPE), which have demonstrated the experimental efficacy of this approach. CLDN4 is strongly involved in promoting malignant phenotypes in many epithelial cancers and is regarded as a promising molecular therapeutic target.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita 565-0871, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| |
Collapse
|
10
|
Chen C, Ye Q, Wang L, Zhou J, Xiang A, Lin X, Guo J, Hu S, Rui T, Liu J. Targeting pyroptosis in breast cancer: biological functions and therapeutic potentials on It. Cell Death Discov 2023; 9:75. [PMID: 36823153 PMCID: PMC9950129 DOI: 10.1038/s41420-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Pyroptosis is a lytic and inflammatory type of programmed cell death that is mediated by Gasdermin proteins (GSDMs). Attractively, recent evidence indicates that pyroptosis involves in the development of tumors and can serve as a new strategy for cancer treatment. Here, we present a basic knowledge of pyroptosis, and an overview of the expression patterns and roles of GSDMs in breast cancer. In addition, we further summarize the available evidence of pyroptosis in breast cancer progression and give insight into the clinical potential of applying pyroptosis in anticancer strategies for breast cancer. This review will deepen our understanding of the relationship between pyroptosis and breast cancer, and provide a novel potential therapeutic avenue for breast cancer.
Collapse
Affiliation(s)
- Cong Chen
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianwei Ye
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aizhai Xiang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Hu
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Rui
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Yadav R, Kumar Y, Dahiya D, Bhatia A. Claudins: The Newly Emerging Targets in Breast Cancer. Clin Breast Cancer 2022; 22:737-752. [PMID: 36175290 DOI: 10.1016/j.clbc.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Claudin-low breast cancers are recently described entities showing low expression of certain claudins and cell adhesion molecules. Claudins constitute the backbone of tight junctions (TJs) formed between 2 cells. Their dysregulation plays a vital role in tumorigenesis. First part of the article focuses on the role of claudins in the TJ organization, their structural-functional characteristics, and post-transcriptional and translational modifications. The latter part of the review attempts to summarize existing knowledge regarding the status of claudins in breast cancer. The article also provides an overview of the effect of claudins on tumor progression, metastasis, stemness, chemotherapy resistance, and their crosstalk with relevant signaling pathways in breast cancer. Claudins can act as 2-edged swords in tumors. Some claudins have either tumor-suppressive/ promoting action, while others work as both in a context-dependent manner. Claudins regulate many important events in breast cancer. However, the intricacies involved in their activity are poorly understood. Post-translational modifications in claudins and their impact on TJ integrity, function, and tumor behavior are still unclear. Although their role in adverse events in breast cancer is recognized, their potential to serve as relevant targets for future therapeutics, especially for difficult-to-treat subtypes of the above malignancy, remains to be explored.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
12
|
Di Filippo M, Hennig P, Karakaya T, Slaufova M, Beer HD. NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development. Int J Mol Sci 2022; 23:12308. [PMID: 36293159 PMCID: PMC9603439 DOI: 10.3390/ijms232012308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.
Collapse
Affiliation(s)
- Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marta Slaufova
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
13
|
Bel’skaya LV, Loginova AI, Sarf EA. Pro-Inflammatory and Anti-Inflammatory Salivary Cytokines in Breast Cancer: Relationship with Clinicopathological Characteristics of the Tumor. Curr Issues Mol Biol 2022; 44:4676-4691. [PMID: 36286034 PMCID: PMC9600028 DOI: 10.3390/cimb44100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the work was to compare the salivary cytokine profile of breast cancer patients with the clinicopathological characteristics of the tumor. The study included 113 patients with breast cancer (main group, mean age 54.1 years) and 111 patients with breast fibroadenomas (control group, mean age 56.7 years). Before treatment, saliva samples were collected from all patients and the content of cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, MCP-1, and TNF-α) was determined. The content of cytokines in saliva correlates well with the clinicopathological characteristics of breast cancer. The level of all salivary cytokines increases at advanced stages of breast cancer and at a low degree of tumor differentiation. The exception is MCP-1, for which there is an extremely high content for well-differentiated breast cancer. A statistically significant increase in the content of MCP-1, IL-1β, IL-2, IL-4, and IL-10 was found in triple-negative breast cancer. For the first time, the correlation of salivary levels of TNF-α, IL-1β, and IL-6 with HER2 status, MCP-1, IL-1β, IL-2, and IL-4 with the hormonal status of the tumor was shown. The relationship between the level of IL-2, IL-10, and IL-18 in saliva with the level of Ki-67 expression has been established.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky Str, Omsk 644099, Russia
- Correspondence:
| | | | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky Str, Omsk 644099, Russia
| |
Collapse
|
14
|
Poudel M, Bhattarai PY, Shrestha P, Choi HS. Regulation of Interleukin-36γ/IL-36R Signaling Axis by PIN1 in Epithelial Cell Transformation and Breast Tumorigenesis. Cancers (Basel) 2022; 14:cancers14153654. [PMID: 35954317 PMCID: PMC9367291 DOI: 10.3390/cancers14153654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Members of the interleukin (IL)-1 cytokine family exhibit dual functions in the regulation of inflammation and cancer. Recent studies have shown the critical role of IL-36γ, the newly identified IL-1 family member, in the regulation of cellular processes implicated in the progression of cancer. Therefore, the underlying mechanism of IL-36γ in tumor development is of considerable interest. Here, we identified the pivotal role of IL-36γ in the proliferation of breast cancer cells. Consistently, IL-36γ was found to promote epithelial cell transformation via the activation of c-Fos, c-Jun, and AP-1 transcription factors, followed by the IL36R-mediated MEK/ERK and JNK/c-Jun cascades. Furthermore, our findings demonstrate the critical role of PIN1 in the regulation of IL-36γ-induced mammary gland tumorigenesis. Abstract Given the increasing recognition of the relationship between IL-1 cytokines, inflammation, and cancer, the significance of distinct members of the IL-1 cytokine family in the etiology of cancer has been widely researched. In the present study, we investigated the underlying mechanism of the IL-36γ/IL-36R axis during breast cancer progression, which has not yet been elucidated. Initially, we determined the effects of IL-36γ on the proliferation and epithelial cell transformation of JB6 Cl41 mouse epidermal and MCF7 human breast cancer cells using BrdU incorporation and anchorage-independent growth assays. We found that treatment with IL-36γ increased the proliferation and colony formation of JB6 Cl41 and MCF7 cells. Analysis of the mechanism underlying the neoplastic cell transformation revealed that IL-36γ induced IL-36R-mediated phosphorylation of MEK1/2, ERK1/2, JNK1/2, and c-Jun, resulting in increased c-Fos, c-Jun, and AP-1 activities in JB6 Cl41 and MCF7 cells. Furthermore, the IL-36γ-induced tumorigenic capacity of MCF7 cells was considerably enhanced by PIN1, following MEK/ERK and JNK/c-Jun signaling. Interestingly, blocking PIN1 activity using juglone suppressed the IL-36γ-induced increase in the anchorage-independent growth of 4T1 metastatic mouse breast cancer cells. Finally, in a syngeneic mouse model, IL-36γ-induced tumor growth in the breast mammary gland was significantly inhibited following PIN1 knockout.
Collapse
Affiliation(s)
| | | | | | - Hong Seok Choi
- Correspondence: ; Tel.: +82-622306379; Fax: +82-622225414
| |
Collapse
|
15
|
Karavyraki M, Porter RK. Evidence of a role for interleukin-6 in anoikis resistance in oral squamous cell carcinoma. Med Oncol 2022; 39:60. [PMID: 35484352 PMCID: PMC9050791 DOI: 10.1007/s12032-022-01664-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
Abstract
In an endeavour to understand metastasis from oral squamous cell carcinomas, we characterised the metastatic potential of a human tongue derived cell line (SCC-4 cells) and compared this phenotype to pre-cancerous dysplastic oral keratinocyte (DOK) cells derived from human tongue and primary gingival keratinocytes (PGK). We demonstrate that SCC-4 cells constitutively synthesize and release significant amounts of IL-6, a process that is enhanced by the addition of the TLR2/TLR6 agonist, Pam2CSK4. The expression of TLR2/6 and IL-6Ra/gp130 receptors was also confirmed in SCC-4 cells. Cancerous SCC-4 human tongue cells also have a classic EMT profile, unlike precancerous human tongue DOK cells. We also established that IL-6 is driving anoikis resistance in an autocrine fashion and that anti-IL-6 neutralising antibodies, anti-IL-6 receptor antibodies and anti-TLR2 receptor antibodies inhibit anoikis resistance in cancerous SCC-4 human tongue cells. The data suggest a promising role for anti-IL-6 receptor antibody and anti-TLR2 receptor antibody treatment for oral cancer.
Collapse
Affiliation(s)
- Marilena Karavyraki
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute (TBSI), Pearse Street, Dublin, D02 R590, Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute (TBSI), Pearse Street, Dublin, D02 R590, Ireland.
| |
Collapse
|
16
|
Bowers DT, Brown JL. Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity. Integr Biol (Camb) 2022; 13:295-308. [PMID: 35022716 PMCID: PMC8759537 DOI: 10.1093/intbio/zyab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/30/2021] [Indexed: 01/14/2023]
Abstract
Mechanotransduction arises from information encoded in the shape of materials such as curvature. It induces activation of small GTPase signaling affecting cell phenotypes including differentiation. We carried out a set of preliminary experiments to test the hypothesis that curvature (1/radius) would also affect cell motility due to signal pathway crosstalk. High molecular weight poly (methyl methacrylate) straight nanofibers were electrospun with curvature ranging from 41 to 1 μm-1 and collected on a passivated glass substrate. The fiber curvature increased mouse mesenchymal stem cell aspect ratio (P < 0.02) and decreased cell area (P < 0.01). Despite little effect on some motility patterns such as polarity and persistence, we found selected fiber curvatures can increase normalized random fibroblastic mouse embryonic cell (MEF) migration velocity close to 2.5 times compared with a flat surface (P < 0.001). A maximum in the velocity curve occurred near 2.5 μm-1 and may vary with the time since initiation of attachment to the surface (range of 0-20 h). In the middle range of fiber curvatures, the relative relationship to curvature was similar regardless of treatment with Rho-kinase inhibitor (Y27632) or cdc42 inhibitor (ML141), although it was decreased on most curvatures (P < 0.05). However, below a critical curvature threshold MEFs may not be able to distinguish shallow curvature from a flat surface, while still being affected by contact guidance. The preliminary data in this manuscript suggested the large low curvature fibers were interpreted in a manner similar to a non-curved surface. Thus, curvature is a biomaterial construct design parameter that should be considered when specific biological responses are desired. Statement of integration, innovation, and insight Replacement of damaged or diseased tissues that cannot otherwise regenerate is transforming modern medicine. However, the extent to which we can rationally design materials to affect cellular outcomes remains low. Knowing the effect of material stiffness and diameter on stem cell differentiation, we investigated cell migration and signaling on fibrous scaffolds. By investigating diameters across orders of magnitude (50-2000 nm), we identified a velocity maximum of ~800 nm. Furthermore, the results suggest large fibers may not be interpreted by single cells as a curved surface. This work presents insight into the design of constructs for engineering tissues.
Collapse
|
17
|
Lu X, Guo T, Zhang X. Pyroptosis in Cancer: Friend or Foe? Cancers (Basel) 2021; 13:cancers13143620. [PMID: 34298833 PMCID: PMC8304688 DOI: 10.3390/cancers13143620] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pyroptosis is a new form of programmed cell death that differs from apoptosis in terms of its release of inflammatory factors and its characteristic bubble-like morphology. Pyroptosis was first discovered in the process of immune defense against bacterial infection, but the field of research soon spread to other inflammatory diseases and cancer. As cancer constitutes a serious risk for public health, numerous studies investigating pyroptosis in cancer have been carried out during these years. Tumorigenesis and new therapeutic treatments have been the focus of much recent research. This review discusses the role of pyroptosis in tumorigenesis and its influence on tumor immunity. Abstract Pyroptosis is an inflammatory form of programmed cell death that is mediated by pore-forming proteins such as the gasdermin family (GSDMs), including GSDMA-E. Upon cleavage by activated caspases or granzyme proteases, the N-terminal of GSDMs oligomerizes in membranes to form pores, resulting in pyroptosis. Though all the gasdermin proteins have been studied in cancer, the role of pyroptosis in cancer remains mysterious, with conflicting findings. Numerous studies have shown that various stimuli, such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and chemotherapeutic drugs, could trigger pyroptosis when the cells express GSDMs. However, it is not clear whether pyroptosis in cancer induced by chemotherapeutic drugs or CAR T cell therapy is beneficial or harmful for anti-tumor immunity. This review discusses the discovery of pyroptosis as well as its role in inflammatory diseases and cancer, with an emphasis on tumor immunity.
Collapse
|
18
|
Rahman A, Shashidhara LS. Analyzing the influence of IL18 in regulation of YAP1 in breast oncogenesis using cBioportal. Cancer Rep (Hoboken) 2021; 5:e1484. [PMID: 34196131 PMCID: PMC8955059 DOI: 10.1002/cnr2.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Yes‐associated protein 1 (YAP1) is responsible for tumor growth, progression and metastasis. The mechanisms controlling the generation and relative ratio of the functional YAP1 and other co‐factors are not well‐understood. Various literature reported that co‐factors like cytokines significantly influence signaling pathways to introduce epithelial immunity and regeneration, which later helps increase cancer‐related phenotypes. Among various cytokines, IL‐18 has emerged as a major player in inflammation and progression of different types of cancers. Till now, much information has not been known about the role of YAP1 in tumor aggressiveness and immune evasion in breast cancer with respect to IL‐18. Aim We aimed to explore the effect of YAP1 in tumor aggressiveness and immune evasion in breast invasive carcinoma and metastatic breast cancer in the context of Interleukin‐18 (IL‐18) in silico. Methods and Results We used publicly available data generated by The Cancer Genome Atlas (TCGA) Research Network through cBioportal web platform. Kaplan–Meier method was used to determine the overall survival and comparison between curves were made using Log‐Rank test. The p values were determined by Fisher's exact test with the null hypothesis. Correlation plots were analyzed by comparison with gene copy numbers from the GISTIC2.0, available through cBioportal. Our analyses suggest that IL‐18 influences YAP1 expression in breast oncogenesis via Interferon‐gamma (IFN‐γ) production. Patients having a higher expression of IL‐18 possess a better prognosis and higher YAP1 expression with lower IL18 drives to poor clinical results in breast cancer. Conclusion This can provide new approaches to better understand the relation between YAP1 and IL‐18 in breast cancer progression by performing in vitro and in vivo studies. Also, IL‐18 can be considered as a potential target for tumor treatment in YAP1 overexpressed breast carcinoma.
Collapse
Affiliation(s)
- Ayesha Rahman
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Lingadahalli S Shashidhara
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.,Department of Biology, Ashoka University, Sonipat, India
| |
Collapse
|
19
|
Ma T, Kong M. Interleukin-18 and -10 may be associated with lymph node metastasis in breast cancer. Oncol Lett 2021; 21:253. [PMID: 33664817 PMCID: PMC7882877 DOI: 10.3892/ol.2021.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/06/2021] [Indexed: 12/09/2022] Open
Abstract
Reports on the expression of interleukin (IL)-10 in breast cancer are rare. The present study investigated the correlation between IL-18 and −10 in breast cancer, and assessed their clinical significance. Breast cancer (n=104) and breast fibroadenoma (n=31) tissues that were surgically removed and pathologically confirmed at Jinan Central Hospital Affiliated to Shandong University (Jinan, China) between November 2016 and January 2019 were collected. The expression of IL-18 and −10 was observed via immunohistochemistry. Breast cancer tissues were positive for IL-18 expression, which was primarily located in the cell membrane and cytoplasm. A significant difference in IL-18 expression was observed between breast cancer and fibroadenoma tissues (75.0 vs. 19.4%; P<0.001). IL-10 was expressed in breast cancer tissues and primarily located in the cytoplasm. Breast cancer tissues showed a significantly higher level of IL-10 expression compared with breast fibroadenoma tissues (78.8 vs. 22.6%; P<0.001). The regions of positive IL-18 and −10 expression were consistent. Tissues with positive expression of IL-18 and/or −10 had a significantly higher rate of lymph node metastasis than those with negative expression (IL-18: 67.9 vs. 42.3%; P=0.035; and IL-10: 67.1 vs. 40.9%; P=0.047). In conclusion, IL-18 is highly expressed in breast cancer and correlates positively with IL-10. Both IL-18 and −10 may correlate positively with lymph node metastasis in breast cancer.
Collapse
Affiliation(s)
- Teng Ma
- Department of Internal Medicine, The Fifth People's Hospital of Jinan, Jinan, Shandong 250000, P.R. China
| | - Meng Kong
- Department of General Surgery, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
20
|
Bera A, Russ E, Manoharan MS, Eidelman O, Eklund M, Hueman M, Pollard HB, Hu H, Shriver CD, Srivastava M. Proteomic Analysis of Inflammatory Biomarkers Associated With Breast Cancer Recurrence. Mil Med 2020; 185:669-675. [PMID: 32074342 DOI: 10.1093/milmed/usz254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Breast cancer is the most frequent cancer detected for women, and while our ability to treat breast cancer has improved substantially over the years, recurrence remains a major obstacle. Standard screening for new and recurrent breast cancer involves clinical breast imaging. However, there is no clinically approved noninvasive body fluid test for the early detection of recurrent breast cancer. Materials and Method: In this study, we analyzed serum samples from both recurrent and nonrecurrent breast cancer patients by different proteomics methods to identify biomarkers in patients with recurrence of disease. RESULTS Comparative data analysis identified several histone deacetylase (HDAC) proteins, which were found at significantly higher levels in the serum of recurrent breast cancer patients: HDAC9 (C-term) (P = 0.0035), HDAC5 (C-term) (P = 0.013), small ubiquitin-like modifier 1 (N-term) (P = 0.017), embryonic stem cell-expressed Ras (inter) (P = 0.018), and HDAC7 (C-term) (P = 0.020). Chronic inflammation plays a critical role in the development of the breast cancer recurrence, and we identified several proinflammatory cytokines that were present at elevated levels only in recurrent breast cancer patient serum. CONCLUSIONS Our data indicated that the epigenetic regulation of inflammatory processes plays a critical role in breast cancer recurrence. The identified proteins could lay the groundwork for the development of a serum-based breast cancer recurrence assay.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Eric Russ
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Muthu Saravanan Manoharan
- Department of Medicine/Infectious Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Ofer Eidelman
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Michael Eklund
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Matthew Hueman
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, 4494 North Palmer Road, Bethesda, MD 20889
| | - Harvey B Pollard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, 620 7th Street, Windber, PA 15963
| | - Craig D Shriver
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, 4494 North Palmer Road, Bethesda, MD 20889
| | - Meera Srivastava
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
21
|
Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183503. [PMID: 33189716 DOI: 10.1016/j.bbamem.2020.183503] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in cancer progression. Epithelial cells possess several types of cell-cell junctions, and tight junctions are known to play important roles in maintaining the epithelial program. EMT is characterized by a loss of epithelial markers, including E-cadherin and tight junction proteins. Somewhat surprisingly, the evidence is accumulating that upregulated expression of tight junction proteins plays an important role in the EMT of cancer cells. Tight junctions have distinct tissue-specific and cancer-specific regulatory mechanisms, enabling them to play different roles in EMT. Tight junctions and related signaling pathways are attractive targets for cancer treatments; signal transduction inhibitors and monoclonal antibodies for tight junction proteins may be used to suppress EMT, invasion, and metastasis. Here we review the role of bicellular and tricellular tight junction proteins during EMT. Further investigation of regulatory mechanisms of tight junctions during EMT in cancer cells will inform the development of biomarkers for predicting prognosis as well as novel therapies.
Collapse
|
22
|
Zhao A, Qi Y, Liu K. CLDN3 expression and function in pregnancy-induced hypertension. Exp Ther Med 2020; 20:3798-3806. [PMID: 32855729 PMCID: PMC7444375 DOI: 10.3892/etm.2020.9084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
This aim of the present study was to investigate the expression and function of claudin 3 (CLDN3) in pregnancy-induced hypertension. The mRNA expression levels of CLDN3 in the placental tissue and peripheral blood of patients with pregnancy-induced hypertension were measured using reverse transcription-quantitative PCR. Human trophoblast HTR8/SVneo cells overexpressing CLDN3 were generated using a lentiviral vector. Cell Counting kit-8 (CCK-8) assay, flow cytometry, Transwell chamber assays, confocal laser scanning microscopy and western blot analysis were performed to detect cell proliferation, invasion, migration and apoptosis, in addition to matrix metalloproteinase (MMP) expression and ERK1/2 phosphorylation. The mRNA expression levels of CLDN3 were significantly reduced in the placental tissues and peripheral blood samples of patients with pregnancy-induced hypertension compared with healthy pregnant controls. CLDN3 overexpression significantly increased HTR8/SVneo cell proliferation, invasion and migration whilst reducing apoptosis. HTR8/SVneo cells overexpressing CLDN3 also exhibited increased myofiber levels, increased MMP-2 and MMP-9 expression and increased ERK1/2 signaling activity. CLDN3 downregulation may be associated with the pathogenesis of pregnancy-induced hypertension. In conclusion, CLDN3 promotes the proliferative and invasive capabilities of human trophoblast cells, with the underlying mechanisms possibly involving upregulation of MMP expression via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Aixin Zhao
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| | - Yunfang Qi
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| | - Kun Liu
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| |
Collapse
|
23
|
Yao Z, Zhao M, Gao G, Yang J, Wang Z, Liu Y. Prognostic Role of IL-18 in Various Human Cancers and Radiation Injuries: A Meta-Analysis. Dose Response 2020; 18:1559325820931360. [PMID: 32636720 PMCID: PMC7323287 DOI: 10.1177/1559325820931360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/18/2020] [Accepted: 05/10/2020] [Indexed: 01/19/2023] Open
Abstract
Background: In recent years, more and more studies have shown that various inflammatory factors have predictive effects on the prognosis of various human tumors. However, the prognostic role of interleukin 18 (IL-18) remains controversial. Furthermore, its role in radiation-induced injuries relating to radiotherapy (RT) is also unclear. In this study, we conducted the meta-analysis to clarify its roles in prognosis of human tumors and radiation-induced injuries relating to RT. Methods: We comprehensively searched PubMed, Embase, and Cochrane Library to identify studies published before November 2019 involving patients with cancer expressing IL-18 and which reported overall survival (OS) during the follow-up period. Results: A total of 1376 samples from 16 studies showed that high expression of IL-18 is closely related to prognosis and OS for patients with carcinoma (hazard ratio [HR]: 2.12; 95% CI: 1.81-2.49; P = .04; random-effect model). In addition, subgroup analysis proved that high expression of IL-18 was related to poor OS of hematologic tumor (HR: 2.03, 95% CI: 1.44-2.86, P < .00001), hepatocellular carcinoma (HR: 1.99, 95% CI: 1.38-2.86, P = .0002), and gastric cancer (HR: 2.00, 95% CI: 1.12-3.57, P = .02). Conclusions: High expression of IL-18 is related with poor prognosis of carcinoma.
Collapse
Affiliation(s)
- Zhen Yao
- Department of Nuclear Accident Medical Emergency, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Minyan Zhao
- Department of Nuclear Accident Medical Emergency, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangyu Gao
- Department of Nuclear Accident Medical Emergency, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiawen Yang
- Department of Ultrasound, Xingtang Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Zhenzhen Wang
- Department of Nuclear Accident Medical Emergency, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulong Liu
- Department of Nuclear Accident Medical Emergency, the Second Affiliated Hospital of Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
24
|
Mohammed SI, Torres-Luquis O, Zhou W, Lanman NA, Espina V, Liotta L. Tumor-Draining Lymph Secretome En Route to the Regional Lymph Node in Breast Cancer Metastasis. BREAST CANCER (DOVE MEDICAL PRESS) 2020; 12:57-67. [PMID: 32273752 PMCID: PMC7104086 DOI: 10.2147/bctt.s236168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND During metastasis, tumor cells metastasize from primary tumors to distant organs via the circulatory and the lymphatic systems. There is a plethora of information about metastasis through the circulatory system, however not much information is available about the tumor cells dissemination through the lymphatic system or the lymphatic microenvironment that aids in this process in breast cancer metastasis. PURPOSE The study designed to examine the tumor-derived secretome in lymph before reaching the draining lymph nodes. METHODS Using a microsurgical technique, we have collected the lymph in transit from the primary tumor en route to the regional lymph node in animals with metastatic and non-metastatic mammary carcinoma and healthy controls. The lymph samples were subjected to LC-MS/MS analysis, bioinformatics, and pathway analysis. RESULTS The metastatic tumor-draining lymph before its entry into the closest regional lymph node contain 26 proteins with >175-folds in abundance compared to lymph from non-metastatic tumor-bearing animals. Among these proteins were biliverdin reductase B, heat shock protein, coagulation factor XIII, lymphocytes cytosol protein 1, and aldose reductase. These proteins were not identified in the lymph from healthy animals. Pathways analysis revealed that cadherin-mediated endocytosis, acute phase response, junction signaling, gap junction, VEGF singling, and PI3K/AKT singling pathways are overrepresented in the lymph from metastatic tumor-bearing compared to the lymph from non-metastatic tumor-bearing animals. Among the significantly up-regulated proteins in the lymph from metastatic tumor-bearing animals were proteins that identified in exosomes include heat shock protein, enolase 1 alpha, S100, and biliverdin reductase B. One of the proteins significantly down-regulated in lymph from animals with metastasis is Kininogen, a known metastasis inhibitor protein. CONCLUSION Proteins and exosomal proteins in lymph draining a metastatic tumor are different from those in lymph draining non-metastatic tumors, and these proteins involved in pathways that regulate tumor cells migration and invasion.
Collapse
Affiliation(s)
- Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN47907, USA
| | - Odalys Torres-Luquis
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN47907, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| | - Nadia Attalah Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN47907, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| |
Collapse
|
25
|
Autenshlyus AI, Studenikina AA, Arkhipov SA, Davletova KI, Zhurakovsky IP, Proskura AV, Varaksin NA, Lyakhovich VV. [Relationship between supernatant cytokines and expression of markers of epitelial-mesenchymal transition of invasive breast carcinoma of non-specific lymphynosis type]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:83-88. [PMID: 32116230 DOI: 10.18097/pbmc20206601083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The relationship between the content of supernatant cytokines and the expression of non-specific type of markers of epithelial-mesenchymal transition markers in the presence (group II) and the absence of lymphogenous metastasis (group I) were studied in biopsy specimens of mammary invasive breast carcinoma. The concentrations of TNF-α, IFN-γ, G-CSF, GM-CSF, VEGF, MCP-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17, IL-18, IL-1β and IL-1Ra, as well as the expression of immunohistochemical (IHC) markers of the epithelial-mesenchymal transition - cadherin-E (CDH1), β-1 integrin (CD29) and type II collagen (CII) were assayed. Results have shown that patients of these groups statistically significantly differed in spontaneous production of IL-18 and G-CSF, in terms of the index of the effect of the polyclonal activator on G-CSF production. There was a correlation between the parameter of CII expression in tumor tissue and the production of cytokines by tumor biopsy specimens; it was characteristic of all patients with invasive carcinoma of a non-specific type, and correlations, both direct and reverse between the expression indices of CDH1, CD29 and cytokine production varied depending on the presence or the absence of lymphogenous metastasis. The study revealed the features of the correlation between the production of cytokines by the tumor, its microenvironment and the expression of IHC markers of the epithelial-mesenchymal transition in patients with invasive non-specific breast carcinoma in the presence and absence of lymphogenous metastasis.
Collapse
Affiliation(s)
- A I Autenshlyus
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics - subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | | | - S A Arkhipov
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics - subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - K I Davletova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - I P Zhurakovsky
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics - subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - A V Proskura
- Institute of Molecular Biology and Biophysics - subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - N A Varaksin
- JSC "Vector-Best", Nauchno-proizvodstvennaja zona, Koltsovo, Novosibirsk region, Russia
| | - V V Lyakhovich
- Institute of Molecular Biology and Biophysics - subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
26
|
Xu G, Wang F. Associations of polymorphisms in interleukins with susceptibility to breast cancer: Evidence from a meta-analysis. Cytokine 2020; 130:154988. [PMID: 32163880 DOI: 10.1016/j.cyto.2020.154988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Associations between polymorphisms in interleukins and breast cancer (BC) were already investigated by many studies, yet with controversial findings. The aim of this meta-analysis was to better clarify associations between polymorphisms in interleukins and BC by combing the results of all relevant articles. METHODS Eligible articles were searched from Pubmed, Embase, Web of Science and CNKI. We used Review Manager to combine the results of eligible studies. RESULTS Fifty-seven studies were included in this meta-analysis. We found that IL-6 rs1800796 (dominant comparison: OR = 0.70, 95% CI 0.53-0.92), IL-8 rs4073 (dominant comparison: OR = 0.74, 95% CI 0.61-0.89; over-dominant comparison: OR = 1.16, 95% CI 1.05-1.29; allele comparison: OR = 0.82, 95% CI 0.69-0.89), IL-10 rs1800896 (recessive comparison: OR = 1.28, 95% CI 1.12-1.47) and IL-18 rs1946518 (dominant comparison: OR = 0.80, 95% CI 0.65-0.97; allele comparison: OR = 0.74, 95% CI 0.59-0.93) polymorphisms were all significantly associated with BC in overall combined analyses. In subgroup analyses, we noticed that IL-6 rs1800796, IL-8 rs4073, IL-10 rs1800896, IL-18 rs1946518 and rs187238 polymorphisms were all significantly associated with susceptibility to BC in East Asians from China. CONCLUSIONS Collectively, this meta-analysis demonstrated that IL-6 rs1800796, IL-8 rs4073, IL-10 rs1800896, IL-18 rs1946518 and rs187238 polymorphisms may confer susceptibility to BC for East Asians from China.
Collapse
Affiliation(s)
- Guanghua Xu
- Department of Surgery 1, Anji County Third People's Hospital, Huzhou 313300, Zhejiang, China
| | - Fengyong Wang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
27
|
Gao M, Zhang P, Huang L, Shao H, Duan S, Li C, Zhang Q, Wang W, Wu Y, Wang J, Liu H, Feng F. Is NLRP3 or NLRP6 inflammasome activation associated with inflammation-related lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109687. [PMID: 31561077 DOI: 10.1016/j.ecoenv.2019.109687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Chronic inflammation has been shown to play a vital role in lung tumorigenesis. Recently, we have successfully developed a C57BL/6 mouse model of inflammation-related lung tumorigenesis induced by benzo(a)pyrene [B(a)p] and lipopolysaccharide (LPS), which will contribute to better understand the association between pulmonary inflammation and cancer. In this study, we aim to explore the role of NLRP3 and NLRP6 inflammasome in lung tumorigenesis in the animal model that we set up previously. Levels of NLRP3, NLRP6, interleukin-1β (IL-1β) and IL-18 protein in lung tissues were detected by using immunohistochemistry. The co-localization of NLRP3 or NLRP6 with caspase-1 was examined using immunofluorescence and confocal. Western blotting was used to evaluate the levels of caspase-1 p10 and cleaved-IL-1β protein. The expression of IL-18 in bronchoalveolar lavage fluid (BALF) was measured using ELISA kit. The expression of NLRP3, NLRP6 and IL-18 protein in the lung tissues of mice exposed to B(a)p plus LPS was upregulated significantly compared with those in Vehicle control group. Immunofluorescent results indicated the co-localization of NLRP3 with caspase-1 was increased in the lung tissues of LPS-, B(a)p- or B(a)p plus LPS-exposed mice than that in Vehicle control group, but no co-localization of NLRP6 with caspase-1. Additionally, caspase-1 activation was induced, cleaved-IL-1β in lung tissues and IL-18 protein in BALF were increased in B(a)p plus LPS-exposed mice compared with those in B(a)p group. In conclusion, our results from this study demonstrate that NLRP3 inflammasome, not NLRP6 inflammasome, activation is involved in B(a)p plus LPS-induced inflammation-related lung tumorigenesis in mice, but the mechanisms of NLRP6 participate in the development of lung cancer should be further investigated.
Collapse
Affiliation(s)
- Min Gao
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, China
| | - Li Huang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Shao
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuyin Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongjun Wu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Gil M, Kim KE. Interleukin-18 Is a Prognostic Biomarker Correlated with CD8 + T Cell and Natural Killer Cell Infiltration in Skin Cutaneous Melanoma. J Clin Med 2019; 8:jcm8111993. [PMID: 31731729 PMCID: PMC6912818 DOI: 10.3390/jcm8111993] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
Interleukin-18 (IL-18) is a cytokine that enhances innate and adaptive immune responses. Although there are conflicting reports about the roles of IL-18 in melanoma progression, the clinical relevance of IL-18 expression has not been comprehensively studied. In this study, we investigated IL-18 expression and its correlation with patient survival and immune cell infiltration in melanoma using cancer gene expression data publicly available through various databases. IL18 mRNA expression was found to be significantly lower in melanoma tissues than normal tissues. Kaplan–Meier survival analysis showed that IL18 expression was positively correlated with patient survival. To investigate the possible mechanisms by which IL18 expression increased patient survival, we then assessed the correlation between IL18 expression and immune cell infiltration levels. Infiltration of various immune cells, especially CD8+ T and natural killer (NK) cells, which are cytolytic effector cells, was significantly increased by IL18 expression. Additionally, the expression levels of two cytolytic molecules including perforin and granzyme B were significantly positively correlated with IL18 expression. Collectively, this study provides the first evidence that IL18 expression has prognostic value for melanoma patient survival and is strongly correlated with CD8+ T and NK cell infiltration, suggesting the role of IL-18 as a biomarker for predicting melanoma prognosis.
Collapse
Affiliation(s)
- Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Nano-Bio Resources Center, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: ; Tel.: +82-02-710-9211
| |
Collapse
|
29
|
Tielemans B, Stoian L, Gijsbers R, Michiels A, Wagenaar A, Farre Marti R, Belge C, Delcroix M, Quarck R. Cytokines trigger disruption of endothelium barrier function and p38 MAP kinase activation in BMPR2-silenced human lung microvascular endothelial cells. Pulm Circ 2019; 9:2045894019883607. [PMID: 31692724 PMCID: PMC6811766 DOI: 10.1177/2045894019883607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
The bone morphogenetic protein receptor II (BMPRII) signaling pathway is impaired
in pulmonary arterial hypertension and mutations in the BMPR2
gene have been observed in both heritable and idiopathic pulmonary arterial
hypertension. However, all BMPR2 mutation carriers do not
develop pulmonary arterial hypertension, and inflammation could trigger the
development of the disease in BMPR2 mutation carriers.
Circulating levels and/or lung tissue expression of cytokines such as tumor
necrosis factor-α or interleukin-18 are elevated in patients with pulmonary
arterial hypertension and could be involved in the pathogenesis of pulmonary
arterial hypertension. We consequently hypothesized that cytokines could trigger
endothelial dysfunction in addition to impaired BMPRII signaling. Our aim was to
determine whether impairment of BMPRII signaling might affect endothelium
barrier function and adhesiveness to monocytes, in response to cytokines.
BMPR2 was silenced in human lung microvascular endothelial
cells (HLMVECs) using lentiviral vectors encoding microRNA-based hairpins.
Effects of tumor necrosis factor-α and interleukin-18 on HLMVEC adhesiveness to
the human monocyte cell line THP-1, adhesion molecule expression, endothelial
barrier function and activation of P38MAPK were investigated in vitro. Stable
BMPR2 silencing in HLMVECs resulted in impaired endothelial
barrier function and constitutive activation of P38MAPK. Adhesiveness of
BMPR2-silenced HLMVECs to THP-1 cells was enhanced by tumor
necrosis factor-α and interleukin-18 through ICAM-1 adhesion molecule.
Interestingly, tumor necrosis factor-α induced activation of P38MAPK and
disrupted endothelial barrier function in BMPR2-silenced
HLMVECs. Altogether, our findings showed that stable BMPR2
silencing resulted in impaired endothelial barrier function and activation of
P38MAPK in HLMVECs. In BMPR2-silenced HLMVECs, cytokines
enhanced adhesiveness capacities, activation of P38MAPK and impaired endothelial
barrier function suggesting that cytokines could trigger the development of
pulmonary arterial hypertension in a context of impaired BMPRII signaling
pathway.
Collapse
Affiliation(s)
- Birger Tielemans
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Leanda Stoian
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Annelies Michiels
- Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven - University of Leuven, Leuven, Belgium
| | - Allard Wagenaar
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Ricard Farre Marti
- Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Catharina Belge
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Marion Delcroix
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Rozenn Quarck
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Pratiwi R, Antara NY, Fadliansyah LG, Ardiansyah SA, Nurhidayat L, Sholikhah EN, Sunarti S, Widyarini S, Fadhlurrahman AG, Fatmasari H, Tunjung WAS, Haryana SM, Alamsyah F, Taruno WP. CCL2 and IL18 expressions may associate with the anti-proliferative effect of noncontact electro capacitive cancer therapy in vivo. F1000Res 2019; 8:1770. [PMID: 32695310 PMCID: PMC7348523 DOI: 10.12688/f1000research.20727.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Noncontact Electro Capacitive Cancer Therapy (ECCT) is a novel treatment modality in cancer. Chemokine (C-C motif) ligand 2 (CCL2) has a major role in the outgrowth of metastatic breast cancer. Interleukin 18 (IL18) plays a role in macrophage alteration, which leads to excessive angiogenesis. This study aims to elaborate on the association of CCL2, IL18, IL23α, and TNF-α (tumor necrosis factor-alpha) expression with the anti-proliferative effect of ECCT in rat breast tumor tissue. Methods: Low intensity (18 Vpp) and intermediate frequency (150 kHz) alternating current-electric field (AC-EF) between two capacitive electrodes were exposed as external EF to a rat cage. Twenty-four rats were divided into four groups of six replicates. Breast tumor tissues were collected from 7, 12-dimethylbenz[a]anthracene (DMBA)-induced rats. Two groups were non DMBA-induced rats without ECCT exposure (NINT) and with (NIT). The other two groups were DMBA-induced rats without ECCT exposure (INT) and with (IT). Mammary glands and breast tumor tissues were collected from each group and preserved. Hematoxylin-eosin and immunohistochemistry staining were performed on paraffin sections of tissues using anti-PCNA, anti-ErbB2, anti-Caspase3, and anti-CD68. CCL2, IL18, IL23α, and TNF-α mRNA relative expressions were analyzed using qRT-PCR. Results: ECCT exposure may cause the reduction of PCNA protein expression as well as ErbB2 on breast tumor tissues, but it causes the increase of Caspase3 and macrophage CD68 protein. In rat breast tumor tissues of IT groups, the mRNA expression of CCL2 and IL18 are significantly down-regulated, in contrast with the up-regulated expression of these cytokines in tumor tissues of the INT group. IL23α and TNF- α expression remained similar in both groups. Conclusion: CCL2 and IL18 expressions have an association with the inhibition of breast tumor cell proliferation affected by ECCT exposure
Collapse
Affiliation(s)
- Rarastoeti Pratiwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.,Graduate School of Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Nyoman Yudi Antara
- Graduate School of Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Luthfi Nurhidayat
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Eti Nurwening Sholikhah
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sunarti Sunarti
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sitarina Widyarini
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | - Hindana Fatmasari
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | - Sofia Mubarika Haryana
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Firman Alamsyah
- Center for Medical Physics and Cancer Research, Ctech Labs Edwar Technology, Tangerang, 15320, Indonesia
| | - Warsito Purwo Taruno
- Center for Medical Physics and Cancer Research, Ctech Labs Edwar Technology, Tangerang, 15320, Indonesia
| |
Collapse
|
31
|
Tong H, Li T, Qiu W, Zhu Z. Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy. Oncol Lett 2019; 18:5709-5716. [PMID: 31788043 PMCID: PMC6865833 DOI: 10.3892/ol.2019.10967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is one of the most common cancer types globally. However, the acquisition of drug resistance limits the effectiveness of chemotherapy and commonly results in metastasis. Therefore, an effective therapeutic approach to target chemoresistance-associated cellular molecules is imperative. Claudin-1 (CLDN1) has previously been reported to be associated with the development of drug resistance. The present study investigated the effect of CLDN1 on the sensitivity of 5-fluorouracil (5-FU)-resistant liver cancer cells. Firstly, a 5-FU-resistant HepG2 liver cancer cell line (Hep/5FU) was developed by continuous 5-FU treatment. MTT proliferation, Transwell and Matrigel assays indicated that Hep/5FU cells were significantly resistant to 5-FU, and demonstrated increased migration and invasion abilities, compared with parental HepG2 cells. Furthermore, reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that mRNA and protein expression levels of CLDN1 were significantly increased in Hep/5FU cells, compared with HepG2 cells. CLDN1 was knocked down by transfection with small interference RNA. MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that CLDN1 silencing significantly inhibits proliferation and enhances apoptosis induced by 5-FU treatment in Hep/5FU cells, compared with non-silenced Hep/5FU cells. Additionally, CLDN1 silencing attenuated the migration and invasion capabilities of Hep/5FU cells. In addition, it was identified that CLDN1 silencing decreased drug resistance by inhibiting autophagy, which was associated with a decrease in the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I and upregulation of P62. A cell proliferation assay revealed that the addition of autophagy inhibitor 3-methyladenine decreased drug resistance of Hep/5FU cells. By contrast, incubation with the autophagy agonist Rapamycin elevated drug resistance of CLDN1-silenced Hep/5FU cells. In summary, these data indicate that CLDN1 may be a potential target for resensitizing resistant liver cancer HepG2 cells to 5-FU by regulating cell autophagy.
Collapse
Affiliation(s)
- Hui Tong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhecheng Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
32
|
Zhu L, Han J, Li L, Wang Y, Li Y, Zhang S. Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Front Immunol 2019; 10:1441. [PMID: 31316506 PMCID: PMC6610251 DOI: 10.3389/fimmu.2019.01441] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Claudins are a multigene transmembrane protein family comprising at least 27 members. In gastrointestinal tract, claudins are mainly located in the intestinal epithelia; many types of claudins form a network of strands in tight junction plaques within the intercellular space of neighboring epithelial cells and build paracellular selective channels, while others act as signaling proteins and mediates cell behaviors. Claudin dysfunction may contribute to epithelial permeation disorder and multiple intestinal diseases. Over recent years, the importance of claudins in the pathogenesis of inflammatory bowel diseases (IBD) has gained focus and is being investigated. This review analyzes the expression pattern and regulatory mechanism of claudins based on existing evidence and elucidates the fact that claudin dysregulation correlates with increased intestinal permeability, sustained activation of inflammation, epithelial-to-mesenchymal transition (EMT), and tumor progression in IBD as well as consequent colitis-associated colorectal cancer (CAC), possibly shedding new light on further etiologic research and clinical treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Mohammed SI, Torres‐Luquis O, Walls E, Lloyd F. Lymph-circulating tumor cells show distinct properties to blood-circulating tumor cells and are efficient metastatic precursors. Mol Oncol 2019; 13:1400-1418. [PMID: 31026363 PMCID: PMC6547792 DOI: 10.1002/1878-0261.12494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/11/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
The leading cause of breast cancer-associated death is metastasis. In 80% of solid tumors, metastasis via the lymphatic system precedes metastasis via the vascular system. However, the molecular properties of tumor cells as they exit the primary tumor into the afferent lymphatics en route to the sentinel lymph nodes (SLNs) are not yet known. Here, we developed an innovative technique that enables the collection of lymph and lymph-circulating tumor cells (LCTCs) en route to the SLN in an immunocompetent animal model of breast cancer metastasis. We found that the gene and protein expression profiles of LCTCs and blood-circulating tumor cells (BCTCs) as they exit the primary tumor are similar, but distinct from those of primary tumors and lymph node metastases (LNMs). LCTCs, but not BCTCs, exist in clusters, display a hybrid epithelial/mesenchymal phenotype and cancer stem cell-like properties, and are efficient metastatic precursors. These results demonstrate that tumor cells that metastasize through the lymphatic system are different from those spread by blood circulation. Understanding the relative contribution of these cells to overall peripheral blood-circulating tumor cells is important for cancer therapy. Whether these two types of cell occur in cancer patients remains to be determined.
Collapse
Affiliation(s)
- Sulma I. Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Odalys Torres‐Luquis
- Department of Comparative Pathobiology and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Elwood Walls
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Frank Lloyd
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
35
|
Du Y, Zhou L, Lin Y, Yin K, Yin W, Lu J. Polymorphisms in microRNA let-7 binding sites of the HIF1AN and CLDN12 genes can predict pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:138. [PMID: 31157259 DOI: 10.21037/atm.2019.04.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Germline genetic polymorphisms in certain genes are associated with response to anthracycline- and taxane-based neoadjuvant chemotherapy in breast cancer (BC). Recent evidence has indicated that microRNA (miRNA) let-7 expression is associated with response to chemotherapeutics. This study aims to evaluate the potential role of let-7 miRNA-related single nucleotide polymorphisms (mirSNPs) in the prediction of pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in locally advanced breast cancer (LABC). Methods We genotyped the SNPs that reside in and around miRNA let-7 binding sites of two target genes: hypoxia-inducible factor 1 subunit alpha inhibitor (HIF1AN) and claudin 12 (CLDN12). The distribution frequencies of the SNPs were genotyped in LABC patients who received taxane- and platinum-based neoadjuvant chemotherapy. Associations among tumour-relevant biomarkers, genotype and pathological complete response (pCR) were evaluated using Student's t-test for continuous variables and the chi-square or Fisher's exact tests for non-categorical variables. The modified odds ratios (ORs) with their 95% confidence intervals (CIs) were calculated by a multivariate logistic regression analysis to explore the association of genotype with pCR. Results For rs11292, which is located in the 3'-untranslated region (UTR) of HIF1AN, significant differences were detected in codominant, dominant and overdominant models between the patients who achieved pCR and those who did not (non-pCR) (P<0.05) in a multivariate analysis. For rs1017105, which is located in the 3'-UTR of CLDN12, significant differences were observed in the recessive model between the pCR and non-pCR patients with luminal-type BC. Conclusions Let-7-related mirSNPs could predict pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in LABC, which suggests the potential role of variants of miRNA let-7-related gene networks as predictive markers in a clinical setting.
Collapse
Affiliation(s)
- Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kai Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
36
|
Abstract
Inflammasomes are molecular platforms that assemble upon sensing various intracellular stimuli. Inflammasome assembly leads to activation of caspase 1, thereby promoting the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and inducing an inflammatory cell death called pyroptosis. Effectors of the inflammasome efficiently drive an immune response, primarily providing protection against microbial infections and mediating control over sterile insults. However, aberrant inflammasome signalling is associated with pathogenesis of inflammatory and metabolic diseases, neurodegeneration and malignancies. Chronic inflammation perpetuated by inflammasome activation plays a central role in all stages of tumorigenesis, including immunosuppression, proliferation, angiogenesis and metastasis. Conversely, inflammasome signalling also contributes to tumour suppression by maintaining intestinal barrier integrity, which portrays the diverse roles of inflammasomes in tumorigenesis. Studies have underscored the importance of environmental factors, such as diet and gut microbiota, in inflammasome signalling, which in turn influences tumorigenesis. In this Review, we deliver an overview of the interplay between inflammasomes and tumorigenesis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
37
|
Jayatilaka H, Phillip JM. Targeting metastasis through the inhibition of interleukin 6 and 8. BREAST CANCER MANAGEMENT 2019. [DOI: 10.2217/bmt-2019-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hasini Jayatilaka
- Department of Pediatrics, Bass Center for Childhood Cancer, Stanford University, Stanford, CA, 94305, USA
| | - Jude M Phillip
- Department of Medicine, Division of Hematology & Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
38
|
Sato W, Ikeda K, Urano T, Abe Y, Nakasato N, Horie-Inoue K, Takeda S, Inoue S. Efp promotes in vitro and in vivo growth of endometrial cancer cells along with the activation of nuclear factor-κB signaling. PLoS One 2018; 13:e0208351. [PMID: 30586414 PMCID: PMC6306158 DOI: 10.1371/journal.pone.0208351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
Endometrial cancer is common among postmenopausal women and its incidence is increasing in developed countries. Considering that >80% of endometrial cancers are assumed to be estrogen-related, higher estrogen exposure will be relevant to tumorigenesis. Therefore, the roles of estrogen target genes will be important to understand the pathophysiological mechanisms. We previously revealed that estrogen-responsive RING finger protein Efp contributes to breast cancer progression through the protein degradation of cell cycle checkpoint 14-3-3σ. We and others also proposed that Efp has tumor-promoting activities in estrogen receptor (ER)-negative cancer cells. In addition, Efp plays a role in type I interferon production by activating antiviral signaling, which provokes nuclear factor-κB (NF-κB) signaling. In the present study, we investigate whether Efp plays a critical role in endometrial cancer biology. We show that siRNA-mediated Efp knockdown represses the proliferation and migration of endometrial cancer ER-positive Ishikawa and ER-negative HEC-1A cells. Efp knockdown increases 14-3-3σ protein levels and decreases the rates proliferative stage cells. Efp siRNA significantly inhibits the in vivo tumor growth of endometrial cancer cells in both subcutaneous and orthotopic xenograft models. Intriguingly, Efp knockdown represses NF-κB-dependent transactivation and transcription of target genes, such as IL6ST and IL18, in endometrial cancer cells. Overall, Efp would exert a tumor-promoting role through modulating NF-κB pathway and 14-3-3σ protein degradation in endometrial cancer regardless of its estrogen receptor status. Our results indicate that Efp could be a potential diagnostic and therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Wataru Sato
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yayoi Abe
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Department of Obstetrics and Gynecology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Norie Nakasato
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Long noncoding RNA BX357664 regulates cell proliferation and epithelial-to-mesenchymal transition via inhibition of TGF-β1/p38/HSP27 signaling in renal cell carcinoma. Oncotarget 2018; 7:81410-81422. [PMID: 27806310 PMCID: PMC5348402 DOI: 10.18632/oncotarget.12937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Antisense long noncoding RNAs (lncRNAs) are reported to play a regulating role in carcinogenesis of various human malignancies. However, the function of lncRNAs and their underlying mechanism in renal cell carcinoma (RCC) is still unknown. The aims of this study are to investigate the expression of lncRNA BX357664 in RCC and to explore its function in RCC cell lines. As a result, BX357664 was downregulated in RCC according to previous microarray analysis and qualitative real-time polymerase chain reaction. After the upregulation of BX357664, reduced migration, invasion, and proliferation capabilities in RCC cells were detected. Furthermore, Western blot analysis was conducted to identify the influence of BX357664 on epithelial-to-mesenchymal transition, matrix metalloproteinase 2, matrix metalloproteinase 9, and transforming growth factor-beta 1 (TGF-β1)/p38/HSP27 signaling pathway in RCC. Subsequently, upregulating the protein level of TGF-β1 in the presence of BX357664 could rescue the suppression of the malignant behavior mediated by BX357664, indicating that BX357664 attributed its inhibitory role to the suppression of TGF-β1. Therefore, we investigated a novel lncRNA BX357664, which might exhibit its inhibitory role in RCC metastasis and progression by blocking the TGF-β1/p38/HSP27 pathway.
Collapse
|
40
|
AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo. Oncotarget 2018; 8:354-363. [PMID: 27861149 PMCID: PMC5352125 DOI: 10.18632/oncotarget.13396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Ang-(1-7) inhibits lung cancer cell growth both in vitro and in vivo. However, the molecular mechanism of action is unclear and also the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Here, we have demonstrated that Ang- (1-7) inhibits lung cancer cell growth by interrupting pre-replicative complex assembly and restrains epithelial-mesenchymal transition via Cdc6 inhibition. Furthermore, we constructed a mutant adeno-associated viral vector AAV8 (Y733F) that produced stable and high efficient Ang-(1-7) expression in a xenograft tumor model. The results show that AAV8-mediated Ang-(1-7) over-expression can remarkably suppress tumor growth in vivo by down-regulating Cdc6 and anti-angiogenesis. Ang-(1-7) over-expression via the AAV8 method may be a promising strategy for lung cancer treatment.
Collapse
|
41
|
Calvo N, Carriere P, Martin MJ, Gentili C. RSK activation via ERK modulates human colon cancer cells response to PTHrP. J Mol Endocrinol 2017; 59:13-27. [PMID: 28385776 DOI: 10.1530/jme-16-0216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is associated with several human cancers such as colon carcinoma. This disease is a complex multistep process that involves enhanced cell cycle progression and migration. Recently we obtained evidence that in the human colorectal adenocarcinoma Caco2 cells, exogenous PTHrP increases the proliferation and positively modulates cell cycle progression via ERK1/2, p38 MAPK and PI3K. The purpose of this study was to explore if the serine/threonine kinase RSK, which is involved in the progress of many cancers and it is emerging as a potential therapeutic target, mediates PTHrP effects on cancer colon cells. Western blot analysis revealed that PTHrP increases RSK phosphorylation via ERK1/2 signaling pathway but not through p38 MAPK. By performing subcellular fractionation, we found that the peptide also induces the nuclear localization of activated RSK, where many of its substrates are located. RSK participates in cell proliferation, in the upregulation of cyclin D1 and CDK6 and in the downregulation of p53 induced by PTHrP. Wound healing and transwell filter assays revealed that cell migration increased after PTHrP treatment. In addition, the hormone increases the protein expression of the focal adhesion kinase FAK, a regulator of cell motility. We observed that PTHrP induces cell migration and modulates FAK protein expression through ERK/RSK signaling pathway but not via p38 MAPK pathway. Finally, in vivo studies revealed that the hormone activates RSK in xenografts tumor. Taken together, our findings provide new insights into the deregulated cell cycle and migration that is characteristic of tumor intestinal cells.
Collapse
Affiliation(s)
- Natalia Calvo
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - Pedro Carriere
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - María Julia Martin
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - Claudia Gentili
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| |
Collapse
|
42
|
Zhao Z, Li J, Jiang Y, Xu W, Li X, Jing W. CLDN1 Increases Drug Resistance of Non-Small Cell Lung Cancer by Activating Autophagy via Up-Regulation of ULK1 Phosphorylation. Med Sci Monit 2017; 23:2906-2916. [PMID: 28614291 PMCID: PMC5479443 DOI: 10.12659/msm.904177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of CLDN1 in non-small cell lung cancer (NSCLC) and its mechanism of action in cisplatin resistance. MATERIAL AND METHODS A total of 55 patients with NSCLC admitted to our hospital between October 2013 and October 2015 were included. NSCLC tissues and tumor-adjacent tissues (≥5 cm from tumor edge) were collected. Among the 55 patients, 37 had adenocarcinoma and 18 had squamous cell carcinoma. Quantitative real-time polymerase chain reaction was used to determine mRNA expression, and protein expression was examined using Western blotting. CCK-8 assay was used to determine cell proliferation and Transwell assay was used to detect migration and invasion of the cells. Confocal microscopy was used to observe autophagosomes. RESULTS Increased CLDN1 expression promoted the development and metastasis of NSCLC. CLDN1 expression in A549/CDDP cells was up-regulated at both transcriptional and translational levels. Reduced CLDN1 expression decreased the drug resistance, proliferation, migration, and invasion abilities of A549/CDDP cells. Decreased CLDN1 expression promoted the apoptosis of A549/CDDP cells. CLDN1 enhanced CDDP drug resistance of A549 cells by activating autophagy. CLDN1 promoted the autophagy of A549 cells by up-regulating the phosphorylation level of ULK1. CONCLUSIONS The present study demonstrates that expression of CLDN1 in NSCLC is up-regulated and it is correlated with clinicopathological features. CLDN1 activates autophagy through up-regulation of ULK1 phosphorylation and promotes drug resistance of NSCLC cells to CDDP.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yan Jiang
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Xin Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Weili Jing
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
43
|
Physical Confirmation and Comparative Genomics of the Rat Mammary carcinoma susceptibility 3 Quantitative Trait Locus. G3-GENES GENOMES GENETICS 2017; 7:1767-1773. [PMID: 28391240 PMCID: PMC5473756 DOI: 10.1534/g3.117.039388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 (Mcs3)-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 (RNO1). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1-segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 (RNO1:143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10-7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3-orthologous regions with potential association to risk (10-7 < p < 10-3) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14-a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes.
Collapse
|
44
|
Das S, Kelly D, Moran B, Han K, Mulligan N, Barrett C, Buckley PG, McMahon P, McCaffrey J, Van Essen HF, Connor K, Lambrechts D, Ylstra B, Gallagher WM, O'Connor DP, Kelly CM. Postmortem Examination of an Aggressive Case of Medullary Thyroid Carcinoma Characterized by Catastrophic Genomic Abnormalities. JCO Precis Oncol 2017; 1:1600063. [PMID: 32913965 DOI: 10.1200/po.16.00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Sudipto Das
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Deirdre Kelly
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Bruce Moran
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Kathleen Han
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Niall Mulligan
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Ciara Barrett
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Patrick G Buckley
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Peter McMahon
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - John McCaffrey
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Hendrik F Van Essen
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Kate Connor
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Diether Lambrechts
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Bauke Ylstra
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - William M Gallagher
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Darran P O'Connor
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Catherine M Kelly
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| |
Collapse
|
45
|
Baumgartner HK, Rudolph MC, Ramanathan P, Burns V, Webb P, Bitler BG, Stein T, Kobayashi K, Neville MC. Developmental Expression of Claudins in the Mammary Gland. J Mammary Gland Biol Neoplasia 2017; 22:141-157. [PMID: 28455726 PMCID: PMC5488167 DOI: 10.1007/s10911-017-9379-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
Claudins are a large family of membrane proteins whose classic function is to regulate the permeability of tight junctions in epithelia. They are tetraspanins, with four alpha-helices crossing the membrane, two extracellular loops, a short cytoplasmic N-terminus and a longer and more variable C-terminus. The extracellular ends of the helices are known to undergo side-to-side (cis) interactions that allow the formation of claudin polymers in the plane of the membrane. The extracellular loops also engage in head-to-head (trans) interactions thought to mediate the formation of tight junctions. However, claudins are also present in intracellular structures, thought to be vesicles, with less well-characterized functions. Here, we briefly review our current understanding of claudin structure and function followed by an examination of changes in claudin mRNA and protein expression and localization through mammary gland development. Claudins-1, 3, 4, 7, and 8 are the five most prominent members of the claudin family in the mouse mammary gland, with varied abundance and intracellular localization during the different stages of post-pubertal development. Claudin-1 is clearly localized to tight junctions in mammary ducts in non-pregnant non-lactating animals. Cytoplasmic puncta that stain for claudin-7 are present throughout development. During pregnancy claudin-3 is localized both to the tight junction and basolaterally while claudin-4 is found only in sparse puncta. In the lactating mouse both claudin-3 and claudin-8 are localized at the tight junction where they may be important in forming the paracellular barrier. At involution and under challenge by lipopolysaccharide claudins -1, -3, and -4 are significantly upregulated. Claudin-3 is still colocalized with tight junction molecules but is also distributed through the cytoplasm as is claudin-4. These largely descriptive data provide the essential framework for future mechanistic studies of the function and regulation of mammary epithelial cell claudins.
Collapse
Affiliation(s)
- Heidi K. Baumgartner
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Michael C. Rudolph
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, CO 80045 USA
| | - Palaniappian Ramanathan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555 USA
| | - Valerie Burns
- Department of Physiology and Biophysics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045 USA
| | - Patricia Webb
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Torsten Stein
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ken Kobayashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Margaret C. Neville
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
- Department of Physiology and Biophysics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045 USA
- 6561 Glencoe St., Centennial, CO 80121 USA
| |
Collapse
|
46
|
Yang SJ, Yang SY, Wang DD, Chen X, Shen HY, Zhang XH, Zhong SL, Tang JH, Zhao JH. The miR-30 family: Versatile players in breast cancer. Tumour Biol 2017; 39:1010428317692204. [PMID: 28347244 DOI: 10.1177/1010428317692204] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Su-Jin Yang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Su-Yu Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Yu Shen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiao-Hui Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
47
|
da Silva WC, Oshiro TM, de Sá DC, Franco DDGS, Festa Neto C, Pontillo A. Genotyping and differential expression analysis of inflammasome genes in sporadic malignant melanoma reveal novel contribution of CARD8, IL1B and IL18 in melanoma susceptibility and progression. Cancer Genet 2016; 209:474-480. [PMID: 27810076 DOI: 10.1016/j.cancergen.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Sporadic melanoma malignancy is correlated with constitutive secretion of IL-1β in transformed melanocytes suggesting the involvement of inflammasome in melanoma. Common variants in inflammasome genes are known to affect IL-1β expression. To investigate the contribution of inflammasome genetics in melanoma development and progression and to identify a potential prognostic marker, the distribution of selected inflammasome SNPs was analysed in a Brazilian case/control cohort of sporadic malignant melanoma (SMM) and then the expression of inflammasome components was evaluated in melanoma biopsies. Allele and gene-specific Taqman assays were implied for genotyping of case/control DNA samples and for relative expression analysis in skin biopsies respectively. CARD8 rs6509365 was found to be significantly more common in healthy volunteers than in SMM patients suggesting a protection effect of this variant towards melanoma development. Accordingly, CARD8 expression was found to be reduced in nevus compared to melanoma biopsies. Upon stratification, NLRP1 rs11651270 and CARD8 rs2043211 were found associated with nodular melanoma; IL1B rs1143643 to a lower value of Breslow index; IL18 rs5744256 to melanoma development in sun sensitive individuals. As expected, IL1B expression was up-regulated in tumour biopsies especially in metastatic samples, whereas IL18 was down-regulated compared to nevus. Our results demonstrated for the first time the contribution of inflammasome genes CARD8, IL1B and IL18 in SMM.
Collapse
Affiliation(s)
- Wanessa Cardoso da Silva
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences-LIM 56, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Avenida Dr Eneas de Carvalho Aguiar, 470 - Prédio 2-3° andar, 05403-000 Cerqueira César, Sao Paulo, Brazil.
| | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences-LIM 56, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Avenida Dr Eneas de Carvalho Aguiar, 470 - Prédio 2-3° andar, 05403-000 Cerqueira César, Sao Paulo, Brazil
| | - Daniel Coelho de Sá
- Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 500, 05403-000 Cerqueira Cesar, Sao Paulo, Brazil
| | - Dilcilea D G S Franco
- Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 500, 05403-000 Cerqueira Cesar, Sao Paulo, Brazil
| | - Cyro Festa Neto
- Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 500, 05403-000 Cerqueira Cesar, Sao Paulo, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Avenida Prof. Lineu Prestes 1730, 05508-000 Cidade Universitaria, Sao Paulo, Brazil
| |
Collapse
|
48
|
Por ED, Greene WA, Burke TA, Wang HC. Trichostatin A Inhibits Retinal Pigmented Epithelium Activation in an In Vitro Model of Proliferative Vitreoretinopathy. J Ocul Pharmacol Ther 2016; 32:415-24. [PMID: 27494828 PMCID: PMC5011631 DOI: 10.1089/jop.2016.0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose: Proliferative vitreoretinopathy (PVR) is a blinding disorder that develops after a retinal tear or detachment. Activation of the retinal pigmented epithelium (RPE) is implicated in PVR; however, the mechanisms leading to enhanced RPE proliferation, migration, and contraction remain largely unknown. This study utilized an in vitro model of PVR to investigate the role of acetylation in RPE activation and its contribution to the progression of this disease. Methods: ARPE-19 cells, primary cultures of porcine RPE, and induced pluripotent stem cell-derived RPE (iPS-RPE) were utilized for cellular and molecular analyses. Cells treated with transforming growth factor beta 2 (TGFβ2; 10 ng/mL) alone or in the presence of the broad-spectrum histone deacetylase (HDAC) inhibitor, trichostatin A (TSA; 0.1 μM), were assessed for contraction and migration through collagen contraction and scratch assays, respectively. Western blotting and immunofluorescence analysis were performed to assess α-smooth muscle actin (α-SMA) and β-catenin expression after TGFβ2 treatment alone or in combination with TSA. Results: TGFβ2 significantly increased RPE cell contraction in collagen matrix and this effect was inhibited in the presence of TSA (0.1 μM). In agreement with these data, immunofluorescence analysis of TSA-treated iPS-RPE wounded monolayers revealed decreased α-SMA as compared with control. Scratch assays to assess wound healing revealed TSA inhibited TGFβ2-mediated iPS-RPE cell migration. Conclusions: Our findings indicate a role of acetylation in RPE activation. Specifically, the HDAC inhibitor TSA decreased RPE cell proliferation and TGFβ2-mediated cell contraction and migration. Further investigation of pharmacological compounds that modulate acetylation may hold promise as therapeutic agents for PVR.
Collapse
Affiliation(s)
- Elaine D Por
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Whitney A Greene
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Teresa A Burke
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Heuy-Ching Wang
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| |
Collapse
|
49
|
Salvador E, Burek M, Förster CY. Tight Junctions and the Tumor Microenvironment. CURRENT PATHOBIOLOGY REPORTS 2016; 4:135-145. [PMID: 27547510 PMCID: PMC4978755 DOI: 10.1007/s40139-016-0106-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Tight junctions (TJs) are specialized differentiations of epithelial and endothelial cell membranes. TJs play an important role in the adhesion of cells and their interaction with each other. Most cancers originate from epithelial cells. Thus, it is of significance to examine the role of TJs in the tumor microenvironment (TME) and how they affect cancer metastasis. RECENT FINDINGS In epithelium-derived cancers, intactness of the primary tumor mass is influenced by intercellular structures as well as cell-to-cell adhesion. Irregularities of these factors may lead to tumor dissociation and subsequent metastasis. Low expression of TJs is observed among highly metastatic cancer cells. SUMMARY In this review, we summarized findings from current literature in consideration of the role of TJs in relation to the TME and cancer. Deeper understanding of the mechanisms leading to TJ dysregulation is needed to facilitate the design and conceptualization of new and better therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Ellaine Salvador
- Department of Anesthesia and Critical Care, University of Wurzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anesthesia and Critical Care, University of Wurzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Carola Y. Förster
- Department of Anesthesia and Critical Care, University of Wurzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
50
|
Aurelian L, Bollino D, Colunga A. The oncolytic virus ΔPK has multimodal anti-tumor activity. Pathog Dis 2016; 74:ftw050. [PMID: 27242376 DOI: 10.1093/femspd/ftw050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are an emerging cancer therapeutic, with a near complete absence of serious adverse effects. However, clinical efficacy is relatively modest, related to poor tumor penetration, failure to lyse cancer stem cells (CSCs) and blockade of immunogenic cell death by the immunosuppressive tumor microenvironment. To overcome such limitations, we developed an OV (known as ΔPK) with multimodal anti-tumor activity. ΔPK has potent anti-tumor activity both in melanoma cell lines and xenograft animal models, associated with virus replication and the induction of multiple independent programmed cell death pathways. It lyses CSCs through autophagy modulation and it reverses the immunosuppressive tumor microenvironment by altering the balance of cytokines secreted by the tumor cells. This includes decreased tumor cell secretion of the immunosuppressive and procancerous cytokines IL-10 and IL-18 and concomitant increased secretion of the proinflammatory cytokines TNF-α, GM-CSF, IL-6 and IL-1β. ΔPK also upregulates the NKG2D ligand, MICA expressed by cytotoxic NK and T cells, and downregulates the negative immune checkpoint regulator cytotoxic T-lymphocyte antigen-4 (CTLA-4). ΔPK is well tolerated in human patients in whom it also alters the Th1/Th2 balance. Further studies are designed to elucidate the role of these contributions in different tumor types.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Microbiology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dominique Bollino
- Department of Microbiology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aric Colunga
- Department of Microbiology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|