1
|
Lim TS, Rahman IA, Umar A, Hidzir NM, Arkill KP, Sharif R, Jonet MA, Mohd HMK, Mohamed F. An Analysis of the Radiosensitiser Applications in the Biomedical Field. Curr Radiopharm 2025; 18:81-99. [PMID: 39225213 DOI: 10.2174/0118744710269842240825160247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Various types of radiosensitisers have been introduced from the past until the present day for applications in the biomedical field. However, there is a lack of understanding and comparison between the various parameters introduced in addition to a lack of consensus among researchers on the optimal radiosensitiser for applications in the biomedical field. OBJECTIVE This review aimed to investigate the usage of radiosensitisers in the biomedical field, determine their important parameters, and suggest radiosensitisers with potential among the analysed radiosensitisers. RESULTS AND CONCLUSION This review has discussed several parameters for radiosensitisers, including median lethal dose, cell survival, tumour size, cell viability, Dose Enhancement Factor (DEF), Reactive Oxygen Species (ROS) concentration, radiosensitiser production complexity, radiosensitiser administration technique, and radiosensitiser toxicity. General trends regarding the development of radiosensitisers, including the types, effectiveness, and their production complexity, have also been discussed within this review article.
Collapse
Affiliation(s)
- Teng Sheng Lim
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Irman Abdul Rahman
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Aminah Umar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Norsyahidah Mohd Hidzir
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Kenton Paul Arkill
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Razinah Sharif
- Nutritional Science Program and Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome & Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Hur Munawar Kabir Mohd
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Faizal Mohamed
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Nuclear Technology Research Centre, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Sawesi S, Malkaram SA, Abd Elmageed ZY, Fandy TE. Modulation of the activity of histone lysine methyltransferases and demethylases by curcumin analog in leukaemia cells. J Cell Mol Med 2022; 26:5624-5633. [PMID: 36300880 PMCID: PMC9667515 DOI: 10.1111/jcmm.17589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Curcumin is a known epigenetic modifier that demonstrated antitumor effect in different types of cancer. The poor solubility and metabolic stability are major drawbacks that limit its development as an antitumor agent. Dimethoxycurcumin (DMC) is a more soluble and stable curcumin analog. In this study, we compared the effect of both drugs on a variety of histone posttranslational modifications and on the activity of histone lysine methyltransferase (HKMTs) and demethylase (HKDMTs) enzymes that target the H3K4, H3K9 and H3K27 epigenetic marks. Mass spectrometry was used to quantitate the changes in 95 histone posttranslational modifications induced by curcumin or DMC. The effect of both drugs on the enzymatic activity of HKMTs and HKDMs was measured using an antibody‐based assay. Mass spectrometry analysis showed that curcumin and DMC modulated several histone modifications. Histone changes were not limited to lysine methylation and acetylation but included arginine and glutamine methylation. Only few histone modifications were similarly changed by both drugs. On the contrary, the effect of both drugs on the activity of HKMTs and HKDMs was very similar. Curcumin and DMC inhibited the HKMTs enzymes that target the H3K4, H3K9 and H3K27 marks and increased the activity of the HKDMs enzymes LSD1, JARID and JMJD2. In conclusion, we identified novel enzymatic targets for both curcumin and DMC that support their use and development as epigenetic modifiers in cancer treatment. The multiple targets modulated by both drugs could provide a therapeutic advantage by overcoming drug resistance development.
Collapse
Affiliation(s)
- Suhila Sawesi
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy University of Charleston Charleston West Virginia USA
| | - Sridhar A. Malkaram
- Department of Mathematics & Computer Science West Virginia State University Institute West Virginia USA
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences Edward Via College of Osteopathic Medicine (VCOM) Monroe Louisiana USA
| | - Tamer E. Fandy
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy University of Charleston Charleston West Virginia USA
| |
Collapse
|
4
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Wang Z, He S, Jiang M, Li X, Chen N. Mechanism Study on Radiosensitization Effect of Curcumin in Bladder Cancer Cells Regulated by Filamin A. Dose Response 2022; 20:15593258221100997. [PMID: 35677349 PMCID: PMC9168873 DOI: 10.1177/15593258221100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To study the radiosensitization effect of curcumin, a natural product with
anti-inflammatory and anti-cancer properties, in bladder cancer cells and identify the
specific role of FLNA gene in that process. Methods CCK-8 method was initially adopted to identify the proper interventional concentration
of curcumin. T24 bladder cancer cells were subjected to CCK-8, flow cytometry, and
colony formation assay to study the cell biological behaviors under different
interventions. γ-H2AX test was performed to test the level of damage in T24 cells.
RT-qPCR and Western blot were conducted to measure FLNA mRNA and protein levels. Results Low-dose curcumin (10, 20 μM) following X-ray exposure resulted in increased DNA
damage, augmented apoptosis, and reduced proliferation of T24 cells. Certain
radiosensitization was demonstrated when curcumin was applied at 10 μM. Additionally,
elevation of FLNA gene and protein levels was also indicated upon combination
treatment. Conclusion Low-dose curcumin has certain radiosensitization effect in bladder cancer, where FLNA
plays a certain regulatory role.
Collapse
Affiliation(s)
- Zhenfan Wang
- Soochow University Affiliated Suzhou Ninth Hospital, Suzhou, China
| | - Shuqing He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Minjun Jiang
- Soochow University Affiliated Suzhou Ninth Hospital, Suzhou, China
| | - Xue Li
- Soochow University Affiliated Suzhou Ninth Hospital, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
6
|
Zhang J, Chen Y, Fang J. Targeting thioredoxin reductase by micheliolide contributes to radiosensitizing and inducing apoptosis of HeLa cells. Free Radic Biol Med 2022; 186:99-109. [PMID: 35561844 DOI: 10.1016/j.freeradbiomed.2022.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
Inhibition of thioredoxin reductase (TrxR) is a crucial strategy for the discovery of antineoplastic drugs and radiosensitizers. As an anticancer candidate derived from Michelia, micheliolide (MCL) is converted readily from parthenolide (PTL), and has better stability and solubility than PTL. However, the anticancer mechanism of MCL has not been fully dissected. We present here for the first time that MCL-targeted inhibition of TrxR not only promotes oxidative stress-mediated HeLa cell apoptosis but also sensitizes ionizing radiation (IR) treatment. Further mechanistic studies demonstrate that MCL covalently binds to Sec at position 498 of TrxR to restrain the biological function of TrxR. It exhibits the inhibition of TrxR activity, enhancement of oxidized Trx, and sensitization of IR in the cellular environment, accompanied by the accumulation of reactive oxygen species (ROS) and the collapse of the intracellular redox balance. In addition, HeLa-shTrxR1 cells with knockdown of TrxR were more sensitive than the HeLa-shNT cells to either MCL-treated or IR-induced cytotoxicity, ROS, and apoptosis, suggesting that inhibition of TrxR by MCL is likely responsible for increased cytotoxicity and enhanced radiation response. These findings further establish the mechanistic understanding and preclinical data to support the further investigation of MCL's potential as a prospective radiosensitizer and cancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yaxiong Chen
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, And Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Sohail M, Yu B, Sun Z, Liu J, Li Y, Zhao F, Chen D, Yang X, Xu H. Complex polymeric nanomicelles co-delivering doxorubicin and dimethoxycurcumin for cancer chemotherapy. Drug Deliv 2022; 29:1523-1535. [PMID: 35611890 PMCID: PMC9135434 DOI: 10.1080/10717544.2022.2073403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Combinational therapy is a new trend in medical sciences to achieve a maximum therapeutic response of the drugs with a comparatively low incidence of severe adverse effects. To overcome the challenges of conventional formulations for cancer chemotherapy, a polymer-based complex nanomicellar system, namely CPM-DD, was developed co-delivering the anti-cancer agent doxorubicin (DOX) and potent antioxidant dimethoxycurcumin (DiMC). The optimal mass ratio of DOX/DiMC in CPM-DD was determined as 1:6 due to the synergistic antiproliferative effect from in vitro cytotoxicity assay, while the biocompatible diblock copolymer of mPEG2000-PLA5000 was selected for drug entrapment at an optimal feeding ratio of 9:1 to both drugs together. The uniform particles of CPM-DD with suitable particle size (∼30 nm) and stable drug loading content (>9%) could be reliably obtained by self-assembly with the encapsulation yield up to 95%. Molecular dynamics simulation revealed the interaction mechanism responsible for forming these complex nanomicelles. The acid-base interaction between two drugs would significantly improve their binding with the copolymer, thus leading to good colloidal stability and controlled drug release characteristics of CPM-DD. Systematic evaluation based on the MCF-7 breast tumor-bearing nude mice model further demonstrated the characteristics of tissue biodistribution of both drugs delivered by CPM-DD, which were closely related to the drug loading pattern and greatly responsible for the improved anti-cancer potency and attenuated toxicity of this complex formulation. Therefore, all the findings indicated that CPM-DD would be a good alternative to the conventional formulations of DOX and worthy of clinical application for cancer chemotherapy.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Jiali Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
8
|
Patwardhan RS, Sharma D, Sandur SK. Thioredoxin reductase: An emerging pharmacologic target for radiosensitization of cancer. Transl Oncol 2022; 17:101341. [PMID: 35078017 PMCID: PMC8790659 DOI: 10.1016/j.tranon.2022.101341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel agents are required to increase the radiosensitivity of cancer and improve the outcome of radiotherapy. Thioredoxin (Trx) and thioredoxin reductase (TrxR) reduce the oxidized cysteine thiols in several proteins, which regulate cellular redox, survival, proliferation, DNA synthesis, transcription factor activity and apoptosis. TrxR is essential for maintaining a conducive redox state for tumor growth, survival and resistance to therapy. Therefore, it is an appealing pharmacological target for the radiosensitization of tumors. Ionizing radiation (IR) is known to cause cytotoxicity through ROS, oxidative stress and DNA damage. Inhibition of thioredoxin system augments IR induced oxidative stress and potentiates cytotoxic effects. However, TrxR also regulates several critical cellular processes in normal cells. Here, we highlight the pre-clinical research and pharmacological studies to surmise possible utility of different TrxR inhibitors for radiosensitization. This review provides a succinct perspective on the role of TrxR inhibitors during the radiotherapy of cancer.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Zoi V, Galani V, Tsekeris P, Kyritsis AP, Alexiou GA. Radiosensitization and Radioprotection by Curcumin in Glioblastoma and Other Cancers. Biomedicines 2022; 10:312. [PMID: 35203521 PMCID: PMC8869399 DOI: 10.3390/biomedicines10020312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy plays an important role in almost every cancer treatment. However, radiation toxicity to normal tissues, mainly due to the generation of reactive free radicals, has limited the efficacy of radiotherapy in clinical practice. Curcumin has been reported to possess significant antitumor properties. Although curcumin can sensitize cancer cells to irradiation, healthy cells are much less sensitive to this effect, and thus, curcumin is thought to be a potent, yet safe anti-cancer agent. In this review, a summary of the role of curcumin as both a radiosensitizer and radioprotector has been presented, based on the most recent data from the experimental and clinical evaluation of curcumin in different cancer cell lines, animal models, and human patients.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (A.P.K.)
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Pericles Tsekeris
- Department of Radiation Oncology, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios P. Kyritsis
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (A.P.K.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (A.P.K.)
| |
Collapse
|
10
|
Colon R, Wheater M, Joyce EJ, Ste Marie EJ, Hondal RJ, Rein KS. The Marine Neurotoxin Brevetoxin (PbTx-2) Inhibits Karenia brevis and Mammalian Thioredoxin Reductases by Targeting Different Residues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2961-2970. [PMID: 34752085 DOI: 10.1021/acs.jnatprod.1c00795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The brevetoxins, neurotoxins produced by Karenia brevis, the Florida red tide dinoflagellate, effect fish and wildlife mortalities and adverse public health and economic impacts during recurrent blooms. Knowledge of the biochemical consequences of toxin production for K. brevis could provide insights into an endogenous role of the toxins, yet this aspect has not been thoroughly explored. In addition to neurotoxicity, the most abundant of the brevetoxins, PbTx-2, inhibits mammalian thioredoxin reductase (TrxR). The thioredoxin system, composed of the enzymes TrxR and thioredoxin (Trx), is present in all living organisms and is responsible in part for maintaining cellular redox homeostasis. Herein, we describe the cloning, expression, and semisynthesis of the selenoprotein TrxR from K. brevis (KbTrxR) and reductase activity toward a variety of substrates. Unlike mammalian TrxR, KbTrxR reduces oxidized glutathione (GSSG). We further demonstrate that PbTx-2 is an inhibitor of KbTrxR. Covalent adducts between KbTrxR and rat TrxR were detected by mass spectrometry. While both enzymes are adducted at or near the catalytic centers, the specific residues are distinct. Biochemical differences reported for high and low toxin producing strains of K. brevis are consistent with the inhibition of KbTrxR and suggest that PbTx-2 is an endogenous regulator of this critical enzyme.
Collapse
Affiliation(s)
- Ricardo Colon
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| | - Michelle Wheater
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Emily J Joyce
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Emma J Ste Marie
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| |
Collapse
|
11
|
Luo SM, Wu YP, Huang LC, Huang SM, Hueng DY. The Anti-Cancer Effect of Four Curcumin Analogues on Human Glioma Cells. Onco Targets Ther 2021; 14:4345-4359. [PMID: 34376999 PMCID: PMC8349541 DOI: 10.2147/ott.s313961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the primary aggressive malignancy of the brain with poor outcome. Curcumin analogues are polyphenolic compounds as the bioactive substances extracted from turmeric. This study aims to investigate the anti-cancer effects of four curcumin analogues. Furthermore, the molecular mechanisms of dimethoxycurcumin in human gliomas were analyzed by Western blot. Materials and Methods Human LN229 and GBM8401 glioma cells were treated by four curcumin analogues with different number of methoxy groups. The cell viability, cell cycle, apoptosis, proliferation and ROS production of human gliomas were analyzed by flow cytometry. Moreover, the effects of four curcumin analogues on tumorigenesis of gliomas were conducted by wound healing assay and colony formation assay. Furthermore, the molecular mechanisms of dimethoxycurcumin in human gliomas were analyzed by Western blot. Results Our data showed that four different curcumin analogues including curcumin, bisdemethoxycurcumin, demethoxycurcumin, and dimethoxycurcumin promote sub-G1 phase, G2/M arrest, apoptosis, and ROS production in human glioma cells. Moreover, dimethoxycurcumin suppressed cell viability, migration, and colony formation, induction of sub-G1, G2/M arrest, apoptosis, and ROS production in glioma cells. Moreover, the mechanism of dimethoxycurcumin is ROS production to increase LC3B-II expression to induce autophagy. Furthermore, dimethoxycurcumin suppressed apoptotic marker, BCL-2 to promote apoptosis in LN229 and GBM8401 glioma cells. Conclusion Our study found that dimethoxycurcumin induced apoptosis, autophagy, ROS production and suppressed cell viability in human gliomas. Dimethoxycurcumin might be a potential therapeutic candidate in human glioma cells.
Collapse
Affiliation(s)
- Siou-Min Luo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Ping Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
12
|
Sohail M, Guo W, Yang X, Li Z, Li Y, Xu H, Zhao F. A Promising Anticancer Agent Dimethoxycurcumin: Aspects of Pharmacokinetics, Efficacy, Mechanism, and Nanoformulation for Drug Delivery. Front Pharmacol 2021; 12:665387. [PMID: 34295247 PMCID: PMC8290316 DOI: 10.3389/fphar.2021.665387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Curcumin is a well-known anticancer natural product with various significant bioactivities that has been well documented, but its widespread use is mainly hindered by insufficient ADME properties such as poor solubility and low metabolic stability. Dimethoxycurcumin (DiMC) is a kind of lipophilic compound derived from curcumin that maintains its anticancer potency and has greatly improved systematic bioavailability. Therefore, DiMC is regarded as a promising plant-derived anticancer agent that deserves to be well developed. Herein, we concentrate on the published work by those from original research groups concerned with the pharmacokinetics, efficacy, and mechanism of DiMC involved in the treatment of various tumors, as well as the nanoformulations for effective drug delivery.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Wenna Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Zhiyong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China.,Department of Pharmaceutics, Binzhou Hospital of TCM, Binzhou, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
13
|
Adeluola A, Zulfiker AHM, Brazeau D, Amin ARMR. Perspectives for synthetic curcumins in chemoprevention and treatment of cancer: An update with promising analogues. Eur J Pharmacol 2021; 906:174266. [PMID: 34146588 DOI: 10.1016/j.ejphar.2021.174266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Curcumin, a pure compound extracted from the flowering plant, turmeric (Curcuma longa. Zingiberaceae), is a common dietary ingredient found in curry powder. It has been studied extensively for its anti-inflammatory, antioxidant, antimicrobial and anti-tumour activities. Evidence is accumulating demonstrating its potential in chemoprevention and as an anti-tumour agent for the treatment of cancer. Despite demonstrated safety and tolerability, the clinical application of curcumin is frustrated by its poor solubility, metabolic instability and low oral bioavailability. Consequently researchers have tried novel techniques of formulation and delivery as well as synthesis of analogues with enhanced properties to overcome these barriers. This review presents the synthetic analogues of curcumin that have proven their anticancer potential from different studies. It also highlights studies that combined these analogues with approved chemotherapies and delivered them via novel techniques. Currently, there are no reports of clinical studies on any of the synthetic congeners of curcumin and this presents an opportunity for future research. This review presents the synthetic analogues of curcumin and makes a compelling argument for their potential application in the management of cancerous disease.
Collapse
Affiliation(s)
- Adeoluwa Adeluola
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| | - Abu Hasanat Md Zulfiker
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - A R M Ruhul Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
14
|
Shi L, Gao LL, Cai SZ, Xiong QW, Ma ZR. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 2021; 221:113528. [PMID: 34020339 DOI: 10.1016/j.ejmech.2021.113528] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 μM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, First People's Hospital of Kunshan, Suzhou, 215300, PR China
| | - Li-Li Gao
- Department of Oncology, The People's Hospital of Funing County in Yancheng City, Yancheng, 224400, Jiang Su, PR China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Suzhou, 215021, PR China.
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China.
| |
Collapse
|
15
|
Pettinari R, Marchetti F, Tombesi A, Duan F, Zhou L, Messori L, Giacomelli C, Marchetti L, Trincavelli ML, Marzo T, La Mendola D, Balducci G, Alessio E. Ruthenium(II) 1,4,7-trithiacyclononane complexes of curcumin and bisdemethoxycurcumin: Synthesis, characterization, and biological activity. J Inorg Biochem 2021; 218:111387. [PMID: 33721720 DOI: 10.1016/j.jinorgbio.2021.111387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022]
Abstract
Two cationic ruthenium(II) 1,4,7-trithiacyclononane ([9]aneS3) complexes of curcumin (curcH) and bisdemethoxycurcumin (bdcurcH), namely [Ru(curc)(dmso-S)([9]aneS3)]Cl (1) and [Ru(bdcurc)(dmso-S)([9]aneS3)]Cl (2) were prepared from the [RuCl2(dmso-S)([9]-aneS3)] precursor and structurally characterized, both in solution and in the solid state by X-ray crystallography. The corresponding PTA complexes [Ru(curc)(PTA)([9]aneS3)]Cl (3) and [Ru(bdcurc)(PTA)([9]aneS3)]Cl (4) have been also synthesized and characterized (PTA = 1,3,5-triaza-7-phosphaadamantane). Bioinorganic studies relying on mass spectrometry were performed on complexes 1-4 to assess their interactions with the model protein lysozyme. Overall, a rather limited reactivity with lysozyme was highlighted accompanied by a modest cytotoxic potency against three representative cancer cell lines. The moderate pharmacological activity is likely connected to the relatively high stability of these complexes.
Collapse
Affiliation(s)
- Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Fabio Marchetti
- School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Alessia Tombesi
- School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Fenghe Duan
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, Florence, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | | | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, Italy
| |
Collapse
|
16
|
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021; 16:1083-1102. [PMID: 33603370 PMCID: PMC7886779 DOI: 10.2147/ijn.s290438] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) is a cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Although great success has been achieved on radiotherapy, there is still an intractable challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are chemicals or pharmaceutical agents that can enhance the killing effect on tumor cells by accelerating DNA damage and producing free radicals indirectly. In most cases, radiosensitizers have less effect on normal tissues. In recent years, several strategies have been exploited to develop radiosensitizers that are highly effective and have low toxicity. In this review, we first summarized the applications of radiosensitizers including small molecules, macromolecules, and nanomaterials, especially those that have been used in clinical trials. Second, the development states of radiosensitizers and the possible mechanisms to improve radiosensitizers sensibility are reviewed. Third, the challenges and prospects for clinical translation of radiosensitizers in oncotherapy are presented.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Chengcheng Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
17
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Joshi HA, Patwardhan RS, Sharma D, Sandur SK, Devarajan PV. Pre-clinical evaluation of an innovative oral nano-formulation of baicalein for modulation of radiation responses. Int J Pharm 2020; 595:120181. [PMID: 33359537 DOI: 10.1016/j.ijpharm.2020.120181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 02/04/2023]
Abstract
There is an unmet medical need for non-toxic and effective radiation countermeasures for prevention of radiation toxicity during planned exposures. We have earlier shown that intraperitoneal administration of baicalein (BCL) offers significant survival benefit in animal model. Safety, tolerability, pharmacokinetics (PK) and pharmacodynamics of baicalein has been reported in pre-clinical model systems and also in healthy human volunteers. However, clinical translation of baicalein is hindered owing to poor bioavailability due to lipophilicity. In view of this, we fabricated and characterized in-situ solid lipid nanoparticles of baicalein (SLNB) with effective drug entrapment and release kinetics. SLNB offered significant protection to murine splenic lymphocytes against 4 Gy ionizing radiation (IR) induced apoptosis. Oral administration of SLNB exhibited ~70% protection to mice against whole body irradiation (WBI 7.5 Gy) induced mortality. Oral relative bioavailability of BCL was enhanced by over ~300% after entrapment in the SLNB as compared to BCL. Oral dosing of SLNB resulted in transient increase in neutrophil abundance in peripheral blood. Interestingly, we observed that treatment of human lung cancer cells (A549) with radioprotective dose of SLNB exhibited radio-sensitization as evinced by decrease in survival and clonogenic potential. Contrary to antioxidant nature of baicalein in normal cells, SLNB treatment induced significant increase in cellular ROS levels in A549 cells probably due to higher uptake and inhibition of TrxR. Thus, a pharmaceutically acceptable SLNB exhibited improved bioavailability, better radioprotection to normal cells and sensitized cancer cells to radiation induced killing as compared to BCL suggesting its possible utility as an adjuvant during cancer radiotherapy.
Collapse
Affiliation(s)
- Harsh A Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
19
|
Allegra AG, Mannino F, Innao V, Musolino C, Allegra A. Radioprotective Agents and Enhancers Factors. Preventive and Therapeutic Strategies for Oxidative Induced Radiotherapy Damages in Hematological Malignancies. Antioxidants (Basel) 2020; 9:antiox9111116. [PMID: 33198328 PMCID: PMC7696711 DOI: 10.3390/antiox9111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy plays a critical role in the management of a wide range of hematologic malignancies. It is well known that the post-irradiation damages both in the bone marrow and in other organs are the main causes of post-irradiation morbidity and mortality. Tumor control without producing extensive damage to the surrounding normal cells, through the use of radioprotectors, is of special clinical relevance in radiotherapy. An increasing amount of data is helping to clarify the role of oxidative stress in toxicity and therapy response. Radioprotective agents are substances that moderate the oxidative effects of radiation on healthy normal tissues while preserving the sensitivity to radiation damage in tumor cells. As well as the substances capable of carrying out a protective action against the oxidative damage caused by radiotherapy, other substances have been identified as possible enhancers of the radiotherapy and cytotoxic activity via an oxidative effect. The purpose of this review was to examine the data in the literature on the possible use of old and new substances to increase the efficacy of radiation treatment in hematological diseases and to reduce the harmful effects of the treatment.
Collapse
Affiliation(s)
- Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
- Correspondence: ; Tel.: +39-090-221-2364
| |
Collapse
|
20
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
21
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Zanetti TA, Biazi BI, Coatti GC, Baranoski A, Marques LA, Corveloni AC, Mantovani MS. Mitotic spindle defects and DNA damage induced by dimethoxycurcumin lead to an intrinsic apoptosis pathway in HepG2/C3A cells. Toxicol In Vitro 2019; 61:104643. [DOI: 10.1016/j.tiv.2019.104643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023]
|
23
|
Ryan Wolf J, Gewandter JS, Bautista J, Heckler CE, Strasser J, Dyk P, Anderson T, Gross H, Speer T, Dolohanty L, Bylund K, Pentland AP, Morrow GR. Utility of topical agents for radiation dermatitis and pain: a randomized clinical trial. Support Care Cancer 2019; 28:3303-3311. [PMID: 31758326 DOI: 10.1007/s00520-019-05166-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Although topical agents are often provided during radiation therapy, there is limited consensus and evidence for their use prophylactically to prevent or reduce radiation dermatitis. METHODS This was a multi-site, randomized, placebo-controlled, blinded study of 191 breast cancer patients to compare the prophylactic effectiveness of three topical agents (Curcumin, HPR Plus™, and Placebo) for reducing radiation dermatitis and associated pain. Patients applied the topical agent to their skin in the radiation area site three times daily starting the first day of radiation therapy (RT) until 1 week after RT completion. RESULTS Of the 191 randomized patients, 171 patients were included in the final analyses (87.5% white females, mean age = 58 (range = 36-88)). Mean radiation dermatitis severity (RDS) scores did not significantly differ between study arms (Curcumin = 2.68 [2.49, 2.86]; HPR Plus™ = 2.64 [2.45, 2.82]; Placebo = 2.63 [2.44, 2.83]; p = 0.929). Logistic regression analyses showed that increased breast field separation positively correlated with increased radiation dermatitis severity (p = 0.018). In patients with high breast field separation (≥ 25 cm), RDS scores (Curcumin = 2.70 [2.21, 3.19]; HPR Plus™ = 3.57 [3.16, 4.00]; Placebo = 2.95 [2.60, 3.30]; p = 0.024) and pain scores (Curcumin = 0.52 [- 0.28, 1.33]; HPR Plus™ = 0.55 [- 0.19, 1.30]; Placebo = 1.73 [0.97, 2.50]; p = 0.046) significantly differed at the end of RT. CONCLUSIONS Although there were no significant effects of the treatment groups on the overall population, our exploratory subgroup analysis suggests that prophylactic treatment with topical curcumin may be effective for minimizing skin reactions and pain for patients with high breast separation (≥ 25 cm) who may have the worst skin reactions.
Collapse
Affiliation(s)
- Julie Ryan Wolf
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA.
| | - Jennifer S Gewandter
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Bautista
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles E Heckler
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Pawal Dyk
- Heartland Cancer Research NCORP, St. Louis, MO, USA
| | | | - Howard Gross
- Dayton Clinical Oncology Program, Dayton, OH, USA
| | - Tod Speer
- Metro-Minnesota NCORP, St. Louis Park, MN, USA
| | - Lindsey Dolohanty
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Kevin Bylund
- Department Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alice P Pentland
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Gary R Morrow
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [PMID: 31450085 DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
25
|
Tang JY, Shu CW, Wang CL, Wang SC, Chang MY, Lin LC, Chang HW. Sulfonyl chromen-4-ones (CHW09) shows an additive effect to inhibit cell growth of X-ray irradiated oral cancer cells, involving apoptosis and ROS generation. Int J Radiat Biol 2019; 95:1226-1235. [PMID: 31141432 DOI: 10.1080/09553002.2019.1625490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: This study evaluates the growth inhibiting potential of our previously described sulfonyl chromen-4-ones (CHW09) compound in X-ray irradiated oral cancer cells. Materials and methods: The growth inhibiting effect and mechanism of combined CHW09/X-ray treatment was examined by analyzing cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), and DNA damage. Results: Individual treatments of CHW09 (10 μg/mL) and X-ray irradiation (12 Gy) slightly decreased cell viability of oral cancer Ca9-22 (87.25% and 86.54%) and CAL 27 (80.00% and 74.01%) cells and normal oral HGF-1 cells (92.76% and 87.56%) at 24 h-MTS assay, respectively. In a combined treatment (CHW09/X-ray), the cell viability in Ca9-22 and CAL 27 cells was significantly decreased to 73.48% and 59.07%, whereas HGF-1 cells maintained 84.97% viability in 24 h-MTS assay. For CAL 27 cells, both 72 h-MTS assay and clonogenic assay showed that CHW09/X-ray resulted in more growth inhibition than other treatments. Intracellular ROS levels of CHW09/X-ray were higher than for CHW09, X-ray and control. CHW09/X-ray and X-ray alone had higher G2/M arrest than the control and CHW09 alone. Moreover, flow cytometry and western blotting showed that CHW09/X-ray treatment caused higher apoptosis levels. Levels of H2A histone family member X (γH2AX)-based DNA damage and 8-oxo-2'-deoxyguanosine (8-oxodG)-oxidative DNA damage of CHW09/X-ray were higher than for CHW09, X-ray and control. Conclusion: CHW09/X-ray treatment had additive growth inhibiting effects against X-ray irradiated oral cancer cells, partly attributing to apoptosis and ROS generation.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University , Kaohsiung , Taiwan
| | - Chun-Lin Wang
- Food Industry Research and Development Institute, Bioresource Collection and Research Center , Hsinchu , Taiwan
| | - Sheng-Chieh Wang
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center , Tainan , Taiwan.,School of Medicine, Taipei Medical University , Taipei , Taiwan.,Chung Hwa University of Medical Technology , Tainan , Taiwan
| | - Hsueh-Wei Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University , Kaohsiung , Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung , Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
26
|
Polaquini CR, Morão LG, Nazaré AC, Torrezan GS, Dilarri G, Cavalca LB, Campos DL, Silva IC, Pereira JA, Scheffers DJ, Duque C, Pavan FR, Ferreira H, Regasini LO. Antibacterial activity of 3,3'-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg Chem 2019; 90:103031. [PMID: 31238181 DOI: 10.1016/j.bioorg.2019.103031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.
Collapse
Affiliation(s)
- Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Luana G Morão
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Ana C Nazaré
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme S Torrezan
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Lúcia B Cavalca
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Débora L Campos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Isabel C Silva
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Jessé A Pereira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Cristiane Duque
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil.
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil.
| |
Collapse
|
27
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin Drug Discov 2019; 14:821-842. [DOI: 10.1080/17460441.2019.1614560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eirini Chainoglou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Tuladhar A, Hondal RJ, Colon R, Hernandez EL, Rein KS. Effectors of thioredoxin reductase: Brevetoxins and manumycin-A. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:76-86. [PMID: 30476593 PMCID: PMC7485175 DOI: 10.1016/j.cbpc.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/03/2023]
Abstract
The activities of two effectors, brevetoxin (PbTx) and manumycin-A (Man-A), of thioredoxin reductase (TrxR) have been evaluated against a series of fourteen TrxR orthologs originating from mammals, insects and protists and several mutants. Man-A, a molecule with numerous electrophilic sites, forms a covalent adduct with most selenocystine (Sec)-containing TrxR enzymes. The evidence also demonstrates that Man-A can form covalent adducts with some non-Sec-containing enzymes. The activities of TrxR enzymes towards various substrates are moderated by Man-A either positively or negatively depending on the enzyme. In general, the reduction of substrates by Sec-containing TrxR is inhibited and NADPH oxidase activity is activated. For non-Sec-containing TrxR the effect of Man-A on the reduction of substrates is variable, but NADPH oxidase activity can be activated even in the absence of covalent modification of TrxR. The effect of PbTx is less pronounced. A smaller subset of enzymes is affected by PbTx. With a single exception, the activities of most of this subset are activated. Although both PbTx variants can react with selenocysteine, a stable covalent adduct is not formed with any of the TrxR enzymes. The key findings from this work are (i) the identification of an alternate mechanism of toxicity for the algal toxin brevetoxin (ii) the demonstration that covalent modification of TrxR is not a prerequisite for the activation of NADPH oxidase activity of TrxR and (iii) the identification of an inhibitor which can discriminate between cytosolic and mitochondrial TrxR.
Collapse
Affiliation(s)
- Anupama Tuladhar
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room 413B, Burlington, VT 05405, United States
| | - Ricardo Colon
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Elyssa L Hernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States.
| |
Collapse
|
29
|
Wang JR, Luo YH, Piao XJ, Zhang Y, Feng YC, Li JQ, Xu WT, Zhang Y, Zhang T, Wang SN, Xue H, Wang WZ, Cao LK, Jin CH. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-κB pathways in human hepatocellular carcinoma cells. Drug Dev Res 2019; 80:461-470. [PMID: 30698296 DOI: 10.1002/ddr.21518] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Isoliquiritigenin (ISL), a natural flavonoid isolated from plant licorice, has various pharmacological properties, including anticancer, anti-inflammatory, and antiviral effects. However, the underlying mechanisms and signaling pathways of ISL in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we evaluated the effects of ISL on the apoptosis of human HCC cells with a focus on reactive oxygen species (ROS) production. Our results showed that ISL exhibited cytotoxic effects on two human liver cancer cells in a dose-dependent manner. ISL significantly induced mitochondrial-related apoptosis and cell cycle arrest at the G2/M phase, which was accompanied by ROS accumulation in HepG2 cells. However, pretreatment with an ROS scavenger, N-acetyl-l-cysteine (NAC), inhibited ISL-induced apoptosis. In addition, ISL increased the phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 kinase and inhibitor of NF-κB (IκB), and decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB), these effects were blocked by NAC and mitogen-activated protein kinase (MAPK) inhibitors. Taken together, the findings of this study indicate that ISL induced HepG2 cell apoptosis via ROS-mediated MAPK, STAT3, and NF-κB signaling pathways. Therefore, ISL may be a potential treatment for human HCC, as well as other cancer types.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Zhong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
30
|
Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett 2018; 438:154-164. [PMID: 30223069 DOI: 10.1016/j.canlet.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022]
Abstract
Radiotherapy represents a major anti-cancer modality and effectively kills cancer cells through generation of reactive oxygen species (ROS). However, cancer cells are commonly characterized by increased activity of ROS-scavenging enzymes in adaptation to intrinsic oxidative stress, leading to radioresistance. Abrogation of this defense network by pharmacological ROS insults therefore is shown to improve radioresponse in preclinical models; some of them are then tested in clinical trials. In this review, we address (1) the importance of ROS in radioresponse, (2) the main systems regulating redox homeostasis with a special focus on their prognostic effect and predictive role in radiotherapy, and (3) the potential radiosensitizers acting through inhibition of antioxidant enzymes.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
31
|
Zhao X, Yu XH, Zhang GY, Zhang HY, Liu WW, Zhang CK, Sun YJ, Ling JY. Aqueous Extracts of Cordyceps kyushuensis Kob Induce Apoptosis to Exert Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8412098. [PMID: 30175146 PMCID: PMC6106948 DOI: 10.1155/2018/8412098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
Cancer has become the leading cause of mortality since 2010 in China. Despite the remarkable advances in cancer therapy, a low survival rate is still a burden to the society. The antineoplastic activity of aqueous extracts of Cordyceps kyushuensis Kob (AECK) was measured in this study. Results showed that AECK can significantly inhibit the proliferation and viability of U937 and K562 when treated with different concentrations of AECK, and the IC50 values of U937 and K562 were 31.23 μg/ml and 62.5 μg/ml, respectively. Hoechst 33258 staining showed that AECK could cause cell shrinkage, chromatin, condensation, and cytoplasmic blebbing, and DNA ladder experiment revealed the evident feature of DNA fragmentation which showed that AECK could induce cell apoptosis. Moreover, AECK gave rise to intrinsic apoptosis through increasing the amount of Ca2+ and downregulating the expression of Bcl-2. Meanwhile, the level of Fas death receptor was elevated which indicated that AECK could lead to exogenous apoptosis in U937. The expressions of oncogene c-Myc and c-Fos were suppressed which manifested that AECK could negatively regulate the growth, proliferation, and tumorigenesis of U937 cells. This research presented the primary antitumor activity of AECK which would contribute to the widely use of Cordyceps kyushuensis Kob as a functional food and medicine.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xing-hui Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Guo-ying Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | | | - Wei-wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Chang-kai Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Ying-jie Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Jian-ya Ling
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
32
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
33
|
Ryan Wolf J, Heckler CE, Guido JJ, Peoples AR, Gewandter JS, Ling M, Vinciguerra VP, Anderson T, Evans L, Wade J, Pentland AP, Morrow GR. Oral curcumin for radiation dermatitis: a URCC NCORP study of 686 breast cancer patients. Support Care Cancer 2018; 26:1543-1552. [PMID: 29192329 PMCID: PMC5876157 DOI: 10.1007/s00520-017-3957-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Despite advances in medical technology, radiation dermatitis occurs in 95% of patients receiving radiation therapy (RT) for cancer. Currently, there is no standard and effective treatment for the prevention or control of radiation dermatitis. The goal of the study was to determine the efficacy of oral curcumin, one of the biologically active components in turmeric, at reducing radiation dermatitis severity (RDS) at the end of RT, using the RDS scale, compared to placebo. METHODS This was a multisite, randomized, double-blinded, placebo-controlled trial of 686 breast cancer patients. Patients took four 500-mg capsules of placebo or curcumin three times daily throughout their prescribed course of RT until 1 week post-RT. RESULTS A total of 686 patients were included in the final analyses (87.5% white females, mean age = 58). Linear mixed-model analyses demonstrated that curcumin did not reduce radiation dermatitis severity at the end of RT compared to placebo (B (95% CI) = 0.044 (- 0.101, 0.188), p = 0.552). Fewer curcumin patients with RDS > 3.0 suggested a trend toward reduced severity (7.4 vs. 12.9%, p = 0.082). Patient-reported changes in pain, symptoms, and quality of life were not statistically significant between arms. CONCLUSIONS Oral curcumin did not significantly reduce radiation dermatitis severity compared to placebo. The skin rating variation and broad eligibility criteria could not account for the undetectable therapeutic effect. An objective measure for radiation dermatitis severity and further exploration for an effective treatment for radiation dermatitis is warranted.
Collapse
Affiliation(s)
- Julie Ryan Wolf
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA.
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA.
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA.
| | - Charles E Heckler
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph J Guido
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Anita R Peoples
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer S Gewandter
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marilyn Ling
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Lisa Evans
- Southeast Clinical Oncology Research Consortium, Winston-Salem, NC, USA
| | | | - Alice P Pentland
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Gary R Morrow
- URCC NCORP Research Base, University of Rochester Medical Center, Rochester, NY, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
34
|
Doello K, Ortiz R, Alvarez PJ, Melguizo C, Cabeza L, Prados J. Latest in Vitro and in Vivo Assay, Clinical Trials and Patents in Cancer Treatment using Curcumin: A Literature Review. Nutr Cancer 2018; 70:569-578. [DOI: 10.1080/01635581.2018.1464347] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Pablo J. Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| |
Collapse
|
35
|
Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, Kang N. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys 2018; 646:31-37. [PMID: 29596797 DOI: 10.1016/j.abb.2018.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 03/24/2018] [Indexed: 11/19/2022]
Abstract
Curcumin, one of the most precious pharmacologically relevant natural products, has gained considerable attention among scientists for decades because of its multi-pharmacological activities in the clinical. However, critical studies on its pharmacological and toxicological activities are needed to understand how this compound can have these biological functions considering its poor oral bioavailability and the low plasma concentration. Moreover, curcumin undergoes extensive and rapid metabolism in vivo, indicating that the pharmacological activity of consuming curcumin might be mediated partly by its metabolites. And as one of the major curcumin metabolites, hexahydrocurcumin (HHC), exhibits similar or more potent bioactivity than curcumin by in vitro and in vivo studies, such as antioxidant, anti-inflammatory, antitumor and cardiovascular protective properties, which may provide important information for us to have a profound comprehension of the effectiveness of curcumin. This review mainly summarizes the current knowledge and underlying molecular mechanisms of the biological activities of HHC and its potential effects on the development of various human diseases.
Collapse
Affiliation(s)
- Yiyuan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Hongyang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Yuqi Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
36
|
Zhang X, Peng L, Liu A, Ji J, Zhao L, Zhai G. The enhanced effect of tetrahydrocurcumin on radiosensitivity of glioma cells. J Pharm Pharmacol 2018; 70:749-759. [PMID: 29492979 DOI: 10.1111/jphp.12891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
To evaluate the effects of tetrahydrocurcumin (THC) on the radiosensitivity of glioma cells and the possible molecular mechanism.
Methods
MTT assay, colony forming and wound healing assays were performed to detect the proliferation, radiosensitivity and migration of cells with various treatments. Cell apoptosis, cell cycle and GHS level were determined for exploring potent sensitization mechanism of THC. Meanwhile, protein expressions of cyclin D1 and PCNA were also measured. Furthermore, both orthotopic C6 mouse models and C6 subcutaneously grafted mouse models were established to test the tumour inhibitory effects of combined treatment in vivo.
Key findings
Cells treated with combined THC and radiation demonstrated lower cell viability and higher apoptosis rate as compared to radiation group. Moreover, the intracellular GSH was also decreased in the THC co-treated C6 cells. More importantly, combinatorial treatment group significantly induced G0/G1 cell cycle arrest and a decrease in the S phase cell through the down-regulation of cyclin D1 and PCNA. The in-vivo therapeutic efficacy assay indicated that the growth of tumour was greatly inhibited in combinatorial group.
Conclusions
Tetrahydrocurcumin can synergistically enhance the radiosensitivity of glioma cells by inhibiting the expressions of cyclin D1 and PCNA.
Collapse
Affiliation(s)
- Xingzhen Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Shandong University, Jinan, China
| | - Lei Peng
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Shandong University, Jinan, China
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Shandong University, Jinan, China
| |
Collapse
|
37
|
Mane SD, Kamatham AN. Ascorbyl stearate and ionizing radiation potentiate apoptosis through intracellular thiols and oxidative stress in murine T lymphoma cells. Chem Biol Interact 2018; 281:37-50. [DOI: 10.1016/j.cbi.2017.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023]
|
38
|
Jayakumar S, Patwardhan RS, Pal D, Singh B, Sharma D, Kutala VK, Sandur SK. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free Radic Biol Med 2017; 113:530-538. [PMID: 29080841 DOI: 10.1016/j.freeradbiomed.2017.10.378] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022]
Abstract
Mitocurcumin is a derivative of curcumin, which has been shown to selectively enter mitochondria. Here we describe the anti-tumor efficacy of mitocurcumin in lung cancer cells and its mechanism of action. Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin as demonstrated by clonogenic assay, flow cytometry and high throughput screening assay. Treatment of lung cancer cells with mitocurcumin significantly decreased the frequency of cancer stem cells. Mitocurcumin increased the mitochondrial reactive oxygen species (ROS), decreased the mitochondrial glutathione levels and induced strand breaks in the mitochondrial DNA. As a result, we observed increased BAX to BCL-2 ratio, cytochrome C release into the cytosol, loss of mitochondrial membrane potential and increased caspase-3 activity suggesting that mitocurcumin activates the intrinsic apoptotic pathway. Docking studies using mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity. In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system. The anti-cancer activity of mitocurcumin measured in terms of apoptotic cell death and the decrease in cancer stem cell frequency was accentuated by TrxR2 overexpression. This was due to modulation of TrxR2 activity to NADPH oxidase like activity by mitocurcumin, resulting in higher ROS accumulation and cell death. Thus, our findings reveal mitocurcumin as a potent anticancer agent with better efficacy than curcumin. This study also demonstrates the role of TrxR2 and mitochondrial DNA damage in mitocurcumin mediated killing of cancer cells.
Collapse
Affiliation(s)
- Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Babita Singh
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Santosh Kumar Sandur
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| |
Collapse
|
39
|
Li X, Jiang Z, Feng J, Zhang X, Wu J, Chen W. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino) phenyl carbamoylsulfanyl] propionic acid, a glutathione reductase inhibitor, induces G 2/M cell cycle arrest through generation of thiol oxidative stress in human esophageal cancer cells. Oncotarget 2017; 8:61846-61860. [PMID: 28977909 PMCID: PMC5617469 DOI: 10.18632/oncotarget.18705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant cancer with poor response to both of chemotherapy and radiotherapy. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino) phenyl carbamoylsulfanyl] propionic acid (2-AAPA), an irreversible inhibitor of glutathione reductase (GR), is able to induce intracellular oxidative stress, and has shown anticancer activity in many cancer cell lines. In this study, we investigated the effects of 2-AAPA on the cell proliferation, cell cycle and apoptosis and aimed to explore its mechanism of action in human esophageal cancer TE-13 cells. It was found that 2-AAPA inhibited growth of ESCC cells in a dose-dependent manner and it did not deplete reduced glutathione (GSH), but significantly increased the oxidized form glutathione (GSSG), resulting in decreased GSH/GSSG ratio. In consequence, significant reactive oxygen species (ROS) production was observed. The flow cytometric analysis revealed that 2-AAPA inhibited growth of esophageal cancer cells through arresting cell cycle in G2/M phase, but apoptosis-independent mechanism. The G2/M arrest was partially contributed by down-regulation of protein expression of Cdc-25c and up-regulation of phosphorylated Cdc-2 (Tyr15), Cyclin B1 (Ser147) and p53. Meanwhile, 2-AAPA-induced thiol oxidative stress led to increased protein S-glutathionylation, which resulted in α-tubulin S-glutathionylation-dependent depolymerization of microtubule in the TE-13 cells. In conclusion, we identified that 2-AAPA as an effective thiol oxidative stress inducer and proliferation of TE-13 cells were suppressed by G2/M phase cell cycle arrest, mainly, through α-tubulin S-glutathionylation-mediated microtubule depolymerization. Our results may introduce new target and approach for esophageal cancer therapy through generation of GR-mediated thiol oxidative stress.
Collapse
Affiliation(s)
- Xia Li
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Zhiming Jiang
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jianguo Feng
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | | | - Junzhou Wu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wei Chen
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
40
|
Arrue L, Barra T, Camarada MB, Zarate X, Schott E. Electrochemical and theoretical characterization of the electro-oxidation of dimethoxycurcumin. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Teymouri M, Barati N, Pirro M, Sahebkar A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J Cell Physiol 2017; 233:124-140. [PMID: 27996095 DOI: 10.1002/jcp.25749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Dimethoxycurcumin (DiMC) is a synthetic analog of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic, and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, University of Perugia, Perugia, Italy
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells via a ROS-dependent mechanism. Biochem Biophys Res Commun 2017; 486:314-320. [PMID: 28302490 DOI: 10.1016/j.bbrc.2017.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
Abstract
6-amino-4-(4-phenoxyphenylethylamino)quinazoline (QNZ) is an excellent quinazoline-containing NF-κB inhibitor also acting as a novel anticancer agent. Considering both the medicinal significance of quinazoline scaffold and the tunable functionality of Michael acceptor-centric pharmacophores in the electrophilicity-based prooxidant strategy, we designed a novel QNZ-inspired electrophilic molecule QNZ-A by introducing a Michael acceptor unit at position-6 of quinazoline ring in QNZ. Our results identified QNZ-A as a promising selective cytotoxic agent against A549 cells. QNZ-A, by virtue of its Michael acceptor unit, induced reactive oxygen species (ROS) accumulation associated with collapse of the redox buffering system in A549 cells. This caused up-regulation of p53-inducible p21 and down-regulation of redox sensitive Cdc25C along with Cyclin B1/Cdk1, leading to a G2/M cell cycle arrest and final cell apoptosis. By contrast, QNZ-B, a reduction product of QNZ-A lacking the Michael acceptor unit failed to induce ROS generation and all these cell cycle-related events. In conclusion, this work provided a successful example of designing QNZ-directed anticancer agent by a ROS-promoting strategy and identified QNZ-A as a selective anticancer agent against A549 cells through G2/M cell cycle arrest and apoptosis via a ROS-dependent mechanism.
Collapse
|